uart: format driver code by astyle

This commit is contained in:
morris 2021-05-19 20:32:55 +08:00 committed by SalimTerryLi
parent c50b102787
commit f4ccb8e766
No known key found for this signature in database
GPG Key ID: F05CCEF2191AF770

View File

@ -51,7 +51,7 @@
#define XOFF (0x13) #define XOFF (0x13)
#define XON (0x11) #define XON (0x11)
static const char* UART_TAG = "uart"; static const char *UART_TAG = "uart";
#define UART_CHECK(a, str, ret_val) \ #define UART_CHECK(a, str, ret_val) \
if (!(a)) { \ if (!(a)) { \
ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \ ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
@ -104,7 +104,7 @@ typedef struct {
int wr; int wr;
int rd; int rd;
int len; int len;
int* data; int *data;
} uart_pat_rb_t; } uart_pat_rb_t;
typedef struct { typedef struct {
@ -123,8 +123,8 @@ typedef struct {
RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/ RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */ bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
uint32_t rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/ uint32_t rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/ uint8_t *rx_ptr; /*!< pointer to the current data in ring buffer*/
uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/ uint8_t *rx_head_ptr; /*!< pointer to the head of RX item*/
uint8_t rx_data_buf[SOC_UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/ uint8_t rx_data_buf[SOC_UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */ uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
uart_pat_rb_t rx_pattern_pos; uart_pat_rb_t rx_pattern_pos;
@ -137,8 +137,8 @@ typedef struct {
int tx_buf_size; /*!< TX ring buffer size */ int tx_buf_size; /*!< TX ring buffer size */
RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/ RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/ bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/ uint8_t *tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/ uart_tx_data_t *tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/ uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
uint32_t tx_len_cur; uint32_t tx_len_cur;
uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */ uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
@ -202,13 +202,13 @@ static void uart_module_enable(uart_port_t uart_num)
// Workaround for ESP32C3: enable core reset // Workaround for ESP32C3: enable core reset
// before enabling uart module clock // before enabling uart module clock
// to prevent uart output garbage value. // to prevent uart output garbage value.
#if SOC_UART_REQUIRE_CORE_RESET #if SOC_UART_REQUIRE_CORE_RESET
uart_hal_set_reset_core(&(uart_context[uart_num].hal), true); uart_hal_set_reset_core(&(uart_context[uart_num].hal), true);
periph_module_reset(uart_periph_signal[uart_num].module); periph_module_reset(uart_periph_signal[uart_num].module);
uart_hal_set_reset_core(&(uart_context[uart_num].hal), false); uart_hal_set_reset_core(&(uart_context[uart_num].hal), false);
#else #else
periph_module_reset(uart_periph_signal[uart_num].module); periph_module_reset(uart_periph_signal[uart_num].module);
#endif #endif
} }
uart_context[uart_num].hw_enabled = true; uart_context[uart_num].hw_enabled = true;
} }
@ -237,7 +237,7 @@ esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit
return ESP_OK; return ESP_OK;
} }
esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit) esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t *data_bit)
{ {
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
uart_hal_get_data_bit_num(&(uart_context[uart_num].hal), data_bit); uart_hal_get_data_bit_num(&(uart_context[uart_num].hal), data_bit);
@ -254,7 +254,7 @@ esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
return ESP_OK; return ESP_OK;
} }
esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit) esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t *stop_bit)
{ {
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
@ -272,7 +272,7 @@ esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
return ESP_OK; return ESP_OK;
} }
esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode) esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t *parity_mode)
{ {
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
@ -336,7 +336,7 @@ esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow
return ESP_OK; return ESP_OK;
} }
esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl) esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t *flow_ctrl)
{ {
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL) UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL)
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
@ -373,7 +373,7 @@ esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
static esp_err_t uart_pattern_link_free(uart_port_t uart_num) static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
{ {
int* pdata = NULL; int *pdata = NULL;
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) { if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
pdata = p_uart_obj[uart_num]->rx_pattern_pos.data; pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
@ -389,7 +389,7 @@ static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
static esp_err_t UART_ISR_ATTR uart_pattern_enqueue(uart_port_t uart_num, int pos) static esp_err_t UART_ISR_ATTR uart_pattern_enqueue(uart_port_t uart_num, int pos)
{ {
esp_err_t ret = ESP_OK; esp_err_t ret = ESP_OK;
uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos; uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
int next = p_pos->wr + 1; int next = p_pos->wr + 1;
if (next >= p_pos->len) { if (next >= p_pos->len) {
next = 0; next = 0;
@ -407,11 +407,11 @@ static esp_err_t UART_ISR_ATTR uart_pattern_enqueue(uart_port_t uart_num, int po
static esp_err_t uart_pattern_dequeue(uart_port_t uart_num) static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
{ {
if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) { if (p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
return ESP_ERR_INVALID_STATE; return ESP_ERR_INVALID_STATE;
} else { } else {
esp_err_t ret = ESP_OK; esp_err_t ret = ESP_OK;
uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos; uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
if (p_pos->rd == p_pos->wr) { if (p_pos->rd == p_pos->wr) {
ret = ESP_FAIL; ret = ESP_FAIL;
