Merge branch 'bugfix/apll_coeff_calculate_v4.4' into 'release/v4.4'

i2s: impove the clock division calculation (v4.4)

See merge request espressif/esp-idf!16783
This commit is contained in:
Michael (XIAO Xufeng) 2022-01-21 07:06:30 +00:00
commit f4c97455c4
6 changed files with 109 additions and 168 deletions

View File

@ -29,8 +29,7 @@
#include "esp_private/gdma.h"
#endif
#include "soc/rtc.h"
#include "soc/clk_ctrl_os.h"
#include "esp_intr_alloc.h"
#include "esp_err.h"
#include "esp_check.h"
@ -888,123 +887,54 @@ esp_err_t i2s_zero_dma_buffer(i2s_port_t i2s_num)
I2S clock operation
-------------------------------------------------------------*/
#if SOC_I2S_SUPPORTS_APLL
/**
* @brief Get APLL frequency
*/
static float i2s_apll_get_freq(int bits_per_sample, int sdm0, int sdm1, int sdm2, int odir)
static esp_err_t i2s_set_apll_freq(uint32_t expt_freq, uint32_t *real_freq)
{
int f_xtal = (int)rtc_clk_xtal_freq_get() * 1000000;
uint32_t rtc_xtal_freq = (uint32_t)rtc_clk_xtal_freq_get();
ESP_RETURN_ON_FALSE(rtc_xtal_freq, ESP_ERR_INVALID_STATE, TAG, "Get xtal clock frequency failed, it has not been set yet");
#if CONFIG_IDF_TARGET_ESP32
/* ESP32 rev0 silicon issue for APLL range/accuracy, please see ESP32 ECO document for more information on this */
if (esp_efuse_get_chip_ver() == 0) {
sdm0 = 0;
sdm1 = 0;
/* Reference formula: apll_freq = xtal_freq * (4 + sdm2 + sdm1/256 + sdm0/65536) / ((o_div + 2) * 2)
* ---------------------------------------------- -----------------
* 350 MHz <= Numerator <= 500 MHz Denominator
*/
int o_div = 0; // range: 0~31
int sdm0 = 0; // range: 0~255
int sdm1 = 0; // range: 0~255
int sdm2 = 0; // range: 0~63
/* Firstly try to satisfy the condition that the operation frequency of numerator should be greater than 350 MHz,
* i.e. xtal_freq * (4 + sdm2 + sdm1/256 + sdm0/65536) >= 350 MHz, '+1' in the following code is to get the ceil value.
* With this condition, as we know the 'o_div' can't be greater than 31, then we can calculate the APLL minimum support frequency is
* 350 MHz / ((31 + 2) * 2) = 5303031 Hz (for ceil) */
o_div = (int)(SOC_APLL_MULTIPLIER_OUT_MIN_HZ / (float)(expt_freq * 2) + 1) - 2;
ESP_RETURN_ON_FALSE(o_div < 32, ESP_ERR_INVALID_ARG, TAG, "Expected frequency is too small");
if (o_div < 0) {
/* Try to satisfy the condition that the operation frequency of numerator should be smaller than 500 MHz,
* i.e. xtal_freq * (4 + sdm2 + sdm1/256 + sdm0/65536) <= 500 MHz, we need to get the floor value in the following code.
* With this condition, as we know the 'o_div' can't be smaller than 0, then we can calculate the APLL maximum support frequency is
* 500 MHz / ((0 + 2) * 2) = 125000000 Hz */
o_div = (int)(SOC_APLL_MULTIPLIER_OUT_MAX_HZ / (float)(expt_freq * 2)) - 2;
ESP_RETURN_ON_FALSE(o_div >= 0, ESP_ERR_INVALID_ARG, TAG, "Expected frequency is too small");
}
#endif
float fout = f_xtal * (sdm2 + sdm1 / 256.0f + sdm0 / 65536.0f + 4);
if (fout < SOC_I2S_APLL_MIN_FREQ || fout > SOC_I2S_APLL_MAX_FREQ) {
return SOC_I2S_APLL_MAX_FREQ;
// sdm2 = (int)(((o_div + 2) * 2) * apll_freq / xtal_freq) - 4
sdm2 = (int)(((o_div + 2) * 2 * expt_freq) / (rtc_xtal_freq * 1000000)) - 4;
// numrator = (((o_div + 2) * 2) * apll_freq / xtal_freq) - 4 - sdm2
float numrator = (((o_div + 2) * 2 * expt_freq) / ((float)rtc_xtal_freq * 1000000)) - 4 - sdm2;
// If numrator is bigger than 255/256 + 255/65536 + (1/65536)/2 = 1 - (1 / 65536)/2, carry bit to sdm2
if (numrator > 1.0 - (1.0 / 65536.0) / 2.0) {
sdm2++;
}
float fpll = fout / (2 * (odir + 2)); //== fi2s (N=1, b=0, a=1)
return fpll / 2;
}
