mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
mbedtls hardware RSA: Combine methods for calculating M' & r inverse
Remove redundant gcd calculation, use consistent terminology. Also remove leftover debugging code
This commit is contained in:
parent
6b687b43f4
commit
f87be70d51
@ -39,46 +39,10 @@ static const char *TAG = "bignum";
|
||||
|
||||
#if defined(MBEDTLS_MPI_MUL_MPI_ALT) || defined(MBEDTLS_MPI_EXP_MOD_ALT)
|
||||
|
||||
/* Constants from mbedTLS bignum.c */
|
||||
#define ciL (sizeof(mbedtls_mpi_uint)) /* chars in limb */
|
||||
#define biL (ciL << 3) /* bits in limb */
|
||||
|
||||
static _lock_t mpi_lock;
|
||||
|
||||
/* Temporary debugging function to print an MPI number to
|
||||
stdout. Happens to be in a format compatible with Python.
|
||||
*/
|
||||
void mbedtls_mpi_printf(const char *name, const mbedtls_mpi *X)
|
||||
{
|
||||
static char buf[1024];
|
||||
size_t n;
|
||||
memset(buf, 0, sizeof(buf));
|
||||
mbedtls_mpi_write_string(X, 16, buf, sizeof(buf)-1, &n);
|
||||
if(n) {
|
||||
ESP_LOGI(TAG, "%s = 0x%s", name, buf);
|
||||
} else {
|
||||
ESP_LOGI(TAG, "TOOLONG");
|
||||
}
|
||||
}
|
||||
|
||||
/* Temporary debug function to dump a memory block's contents to stdout
|
||||
TODO remove
|
||||
*/
|
||||
static void __attribute__((unused)) dump_memory_block(const char *label, uint32_t addr)
|
||||
{
|
||||
printf("Dumping %s @ %08x\n", label, addr);
|
||||
for(int i = 0; i < (4096 / 8); i += 4) {
|
||||
if(i % 32 == 0) {
|
||||
printf("\n %04x:", i);
|
||||
}
|
||||
printf("%08x ", REG_READ(addr + i));
|
||||
}
|
||||
printf("Done\n");
|
||||
}
|
||||
|
||||
/* At the moment these hardware locking functions aren't exposed publically
|
||||
for MPI. If you want to use the ROM bigint functions and co-exist with mbedTLS,
|
||||
please raise a feature request.
|
||||
for MPI. If you want to use the ROM bigint functions and co-exist with mbedTLS, please raise a feature request.
|
||||
*/
|
||||
static void esp_mpi_acquire_hardware( void )
|
||||
{
|
||||
@ -116,6 +80,14 @@ static inline size_t hardware_words_needed(const mbedtls_mpi *mpi)
|
||||
return res;
|
||||
}
|
||||
|
||||
/* Convert number of bits to number of words, rounded up to nearest
|
||||
512 bit (16 word) block count.
|
||||
*/
|
||||
static inline size_t bits_to_hardware_words(size_t num_bits)
|
||||
{
|
||||
return ((num_bits + 511) / 512) * 16;
|
||||
}
|
||||
|
||||
/* Copy mbedTLS MPI bignum 'mpi' to hardware memory block at 'mem_base'.
|
||||
|
||||
If num_words is higher than the number of words in the bignum then
|
||||
@ -156,189 +128,9 @@ static inline int mem_block_to_mpi(mbedtls_mpi *x, uint32_t mem_base, int num_wo
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Given a & b, determine u & v such that
|
||||
|
||||
gcd(a,b) = d = au - bv
|
||||
|
||||
This is suitable for calculating values for montgomery multiplication:
|
||||
|
||||
gcd(R, M) = R * Rinv - M * Mprime = 1
|
||||
|
||||
Conditions which must be true:
|
||||
- argument 'a' (R) is a power of 2.
|
||||
- argument 'b' (M) is odd.
