Merge branch 'refactor/freertos_yielding_tests' into 'master'

freertos: refactor yield tests for freertos

Closes IDF-3343, IDFCI-1250, IDFCI-1251, IDFCI-1252, IDFCI-1253, IDFCI-1254, IDFCI-1255, and IDFCI-1256

See merge request espressif/esp-idf!18369
This commit is contained in:
Sudeep Mohanty 2022-06-13 22:33:40 +08:00
commit ff185f737c
2 changed files with 246 additions and 217 deletions

View File

@ -927,7 +927,7 @@ UT_046:
UT_047:
extends: .unit_test_esp32s2_template
parallel: 5
parallel: 6
tags:
- ESP32S2_IDF
- UT_T1_1
@ -946,7 +946,7 @@ UT_S2_SDSPI:
UT_C2:
extends: .unit_test_esp32c2_template
parallel: 19
parallel: 20
tags:
- ESP32C2_IDF
- UT_T1_1

View File

@ -11,14 +11,34 @@
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "freertos/queue.h"
#include "unity.h"
#include "test_utils.h"
#include <string.h>
static QueueHandle_t yield_task_sequence;
// Array to store the task ids of the test threads being yielded
static volatile uint32_t task_yield_sequence[3];
// Index variable to access the yield sequence array
static volatile uint32_t idx = 0;
// Lock to protect the shared variables to store task id
static portMUX_TYPE idx_lock;
// Synchronization variable to have a deterministic dispatch sequence of the test threads
static volatile bool task_sequence_ready;
// Synchronization variable between the test threads and the unity task
static volatile uint32_t count;
static SemaphoreHandle_t mutex;
// Lock variable to create a blocked task scenario
static volatile SemaphoreHandle_t task_mutex;
// This helper macro is used to store the task id atomically
#define STORE_TASK_ID(task_id) ({ \
portENTER_CRITICAL(&idx_lock); \
task_yield_sequence[idx++] = task_id; \
portEXIT_CRITICAL(&idx_lock); \
})
/*
* Test yielding for same priority tasks on the same core.
@ -30,13 +50,13 @@ static SemaphoreHandle_t mutex;
*/
static void yield_task1(void *arg)
{
/* Set the task sequence flag once yield_task1 runs */
task_sequence_ready = true;
uint32_t task_id = (uint32_t)arg;
/* Store task_id on queue */
TEST_ASSERT_EQUAL(pdTRUE, xQueueSend(yield_task_sequence, &task_id, 0));
/* Store task_id in the sequence array */
STORE_TASK_ID(task_id);
/* Notify the yield_task2 to run */
task_sequence_ready = true;
/* Yield */
taskYIELD();
@ -44,21 +64,21 @@ static void yield_task1(void *arg)
/* Increment task count to notify unity task */
count++;
/* Delete itself */
/* Delete self */
vTaskDelete(NULL);
}
static void yield_task2(void *arg)
{
uint32_t task_id = (uint32_t)arg;
/* Wait for the other task to run for the test to begin */
while (!task_sequence_ready) {
taskYIELD();
};
uint32_t task_id = (uint32_t)arg;
/* Store task_id on queue */
TEST_ASSERT_EQUAL(pdTRUE, xQueueSend(yield_task_sequence, &task_id, 0));
/* Store task_id in the sequence array */
STORE_TASK_ID(task_id);
/* Yield */
taskYIELD();
@ -66,22 +86,27 @@ static void yield_task2(void *arg)
/* Increment task count to notify unity task */
count++;
/* Delete itself */
/* Delete self */
vTaskDelete(NULL);
}
TEST_CASE("Task yield must run the next ready task of the same priority", "[freertos][ignore]")
TEST_CASE("Task yield must run the next ready task of the same priority", "[freertos]")
{
/* Reset yield sequence index */
idx = 0;
/* Reset yield sequence array */