// If numrator is smaller than (1/65536)/2, keep sdm0 = sdm1 = 0, otherwise calculate sdm0 and sdm1
else if (numrator > (1.0 / 65536.0) / 2.0) {
// Get the closest sdm1
sdm1 = (int)(numrator * 65536.0 + 0.5) / 256;
// Get the closest sdm0
sdm0 = (int)(numrator * 65536.0 + 0.5) % 256;
}
rtc_clk_apll_enable(true, sdm0, sdm1, sdm2, o_div);
*real_freq = (uint32_t)(rtc_xtal_freq * 1000000 * (4 + sdm2 + (float)sdm1/256.0 + (float)sdm0/65536.0) / (((float)o_div + 2) * 2));
/**
* @brief APLL calculate function, was described by following:
* APLL Output frequency is given by the formula:
*
* apll_freq = xtal_freq * (4 + sdm2 + sdm1/256 + sdm0/65536)/((o_div + 2) * 2)
* apll_freq = fout / ((o_div + 2) * 2)
*
* The dividend in this expression should be in the range of 240 - 600 MHz.
* In rev. 0 of ESP32, sdm0 and sdm1 are unused and always set to 0.
* * sdm0 frequency adjustment parameter, 0..255
* * sdm1 frequency adjustment parameter, 0..255
* * sdm2 frequency adjustment parameter, 0..63
* * o_div frequency divider, 0..31
*
* The most accurate way to find the sdm0..2 and odir parameters is to loop through them all,
* then apply the above formula, finding the closest frequency to the desired one.
* But 256*256*64*32 = 134,217,728 loops are too slow with ESP32
* 1. We will choose the parameters with the highest level of change,
* With 350MHz<fout<500MHz, we limit the sdm2 from 4 to 9,
* Take average frequency close to the desired frequency, and select sdm2
* 2. Next, we look for sequences of less influential and more detailed parameters,
* also by taking the average of the largest and smallest frequencies closer to the desired frequency.
* 3. And finally, loop through all the most detailed of the parameters, finding the best desired frequency
*
* @param[in] rate The I2S Frequency (MCLK)
* @param[in] bits_per_sample The bits per sample
* @param[out] sdm0 The sdm 0
* @param[out] sdm1 The sdm 1
* @param[out] sdm2 The sdm 2
* @param[out] odir The odir
*/
static void i2s_apll_calculate_fi2s(int rate, int bits_per_sample, int *sdm0, int *sdm1, int *sdm2, int *odir)
{
int _odir, _sdm0, _sdm1, _sdm2;
float avg;
float min_rate, max_rate, min_diff;
*sdm0 = 0;
*sdm1 = 0;
*sdm2 = 0;
*odir = 0;
min_diff = SOC_I2S_APLL_MAX_FREQ;
for (_sdm2 = 4; _sdm2 < 9; _sdm2 ++) {
max_rate = i2s_apll_get_freq(bits_per_sample, 255, 255, _sdm2, 0);
min_rate = i2s_apll_get_freq(bits_per_sample, 0, 0, _sdm2, 31);
avg = (max_rate + min_rate) / 2;
if (abs(avg - rate) < min_diff) {
min_diff = abs(avg - rate);
*sdm2 = _sdm2;
}
}
min_diff = SOC_I2S_APLL_MAX_FREQ;
for (_odir = 0; _odir < 32; _odir ++) {
max_rate = i2s_apll_get_freq(bits_per_sample, 255, 255, *sdm2, _odir);
min_rate = i2s_apll_get_freq(bits_per_sample, 0, 0, *sdm2, _odir);
avg = (max_rate + min_rate) / 2;
if (abs(avg - rate) < min_diff) {
min_diff = abs(avg - rate);
*odir = _odir;
}
}
min_diff = SOC_I2S_APLL_MAX_FREQ;
for (_sdm2 = 4; _sdm2 < 9; _sdm2 ++) {
max_rate = i2s_apll_get_freq(bits_per_sample, 255, 255, _sdm2, *odir);
min_rate = i2s_apll_get_freq(bits_per_sample, 0, 0, _sdm2, *odir);
avg = (max_rate + min_rate) / 2;
if (abs(avg - rate) < min_diff) {
min_diff = abs(avg - rate);
*sdm2 = _sdm2;
}
}
min_diff = SOC_I2S_APLL_MAX_FREQ;
for (_sdm1 = 0; _sdm1 < 256; _sdm1 ++) {
max_rate = i2s_apll_get_freq(bits_per_sample, 255, _sdm1, *sdm2, *odir);
min_rate = i2s_apll_get_freq(bits_per_sample, 0, _sdm1, *sdm2, *odir);
avg = (max_rate + min_rate) / 2;
if (abs(avg - rate) < min_diff) {
min_diff = abs(avg - rate);
*sdm1 = _sdm1;
}
}
min_diff = SOC_I2S_APLL_MAX_FREQ;
for (_sdm0 = 0; _sdm0 < 256; _sdm0 ++) {