} else { } else {
@ -426,9 +426,9 @@ static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len) static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
{ {
uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos; uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
int rd = p_pos->rd; int rd = p_pos->rd;
while(rd != p_pos->wr) { while (rd != p_pos->wr) {
p_pos->data[rd] -= diff_len; p_pos->data[rd] -= diff_len;
int rd_rec = rd; int rd_rec = rd;
rd ++; rd ++;
@ -446,7 +446,7 @@ int uart_pattern_pop_pos(uart_port_t uart_num)
{ {
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1)); UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos; uart_pat_rb_t *pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
int pos = -1; int pos = -1;
if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) { if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
pos = pat_pos->data[pat_pos->rd]; pos = pat_pos->data[pat_pos->rd];
@ -460,7 +460,7 @@ int uart_pattern_get_pos(uart_port_t uart_num)
{ {
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1)); UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos; uart_pat_rb_t *pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
int pos = -1; int pos = -1;
if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) { if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
pos = pat_pos->data[pat_pos->rd]; pos = pat_pos->data[pat_pos->rd];
@ -474,12 +474,12 @@ esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE); UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
int* pdata = (int*) malloc(queue_length * sizeof(int)); int *pdata = (int *) malloc(queue_length * sizeof(int));
if(pdata == NULL) { if (pdata == NULL) {
return ESP_ERR_NO_MEM; return ESP_ERR_NO_MEM;
} }
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data; int *ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
p_uart_obj[uart_num]->rx_pattern_pos.data = pdata; p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length; p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
p_uart_obj[uart_num]->rx_pattern_pos.rd = 0; p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
@ -553,12 +553,12 @@ esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
esp_err_t uart_enable_rx_intr(uart_port_t uart_num) esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
{ {
return uart_enable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL|UART_INTR_RXFIFO_TOUT); return uart_enable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
} }
esp_err_t uart_disable_rx_intr(uart_port_t uart_num) esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
{ {
return uart_disable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL|UART_INTR_RXFIFO_TOUT); return uart_disable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
} }
esp_err_t uart_disable_tx_intr(uart_port_t uart_num) esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
@ -578,12 +578,12 @@ esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
return ESP_OK; return ESP_OK;
} }
esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle) esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void *), void *arg, int intr_alloc_flags, uart_isr_handle_t *handle)
{ {
int ret; int ret;
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
ret=esp_intr_alloc(uart_periph_signal[uart_num].irq, intr_alloc_flags, fn, arg, handle); ret = esp_intr_alloc(uart_periph_signal[uart_num].irq, intr_alloc_flags, fn, arg, handle);
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
return ret; return ret;
} }
@ -595,8 +595,8 @@ esp_err_t uart_isr_free(uart_port_t uart_num)
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL); UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
UART_CHECK((p_uart_obj[uart_num]->intr_handle != NULL), "uart driver error", ESP_ERR_INVALID_ARG); UART_CHECK((p_uart_obj[uart_num]->intr_handle != NULL), "uart driver error", ESP_ERR_INVALID_ARG);
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle); ret = esp_intr_free(p_uart_obj[uart_num]->intr_handle);
p_uart_obj[uart_num]->intr_handle=NULL; p_uart_obj[uart_num]->intr_handle = NULL;
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
return ret; return ret;
} }
@ -699,16 +699,16 @@ esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_
UART_CHECK((intr_conf), "param null", ESP_FAIL); UART_CHECK((intr_conf), "param null", ESP_FAIL);
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK); uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
if(intr_conf->intr_enable_mask & UART_INTR_RXFIFO_TOUT) { if (intr_conf->intr_enable_mask & UART_INTR_RXFIFO_TOUT) {
uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), intr_conf->rx_timeout_thresh); uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), intr_conf->rx_timeout_thresh);
} else { } else {
//Disable rx_tout intr //Disable rx_tout intr
uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), 0); uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), 0);
} }
if(intr_conf->intr_enable_mask & UART_INTR_RXFIFO_FULL) { if (intr_conf->intr_enable_mask & UART_INTR_RXFIFO_FULL) {
uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), intr_conf->rxfifo_full_thresh); uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), intr_conf->rxfifo_full_thresh);
} }
if(intr_conf->intr_enable_mask & UART_INTR_TXFIFO_EMPTY) { if (intr_conf->intr_enable_mask & UART_INTR_TXFIFO_EMPTY) {
uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), intr_conf->txfifo_empty_intr_thresh); uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), intr_conf->txfifo_empty_intr_thresh);
} }
uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), intr_conf->intr_enable_mask); uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), intr_conf->intr_enable_mask);
@ -716,7 +716,7 @@ esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_
return ESP_OK; return ESP_OK;
} }
static int UART_ISR_ATTR uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, uint8_t pat_num) static int UART_ISR_ATTR uart_find_pattern_from_last(uint8_t *buf, int length, uint8_t pat_chr, uint8_t pat_num)
{ {
int cnt = 0; int cnt = 0;
int len = length; int len = length;
@ -737,37 +737,37 @@ static int UART_ISR_ATTR uart_find_pattern_from_last(uint8_t* buf, int length, u
//internal isr handler for default driver code. //internal isr handler for default driver code.