|
||||
|
||||
Underlying algorithm comes from:
|
||||
http://www.hackersdelight.org/hdcodetxt/mont64.c.txt
|
||||
http://www.ucl.ac.uk/~ucahcjm/combopt/ext_gcd_python_programs.pdf
|
||||
*/
|
||||
static void extended_binary_gcd(const mbedtls_mpi *a, const mbedtls_mpi *b,
|
||||
mbedtls_mpi *u, mbedtls_mpi *v)
|
||||
{
|
||||
mbedtls_mpi a_, ta;
|
||||
|
||||
/* These checks degrade performance, TODO remove them... */
|
||||
assert(b->p[0] & 1);
|
||||
assert(mbedtls_mpi_bitlen(a) == mbedtls_mpi_lsb(a)+1);
|
||||
assert(mbedtls_mpi_cmp_mpi(a, b) > 0);
|
||||
|
||||
mbedtls_mpi_lset(u, 1);
|
||||
mbedtls_mpi_lset(v, 0);
|
||||
|
||||
/* 'a' needs to be half its real value for this algorithm
|
||||
TODO see if we can halve the number in the caller to avoid
|
||||
allocating a bignum here.
|
||||
*/
|
||||
mbedtls_mpi_init(&a_);
|
||||
mbedtls_mpi_copy(&a_, a);
|
||||
mbedtls_mpi_shift_r(&a_, 1);
|
||||
|
||||
mbedtls_mpi_init(&ta);
|
||||
mbedtls_mpi_copy(&ta, &a_);
|
||||
|
||||
//mbedtls_mpi_printf("a", &a_);
|
||||
//mbedtls_mpi_printf("b", b);
|
||||
|
||||
/* Loop invariant:
|
||||
2*ta = u*2*a - v*b.
|
||||
|
||||
Loop until ta == 0
|
||||
*/
|
||||
while (mbedtls_mpi_cmp_int(&ta, 0) != 0) {
|
||||
//mbedtls_mpi_printf("ta", &ta);
|
||||
//mbedtls_mpi_printf("u", u);
|
||||
//mbedtls_mpi_printf("v", v);
|
||||
//printf("2*ta == u*2*a - v*b\n");
|
||||
|
||||
mbedtls_mpi_shift_r(&ta, 1);
|
||||
if (mbedtls_mpi_get_bit(u, 0) == 0) {
|
||||
// Remove common factor of 2 in u & v
|
||||
mbedtls_mpi_shift_r(u, 1);
|
||||
mbedtls_mpi_shift_r(v, 1);
|
||||
}
|
||||
else {
|
||||
/* u = (u + b) >> 1 */
|
||||
mbedtls_mpi_add_mpi(u, u, b);
|
||||
mbedtls_mpi_shift_r(u, 1);
|
||||
/* v = (v - a) >> 1 */
|
||||
mbedtls_mpi_shift_r(v, 1);
|
||||
mbedtls_mpi_add_mpi(v, v, &a_);
|
||||
}
|
||||
}
|
||||
mbedtls_mpi_free(&ta);
|
||||
mbedtls_mpi_free(&a_);
|
||||
}
|
||||
|
||||
/* Execute RSA operation. op_reg specifies which 'START' register
|
||||
to write to.
|
||||
*/
|
||||
static inline void execute_op(uint32_t op_reg)
|
||||
{
|
||||
/* Clear interrupt status, start operation */
|
||||
REG_WRITE(RSA_INTERRUPT_REG, 1);
|
||||
REG_WRITE(op_reg, 1);
|
||||
|
||||
/* TODO: use interrupt instead of busywaiting */
|
||||
while(REG_READ(RSA_INTERRUPT_REG) != 1)
|
||||
{ }
|
||||
|
||||
/* clear the interrupt */
|
||||
REG_WRITE(RSA_INTERRUPT_REG, 1);
|
||||
}
|
||||
|
||||
/* Sub-stages of modulo multiplication/exponentiation operations */
|
||||
static int modular_op_prepare(const mbedtls_mpi *X, const mbedtls_mpi *M, size_t num_words);
|
||||
inline static int modular_multiply_finish(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words);
|
||||
|
||||
/* Z = (X * Y) mod M
|
||||
|
||||
Not an mbedTLS function
|
||||
*/
|
||||
int esp_mpi_mul_mpi_mod(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M)
|
||||
{
|
||||
int ret;
|
||||
size_t num_words = hardware_words_needed(M);
|
||||
|
||||
/* Calculate and load the first stage montgomery multiplication */
|
||||
MBEDTLS_MPI_CHK( modular_op_prepare(X, M, num_words) );
|
||||
|
||||
execute_op(RSA_MULT_START_REG);
|
||||
|
||||
MBEDTLS_MPI_CHK( modular_multiply_finish(Z, X, Y, num_words) );
|
||||
|
||||
esp_mpi_release_hardware();
|
||||
|
||||
cleanup:
|
||||
return ret;
|
||||
}
|
||||
|
||||
#if defined(MBEDTLS_MPI_EXP_MOD_ALT)
|
||||
|
||||
/*
|
||||
* Sliding-window exponentiation: Z = X^Y mod M (HAC 14.85)
|
||||
*/
|
||||
#if 0
|
||||
int mbedtls_mpi_exp_mod( mbedtls_mpi* Z, const mbedtls_mpi* X, const mbedtls_mpi* Y, const mbedtls_mpi* M, mbedtls_mpi* _RR )
|
||||
{
|
||||
int ret;
|
||||
size_t z_words = hardware_words_needed(Z);
|
||||
size_t x_words = hardware_words_needed(X);
|
||||
size_t y_words = hardware_words_needed(Y);
|
||||
size_t m_words = hardware_words_needed(M);
|
||||
size_t num_words;
|
||||
|
||||
mbedtls_mpi_printf("X",X);
|
||||
mbedtls_mpi_printf("Y",Y);
|
||||
mbedtls_mpi_printf("M",M);
|
||||
|
||||
/* "all numbers must be the same length", so choose longest number
|
||||
as cardinal length of operation...