avg = i2s_apll_get_freq(bits_per_sample, _sdm0, *sdm1, *sdm2, *odir);
if (abs(avg - rate) < min_diff) {
min_diff = abs(avg - rate);
*sdm0 = _sdm0;
}
}
return ESP_OK;
}
#endif
/**
* @brief Config I2S source clock and get its frequency
*
@ -1020,21 +950,26 @@ static uint32_t i2s_config_source_clock(i2s_port_t i2s_num, bool use_apll, uint3
{
#if SOC_I2S_SUPPORTS_APLL
if (use_apll) {
int sdm0 = 0;
int sdm1 = 0;
int sdm2 = 0;
int odir = 0;
if ((mclk / p_i2s[i2s_num]->hal_cfg.chan_bits / p_i2s[i2s_num]->hal_cfg.total_chan) < SOC_I2S_APLL_MIN_RATE) {
ESP_LOGE(TAG, "mclk is too small");
/* Calculate the expected APLL */
int div = (int)((SOC_APLL_MIN_HZ / mclk) + 1);
/* apll_freq = mclk * div
* when div = 1, hardware will still divide 2
* when div = 0, the final mclk will be unpredictable
* So the div here should be at least 2 */
div = div < 2 ? 2 : div;
uint32_t expt_freq = mclk * div;
/* Set APLL coefficients to the given frequency */
uint32_t real_freq = 0;
esp_err_t ret = i2s_set_apll_freq(expt_freq, &real_freq);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "set APLL coefficients failed");
return 0;
}
i2s_apll_calculate_fi2s(mclk, p_i2s[i2s_num]->hal_cfg.sample_bits, &sdm0, &sdm1, &sdm2, &odir);
ESP_LOGI(TAG, "APLL Enabled, coefficient: sdm0=%d, sdm1=%d, sdm2=%d, odir=%d", sdm0, sdm1, sdm2, odir);
rtc_clk_apll_enable(true, sdm0, sdm1, sdm2, odir);
ESP_LOGI(TAG, "APLL expected frequency is %d Hz, real frequency is %d Hz", expt_freq, real_freq);
/* Set I2S_APLL as I2S module clock source */
i2s_hal_set_clock_src(&(p_i2s[i2s_num]->hal), I2S_CLK_APLL);
/* In APLL mode, there is no sclk but only mclk, so return 0 here to indicate APLL mode */
return 0;
return real_freq;
}
/* Set I2S_D2CLK (160M) as default I2S module clock source */
i2s_hal_set_clock_src(&(p_i2s[i2s_num]->hal), I2S_CLK_D2CLK);
@ -1079,7 +1014,7 @@ static esp_err_t i2s_calculate_adc_dac_clock(int i2s_num, i2s_hal_clock_cfg_t *c
clk_cfg->mclk_div = clk_cfg->sclk / clk_cfg->mclk;
/* Check if the configuration is correct */
ESP_RETURN_ON_FALSE(!clk_cfg->sclk || clk_cfg->mclk <= clk_cfg->sclk, ESP_ERR_INVALID_ARG, TAG, "sample rate is too large");
ESP_RETURN_ON_FALSE(clk_cfg->mclk <= clk_cfg->sclk, ESP_ERR_INVALID_ARG, TAG, "sample rate is too large");
return ESP_OK;
}
@ -1117,7 +1052,7 @@ static esp_err_t i2s_calculate_pdm_tx_clock(int i2s_num, i2s_hal_clock_cfg_t *cl
clk_cfg->mclk_div = clk_cfg->sclk / clk_cfg->mclk;
/* Check if the configuration is correct */
ESP_RETURN_ON_FALSE(!clk_cfg->sclk || clk_cfg->mclk <= clk_cfg->sclk, ESP_ERR_INVALID_ARG, TAG, "sample rate is too large");
ESP_RETURN_ON_FALSE(clk_cfg->mclk <= clk_cfg->sclk, ESP_ERR_INVALID_ARG, TAG, "sample rate is too large");
return ESP_OK;
}
@ -1155,7 +1090,7 @@ static esp_err_t i2s_calculate_pdm_rx_clock(int i2s_num, i2s_hal_clock_cfg_t *cl
clk_cfg->mclk_div = clk_cfg->sclk / clk_cfg->mclk;
/* Check if the configuration is correct */
ESP_RETURN_ON_FALSE(!clk_cfg->sclk || clk_cfg->mclk <= clk_cfg->sclk, ESP_ERR_INVALID_ARG, TAG, "sample rate is too large");
ESP_RETURN_ON_FALSE(clk_cfg->mclk <= clk_cfg->sclk, ESP_ERR_INVALID_ARG, TAG, "sample rate is too large");
return ESP_OK;
}
@ -1211,7 +1146,7 @@ static esp_err_t i2s_calculate_common_clock(int i2s_num, i2s_hal_clock_cfg_t *cl
clk_cfg->mclk_div = clk_cfg->sclk / clk_cfg->mclk;
/* Check if the configuration is correct */
ESP_RETURN_ON_FALSE(!clk_cfg->sclk || clk_cfg->mclk <= clk_cfg->sclk, ESP_ERR_INVALID_ARG, TAG, "sample rate is too large");
ESP_RETURN_ON_FALSE(clk_cfg->mclk <= clk_cfg->sclk, ESP_ERR_INVALID_ARG, TAG, "sample rate is too large");
return ESP_OK;
}

