This MR removes the common dependency from every IDF components to the SOC component.
Currently, in the ``idf_functions.cmake`` script, we include the header path of SOC component by default for all components.
But for better code organization (or maybe also benifits to the compiling speed), we may remove the dependency to SOC components for most components except the driver and kernel related components.
In CMAKE, we have two kinds of header visibilities (set by include path visibility):
(Assume component A --(depends on)--> B, B is the current component)
1. public (``COMPONENT_ADD_INCLUDEDIRS``): means this path is visible to other depending components (A) (visible to A and B)
2. private (``COMPONENT_PRIV_INCLUDEDIRS``): means this path is only visible to source files inside the component (visible to B only)
and we have two kinds of depending ways:
(Assume component A --(depends on)--> B --(depends on)--> C, B is the current component)
1. public (```COMPONENT_REQUIRES```): means B can access to public include path of C. All other components rely on you (A) will also be available for the public headers. (visible to A, B)
2. private (``COMPONENT_PRIV_REQUIRES``): means B can access to public include path of C, but don't propagate this relation to other components (A). (visible to B)
1. remove the common requirement in ``idf_functions.cmake``, this makes the SOC components invisible to all other components by default.
2. if a component (for example, DRIVER) really needs the dependency to SOC, add a private dependency to SOC for it.
3. some other components that don't really depends on the SOC may still meet some errors saying "can't find header soc/...", this is because it's depended component (DRIVER) incorrectly include the header of SOC in its public headers. Moving all this kind of #include into source files, or private headers
4. Fix the include requirements for some file which miss sufficient #include directives. (Previously they include some headers by the long long long header include link)
This is a breaking change. Previous code may depends on the long include chain.
You may need to include the following headers for some files after this commit:
- soc/soc.h
- soc/soc_memory_layout.h
- driver/gpio.h
- esp_sleep.h
The major broken include chain includes:
1. esp_system.h no longer includes esp_sleep.h. The latter includes driver/gpio.h and driver/touch_pad.h.
2. ets_sys.h no longer includes soc/soc.h
3. freertos/portmacro.h no longer includes soc/soc_memory_layout.h
some peripheral headers no longer includes their hw related headers, e.g. rom/gpio.h no longer includes soc/gpio_pins.h and soc/gpio_reg.h
BREAKING CHANGE
1. separate rom include files and linkscript to esp_rom
2. modefiy "include rom/xxx.h" to "include esp32/rom/xxx.h"
3. Forward compatible
4. update mqtt
On flash program operation (either erase or write), if corresponding address has
cache mapping present then cache is explicitly flushed (for both pro and app cpu)
Closes https://github.com/espressif/esp-idf/issues/2146
* Writing >4 bytes to unaligned offsets would fail
* Writiing data from flash would fail (wrong buffer was used)
* Writing >8192 bytes from RAM would over-write data multiple times
Adds test cases for the above.
1) fixed SPI_read_status: added check for flash busy flag in matrix mode
2) fixed SPI_page_program: enable write before writing data to SPI FIFO
3) SPI flash ROM funcs replacement is controlled via menuconfig option
* Erase range operations allow preemption after each block or sector.
* Write operations allow preemption every 8KB of data.
* Reado operations allow preemption every 16KB of data.
spi_flash_unlock was missing spi_flash_guard_start, which caused cache
to be enabled during unlock operation, causing hard-to-trace crashes
and cache data corruption.
Without this, it's possible for stale information to be read from
cache via mmap, even if the MMU table entry had been invalidated
prior to writing flash (if the same MMU table entry was re-used after
writing flash.)
These functions are marked as inline and are called from functions which are in IRAM.
In release (-Os) builds, the compiler may decide not to inline these functions.
Placing these functions into IRAM explicitly works around this.
The following issues mentioned during MR!341 review were fixed:
1) Core dump test application description
2) Usage of CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH and CONFIG_ESP32_ENABLE_COREDUMP_TO_UART
3) FLASH_GUARD_START macro usage is fixed in flash API
4) Core dump module logging facility
5) cache util functions doc updated
6) interactive delay before print core dump to uart
7) core dump partion support in build system
1) PS is fixed up to allow GDB backtrace to work properly
2) MR!341 discussion: in core dump module: esp_panicPutXXX was replaced by ets_printf.
3) MR!341 discussion: core dump flash magic number was changed.
4) MR!341 discussion: SPI flash access API was redesigned to allow flexible critical section management.
5) test app for core dump feature was added
6) fixed base64 file reading issues on Windows platform
7) now raw bin core file is deleted upon core loader failure by epscoredump.py