memset((void *)task_yield_sequence, 0, sizeof(task_yield_sequence));
/* Initialize idx lock */
portMUX_INITIALIZE(&idx_lock);
/* Reset task count */
count = 0;
/* Reset task sequence flag */
task_sequence_ready = false;
/* Create task yielding sequence queue */
yield_task_sequence = xQueueCreate(3, sizeof(uint32_t));
TEST_ASSERT_NOT_EQUAL(NULL, yield_task_sequence);
/* Create test tasks */
xTaskCreatePinnedToCore(yield_task1, "yield_task1", 2048, (void *)1, UNITY_FREERTOS_PRIORITY - 1, NULL, UNITY_FREERTOS_CPU);
xTaskCreatePinnedToCore(yield_task2, "yield_task2", 2048, (void *)2, UNITY_FREERTOS_PRIORITY - 1, NULL, UNITY_FREERTOS_CPU);
@ -91,15 +116,11 @@ TEST_CASE("Task yield must run the next ready task of the same priority", "[free
vTaskDelay(10);
}
/* Verify that the yield is successful and the next ready task is run */
uint32_t task_id;
TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(yield_task_sequence, &task_id, 0));
TEST_ASSERT_EQUAL(1, task_id);
TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(yield_task_sequence, &task_id, 0));
TEST_ASSERT_EQUAL(2, task_id);
idx = 0;
/* Cleanup yield sequence queue */
vQueueDelete(yield_task_sequence);
/* Verify that the yield is successful and the next ready task is run */
TEST_ASSERT_EQUAL(1, task_yield_sequence[idx++]);
TEST_ASSERT_EQUAL(2, task_yield_sequence[idx++]);
}
/*
@ -113,104 +134,96 @@ TEST_CASE("Task yield must run the next ready task of the same priority", "[free
*/
static void test_task1(void *arg)
{
/* Set the task sequence flag once test_task1 runs */
task_sequence_ready = true;
uint32_t task_id = (uint32_t)arg;
/* Block on mutex taken by the unity task */
TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(mutex, portMAX_DELAY));
TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(task_mutex, portMAX_DELAY));
/* Store task_id on queue */
TEST_ASSERT_EQUAL(pdTRUE, xQueueSend(yield_task_sequence, &task_id, 0));
/* Store task_id in the sequence array */
STORE_TASK_ID(task_id);
/* Increment task count to notify unity task */
count++;
/* Release mutex */
TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreGive(mutex));
TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreGive(task_mutex));
/* Delete itself */
/* Delete self */
vTaskDelete(NULL);
}
static void test_task2(void *arg)
{
/* Wait for the other task to run for the test to begin */
while (!task_sequence_ready) {
taskYIELD();
};
uint32_t task_id = (uint32_t)arg;
/* Store task_id on queue */
TEST_ASSERT_EQUAL(pdTRUE, xQueueSend(yield_task_sequence, &task_id, 0));
/* Store task_id in the sequence array */
STORE_TASK_ID(task_id);
/* Yield */
taskYIELD();
/* Store task_id on queue */
TEST_ASSERT_EQUAL(pdTRUE, xQueueSend(yield_task_sequence, &task_id, 0));
/* Store task_id in the sequence array */
STORE_TASK_ID(task_id);
/* Increment task count to notify unity task */
count++;
/* Delete itself */
/* Delete self */
vTaskDelete(NULL);
}
TEST_CASE("Task yield must not run a blocked task", "[freertos][ignore]")
TEST_CASE("Task yield must not run a blocked task", "[freertos]")
{
/* Reset yield sequence index */
idx = 0;
/* Reset yield sequence array */
memset((void *)task_yield_sequence, 0, sizeof(task_yield_sequence));
/* Initialize idx lock */
portMUX_INITIALIZE(&idx_lock);
/* Reset task count */
count = 0;
/* Reset task sequence flag */