static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param) static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
{ {
uart_obj_t *p_uart = (uart_obj_t*) param; uart_obj_t *p_uart = (uart_obj_t *) param;
uint8_t uart_num = p_uart->uart_num; uint8_t uart_num = p_uart->uart_num;
int rx_fifo_len = 0; int rx_fifo_len = 0;
uint32_t uart_intr_status = 0; uint32_t uart_intr_status = 0;
uart_event_t uart_event; uart_event_t uart_event;
portBASE_TYPE HPTaskAwoken = 0; portBASE_TYPE HPTaskAwoken = 0;
static uint8_t pat_flg = 0; static uint8_t pat_flg = 0;
while(1) { while (1) {
// The `continue statement` may cause the interrupt to loop infinitely // The `continue statement` may cause the interrupt to loop infinitely
// we exit the interrupt here // we exit the interrupt here
uart_intr_status = uart_hal_get_intsts_mask(&(uart_context[uart_num].hal)); uart_intr_status = uart_hal_get_intsts_mask(&(uart_context[uart_num].hal));
//Exit form while loop //Exit form while loop
if(uart_intr_status == 0){ if (uart_intr_status == 0) {
break; break;
} }
uart_event.type = UART_EVENT_MAX; uart_event.type = UART_EVENT_MAX;
if(uart_intr_status & UART_INTR_TXFIFO_EMPTY) { if (uart_intr_status & UART_INTR_TXFIFO_EMPTY) {
UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock)); UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY); uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock)); UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY); uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
if(p_uart->tx_waiting_brk) { if (p_uart->tx_waiting_brk) {
continue; continue;
} }
//TX semaphore will only be used when tx_buf_size is zero. //TX semaphore will only be used when tx_buf_size is zero.
if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) { if (p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
p_uart->tx_waiting_fifo = false; p_uart->tx_waiting_fifo = false;
xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken); xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
} else { } else {
//We don't use TX ring buffer, because the size is zero. //We don't use TX ring buffer, because the size is zero.
if(p_uart->tx_buf_size == 0) { if (p_uart->tx_buf_size == 0) {
continue; continue;
} }
bool en_tx_flg = false; bool en_tx_flg = false;
@ -775,25 +775,25 @@ static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
//We need to put a loop here, in case all the buffer items are very short. //We need to put a loop here, in case all the buffer items are very short.
//That would cause a watch_dog reset because empty interrupt happens so often. //That would cause a watch_dog reset because empty interrupt happens so often.
//Although this is a loop in ISR, this loop will execute at most 128 turns. //Although this is a loop in ISR, this loop will execute at most 128 turns.
while(tx_fifo_rem) { while (tx_fifo_rem) {
if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) { if (p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
size_t size; size_t size;
p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size); p_uart->tx_head = (uart_tx_data_t *) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
if(p_uart->tx_head) { if (p_uart->tx_head) {
//The first item is the data description //The first item is the data description
//Get the first item to get the data information //Get the first item to get the data information
if(p_uart->tx_len_tot == 0) { if (p_uart->tx_len_tot == 0) {
p_uart->tx_ptr = NULL; p_uart->tx_ptr = NULL;
p_uart->tx_len_tot = p_uart->tx_head->tx_data.size; p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
if(p_uart->tx_head->type == UART_DATA_BREAK) { if (p_uart->tx_head->type == UART_DATA_BREAK) {
p_uart->tx_brk_flg = 1; p_uart->tx_brk_flg = 1;
p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len; p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
} }
//We have saved the data description from the 1st item, return buffer. //We have saved the data description from the 1st item, return buffer.
vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken); vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
} else if(p_uart->tx_ptr == NULL) { } else if (p_uart->tx_ptr == NULL) {
//Update the TX item pointer, we will need this to return item to buffer. //Update the TX item pointer, we will need this to return item to buffer.
p_uart->tx_ptr = (uint8_t*)p_uart->tx_head; p_uart->tx_ptr = (uint8_t *)p_uart->tx_head;
en_tx_flg = true; en_tx_flg = true;
p_uart->tx_len_cur = size; p_uart->tx_len_cur = size;
} }
@ -827,7 +827,7 @@ static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
p_uart->tx_ptr = NULL; p_uart->tx_ptr = NULL;
//Sending item done, now we need to send break if there is a record. //Sending item done, now we need to send break if there is a record.
//Set TX break signal after FIFO is empty //Set TX break signal after FIFO is empty
if(p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) { if (p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE); uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock)); UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
uart_hal_tx_break(&(uart_context[uart_num].hal), p_uart->tx_brk_len); uart_hal_tx_break(&(uart_context[uart_num].hal), p_uart->tx_brk_len);
@ -853,12 +853,11 @@ static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock)); UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
} }
} }
} } else if ((uart_intr_status & UART_INTR_RXFIFO_TOUT)
else if ((uart_intr_status & UART_INTR_RXFIFO_TOUT)
|| (uart_intr_status & UART_INTR_RXFIFO_FULL) || (uart_intr_status & UART_INTR_RXFIFO_FULL)
|| (uart_intr_status & UART_INTR_CMD_CHAR_DET) || (uart_intr_status & UART_INTR_CMD_CHAR_DET)
) { ) {
if(pat_flg == 1) { if (pat_flg == 1) {
uart_intr_status |= UART_INTR_CMD_CHAR_DET; uart_intr_status |= UART_INTR_CMD_CHAR_DET;
pat_flg = 0; pat_flg = 0;
} }
@ -894,7 +893,7 @@ static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
p_uart->rx_stash_len = rx_fifo_len; p_uart->rx_stash_len = rx_fifo_len;
//If we fail to push data to ring buffer, we will have to stash the data, and send next time. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
//Mainly for applications that uses flow control or small ring buffer. //Mainly for applications that uses flow control or small ring buffer.