|
||||
*/
|
||||
num_words = z_words;
|
||||
if (x_words > num_words) {
|
||||
num_words = x_words;
|
||||
}
|
||||
if (y_words > num_words) {
|
||||
num_words = y_words;
|
||||
}
|
||||
if (m_words > num_words) {
|
||||
num_words = m_words;
|
||||
}
|
||||
printf("num_words = %d # %d, %d, %d\n", num_words, x_words, y_words, m_words);
|
||||
|
||||
/* TODO: _RR parameter currently ignored */
|
||||
|
||||
ret = modular_op_prepare(X, M, num_words);
|
||||
if (ret != 0) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
mpi_to_mem_block(RSA_MEM_Y_BLOCK_BASE, Y, num_words);
|
||||
|
||||
//dump_memory_block("X_BLOCK", RSA_MEM_X_BLOCK_BASE);
|
||||
//dump_memory_block("Y_BLOCK", RSA_MEM_Y_BLOCK_BASE);
|
||||
//dump_memory_block("M_BLOCK", RSA_MEM_M_BLOCK_BASE);
|
||||
|
||||
REG_WRITE(RSA_MODEXP_MODE_REG, (num_words / 16) - 1);
|
||||
|
||||
execute_op(RSA_START_MODEXP_REG);
|
||||
|
||||
//dump_memory_block("Z_BLOCK", RSA_MEM_Z_BLOCK_BASE);
|
||||
|
||||
/* TODO: only need to read m_words not num_words, provided result is correct... */
|
||||
ret = mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, num_words);
|
||||
|
||||
esp_mpi_release_hardware();
|
||||
|
||||
mbedtls_mpi_printf("Z",Z);
|
||||
printf("print (Z == (X ** Y) %% M)\n");
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/**
|
||||
*
|
||||
* There is a need for the value of integer N' such that B^-1(B-1)-N^-1N'=1,
|
||||
* where B^-1(B-1) mod N=1. Actually, only the least significant part of
|
||||
* N' is needed, hence the definition N0'=N' mod b. We reproduce below the
|
||||
@ -365,59 +157,104 @@ static mbedtls_mpi_uint modular_inverse(const mbedtls_mpi *M)
|
||||
return (mbedtls_mpi_uint)(UINT32_MAX - t + 1);
|
||||
}
|
||||
|
||||
static int bignum_param_init(const mbedtls_mpi *M, mbedtls_mpi *_RR, mbedtls_mpi *r, mbedtls_mpi_uint *Mi, size_t num_words)
|
||||
/* Calculate Rinv = RR^2 mod M, where:
|
||||
*
|
||||
* R = b^n where b = 2^32, n=num_words,
|
||||
* R = 2^N (where N=num_bits)
|
||||
* RR = R^2 = 2^(2*N) (where N=num_bits=num_words*32)
|
||||
*
|
||||
* This calculation is computationally expensive (mbedtls_mpi_mod_mpi)
|
||||
* so caller should cache the result where possible.
|
||||
*
|
||||
* DO NOT call this function while holding esp_mpi_acquire_hardware().