task_sequence_ready = false;
/* Create mutex and acquire it */
mutex = xSemaphoreCreateMutex();
TEST_ASSERT_NOT_EQUAL(NULL, mutex);
TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(mutex, portMAX_DELAY));
task_mutex = xSemaphoreCreateMutex();
TEST_ASSERT_NOT_EQUAL(NULL, task_mutex);
TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(task_mutex, portMAX_DELAY));
/* Create task yielding sequence queue */
yield_task_sequence = xQueueCreate(3, sizeof(uint32_t));
TEST_ASSERT_NOT_EQUAL(NULL, yield_task_sequence);
/* Create test tasks */
/* Create test_task1. This gets blocked. */
xTaskCreatePinnedToCore(test_task1, "test_task1", 2048, (void *)1, UNITY_FREERTOS_PRIORITY - 1, NULL, UNITY_FREERTOS_CPU);
/* Wait for test_task1 to start up and get blocked */
vTaskDelay(10);
/* Create test_task2. This issues the yield. */
xTaskCreatePinnedToCore(test_task2, "test_task2", 2048, (void *)2, UNITY_FREERTOS_PRIORITY - 1, NULL, UNITY_FREERTOS_CPU);
/* Wait for at least one of the tasks to finish up */
while (count == 0) {
/* Wait for test_task2 to finish up */
while (count != 1) {
vTaskDelay(10);
}
/* Release mutex. This should unblock test_task1. */
TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreGive(task_mutex));
/* Wait for test_task1 to finish up */
vTaskDelay(10);
idx = 0;
/* Verify that the yield results in the same task running again and not the blocked task */
uint32_t task_id;
TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(yield_task_sequence, &task_id, 0));
TEST_ASSERT_EQUAL(2, task_id);
TEST_ASSERT_EQUAL(2, task_yield_sequence[idx++]);
/* Verify that the task yield did not result in a context switch */
TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(yield_task_sequence, &task_id, 0));
TEST_ASSERT_EQUAL(2, task_id);
TEST_ASSERT_EQUAL(2, task_yield_sequence[idx++]);
/* Release mutex */
TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreGive(mutex));
/* Verify that the other task is scheduled once it is unblocked */
TEST_ASSERT_EQUAL(1, task_yield_sequence[idx++]);
/* Wait for the second task to finish up */
while (count != 2) {
vTaskDelay(10);
}
/* Verify that the second task is scheduled once it is unblocked */
TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(yield_task_sequence, &task_id, 0));
TEST_ASSERT_EQUAL(1, task_id);
/* Cleanup mutex */
vSemaphoreDelete(mutex);
/* Cleanup yield sequence queue */
vQueueDelete(yield_task_sequence);
/* Cleanup task mutex */
vSemaphoreDelete(task_mutex);
}
/*
@ -223,22 +236,24 @@ TEST_CASE("Task yield must not run a blocked task", "[freertos][ignore]")
*/
static void test_critical_task1(void *arg)
{
/* Set the task sequence flag once test_critical_task1 runs */
task_sequence_ready = true;
uint32_t task_id = (uint32_t)arg;
/* Store task_id on queue */
TEST_ASSERT_EQUAL(pdTRUE, xQueueSend(yield_task_sequence, &task_id, 0));
/* Store task_id in the sequence array */
STORE_TASK_ID(task_id);
/* Suspend scheduler */
vTaskSuspendAll();
/* Set the task sequence flag once test_critical_task1 runs */
task_sequence_ready = true;
/* Yield */
taskYIELD();
/* Store task_id on queue again */
TEST_ASSERT_EQUAL(pdTRUE, xQueueSend(yield_task_sequence, &task_id, 0));
/* Store task_id in the sequence array.
* No need for a lock when the scheduler is suspended.