if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) { if (pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
p_uart->rx_buffer_full_flg = true; p_uart->rx_buffer_full_flg = true;
UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock)); UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL); uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
@ -924,7 +923,7 @@ static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
if (rx_fifo_len < pat_num) { if (rx_fifo_len < pat_num) {
//some of the characters are read out in last interrupt //some of the characters are read out in last interrupt
uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len)); uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
} else if(pat_idx >= 0) { } else if (pat_idx >= 0) {
// find the pattern in stash buffer. // find the pattern in stash buffer.
uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx); uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
} }
@ -937,14 +936,14 @@ static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT); uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock)); UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT); uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
if(uart_intr_status & UART_INTR_CMD_CHAR_DET) { if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET); uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
uart_event.type = UART_PATTERN_DET; uart_event.type = UART_PATTERN_DET;
uart_event.size = rx_fifo_len; uart_event.size = rx_fifo_len;
pat_flg = 1; pat_flg = 1;
} }
} }
} else if(uart_intr_status & UART_INTR_RXFIFO_OVF) { } else if (uart_intr_status & UART_INTR_RXFIFO_OVF) {
// When fifo overflows, we reset the fifo. // When fifo overflows, we reset the fifo.
UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock)); UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
uart_hal_rxfifo_rst(&(uart_context[uart_num].hal)); uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
@ -956,10 +955,10 @@ static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
UART_EXIT_CRITICAL_ISR(&uart_selectlock); UART_EXIT_CRITICAL_ISR(&uart_selectlock);
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_OVF); uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_OVF);
uart_event.type = UART_FIFO_OVF; uart_event.type = UART_FIFO_OVF;
} else if(uart_intr_status & UART_INTR_BRK_DET) { } else if (uart_intr_status & UART_INTR_BRK_DET) {
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_BRK_DET); uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_BRK_DET);
uart_event.type = UART_BREAK; uart_event.type = UART_BREAK;
} else if(uart_intr_status & UART_INTR_FRAM_ERR) { } else if (uart_intr_status & UART_INTR_FRAM_ERR) {
UART_ENTER_CRITICAL_ISR(&uart_selectlock); UART_ENTER_CRITICAL_ISR(&uart_selectlock);
if (p_uart->uart_select_notif_callback) { if (p_uart->uart_select_notif_callback) {
p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken); p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
@ -967,7 +966,7 @@ static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
UART_EXIT_CRITICAL_ISR(&uart_selectlock); UART_EXIT_CRITICAL_ISR(&uart_selectlock);
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_FRAM_ERR); uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_FRAM_ERR);
uart_event.type = UART_FRAME_ERR; uart_event.type = UART_FRAME_ERR;
} else if(uart_intr_status & UART_INTR_PARITY_ERR) { } else if (uart_intr_status & UART_INTR_PARITY_ERR) {
UART_ENTER_CRITICAL_ISR(&uart_selectlock); UART_ENTER_CRITICAL_ISR(&uart_selectlock);
if (p_uart->uart_select_notif_callback) { if (p_uart->uart_select_notif_callback) {
p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken); p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
@ -975,27 +974,27 @@ static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
UART_EXIT_CRITICAL_ISR(&uart_selectlock); UART_EXIT_CRITICAL_ISR(&uart_selectlock);
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_PARITY_ERR); uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_PARITY_ERR);
uart_event.type = UART_PARITY_ERR; uart_event.type = UART_PARITY_ERR;
} else if(uart_intr_status & UART_INTR_TX_BRK_DONE) { } else if (uart_intr_status & UART_INTR_TX_BRK_DONE) {
UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock)); UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
uart_hal_tx_break(&(uart_context[uart_num].hal), 0); uart_hal_tx_break(&(uart_context[uart_num].hal), 0);
uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE); uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
if(p_uart->tx_brk_flg == 1) { if (p_uart->tx_brk_flg == 1) {
uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY); uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
} }
UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock)); UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE); uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
if(p_uart->tx_brk_flg == 1) { if (p_uart->tx_brk_flg == 1) {
p_uart->tx_brk_flg = 0; p_uart->tx_brk_flg = 0;
p_uart->tx_waiting_brk = 0; p_uart->tx_waiting_brk = 0;
} else { } else {
xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken); xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
} }
} else if(uart_intr_status & UART_INTR_TX_BRK_IDLE) { } else if (uart_intr_status & UART_INTR_TX_BRK_IDLE) {
UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock)); UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE); uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock)); UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE); uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