|
||||
*
|
||||
*/
|
||||
static int calculate_rinv(mbedtls_mpi *Rinv, const mbedtls_mpi *M, int num_words)
|
||||
{
|
||||
int ret = 0;
|
||||
size_t num_bits;
|
||||
int ret;
|
||||
size_t num_bits = num_words * 32;
|
||||
mbedtls_mpi RR;
|
||||
mbedtls_mpi_init(&RR);
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&RR, num_bits * 2, 1));
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(Rinv, &RR, M));
|
||||
|
||||
/* Calculate number of bits */
|
||||
num_bits = num_words * 32;
|
||||
ESP_LOGI(TAG, "num_bits = %d\n", num_bits);
|
||||
|
||||
/*
|
||||
* R = b^n where b = 2^32, n=num_words,
|
||||
* R = 2^N (where N=num_bits)
|
||||
* RR(R^2) = 2^(2*N) (where N=num_bits)
|
||||
*
|
||||
* r = RR(R^2) mod M
|
||||
*
|
||||
* Get the RR(RR == r) value from up level if RR and RR->p is not NULL
|
||||
*/
|
||||
ESP_LOGI(TAG, "r = RR(R^2) mod M\n");
|
||||
if (_RR == NULL || _RR->p == NULL) {
|
||||
ESP_LOGI(TAG, "RR(R^2) = 2^(2*N) (where N=num_bits)\n");
|
||||
mbedtls_mpi_init(&RR);
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&RR, num_bits * 2, 1));
|
||||
mbedtls_mpi_printf("RR", &RR);
|
||||
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(r, &RR, M));
|
||||
|
||||
if (_RR != NULL)
|
||||
memcpy(_RR, r, sizeof( mbedtls_mpi ) );
|
||||
} else {
|
||||
memcpy(r, _RR, sizeof( mbedtls_mpi ) );
|
||||
}
|
||||
mbedtls_mpi_printf("r", r);
|
||||
|
||||
*Mi = modular_inverse(M);
|
||||
|
||||
cleanup:
|
||||
cleanup:
|
||||
mbedtls_mpi_free(&RR);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void bignum_param_deinit(mbedtls_mpi *_RR, mbedtls_mpi *r)
|
||||
|
||||
/* Execute RSA operation. op_reg specifies which 'START' register
|
||||
to write to.
|
||||
*/
|
||||
static inline void execute_op(uint32_t op_reg)
|
||||
{
|
||||
if (_RR == NULL || _RR->p == NULL)
|
||||
mbedtls_mpi_free(r);
|
||||
/* Clear interrupt status, start operation */
|
||||
REG_WRITE(RSA_INTERRUPT_REG, 1);
|
||||
REG_WRITE(op_reg, 1);
|
||||
|
||||
/* TODO: use interrupt instead of busywaiting */
|
||||
while(REG_READ(RSA_INTERRUPT_REG) != 1)
|
||||
{ }
|
||||
|
||||
/* clear the interrupt */
|
||||
REG_WRITE(RSA_INTERRUPT_REG, 1);
|
||||
}
|
||||
|
||||
/* Sub-stages of modulo multiplication/exponentiation operations */
|
||||
inline static int modular_multiply_finish(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words);
|
||||
|
||||
/* Z = (X * Y) mod M
|
||||
|
||||
Not an mbedTLS function
|
||||
*/
|
||||
int esp_mpi_mul_mpi_mod(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M)
|
||||
{
|
||||
int ret;
|
||||
size_t num_words = hardware_words_needed(M);
|
||||
mbedtls_mpi Rinv;
|
||||
mbedtls_mpi_uint Mprime;
|
||||
|
||||
/* Calculate and load the first stage montgomery multiplication */
|
||||
mbedtls_mpi_init(&Rinv);
|
||||
MBEDTLS_MPI_CHK(calculate_rinv(&Rinv, M, num_words));
|
||||
Mprime = modular_inverse(M);
|
||||
|
||||
esp_mpi_acquire_hardware();
|
||||
|
||||
/* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
|
||||
mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, &Rinv, num_words);
|
||||
REG_WRITE(RSA_M_DASH_REG, (uint32_t)Mprime);
|
||||
|
||||
/* "mode" register loaded with number of 512-bit blocks, minus 1 */
|
||||
REG_WRITE(RSA_MULT_MODE_REG, (num_words / 16) - 1);
|
||||
|
||||
/* Execute first stage montgomery multiplication */
|
||||
execute_op(RSA_MULT_START_REG);
|
||||
|
||||
/* execute second stage */
|
||||
MBEDTLS_MPI_CHK( modular_multiply_finish(Z, X, Y, num_words) );
|
||||
|
||||
esp_mpi_release_hardware();
|
||||
|
||||
cleanup:
|
||||
mbedtls_mpi_free(&Rinv);
|
||||
return ret;
|
||||
}
|
||||
|
||||
#if defined(MBEDTLS_MPI_EXP_MOD_ALT)
|
||||
|
||||
/*
|
||||
* Sliding-window exponentiation: Z = X^Y mod M (HAC 14.85)
|
||||
*
|
||||
* _Rinv is optional pre-calculated version of Rinv (via calculate_rinv()).