*/
task_yield_sequence[idx++] = task_id;
/* Increment task count to notify unity task */
count++;
@ -246,70 +261,65 @@ static void test_critical_task1(void *arg)
/* Resume scheduler */
xTaskResumeAll();
/* Delete itself */
/* Delete self */
vTaskDelete(NULL);
}
static void test_critical_task2(void *arg)
{
uint32_t task_id = (uint32_t)arg;
/* Wait for the other task to run for the test to begin */
while (!task_sequence_ready) {
taskYIELD();
};
uint32_t task_id = (uint32_t)arg;
/* Store task_id on queue */
TEST_ASSERT_EQUAL(pdTRUE, xQueueSend(yield_task_sequence, &task_id, 0));
/* Store task_id in the sequence array */
STORE_TASK_ID(task_id);
/* Increment task count to notify unity task */
count++;
/* Delete itself */
/* Delete self */
vTaskDelete(NULL);
}
TEST_CASE("Task yield must not happen when scheduler is suspended", "[freertos][ignore]")
TEST_CASE("Task yield must not happen when scheduler is suspended", "[freertos]")
{
/* Reset yield sequence index */
idx = 0;
/* Reset yield sequence array */
memset((void *)task_yield_sequence, 0, sizeof(task_yield_sequence));
/* Initialize idx lock */
portMUX_INITIALIZE(&idx_lock);
/* Reset task count */
count = 0;
/* Reset task sequence flag */
task_sequence_ready = false;
/* Create task yielding sequence queue */
yield_task_sequence = xQueueCreate(3, sizeof(uint32_t));
TEST_ASSERT_NOT_EQUAL(NULL, yield_task_sequence);
/* Create test tasks */
xTaskCreatePinnedToCore(test_critical_task1, "test_critical_task1", 2048, (void *)1, UNITY_FREERTOS_PRIORITY - 1, NULL, UNITY_FREERTOS_CPU);
xTaskCreatePinnedToCore(test_critical_task2, "test_critical_task2", 2048, (void *)2, UNITY_FREERTOS_PRIORITY - 1, NULL, UNITY_FREERTOS_CPU);
/* Wait for at least one of the tasks to finish up */
while (count == 0) {
vTaskDelay(10);
}
/* Verify that the first task runs */
uint32_t task_id;
TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(yield_task_sequence, &task_id, 0));
TEST_ASSERT_EQUAL(1, task_id);
/* Verify that the task yield when the scheduler is suspended did not result in a context switch */
TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(yield_task_sequence, &task_id, 0));
TEST_ASSERT_EQUAL(1, task_id);
/* Wait for the second task to finish up */
/* Wait for both the tasks to finish up */
while (count != 2) {
vTaskDelay(10);
}
/* Verify that the second task is scheduled once the scheduler is resumed */
TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(yield_task_sequence, &task_id, 0));
TEST_ASSERT_EQUAL(2, task_id);
idx = 0;
/* Cleanup yield sequence queue */
vQueueDelete(yield_task_sequence);
/* Verify that test_critical_task1 runs first */
TEST_ASSERT_EQUAL(1, task_yield_sequence[idx++]);
/* Verify that the task yield, when the scheduler is suspended, did not result in a context switch */
TEST_ASSERT_EQUAL(1, task_yield_sequence[idx++]);
/* Verify that test_critical_task2 is scheduled once the scheduler is resumed */
TEST_ASSERT_EQUAL(2, task_yield_sequence[idx++]);
}
/*
@ -323,48 +333,49 @@ static void high_prio_task(void *arg)
{
uint32_t task_id = (uint32_t)arg;
/* Store task_id on queue */
TEST_ASSERT_EQUAL(pdTRUE, xQueueSend(yield_task_sequence, &task_id, 0));
/* Store task_id in the sequence array */
STORE_TASK_ID(task_id);
/* Increment task count to notify unity task */
count++;
/* Delete itself */
/* Delete self */
vTaskDelete(NULL);
}
TEST_CASE("Lower priority task must yield immediately on creation of higher priority task", "[freertos][ignore]")
TEST_CASE("Task yield must happen when a task creates a higher priority task", "[freertos]")
{
/* Reset yield sequence index */
idx = 0;
/* Reset yield sequence array */
memset((void *)task_yield_sequence, 0, sizeof(task_yield_sequence));
/* Initialize idx lock */
portMUX_INITIALIZE(&idx_lock);
/* Reset task count */
count = 0;
/* Create task yielding sequence queue */
yield_task_sequence = xQueueCreate(3, sizeof(uint32_t));
TEST_ASSERT_NOT_EQUAL(NULL, yield_task_sequence);
