i2c: add a simple i2c sensor communication example

This commit is contained in:
Marius Vikhammer 2020-04-27 12:10:03 +08:00
parent 8887897f54
commit eee4cd18f8
7 changed files with 182 additions and 0 deletions

View File

@ -0,0 +1,6 @@
# The following lines of boilerplate have to be in your project's CMakeLists
# in this exact order for cmake to work correctly
cmake_minimum_required(VERSION 3.5)
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
project(i2c-simple)

View File

@ -0,0 +1,8 @@
#
# This is a project Makefile. It is assumed the directory this Makefile resides in is a
# project subdirectory.
#
PROJECT_NAME := i2c-simple
include $(IDF_PATH)/make/project.mk

View File

@ -0,0 +1,49 @@
# I2C Simple Example
(See the README.md file in the upper level 'examples' directory for more information about examples.)
## Overview
This example demonstrates basic usage of I2C driver by reading and writing from a I2C connected sensor:
If you have a new I2C application to go (for example, read the temperature data from external sensor with I2C interface), try this as a basic template, then add your own code.
## How to use example
### Hardware Required
To run this example, you should have one ESP32, ESP32-S or ESP32-C based development board as well as a MPU9250. MPU9250 is a inertial measurement unit, which contains a accelerometer, gyroscope as well as a magnetometer, for more information about it, you can read the [PDF](https://invensense.tdk.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf) of this sensor.
#### Pin Assignment:
**Note:** The following pin assignments are used by default, you can change these in the `menuconfig` .
| | SDA | SCL |
| ---------------- | -------------- | -------------- |
| ESP I2C Master | I2C_MASTER_SDA | I2C_MASTER_SCL |
| MPU9250 Sensor | SDA | SCL |
For the actual default value of `I2C_MASTER_SDA` and `I2C_MASTER_SCL` see `Example Configuration` in `menuconfig`.
**Note: ** Theres no need to add an external pull-up resistors for SDA/SCL pin, because the driver will enable the internal pull-up resistors.
### Build and Flash
Enter `idf.py -p PORT flash monitor` to build, flash and monitor the project.
(To exit the serial monitor, type ``Ctrl-]``.)
See the [Getting Started Guide](https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html) for full steps to configure and use ESP-IDF to build projects.
## Example Output
```bash
I (328) i2c-simple-example: I2C initialized successfully
I (338) i2c-simple-example: WHO_AM_I = 71
I (338) i2c-simple-example: I2C unitialized successfully
```
## Troubleshooting
(For any technical queries, please open an [issue](https://github.com/espressif/esp-idf/issues) on GitHub. We will get back to you as soon as possible.)

View File

@ -0,0 +1,2 @@
idf_component_register(SRCS "i2c_simple_main.c"
INCLUDE_DIRS ".")

View File

@ -0,0 +1,17 @@
menu "Example Configuration"
config I2C_MASTER_SCL
int "SCL GPIO Num"
default 6 if IDF_TARGET_ESP32C3
default 19 if IDF_TARGET_ESP32 || IDF_TARGET_ESP32S2 || IDF_TARGET_ESP32S3
help
GPIO number for I2C Master clock line.
config I2C_MASTER_SDA
int "SDA GPIO Num"
default 5 if IDF_TARGET_ESP32C3
default 18 if IDF_TARGET_ESP32 || IDF_TARGET_ESP32S2 || IDF_TARGET_ESP32S3
help
GPIO number for I2C Master data line.
endmenu

View File

@ -0,0 +1,3 @@
#
# Main Makefile. This is basically the same as a component makefile .
#