|
||||
*
|
||||
* (See RSA Accelerator section in Technical Reference for more about Mprime, Rinv)
|
||||
*
|
||||
*/
|
||||
int mbedtls_mpi_exp_mod( mbedtls_mpi* Z, const mbedtls_mpi* X, const mbedtls_mpi* Y, const mbedtls_mpi* M, mbedtls_mpi* _RR )
|
||||
int mbedtls_mpi_exp_mod( mbedtls_mpi* Z, const mbedtls_mpi* X, const mbedtls_mpi* Y, const mbedtls_mpi* M, mbedtls_mpi* _Rinv )
|
||||
{
|
||||
int ret = 0;
|
||||
size_t z_words = hardware_words_needed(Z);
|
||||
@ -426,8 +263,9 @@ int mbedtls_mpi_exp_mod( mbedtls_mpi* Z, const mbedtls_mpi* X, const mbedtls_mpi
|
||||
size_t m_words = hardware_words_needed(M);
|
||||
size_t num_words;
|
||||
|
||||
mbedtls_mpi r;
|
||||
mbedtls_mpi_uint Mi = 0;
|
||||
mbedtls_mpi Rinv_new; /* used if _Rinv == NULL */
|
||||
mbedtls_mpi *Rinv; /* points to _Rinv (if not NULL) othwerwise &RR_new */
|
||||
mbedtls_mpi_uint Mprime;
|
||||
|
||||
/* "all numbers must be the same length", so choose longest number
|
||||
as cardinal length of operation...
|
||||
@ -442,19 +280,24 @@ int mbedtls_mpi_exp_mod( mbedtls_mpi* Z, const mbedtls_mpi* X, const mbedtls_mpi
|
||||
if (m_words > num_words) {
|
||||
num_words = m_words;
|
||||
}
|
||||
ESP_LOGI(TAG, "num_words = %d # %d, %d, %d\n", num_words, x_words, y_words, m_words);
|
||||
|
||||
if (num_words * 32 > 4096)
|
||||
if (num_words * 32 > 4096) {
|
||||
return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
|
||||
|
||||
mbedtls_mpi_init(&r);
|
||||
ret = bignum_param_init(M, _RR, &r, &Mi, num_words);
|
||||
if (ret != 0) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
mbedtls_mpi_printf("X",X);
|
||||
mbedtls_mpi_printf("Y",Y);
|
||||
/* Determine RR pointer, either _RR for cached value
|
||||
or local RR_new */
|
||||
if (_Rinv == NULL) {
|
||||
mbedtls_mpi_init(&Rinv_new);
|
||||
Rinv = &Rinv_new;
|
||||
} else {
|
||||
Rinv = _Rinv;
|
||||
}
|
||||
if (Rinv->p == NULL) {
|
||||
MBEDTLS_MPI_CHK(calculate_rinv(Rinv, M, num_words));
|
||||
}
|
||||
|
||||
Mprime = modular_inverse(M);
|
||||
|
||||
esp_mpi_acquire_hardware();
|
||||
|
||||
@ -465,8 +308,8 @@ int mbedtls_mpi_exp_mod( mbedtls_mpi* Z, const mbedtls_mpi* X, const mbedtls_mpi
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_Y_BLOCK_BASE, Y, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, &r, num_words);
|
||||
REG_WRITE(RSA_M_DASH_REG, Mi);
|
||||
mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, Rinv, num_words);
|
||||
REG_WRITE(RSA_M_DASH_REG, Mprime);
|
||||
|
||||
execute_op(RSA_START_MODEXP_REG);
|
||||
|
||||
@ -474,91 +317,16 @@ int mbedtls_mpi_exp_mod( mbedtls_mpi* Z, const mbedtls_mpi* X, const mbedtls_mpi
|
||||
|
||||
esp_mpi_release_hardware();
|
||||
|
||||
mbedtls_mpi_printf("Z",Z);
|
||||
ESP_LOGI(TAG, "print (Z == (X ** Y) %% M)\n");
|
||||
|
||||
bignum_param_deinit(_RR, &r);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
#endif /* MBEDTLS_MPI_EXP_MOD_ALT */
|
||||
|
||||
|
||||
/* The common parts of modulo multiplication and modular sliding
|
||||
* window exponentiation:
|
||||
*
|
||||
* @param X first multiplication factor and/or base of exponent.