/* Create test tasks */
/* Create test task */
xTaskCreatePinnedToCore(high_prio_task, "high_prio_task", 2048, (void *)1, UNITY_FREERTOS_PRIORITY + 1, NULL, UNITY_FREERTOS_CPU);
uint32_t unity_task_id = 2;
/* Store task_id on queue */
TEST_ASSERT_EQUAL(pdTRUE, xQueueSend(yield_task_sequence, &unity_task_id, 0));
/* Store task_id in the sequence array */
STORE_TASK_ID(unity_task_id);
/* Wait for the newly created task to finish up */
/* Wait for the test task to finish up */
while (count == 0) {
vTaskDelay(10);
}
idx = 0;
/* Verify that the unity task yields as soon as a higher prio task is created */
uint32_t task_id;
TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(yield_task_sequence, &task_id, 0));
TEST_ASSERT_EQUAL(1, task_id);
TEST_ASSERT_EQUAL(1, task_yield_sequence[idx++]);
/* Verify that the unity task_id is stored after the higher priority task runs */
TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(yield_task_sequence, &task_id, 0));
TEST_ASSERT_EQUAL(2, task_id);
/* Cleanup yield sequence queue */
vQueueDelete(yield_task_sequence);
TEST_ASSERT_EQUAL(2, task_yield_sequence[idx++]);
}
/*
@ -379,59 +390,59 @@ static void low_prio_task(void *arg)
{
uint32_t task_id = (uint32_t)arg;
/* Store task_id on queue */
TEST_ASSERT_EQUAL(pdTRUE, xQueueSend(yield_task_sequence, &task_id, 0));
/* Store task_id in the sequence array */
STORE_TASK_ID(task_id);
/* Increment task count to notify unity task */
count++;
/* Delete itself */
/* Delete self */
vTaskDelete(NULL);
}
TEST_CASE("Lower priority task must yield immediately when the priority of another task is raised", "[freertos][ignore]")
TEST_CASE("Task yield must happed when a task raises the priority of another priority task", "[freertos]")
{
/* Reset yield sequence index */
idx = 0;
/* Reset yield sequence array */
memset((void *)task_yield_sequence, 0, sizeof(task_yield_sequence));
/* Initialize idx lock */
portMUX_INITIALIZE(&idx_lock);
/* Reset task count */
count = 0;
/* Create task yielding sequence queue */
yield_task_sequence = xQueueCreate(3, sizeof(uint32_t));
TEST_ASSERT_NOT_EQUAL(NULL, yield_task_sequence);
/* Create test tasks */
/* Create test task */
TaskHandle_t task_handle;
xTaskCreatePinnedToCore(low_prio_task, "low_prio_task", 2048, (void *)1, UNITY_FREERTOS_PRIORITY - 1, &task_handle, UNITY_FREERTOS_CPU);
uint32_t unity_task_id = 2;
/* Store unity task_id on queue */
TEST_ASSERT_EQUAL(pdTRUE, xQueueSend(yield_task_sequence, &unity_task_id, 0));
/* Store task_id in the sequence array */
STORE_TASK_ID(unity_task_id);
/* Raise the priority of the lower priority task */
vTaskPrioritySet(task_handle, UNITY_FREERTOS_PRIORITY + 1);
/* Store unity task_id on queue again */
TEST_ASSERT_EQUAL(pdTRUE, xQueueSend(yield_task_sequence, &unity_task_id, 0));
/* Store unity task_id in the sequence array again */
STORE_TASK_ID(unity_task_id);
/* Wait for at least the task to finish up */
/* Wait for the test task to finish up */
while (count == 0) {
vTaskDelay(10);
}
idx = 0;
/* Verify that the unity task does not yield to a lower priority task when it is created */
uint32_t task_id;
TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(yield_task_sequence, &task_id, 0));
TEST_ASSERT_EQUAL(2, task_id);
TEST_ASSERT_EQUAL(2, task_yield_sequence[idx++]);
/* Verify that the unity task_id yielded once the priority of the lower priority task is raised */
TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(yield_task_sequence, &task_id, 0));
TEST_ASSERT_EQUAL(1, task_id);
TEST_ASSERT_EQUAL(1, task_yield_sequence[idx++]);
/* Verify that the unity task_id is stored again once the other task finishes up */
TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(yield_task_sequence, &task_id, 0));
TEST_ASSERT_EQUAL(2, task_id);
/* Cleanup yield sequence queue */
vQueueDelete(yield_task_sequence);
/* Verify that the unity task_id is stored again once the test task finishes up */