View File

@ -0,0 +1,97 @@
/* i2c - Simple example
Simple I2C example that shows how to initialize I2C
as well as reading and writing from and to registers for a sensor connected over I2C.
The sensor used in this example is a MPU9250 inertial measurement unit.
For other examples please check:
https://github.com/espressif/esp-idf/tree/master/examples
See README.md file to get detailed usage of this example.
This example code is in the Public Domain (or CC0 licensed, at your option.)
Unless required by applicable law or agreed to in writing, this
software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.
*/
#include <stdio.h>
#include "esp_log.h"
#include "driver/i2c.h"
static const char *TAG = "i2c-simple-example";
#define I2C_MASTER_SCL_IO CONFIG_I2C_MASTER_SCL /*!< GPIO number used for I2C master clock */
#define I2C_MASTER_SDA_IO CONFIG_I2C_MASTER_SDA /*!< GPIO number used for I2C master data */
#define I2C_MASTER_NUM 0 /*!< I2C master i2c port number, the number of i2c peripheral interfaces available will depend on the chip */
#define I2C_MASTER_FREQ_HZ 400000 /*!< I2C master clock frequency */
#define I2C_MASTER_TX_BUF_DISABLE 0 /*!< I2C master doesn't need buffer */
#define I2C_MASTER_RX_BUF_DISABLE 0 /*!< I2C master doesn't need buffer */
#define I2C_MASTER_TIMEOUT_MS 1000
#define MPU9250_SENSOR_ADDR 0x68 /*!< Slave address of the MPU9250 sensor */
#define MPU9250_WHO_AM_I_REG_ADDR 0x75 /*!< Register addresses of the "who am I" register */
#define MPU9250_PWR_MGMT_1_REG_ADDR 0x6B /*!< Register addresses of the power managment register */
#define MPU9250_RESET_BIT 7
/**
* @brief Read a sequence of bytes from a MPU9250 sensor registers
*/
static esp_err_t mpu9250_register_read(uint8_t reg_addr, uint8_t *data, size_t len)
{
return i2c_master_write_read_device(I2C_MASTER_NUM, MPU9250_SENSOR_ADDR, &reg_addr, 1, data, len, I2C_MASTER_TIMEOUT_MS / portTICK_RATE_MS);
}
/**
* @brief Write a byte to a MPU9250 sensor register
*/
static esp_err_t mpu9250_register_write_byte(uint8_t reg_addr, uint8_t data)
{
int ret;
uint8_t write_buf[2] = {reg_addr, data};
ret = i2c_master_write_to_device(I2C_MASTER_NUM, MPU9250_SENSOR_ADDR, write_buf, sizeof(write_buf), I2C_MASTER_TIMEOUT_MS / portTICK_RATE_MS);
return ret;
}
/**
* @brief i2c master initialization
*/
static esp_err_t i2c_master_init(void)
{
int i2c_master_port = I2C_MASTER_NUM;
i2c_config_t conf = {
.mode = I2C_MODE_MASTER,
.sda_io_num = I2C_MASTER_SDA_IO,
.scl_io_num = I2C_MASTER_SCL_IO,
.sda_pullup_en = GPIO_PULLUP_ENABLE,
.scl_pullup_en = GPIO_PULLUP_ENABLE,
.master.clk_speed = I2C_MASTER_FREQ_HZ,
};
i2c_param_config(i2c_master_port, &conf);
return i2c_driver_install(i2c_master_port, conf.mode, I2C_MASTER_RX_BUF_DISABLE, I2C_MASTER_TX_BUF_DISABLE, 0);
}
void app_main(void)
{
uint8_t data[2];
ESP_ERROR_CHECK(i2c_master_init());
ESP_LOGI(TAG, "I2C initialized successfully");
/* Read the MPU9250 WHO_AM_I register, on power up the register should have the value 0x71 */
ESP_ERROR_CHECK(mpu9250_register_read(MPU9250_WHO_AM_I_REG_ADDR, data, 1));
ESP_LOGI(TAG, "WHO_AM_I = %X", data[0]);
/* Demonstrate writing by reseting the MPU9250 */
ESP_ERROR_CHECK(mpu9250_register_write_byte(MPU9250_PWR_MGMT_1_REG_ADDR, 1 << MPU9250_RESET_BIT));
ESP_ERROR_CHECK(i2c_driver_delete(I2C_MASTER_NUM));
ESP_LOGI(TAG, "I2C unitialized successfully");
}