View File

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2021 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -26,27 +26,32 @@ static void i2s_hal_mclk_div_decimal_cal(i2s_hal_clock_cfg_t *clk_cfg, i2s_ll_mc
cal->mclk_div = clk_cfg->mclk_div;
cal->a = 1;
cal->b = 0;
/* If sclk = 0 means APLL clock applied, mclk_div should set to 1 */
if (!clk_cfg->sclk) {
cal->mclk_div = 1;
uint32_t freq_diff = abs(clk_cfg->sclk - clk_cfg->mclk * cal->mclk_div);
if (!freq_diff) {
return;
}
float decimal = freq_diff / (float)clk_cfg->mclk;
// Carry bit if the decimal is greater than 1.0 - 1.0 / (63.0 * 2) = 125.0 / 126.0
if (decimal > 125.0 / 126.0) {
cal->mclk_div++;
return;
}
uint32_t freq_diff = clk_cfg->sclk - clk_cfg->mclk * cal->mclk_div;
uint32_t min = ~0;
for (int a = 2; a <= I2S_LL_MCLK_DIVIDER_MAX; a++) {
for (int b = 1; b < a; b++) {
ma = freq_diff * a;
mb = clk_cfg->mclk * b;
if (ma == mb) {
cal->a = a;
cal->b = b;
return;
}
if (abs((mb - ma)) < min) {
cal->a = a;
cal->b = b;
min = abs(mb - ma);
}
// Calculate the closest 'b' in this loop, no need to loop 'b' to seek the closest value
int b = (int)(a * (freq_diff / (double)clk_cfg->mclk) + 0.5);
ma = freq_diff * a;
mb = clk_cfg->mclk * b;
if (ma == mb) {
cal->a = a;
cal->b = b;
return;
}
if (abs((mb - ma)) < min) {
cal->a = a;
cal->b = b;
min = abs(mb - ma);
}
}
}