TEST_ASSERT_EQUAL(2, task_yield_sequence[idx++]);
}
#if (portNUM_PROCESSORS > 1) && !(CONFIG_FREERTOS_UNICORE)
@ -446,44 +457,56 @@ TEST_CASE("Lower priority task must yield immediately when the priority of anoth
*/
static void other_core_task1(void *arg)
{
/* Set the task sequence flag once other_core_task1 runs */
task_sequence_ready = true;
uint32_t task_id = (uint32_t)arg;
/* Store task_id on queue */
TEST_ASSERT_EQUAL(pdTRUE, xQueueSend(yield_task_sequence, &task_id, 0));
/* Store task_id in the sequence array */
STORE_TASK_ID(task_id);
while (1) { }
while (1) {
vTaskDelay(10);
}
}
static void other_core_task2(void *arg)
{
uint32_t task_id = (uint32_t)arg;
/* Wait for the other task to run for the test to begin */
while (!task_sequence_ready) {
taskYIELD();
};
uint32_t task_id = (uint32_t)arg;
/* Store task_id in the sequence array */
STORE_TASK_ID(task_id);
/* Store task_id on queue */
TEST_ASSERT_EQUAL(pdTRUE, xQueueSend(yield_task_sequence, &task_id, 0));
/* Increment task count to notify unity task */
count++;
while (1) { }
while (1) {
vTaskDelay(10);
}
}
TEST_CASE("Task yield on other core can go through", "[freertos][ignore]")
TEST_CASE("Task yield must happen when issued from another core", "[freertos]")
{
TaskHandle_t other_core_taskhandle1;
TaskHandle_t other_core_taskhandle2;
/* Reset yield sequence index */
idx = 0;
/* Reset yield sequence array */
memset((void *)task_yield_sequence, 0, sizeof(task_yield_sequence));
/* Initialize idx lock */
portMUX_INITIALIZE(&idx_lock);
/* Reset task count */
count = 0;
/* Reset task sequence flag */
task_sequence_ready = false;
/* Create task yielding sequence queue */
yield_task_sequence = xQueueCreate(3, sizeof(uint32_t));
TEST_ASSERT_NOT_EQUAL(NULL, yield_task_sequence);
/* Create test tasks */
xTaskCreatePinnedToCore(other_core_task1, "test_task1", 2048, (void *)1, UNITY_FREERTOS_PRIORITY - 1, &other_core_taskhandle1, !UNITY_FREERTOS_CPU);
xTaskCreatePinnedToCore(other_core_task2, "test_task2", 2048, (void *)2, UNITY_FREERTOS_PRIORITY - 1, &other_core_taskhandle2, !UNITY_FREERTOS_CPU);
@ -491,10 +514,13 @@ TEST_CASE("Task yield on other core can go through", "[freertos][ignore]")
/* Wait for everything to be setup */
vTaskDelay(10);
/* Verify that other_core_task1 runs */
uint32_t task_id;
TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(yield_task_sequence, &task_id, 0));
TEST_ASSERT_EQUAL(1, task_id);
uint32_t idx1 = 0;
/* Verify that other_core_task1 runs first */
TEST_ASSERT_EQUAL(1, task_yield_sequence[idx1++]);
/* Set the task sequence flag once other_core_task1 runs */
task_sequence_ready = true;
/* Force an yield on the other core */
#if CONFIG_FREERTOS_SMP
@ -503,12 +529,13 @@ TEST_CASE("Task yield on other core can go through", "[freertos][ignore]")
vPortYieldOtherCore(!UNITY_FREERTOS_CPU);
#endif
/* Verify that other_core_task1 yields and other_core_task2 runs */
TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(yield_task_sequence, &task_id, 0));
TEST_ASSERT_EQUAL(2, task_id);
/* Wait for the test task to finish up */
while (count == 0) {
vTaskDelay(10);
}
/* Cleanup yield sequence queue */
vQueueDelete(yield_task_sequence);
/* Verify that other_core_task1 yields and other_core_task2 runs */
TEST_ASSERT_EQUAL(2, task_yield_sequence[idx1++]);
/* Cleanup test tasks */
vTaskDelete(other_core_taskhandle1);
@ -532,19 +559,21 @@ static volatile bool yield_triggered = false;
*/
static void other_core_critical_task1(void *arg)
{
/* Set the task sequence flag once other_core_critical_task1 runs */
task_sequence_ready = true;
uint32_t task_id = (uint32_t)arg;
/* Store task_id on queue */
TEST_ASSERT_EQUAL(pdTRUE, xQueueSend(yield_task_sequence, &task_id, 0));
/* Store task_id in the sequence array */
STORE_TASK_ID(task_id);
/* Suspend scheduler*/
vTaskSuspendAll();
/* Store task_id on queue again */
TEST_ASSERT_EQUAL(pdTRUE, xQueueSend(yield_task_sequence, &task_id, 0));
/* Store task_id in the sequence array again.