} else if(uart_intr_status & UART_INTR_CMD_CHAR_DET) { } else if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET); uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
uart_event.type = UART_PATTERN_DET; uart_event.type = UART_PATTERN_DET;
} else if ((uart_intr_status & UART_INTR_RS485_PARITY_ERR) } else if ((uart_intr_status & UART_INTR_RS485_PARITY_ERR)
@ -1009,7 +1008,7 @@ static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock)); UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RS485_CLASH | UART_INTR_RS485_FRM_ERR | UART_INTR_RS485_PARITY_ERR); uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RS485_CLASH | UART_INTR_RS485_FRM_ERR | UART_INTR_RS485_PARITY_ERR);
uart_event.type = UART_EVENT_MAX; uart_event.type = UART_EVENT_MAX;
} else if(uart_intr_status & UART_INTR_TX_DONE) { } else if (uart_intr_status & UART_INTR_TX_DONE) {
if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX) && uart_hal_is_tx_idle(&(uart_context[uart_num].hal)) != true) { if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX) && uart_hal_is_tx_idle(&(uart_context[uart_num].hal)) != true) {
// The TX_DONE interrupt is triggered but transmit is active // The TX_DONE interrupt is triggered but transmit is active
// then postpone interrupt processing for next interrupt // then postpone interrupt processing for next interrupt
@ -1033,13 +1032,13 @@ static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
uart_event.type = UART_EVENT_MAX; uart_event.type = UART_EVENT_MAX;
} }
if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) { if (uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) { if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
ESP_EARLY_LOGV(UART_TAG, "UART event queue full"); ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
} }
} }
} }
if(HPTaskAwoken == pdTRUE) { if (HPTaskAwoken == pdTRUE) {
portYIELD_FROM_ISR(); portYIELD_FROM_ISR();
} }
} }
@ -1053,11 +1052,11 @@ esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
portTickType ticks_start = xTaskGetTickCount(); portTickType ticks_start = xTaskGetTickCount();
//Take tx_mux //Take tx_mux
res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait); res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
if(res == pdFALSE) { if (res == pdFALSE) {
return ESP_ERR_TIMEOUT; return ESP_ERR_TIMEOUT;
} }
xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0); xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
if(uart_hal_is_tx_idle(&(uart_context[uart_num].hal))) { if (uart_hal_is_tx_idle(&(uart_context[uart_num].hal))) {
xSemaphoreGive(p_uart_obj[uart_num]->tx_mux); xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
return ESP_OK; return ESP_OK;
} }
@ -1074,7 +1073,7 @@ esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
} }
//take 2nd tx_done_sem, wait given from ISR //take 2nd tx_done_sem, wait given from ISR
res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait); res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
if(res == pdFALSE) { if (res == pdFALSE) {
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE); uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
@ -1085,12 +1084,12 @@ esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
return ESP_OK; return ESP_OK;
} }
int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len) int uart_tx_chars(uart_port_t uart_num, const char *buffer, uint32_t len)
{ {
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1)); UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1)); UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
UART_CHECK(buffer, "buffer null", (-1)); UART_CHECK(buffer, "buffer null", (-1));
if(len == 0) { if (len == 0) {
return 0; return 0;
} }
int tx_len = 0; int tx_len = 0;
@ -1101,14 +1100,14 @@ int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE); uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
} }
uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t*) buffer, len, (uint32_t *)&tx_len); uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t *) buffer, len, (uint32_t *)&tx_len);
xSemaphoreGive(p_uart_obj[uart_num]->tx_mux); xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
return tx_len; return tx_len;
} }
static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len) static int uart_tx_all(uart_port_t uart_num, const char *src, size_t size, bool brk_en, int brk_len)
{ {
if(size == 0) { if (size == 0) {
return 0; return 0;
} }
size_t original_size = size; size_t original_size = size;
@ -1116,29 +1115,29 @@ static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool
//lock for uart_tx //lock for uart_tx
xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY); xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
p_uart_obj[uart_num]->coll_det_flg = false; p_uart_obj[uart_num]->coll_det_flg = false;
if(p_uart_obj[uart_num]->tx_buf_size > 0) { if (p_uart_obj[uart_num]->tx_buf_size > 0) {
size_t max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf); size_t max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
int offset = 0; int offset = 0;
uart_tx_data_t evt; uart_tx_data_t evt;
evt.tx_data.size = size; evt.tx_data.size = size;
evt.tx_data.brk_len = brk_len; evt.tx_data.brk_len = brk_len;
if(brk_en) { if (brk_en) {
evt.type = UART_DATA_BREAK; evt.type = UART_DATA_BREAK;
} else { } else {
evt.type = UART_DATA; evt.type = UART_DATA;
} }
xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY); xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void *) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
while(size > 0) { while (size > 0) {
size_t send_size = size > max_size / 2 ? max_size / 2 : size; size_t send_size = size > max_size / 2 ? max_size / 2 : size;
xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY); xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void *) (src + offset), send_size, portMAX_DELAY);
size -= send_size; size -= send_size;
offset += send_size; offset += send_size;
uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT); uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
} }
} else { } else {
while(size) { while (size) {
//semaphore for tx_fifo available //semaphore for tx_fifo available
if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) { if (pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
uint32_t sent = 0; uint32_t sent = 0;
if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) { if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
@ -1146,8 +1145,8 @@ static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool
uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE); uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
} }
uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t*)src, size, &sent); uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t *)src, size, &sent);
if(sent < size) { if (sent < size) {
p_uart_obj[uart_num]->tx_waiting_fifo = true; p_uart_obj[uart_num]->tx_waiting_fifo = true;
uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT); uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
} }
@ -1155,7 +1154,7 @@ static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool
src += sent; src += sent;
} }
} }
if(brk_en) { if (brk_en) {
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE); uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
uart_hal_tx_break(&(uart_context[uart_num].hal), brk_len); uart_hal_tx_break(&(uart_context[uart_num].hal), brk_len);
@ -1169,7 +1168,7 @@ static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool
return original_size; return original_size;
} }
int uart_write_bytes(uart_port_t uart_num, const void* src, size_t size) int uart_write_bytes(uart_port_t uart_num, const void *src, size_t size)
{ {
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1)); UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1)); UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
@ -1177,7 +1176,7 @@ int uart_write_bytes(uart_port_t uart_num, const void* src, size_t size)
return uart_tx_all(uart_num, src, size, 0, 0); return uart_tx_all(uart_num, src, size, 0, 0);
} }
int uart_write_bytes_with_break(uart_port_t uart_num, const void* src, size_t size, int brk_len) int uart_write_bytes_with_break(uart_port_t uart_num, const void *src, size_t size, int brk_len)
{ {
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1)); UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1)); UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
@ -1189,9 +1188,9 @@ int uart_write_bytes_with_break(uart_port_t uart_num, const void* src, size_t si
static bool uart_check_buf_full(uart_port_t uart_num) static bool uart_check_buf_full(uart_port_t uart_num)
{ {
if(p_uart_obj[uart_num]->rx_buffer_full_flg) { if (p_uart_obj[uart_num]->rx_buffer_full_flg) {
BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1); BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
if(res == pdTRUE) { if (res == pdTRUE) {
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len; p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
p_uart_obj[uart_num]->rx_buffer_full_flg = false; p_uart_obj[uart_num]->rx_buffer_full_flg = false;
@ -1203,22 +1202,22 @@ static bool uart_check_buf_full(uart_port_t uart_num)
return false; return false;
} }
int uart_read_bytes(uart_port_t uart_num, void* buf, uint32_t length, TickType_t ticks_to_wait) int uart_read_bytes(uart_port_t uart_num, void *buf, uint32_t length, TickType_t ticks_to_wait)
{ {
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1)); UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
UART_CHECK((buf), "uart data null", (-1)); UART_CHECK((buf), "uart data null", (-1));
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1)); UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
uint8_t* data = NULL; uint8_t *data = NULL;
size_t size; size_t size;
size_t copy_len = 0; size_t copy_len = 0;
int len_tmp; int len_tmp;
if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) { if (xSemaphoreTake(p_uart_obj[uart_num]->rx_mux, (portTickType)ticks_to_wait) != pdTRUE) {
return -1; return -1;
} }
while(length) { while (length) {
if(p_uart_obj[uart_num]->rx_cur_remain == 0) { if (p_uart_obj[uart_num]->rx_cur_remain == 0) {
data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait); data = (uint8_t *) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
if(data) { if (data) {
p_uart_obj[uart_num]->rx_head_ptr = data; p_uart_obj[uart_num]->rx_head_ptr = data;
p_uart_obj[uart_num]->rx_ptr = data; p_uart_obj[uart_num]->rx_ptr = data;
p_uart_obj[uart_num]->rx_cur_remain = size; p_uart_obj[uart_num]->rx_cur_remain = size;
@ -1226,7 +1225,7 @@ int uart_read_bytes(uart_port_t uart_num, void* buf, uint32_t length, TickType_t
//When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time, //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
//which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
//to solve the possible asynchronous issues. //to solve the possible asynchronous issues.
if(uart_check_buf_full(uart_num)) { if (uart_check_buf_full(uart_num)) {
//This condition will never be true if `uart_read_bytes` //This condition will never be true if `uart_read_bytes`
//and `uart_rx_intr_handler_default` are scheduled on the same core. //and `uart_rx_intr_handler_default` are scheduled on the same core.