View File

@ -1,16 +1,8 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once

View File

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -140,18 +140,23 @@
#define SOC_I2C_SUPPORT_APB (1)
/*-------------------------- APLL CAPS ----------------------------------------*/
#define SOC_CLK_APLL_SUPPORTED (1)
// apll_multiplier_out = xtal_freq * (4 + sdm2 + sdm1/256 + sdm0/65536)
#define SOC_APLL_MULTIPLIER_OUT_MIN_HZ (350000000) // 350 MHz
#define SOC_APLL_MULTIPLIER_OUT_MAX_HZ (500000000) // 500 MHz
#define SOC_APLL_MIN_HZ (5303031) // 5.303031 MHz
#define SOC_APLL_MAX_HZ (125000000) // 125MHz
/*-------------------------- I2S CAPS ----------------------------------------*/
// ESP32 have 2 I2S
#define SOC_I2S_NUM (2)
#define SOC_I2S_NUM (2U)
#define SOC_I2S_SUPPORTS_APLL (1) // ESP32 support APLL
#define SOC_I2S_SUPPORTS_PDM_TX (1)
#define SOC_I2S_SUPPORTS_PDM_RX (1)
#define SOC_I2S_SUPPORTS_ADC (1) // ESP32 support ADC and DAC
#define SOC_I2S_SUPPORTS_DAC (1)
#define SOC_I2S_SUPPORTS_APLL (1)// ESP32 support APLL
#define SOC_I2S_APLL_MIN_FREQ (250000000)
#define SOC_I2S_APLL_MAX_FREQ (500000000)
#define SOC_I2S_APLL_MIN_RATE (10675) //in Hz, I2S Clock rate limited by hardware
#define SOC_I2S_TRANS_SIZE_ALIGN_WORD (1) // I2S DMA transfer size must be aligned to word
#define SOC_I2S_LCD_I80_VARIANT (1) // I2S has a special LCD mode that can generate Intel 8080 TX timing

View File

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2020-2021 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -135,14 +135,19 @@
#define SOC_I2C_SUPPORT_REF_TICK (1)
#define SOC_I2C_SUPPORT_APB (1)
/*-------------------------- APLL CAPS ----------------------------------------*/
#define SOC_CLK_APLL_SUPPORTED (1)
// apll_multiplier_out = xtal_freq * (4 + sdm2 + sdm1/256 + sdm0/65536)
#define SOC_APLL_MULTIPLIER_OUT_MIN_HZ (350000000) // 350 MHz
#define SOC_APLL_MULTIPLIER_OUT_MAX_HZ (500000000) // 500 MHz
#define SOC_APLL_MIN_HZ (5303031) // 5.303031 MHz
#define SOC_APLL_MAX_HZ (125000000) // 125MHz
/*-------------------------- I2S CAPS ----------------------------------------*/
// ESP32-S2 have 1 I2S
#define SOC_I2S_NUM (1)
#define SOC_I2S_SUPPORTS_APLL (1)// ESP32-S2 support APLL
#define SOC_I2S_SUPPORTS_DMA_EQUAL (1)
#define SOC_I2S_APLL_MIN_FREQ (250000000)
#define SOC_I2S_APLL_MAX_FREQ (500000000)
#define SOC_I2S_APLL_MIN_RATE (10675) //in Hz, I2S Clock rate limited by hardware
#define SOC_I2S_LCD_I80_VARIANT (1)
/*-------------------------- LCD CAPS ----------------------------------------*/

View File

@ -1141,7 +1141,6 @@ components/hal/include/hal/esp_flash_err.h
components/hal/include/hal/gpio_hal.h
components/hal/include/hal/i2c_hal.h
components/hal/include/hal/i2c_types.h
components/hal/include/hal/i2s_types.h
components/hal/include/hal/interrupt_controller_hal.h
components/hal/include/hal/interrupt_controller_types.h
components/hal/include/hal/ledc_hal.h