|
||||
* @param M modulo value for result
|
||||
* @param num_words size of modulo operation, in words (limbs).
|
||||
* Should already be rounded up to a multiple of 16 words (512 bits) & range checked.
|
||||
*
|
||||
* Steps:
|
||||
* Calculate Rinv & Mprime based on M & num_words
|
||||
* Load all coefficients to memory
|
||||
* Set mode register
|
||||
*
|
||||
* @note This function calls esp_mpi_acquire_hardware. If successful,
|
||||
* returns 0 and it becomes the callers responsibility to call
|
||||
* esp_mpi_release_hardware(). If failure is returned, the caller does
|
||||
* not need to call esp_mpi_release_hardware().
|
||||
*/
|
||||
static int modular_op_prepare(const mbedtls_mpi *X, const mbedtls_mpi *M, size_t num_words)
|
||||
{
|
||||
int ret = 0;
|
||||
mbedtls_mpi RR, Rinv, Mprime;
|
||||
size_t num_bits;
|
||||
|
||||
/* Calculate number of bits */
|
||||
num_bits = num_words * 32;
|
||||
|
||||
if(num_bits > 4096) {
|
||||
return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
|
||||
cleanup:
|
||||
if (_Rinv == NULL) {
|
||||
mbedtls_mpi_free(&Rinv_new);
|
||||
}
|
||||
|
||||
/* Rinv & Mprime are calculated via extended binary gcd
|
||||
algorithm, see references on extended_binary_gcd() above.
|
||||
*/
|
||||
mbedtls_mpi_init(&Rinv);
|
||||
mbedtls_mpi_init(&RR);
|
||||
mbedtls_mpi_init(&Mprime);
|
||||
|
||||
mbedtls_mpi_set_bit(&RR, num_bits, 1); /* R = b^n where b = 2^32, n=num_words,
|
||||
ie R = 2^N (where N=num_bits) */
|
||||
/* calculate Rinv & Mprime */
|
||||
extended_binary_gcd(&RR, M, &Rinv, &Mprime);
|
||||
|
||||
/* Block of debugging data, output suitable to paste into Python
|
||||
TODO remove
|
||||
*/
|
||||
mbedtls_mpi_printf("RR", &RR);
|
||||
mbedtls_mpi_printf("M", M);
|
||||
mbedtls_mpi_printf("Rinv", &Rinv);
|
||||
mbedtls_mpi_printf("Mprime", &Mprime);
|
||||
printf("print (R * Rinv - M * Mprime == 1)\n");
|
||||
printf("print (Rinv == (R * R) %% M)\n");
|
||||
|
||||
esp_mpi_acquire_hardware();
|
||||
|
||||
/* Load M, X, Rinv, M-prime (M-prime is mod 2^32) */
|
||||
mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, &Rinv, num_words);
|
||||
REG_WRITE(RSA_M_DASH_REG, Mprime.p[0]);
|
||||
|
||||
/* "mode" register loaded with number of 512-bit blocks, minus 1 */
|
||||
REG_WRITE(RSA_MULT_MODE_REG, (num_words / 16) - 1);
|
||||
|
||||
mbedtls_mpi_free(&Rinv);
|
||||
mbedtls_mpi_free(&RR);
|
||||
mbedtls_mpi_free(&Mprime);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
#endif /* MBEDTLS_MPI_EXP_MOD_ALT */
|
||||
|
||||
/* Second & final step of a modular multiply - load second multiplication
|
||||
* factor Y, run the multiply, read back the result into Z.
