Moved the following kconfig options out of the target component:
* ESP32_X_BROWNOUT_* -> esp_system
* ESP32_X_DEBUG_OCDAWARE -> esp_system
* APP_NO_BLOBS -> build type (main kconfig)
This commit removes the usage of all legacy FreeRTOS data types that
are exposed via configENABLE_BACKWARD_COMPATIBILITY. Legacy types can
still be used by enabling CONFIG_FREERTOS_ENABLE_BACKWARD_COMPATIBILITY.
When using a Linux system configured with `zh_CN.UTF-8` as `$LANG`,
and running raw cmake command to build the project (rather than using
`idf.py build`), output of objdump will be Chinese
(like `在归档文件 libesp_pm.a 中`), resulting in parsing error
`pyparsing.ParseException: Expected "In archive" (at char 0), (line:1, col:1)`
at entity.py line 129.
This commit forces objdump to use raw locale setting (`C`), to ensure
it always make English output that's able to be parsed.
Closes https://github.com/espressif/esp-idf/pull/7903
Fixes an issure where the first part of an object file name is not
included, due to matching the rule for a section entry previously.
Reduce depedency on matching literal strings in sections which might
change depending on toolchain (ex. matching 'elf32-xtensa-le')
Make sure parsing rule succeeds for the entirety of the sections info
string by adding 'parseAll=True'.
Add test for sections info parsing.
correct generation.py script to be silent when file: function is not in the object list (just ignore placement)
correct linker.lf to place task functions into flash if CONFIG_FREERTOS_TASK_FUNCTIONS_INTO_FLASH is active otherwise into IRAM
update kconfig option to place functions into IRAM
update linker file after tests
fix spi_device_polling_end crash when xTaskGetTickCount() in flash
disable "yield from lower priority task, other CPU" test case when placing rtos functions into flash
upadate ut app config freertos_flash
combine spi_flash driver and freertos ut configs into one file
remove TEST_EXCLUDE_COMPONENTS
ci: fix ut job
remove functions that are called from ISR funcs
add port module functions to place into Flash
place snapshot funcs into Flash when ESP_PANIC_HANDLER_IRAM is not set
ci: add job with tags UT_T1_GPIO,ESP32_IDF
This MR imposes some determinism in the mapping rule order in the output
file. For each section, the archives are arranged alphabetically
(ascending), and the mapping rules in each archive are arranged by
increasing specificity then alphabetically (ascending). The default
rules remain the very first rule for each section.
It gave us a better performance of RSA operations. (2~11 times)
The old modexp implementation (Z = X ^ Y mod M) loaded all the data into
the hw registers and was waiting for completion, but due to
the hardware RSA implementation, the calculations always started with 4096 bit,
which took a lot of time.
Measurement results (measurements were made for keys: 2048, 3072 and 4096 bits)
(Old) - Sliding-window exponentiation (HAC 14.85):
keysize = 2048 bits
RSA key operation (performance): public [93206 us], private [280189 us]
keysize = 3072 bits
RSA key operation (performance): public [293614 us], private [858157 us]
keysize = 4096 bits
RSA key operation (performance): public [653192 us], private [1912126 us]
Instead (Old) - Sliding-window exponentiation (HAC 14.85) was implemented
(New) - Montgomery exponentiation (HAC 14.94) which showed
better performance on private and public keys.
keysize = 2048 bits
RSA key operation (performance): public [14504 us], private [149456 us]
keysize = 3072 bits
RSA key operation (performance): public [35073 us], private [392743 us]
keysize = 4096 bits
RSA key operation (performance): public [58650 us], private [787186 us]
For this reason, the old implementation was removed
and the MBEDTLS_HARDWARE_MPI option was turned on by default.
Why the MPI_INTERRUPT option is removed:
the old implementation used calculations on the hardware and
it took a lot of time (10ms - 500ms). And in order not to stand idle
while waiting for completion, an interrupt option was added.
This made it possible to carry out other tasks during the calculation,
and this one to block. The new method is free from such a drawback and
the maximum duration of one RSA HW operation does not exceed 70us (usually 2-70 μs).
This option is no longer needed.
Closes: IDF-965