continue; continue;
@ -1236,7 +1235,7 @@ int uart_read_bytes(uart_port_t uart_num, void* buf, uint32_t length, TickType_t
} }
} }
} }
if(p_uart_obj[uart_num]->rx_cur_remain > length) { if (p_uart_obj[uart_num]->rx_cur_remain > length) {
len_tmp = length; len_tmp = length;
} else { } else {
len_tmp = p_uart_obj[uart_num]->rx_cur_remain; len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
@ -1250,7 +1249,7 @@ int uart_read_bytes(uart_port_t uart_num, void* buf, uint32_t length, TickType_t
p_uart_obj[uart_num]->rx_cur_remain -= len_tmp; p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
copy_len += len_tmp; copy_len += len_tmp;
length -= len_tmp; length -= len_tmp;
if(p_uart_obj[uart_num]->rx_cur_remain == 0) { if (p_uart_obj[uart_num]->rx_cur_remain == 0) {
vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr); vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
p_uart_obj[uart_num]->rx_head_ptr = NULL; p_uart_obj[uart_num]->rx_head_ptr = NULL;
p_uart_obj[uart_num]->rx_ptr = NULL; p_uart_obj[uart_num]->rx_ptr = NULL;
@ -1262,7 +1261,7 @@ int uart_read_bytes(uart_port_t uart_num, void* buf, uint32_t length, TickType_t
return copy_len; return copy_len;
} }
esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size) esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t *size)
{ {
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL); UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
@ -1274,7 +1273,7 @@ esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input"))); esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
static esp_err_t uart_disable_intr_mask_and_return_prev(uart_port_t uart_num, uint32_t disable_mask, uint32_t* prev_mask) static esp_err_t uart_disable_intr_mask_and_return_prev(uart_port_t uart_num, uint32_t disable_mask, uint32_t *prev_mask)
{ {
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
@ -1288,16 +1287,16 @@ esp_err_t uart_flush_input(uart_port_t uart_num)
{ {
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL); UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
uart_obj_t* p_uart = p_uart_obj[uart_num]; uart_obj_t *p_uart = p_uart_obj[uart_num];
uint8_t* data; uint8_t *data;
size_t size; size_t size;
uint32_t prev_mask; uint32_t prev_mask;
//rx sem protect the ring buffer read related functions //rx sem protect the ring buffer read related functions
xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY); xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
uart_disable_intr_mask_and_return_prev(uart_num, UART_INTR_RXFIFO_FULL|UART_INTR_RXFIFO_TOUT, &prev_mask); uart_disable_intr_mask_and_return_prev(uart_num, UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT, &prev_mask);
while(true) { while (true) {
if(p_uart->rx_head_ptr) { if (p_uart->rx_head_ptr) {
vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr); vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain; p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
@ -1308,10 +1307,10 @@ esp_err_t uart_flush_input(uart_port_t uart_num)
p_uart->rx_head_ptr = NULL; p_uart->rx_head_ptr = NULL;
} }
data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0); data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
if(data == NULL) { if (data == NULL) {
bool error = false; bool error = false;
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
if( p_uart_obj[uart_num]->rx_buffered_len != 0 ) { if ( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
p_uart_obj[uart_num]->rx_buffered_len = 0; p_uart_obj[uart_num]->rx_buffered_len = 0;
error = true; error = true;
} }
@ -1329,9 +1328,9 @@ esp_err_t uart_flush_input(uart_port_t uart_num)
uart_pattern_queue_update(uart_num, size); uart_pattern_queue_update(uart_num, size);
UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
vRingbufferReturnItem(p_uart->rx_ring_buf, data); vRingbufferReturnItem(p_uart->rx_ring_buf, data);
if(p_uart_obj[uart_num]->rx_buffer_full_flg) { if (p_uart_obj[uart_num]->rx_buffer_full_flg) {
BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1); BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
if(res == pdTRUE) { if (res == pdTRUE) {
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len; p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
p_uart_obj[uart_num]->rx_buffer_full_flg = false; p_uart_obj[uart_num]->rx_buffer_full_flg = false;
@ -1366,9 +1365,9 @@ esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_b
} }
#endif #endif
if(p_uart_obj[uart_num] == NULL) { if (p_uart_obj[uart_num] == NULL) {
p_uart_obj[uart_num] = (uart_obj_t*) heap_caps_calloc(1, sizeof(uart_obj_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT); p_uart_obj[uart_num] = (uart_obj_t *) heap_caps_calloc(1, sizeof(uart_obj_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
if(p_uart_obj[uart_num] == NULL) { if (p_uart_obj[uart_num] == NULL) {
ESP_LOGE(UART_TAG, "UART driver malloc error"); ESP_LOGE(UART_TAG, "UART driver malloc error");
return ESP_FAIL; return ESP_FAIL;
} }
@ -1392,7 +1391,7 @@ esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_b
p_uart_obj[uart_num]->rx_buffered_len = 0; p_uart_obj[uart_num]->rx_buffered_len = 0;
uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT); uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
if(uart_queue) { if (uart_queue) {
p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t)); p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
*uart_queue = p_uart_obj[uart_num]->xQueueUart; *uart_queue = p_uart_obj[uart_num]->xQueueUart;
ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart)); ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
@ -1405,7 +1404,7 @@ esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_b
p_uart_obj[uart_num]->rx_cur_remain = 0; p_uart_obj[uart_num]->rx_cur_remain = 0;
p_uart_obj[uart_num]->rx_head_ptr = NULL; p_uart_obj[uart_num]->rx_head_ptr = NULL;