* No need for a lock when the scheduler is supended.
*/
task_yield_sequence[idx++] = task_id;
/* Set the task sequence flag once other_core_critical_task1 runs */
task_sequence_ready = true;
/* Increment task count to notify unity task */
count++;
@ -554,41 +583,46 @@ static void other_core_critical_task1(void *arg)
/* Resume scheduler */
xTaskResumeAll();
/* Delete itself */
/* Delete self */
vTaskDelete(NULL);
}
static void other_core_critical_task2(void *arg)
{
uint32_t task_id = (uint32_t)arg;
/* Wait for the other task to run for the test to begin */
while (!task_sequence_ready) {
taskYIELD();
};
uint32_t task_id = (uint32_t)arg;
/* Store task_id on queue */
TEST_ASSERT_EQUAL(pdTRUE, xQueueSend(yield_task_sequence, &task_id, 0));
/* Store task_id in the sequence array */
STORE_TASK_ID(task_id);
/* Increment task count to notify unity task */
count++;
/* Delete itself */
/* Delete self */
vTaskDelete(NULL);
}
TEST_CASE("Task yield on other core must not happen when scheduler is suspended", "[freertos][ignore]")
TEST_CASE("Task yield on other core must not happen when scheduler is suspended", "[freertos]")
{
/* Reset yield sequence index */
idx = 0;
/* Reset yield sequence array */
memset((void *)task_yield_sequence, 0, sizeof(task_yield_sequence));
/* Initialize idx lock */
portMUX_INITIALIZE(&idx_lock);
/* Reset task count */
count = 0;
/* Reset task sequence flag */
task_sequence_ready = false;
/* Create task yielding sequence queue */
yield_task_sequence = xQueueCreate(3, sizeof(uint32_t));
TEST_ASSERT_NOT_EQUAL(NULL, yield_task_sequence);
/* Create test tasks */
xTaskCreatePinnedToCore(other_core_critical_task1, "other_core_critical_task1", 2048, (void *)1, UNITY_FREERTOS_PRIORITY - 1, NULL, !UNITY_FREERTOS_CPU);
xTaskCreatePinnedToCore(other_core_critical_task2, "other_core_critical_task2", 2048, (void *)2, UNITY_FREERTOS_PRIORITY - 1, NULL, !UNITY_FREERTOS_CPU);
@ -604,14 +638,13 @@ TEST_CASE("Task yield on other core must not happen when scheduler is suspended"
/* Set yield triggered flag */
yield_triggered = true;
uint32_t idx1 = 0;
/* Verify that the first task runs */
uint32_t task_id;
TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(yield_task_sequence, &task_id, 0));
TEST_ASSERT_EQUAL(1, task_id);
TEST_ASSERT_EQUAL(1, task_yield_sequence[idx1++]);
/* Verify that the task yield when the scheduler is suspended did not result in a context switch */
TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(yield_task_sequence, &task_id, 0));
TEST_ASSERT_EQUAL(1, task_id);
TEST_ASSERT_EQUAL(1, task_yield_sequence[idx1++]);
/* Wait for the second task to finish up */
while (count != 2) {
@ -619,11 +652,7 @@ TEST_CASE("Task yield on other core must not happen when scheduler is suspended"
}
/* Verify that the second task is scheduled once the critical section is over */
TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(yield_task_sequence, &task_id, 0));
TEST_ASSERT_EQUAL(2, task_id);
/* Cleanup yield sequence queue */
vQueueDelete(yield_task_sequence);
TEST_ASSERT_EQUAL(2, task_yield_sequence[idx1++]);
}
#endif // !CONFIG_FREERTOS_SMP
#endif // (portNUM_PROCESSORS > 1) && !(CONFIG_FREERTOS_UNICORE)