All the partition handling API functions and data-types were moved from the 'spi_flash' component to the new one named 'esp_partition'. See Storage 5.x migration guide for more details
'linux' component provides some of the common header files, such as
'sys/queue.h' and 'sys/lock.h'. For chip targets, it is possible to
include these files without having to add any extra requirements.
With this change, the same behavior will apply for the linux target.
* General tests like page loading from flash
* Rough test of fixed-size data types
* Rough test of blob read
* Added coverage target in cmake, also accessible
via `idf.py coverage`
* Fixed unsigned comparison in comp. enum table
* introducing temporary LINUX_TARGET define
The following three headers will be mockes:
* esp_flash.h
* esp_spi_flash.h
* esp_partition.h
* counter functions live in own header
* add spi_flash sim dir for esp_err.h to Unity
* modified gen_esp_err_to_name.py to ignore
sim/ dir in spi_flash component
Add cmock .yaml config file
Add spi hal header until soc can mock the hal
layer as well.
1. The 2nd bootloader always call `rom_spiflash_unlock()`, but never help to clear the WEL bit when exit. This may cause system unstability.
This commit helps to clear WEL when flash configuration is done.
**RISK:** When the app starts, it didn't have to clear the WEL before it actually write/erase. But now the very first write/erase operation should be done after a WEL clear. Though the risk is little (all the following write/erase also need to clear the WEL), we still have to test this carefully, especially for those functions used by the OTA.
2. The `rom_spiflash_unlock()` function in the patch of ESP32 may (1) trigger the QPI, (2) clear the QE or (3) fail to unlock the ISSI chips.
Status register bitmap of ISSI chip and GD chip:
| SR | ISSI | GD25LQ32C |
| -- | ---- | --------- |
| 0 | WIP | WIP |
| 1 | WEL | WEL |
| 2 | BP0 | BP0 |
| 3 | BP1 | BP1 |
| 4 | BP2 | BP2 |
| 5 | BP3 | BP3 |
| 6 | QE | BP4 |
| 7 | SRWD | SRP0 |
| 8 | | SRP1 |
| 9 | | QE |
| 10 | | SUS2 |
| 11 | | LB1 |
| 12 | | LB2 |
| 13 | | LB3 |
| 14 | | CMP |
| 15 | | SUS1 |
QE bit of other chips are at the bit 9 of the status register (i.e. bit 1 of SR2), which should be read by RDSR2 command.
However, the RDSR2 (35H, Read Status 2) command for chip of other vendors happens to be the QIOEN (Enter QPI mode) command of ISSI chips. When the `rom_spiflash_unlock()` function trys to read SR2, it may trigger the QPI of ISSI chips.
Moreover, when `rom_spiflash_unlock()` try to clear the BP4 bit in the status register, QE (bit 6) of ISSI chip may be cleared by accident. Or if the ISSI chip doesn't accept WRSR command with argument of two bytes (since it only have status register of one byte), it may fail to clear the other protect bits (BP0~BP3) as expected.
This commit makes the `rom_spiflash_unlock()` check whether the vendor is issi. if so, `rom_spiflash_unlock()` only send RDSR to read the status register, send WRSR with only 1 byte argument, and also avoid clearing the QE bit (bit 6).
3. `rom_spiflash_unlock()` always send WRSR command to clear protection bits even when there is no protection bit active. And the execution of clearing status registers, which takes about 700us, will also happen even when there's no bits cleared.
This commit skips the clearing of status register if there is no protection bits active.
Also move the execute_flash_command to be a bootloader API; move
implementation of spi_flash_wrap_set to the bootloader
The default chip driver (chip_generic) use command 01H + 2 bytes to
clear the QE bit. However this will accidently change the configuration
register value of the MXIC chip.
MXIC chip driver is added to fix that.
There used to be dummy phase before out phase in common command
transactions. This corrupts the data.
The code before never actually operate (clear) the QE bit, once it finds
the QE bit is set. It's hard to check whether the QE set/disable
functions work well.
This commit:
1. Cancel the dummy phase
2. Set and clear the QE bit according to chip settings, allowing tests
for QE bits. However for some chips (Winbond for example), it's not
forced to clear the QE bit if not able to.
3. Also refactor to allow chip_generic and other chips to share the same
code to read and write qe bit; let common command and read command share
configure_host_io_mode.
4. Rename read mode to io mode since maybe we will write data with quad
mode one day.
When legacy mode is used, the coredump still fails during linking
because "esp_flash_init_default_chip", "esp_flash_app_init" and
"esp_flash_default_chip " are not compiled and linked.
Instead of using ``if`` macros in callers, these functions are protected
by ``if`` macros in the header, and also not compiled in the sources.
"esp_flash_default_chip" variable is compiled with safe default value.
Do not include bootloader in flash target when secure boot is enabled.
Emit signing warning on all cases where signed apps are enabled (secure
boot and signed images)
Follow convention of capital letters for SECURE_BOOT_SIGNING_KEY
variable, since it is
relevant to other components, not just bootloader.
Pass signing key and verification key via config, not requiring
bootloader to know parent app dir.
Misc. variables name corrections