|
||||
*
|
||||
@ -594,17 +362,43 @@ static int mpi_mult_mpi_failover_mod_mult(mbedtls_mpi *Z, const mbedtls_mpi *X,
|
||||
int mbedtls_mpi_mul_mpi( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y )
|
||||
{
|
||||
int ret;
|
||||
size_t words_x, words_y, words_mult, words_z;
|
||||
size_t bits_x, bits_y, words_x, words_y, words_mult, words_z;
|
||||
|
||||
/* Count words needed for X & Y in hardware */
|
||||
words_x = hardware_words_needed(X);
|
||||
words_y = hardware_words_needed(Y);
|
||||
bits_x = mbedtls_mpi_bitlen(X);
|
||||
bits_y = mbedtls_mpi_bitlen(Y);
|
||||
/* Convert bit counts to words, rounded up to 512-bit
|
||||
(16 word) blocks */
|
||||
words_x = bits_to_hardware_words(bits_x);
|
||||
words_y = bits_to_hardware_words(bits_y);
|
||||
|
||||
/* Short-circuit eval if either argument is 0 or 1.
|
||||
|
||||
This is needed as the mpi modular division
|
||||
argument will sometimes call in here when one
|
||||
argument is too large for the hardware unit, but the other
|
||||
argument is zero or one.
|
||||
|
||||
This leaks some timing information, although overall there is a
|
||||
lot less timing variation than a software MPI approach.
|
||||
*/
|
||||
if (bits_x == 0 || bits_y == 0) {
|
||||
mbedtls_mpi_lset(Z, 0);
|
||||
return 0;
|
||||
}
|
||||
if (bits_x == 1) {
|
||||
return mbedtls_mpi_copy(Z, Y);
|
||||
}
|
||||
if (bits_y == 1) {
|
||||
return mbedtls_mpi_copy(Z, X);
|
||||
}
|
||||
|
||||
words_mult = (words_x > words_y ? words_x : words_y);
|
||||
|
||||
/* Result Z has to have room for double the larger factor */
|
||||
words_z = words_mult * 2;
|
||||
|
||||
|
||||
/* If either factor is over 2048 bits, we can't use the standard hardware multiplier
|
||||
(it assumes result is double longest factor, and result is max 4096 bits.)
|
||||
|
||||
@ -612,12 +406,11 @@ int mbedtls_mpi_mul_mpi( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi
|
||||
multiplication doesn't have the same restriction, so result is simply the
|
||||
number of bits in X plus number of bits in in Y.)
|
||||
*/
|
||||
//ESP_LOGE(TAG, "INFO: %d bit result (%d bits * %d bits)\n", words_z * 32, mbedtls_mpi_bitlen(X), mbedtls_mpi_bitlen(Y));
|
||||
if (words_mult * 32 > 2048) {
|
||||
/* Calculate new length of Z */
|
||||
words_z = words_x + words_y;
|
||||
words_z = bits_to_hardware_words(bits_x + bits_y);
|
||||
if (words_z * 32 > 4096) {
|
||||
ESP_LOGE(TAG, "ERROR: %d bit result (%d bits * %d bits) too large for hardware unit\n", words_z * 32, mbedtls_mpi_bitlen(X), mbedtls_mpi_bitlen(Y));
|
||||
ESP_LOGE(TAG, "ERROR: %d bit result %d bits * %d bits too large for hardware unit\n", words_z * 32, bits_x, bits_y);
|
||||
return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
|
||||
}
|
||||
else {
|
||||
@ -640,7 +433,7 @@ int mbedtls_mpi_mul_mpi( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi
|
||||
|
||||
/* "mode" register loaded with number of 512-bit blocks in result,
|
||||
plus 7 (for range 9-12). (this is ((N~ / 32) - 1) + 8))
|
||||
*/
|
||||
*/
|
||||
REG_WRITE(RSA_MULT_MODE_REG, (words_z / 16) + 7);
|
||||
|
||||
execute_op(RSA_MULT_START_REG);
|
||||
@ -656,54 +449,57 @@ int mbedtls_mpi_mul_mpi( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi
|
||||
}
|
||||
|
||||
/* Special-case of mbedtls_mpi_mult_mpi(), where we use hardware montgomery mod
|
||||
multiplication to solve the case where A or B are >2048 bits so
|
||||
can't use the standard multiplication method.