p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF); p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
if(tx_buffer_size > 0) { if (tx_buffer_size > 0) {
p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT); p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size; p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
} else { } else {
@ -1427,10 +1426,14 @@ esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_b
uart_module_enable(uart_num); uart_module_enable(uart_num);
uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK); uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK); uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle); r = uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
if (r!=ESP_OK) goto err; if (r != ESP_OK) {
r=uart_intr_config(uart_num, &uart_intr); goto err;
if (r!=ESP_OK) goto err; }
r = uart_intr_config(uart_num, &uart_intr);
if (r != ESP_OK) {
goto err;
}
return r; return r;
err: err:
@ -1442,7 +1445,7 @@ err:
esp_err_t uart_driver_delete(uart_port_t uart_num) esp_err_t uart_driver_delete(uart_port_t uart_num)
{ {
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
if(p_uart_obj[uart_num] == NULL) { if (p_uart_obj[uart_num] == NULL) {
ESP_LOGI(UART_TAG, "ALREADY NULL"); ESP_LOGI(UART_TAG, "ALREADY NULL");
return ESP_OK; return ESP_OK;
} }
@ -1451,35 +1454,35 @@ esp_err_t uart_driver_delete(uart_port_t uart_num)
uart_disable_tx_intr(uart_num); uart_disable_tx_intr(uart_num);
uart_pattern_link_free(uart_num); uart_pattern_link_free(uart_num);
if(p_uart_obj[uart_num]->tx_fifo_sem) { if (p_uart_obj[uart_num]->tx_fifo_sem) {
vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem); vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
p_uart_obj[uart_num]->tx_fifo_sem = NULL; p_uart_obj[uart_num]->tx_fifo_sem = NULL;
} }
if(p_uart_obj[uart_num]->tx_done_sem) { if (p_uart_obj[uart_num]->tx_done_sem) {
vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem); vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
p_uart_obj[uart_num]->tx_done_sem = NULL; p_uart_obj[uart_num]->tx_done_sem = NULL;
} }
if(p_uart_obj[uart_num]->tx_brk_sem) { if (p_uart_obj[uart_num]->tx_brk_sem) {
vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem); vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
p_uart_obj[uart_num]->tx_brk_sem = NULL; p_uart_obj[uart_num]->tx_brk_sem = NULL;
} }
if(p_uart_obj[uart_num]->tx_mux) { if (p_uart_obj[uart_num]->tx_mux) {
vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux); vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
p_uart_obj[uart_num]->tx_mux = NULL; p_uart_obj[uart_num]->tx_mux = NULL;
} }
if(p_uart_obj[uart_num]->rx_mux) { if (p_uart_obj[uart_num]->rx_mux) {
vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux); vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
p_uart_obj[uart_num]->rx_mux = NULL; p_uart_obj[uart_num]->rx_mux = NULL;
} }
if(p_uart_obj[uart_num]->xQueueUart) { if (p_uart_obj[uart_num]->xQueueUart) {
vQueueDelete(p_uart_obj[uart_num]->xQueueUart); vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
p_uart_obj[uart_num]->xQueueUart = NULL; p_uart_obj[uart_num]->xQueueUart = NULL;
} }
if(p_uart_obj[uart_num]->rx_ring_buf) { if (p_uart_obj[uart_num]->rx_ring_buf) {
vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf); vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
p_uart_obj[uart_num]->rx_ring_buf = NULL; p_uart_obj[uart_num]->rx_ring_buf = NULL;
} }
if(p_uart_obj[uart_num]->tx_ring_buf) { if (p_uart_obj[uart_num]->tx_ring_buf) {
vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf); vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
p_uart_obj[uart_num]->tx_ring_buf = NULL; p_uart_obj[uart_num]->tx_ring_buf = NULL;
} }
@ -1528,7 +1531,7 @@ esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
} }
UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
uart_hal_set_mode(&(uart_context[uart_num].hal), mode); uart_hal_set_mode(&(uart_context[uart_num].hal), mode);
if(mode == UART_MODE_RS485_COLLISION_DETECT) { if (mode == UART_MODE_RS485_COLLISION_DETECT) {
// This mode allows read while transmitting that allows collision detection // This mode allows read while transmitting that allows collision detection
p_uart_obj[uart_num]->coll_det_flg = false; p_uart_obj[uart_num]->coll_det_flg = false;
// Enable collision detection interrupts // Enable collision detection interrupts
@ -1592,7 +1595,7 @@ esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
return ESP_OK; return ESP_OK;
} }
esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool* collision_flag) esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool *collision_flag)
{ {
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG); UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL); UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
@ -1616,7 +1619,7 @@ esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
return ESP_OK; return ESP_OK;
} }
esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int* out_wakeup_threshold) esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int *out_wakeup_threshold)
{ {
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG); UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
UART_CHECK((out_wakeup_threshold != NULL), "argument is NULL", ESP_ERR_INVALID_ARG); UART_CHECK((out_wakeup_threshold != NULL), "argument is NULL", ESP_ERR_INVALID_ARG);
@ -1627,7 +1630,7 @@ esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int* out_wakeup_thresh
esp_err_t uart_wait_tx_idle_polling(uart_port_t uart_num) esp_err_t uart_wait_tx_idle_polling(uart_port_t uart_num)
{ {
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG); UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
while(!uart_hal_is_tx_idle(&(uart_context[uart_num].hal))); while (!uart_hal_is_tx_idle(&(uart_context[uart_num].hal)));
return ESP_OK; return ESP_OK;
} }