|
||||
multiplication to calculate an mbedtls_mpi_mult_mpi result where either
|
||||
A or B are >2048 bits so can't use the standard multiplication method.
|
||||
|
||||
This case is simpler than esp_mpi_mul_mpi_mod() as we control the arguments:
|
||||
Result (A bits + B bits) must still be less than 4096 bits.
|
||||
|
||||
This case is simpler than the general case modulo multiply of
|
||||
esp_mpi_mul_mpi_mod() because we can control the other arguments:
|
||||
|
||||
* Modulus is chosen with M=(2^num_bits - 1) (ie M=R-1), so output
|
||||
isn't actually modulo anything.
|
||||
* Therefore of of M' and Rinv are predictable as follows:
|
||||
M' = 1
|
||||
Rinv = 1
|
||||
isn't actually modulo anything.
|
||||
* Mprime and Rinv are therefore predictable as follows:
|
||||
Mprime = 1
|
||||
Rinv = 1
|
||||
|
||||
(See RSA Accelerator section in Technical Reference *
|
||||
extended_binary_gcd() function above for more about M', Rinv)
|
||||
(See RSA Accelerator section in Technical Reference for more about Mprime, Rinv)
|
||||
*/
|
||||
static int mpi_mult_mpi_failover_mod_mult(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
|
||||
{
|
||||
int ret = 0;
|
||||
{
|
||||
int ret = 0;
|
||||
|
||||
/* Load coefficients to hardware */
|
||||
esp_mpi_acquire_hardware();
|
||||
/* Load coefficients to hardware */
|
||||
esp_mpi_acquire_hardware();
|
||||
|
||||
/* M = 2^num_words - 1, so block is entirely FF */
|
||||
for(int i = 0; i < num_words; i++) {
|
||||
REG_WRITE(RSA_MEM_M_BLOCK_BASE + i * 4, UINT32_MAX);
|
||||
}
|
||||
/* Mprime = 1 */
|
||||
REG_WRITE(RSA_M_DASH_REG, 1);
|
||||
/* M = 2^num_words - 1, so block is entirely FF */
|
||||
for(int i = 0; i < num_words; i++) {
|
||||
REG_WRITE(RSA_MEM_M_BLOCK_BASE + i * 4, UINT32_MAX);
|
||||
}
|
||||
/* Mprime = 1 */
|
||||
REG_WRITE(RSA_M_DASH_REG, 1);
|
||||
|
||||
/* "mode" register loaded with number of 512-bit blocks, minus 1 */
|
||||
REG_WRITE(RSA_MULT_MODE_REG, (num_words / 16) - 1);
|
||||
/* "mode" register loaded with number of 512-bit blocks, minus 1 */
|
||||
REG_WRITE(RSA_MULT_MODE_REG, (num_words / 16) - 1);
|
||||
|
||||
/* Load X */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
|
||||
/* Load X */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
|
||||
|
||||
/* Rinv = 1 */
|
||||
REG_WRITE(RSA_MEM_RB_BLOCK_BASE, 1);
|
||||
for(int i = 1; i < num_words; i++) {
|
||||
REG_WRITE(RSA_MEM_RB_BLOCK_BASE + i * 4, 0);
|
||||
}
|
||||
/* Rinv = 1 */
|
||||
REG_WRITE(RSA_MEM_RB_BLOCK_BASE, 1);
|
||||
for(int i = 1; i < num_words; i++) {
|
||||
REG_WRITE(RSA_MEM_RB_BLOCK_BASE + i * 4, 0);
|
||||
}
|
||||
|
||||
execute_op(RSA_MULT_START_REG);
|
||||
execute_op(RSA_MULT_START_REG);
|
||||
|
||||
MBEDTLS_MPI_CHK( modular_multiply_finish(Z, X, Y, num_words) );
|
||||
/* finish the modular multiplication */
|
||||
MBEDTLS_MPI_CHK( modular_multiply_finish(Z, X, Y, num_words) );
|
||||
|
||||
esp_mpi_release_hardware();
|
||||
esp_mpi_release_hardware();
|
||||
|
||||
cleanup:
|
||||
return ret;
|
||||
return ret;
|
||||
}
|
||||
|
||||
#endif /* MBEDTLS_MPI_MUL_MPI_ALT */
|
||||
|
Loading…
x
Reference in New Issue
Block a user