systimer: strip hal driver

This commit is contained in:
morris 2021-04-02 12:41:21 +08:00
parent 7c1e1c9e2d
commit ec898b771e
12 changed files with 541 additions and 672 deletions

View File

@ -19,7 +19,10 @@
#include "esp_attr.h"
#include "esp_intr_alloc.h"
#include "esp_log.h"
#include "esp_compiler.h"
#include "soc/periph_defs.h"
#include "soc/soc_caps.h"
#include "soc/rtc.h"
#include "freertos/FreeRTOS.h"
#include "hal/systimer_ll.h"
#include "hal/systimer_types.h"
@ -46,6 +49,9 @@ static intr_handle_t s_timer_interrupt_handle;
*/
static intr_handler_t s_alarm_handler = NULL;
/* Systimer HAL layer object */
static systimer_hal_context_t systimer_hal;
/* Spinlock used to protect access to the hardware registers. */
portMUX_TYPE s_time_update_lock = portMUX_INITIALIZER_UNLOCKED;
@ -61,15 +67,15 @@ void esp_timer_impl_unlock(void)
uint64_t IRAM_ATTR esp_timer_impl_get_counter_reg(void)
{
return systimer_hal_get_counter_value(SYSTIMER_COUNTER_0);
return systimer_hal_get_counter_value(&systimer_hal, SYSTIMER_LL_COUNTER_CLOCK);
}
int64_t IRAM_ATTR esp_timer_impl_get_time(void)
{
if (s_alarm_handler == NULL) {
if (unlikely(s_alarm_handler == NULL)) {
return 0;
}
return systimer_hal_get_time(SYSTIMER_COUNTER_0);
return systimer_hal_get_time(&systimer_hal, SYSTIMER_LL_COUNTER_CLOCK);
}
int64_t esp_timer_get_time(void) __attribute__((alias("esp_timer_impl_get_time")));
@ -81,7 +87,7 @@ void IRAM_ATTR esp_timer_impl_set_alarm_id(uint64_t timestamp, unsigned alarm_id
timestamp_id[alarm_id] = timestamp;
timestamp = MIN(timestamp_id[0], timestamp_id[1]);
if (timestamp != UINT64_MAX) {
systimer_hal_set_alarm_target(SYSTIMER_ALARM_2, timestamp);
systimer_hal_set_alarm_target(&systimer_hal, SYSTIMER_LL_ALARM_CLOCK, timestamp);
}
portEXIT_CRITICAL_SAFE(&s_time_update_lock);
}
@ -94,20 +100,22 @@ void IRAM_ATTR esp_timer_impl_set_alarm(uint64_t timestamp)
static void IRAM_ATTR timer_alarm_isr(void *arg)
{
// clear the interrupt
systimer_ll_clear_alarm_int(SYSTIMER_ALARM_2);
systimer_ll_clear_alarm_int(systimer_hal.dev, SYSTIMER_LL_ALARM_CLOCK);
/* Call the upper layer handler */
(*s_alarm_handler)(arg);
}
void IRAM_ATTR esp_timer_impl_update_apb_freq(uint32_t apb_ticks_per_us)
{
systimer_hal_on_apb_freq_update(apb_ticks_per_us);
#if !SOC_SYSTIMER_FIXED_TICKS_US
systimer_hal_on_apb_freq_update(&systimer_hal, apb_ticks_per_us);
#endif
}
void esp_timer_impl_advance(int64_t time_us)
{
portENTER_CRITICAL_SAFE(&s_time_update_lock);
systimer_hal_counter_value_advance(SYSTIMER_COUNTER_0, time_us);
systimer_hal_counter_value_advance(&systimer_hal, SYSTIMER_LL_COUNTER_CLOCK, time_us);
portEXIT_CRITICAL_SAFE(&s_time_update_lock);
}
@ -129,16 +137,21 @@ esp_err_t esp_timer_impl_init(intr_handler_t alarm_handler)
goto err_intr_alloc;
}
systimer_hal_init();
systimer_hal_enable_counter(SYSTIMER_COUNTER_0);
systimer_hal_select_alarm_mode(SYSTIMER_ALARM_2, SYSTIMER_ALARM_MODE_ONESHOT);
systimer_hal_connect_alarm_counter(SYSTIMER_ALARM_2, SYSTIMER_COUNTER_0);
systimer_hal_init(&systimer_hal);
#if !SOC_SYSTIMER_FIXED_TICKS_US
assert(rtc_clk_xtal_freq_get() == 40 && "update the step for xtal to support other XTAL:APB frequency ratios");
systimer_hal_set_steps_per_tick(&systimer_hal, 0, 2); // for xtal
systimer_hal_set_steps_per_tick(&systimer_hal, 1, 1); // for pll
#endif
systimer_hal_enable_counter(&systimer_hal, SYSTIMER_LL_COUNTER_CLOCK);
systimer_hal_select_alarm_mode(&systimer_hal, SYSTIMER_LL_ALARM_CLOCK, SYSTIMER_ALARM_MODE_ONESHOT);
systimer_hal_connect_alarm_counter(&systimer_hal, SYSTIMER_LL_ALARM_CLOCK, SYSTIMER_LL_COUNTER_CLOCK);
/* TODO: if SYSTIMER is used for anything else, access to SYSTIMER_INT_ENA_REG has to be
* protected by a shared spinlock. Since this code runs as part of early startup, this
* is practically not an issue.
*/
systimer_hal_enable_alarm_int(SYSTIMER_ALARM_2);
systimer_hal_enable_alarm_int(&systimer_hal, SYSTIMER_LL_ALARM_CLOCK);
err = esp_intr_enable(s_timer_interrupt_handle);
if (err != ESP_OK) {
@ -148,9 +161,9 @@ esp_err_t esp_timer_impl_init(intr_handler_t alarm_handler)
return ESP_OK;
err_intr_en:
systimer_ll_disable_alarm(SYSTIMER_ALARM_2);
systimer_ll_enable_alarm(systimer_hal.dev, SYSTIMER_LL_ALARM_CLOCK, false);
/* TODO: may need a spinlock, see the note related to SYSTIMER_INT_ENA_REG in systimer_hal_init */
systimer_ll_disable_alarm_int(SYSTIMER_ALARM_2);
systimer_ll_enable_alarm_int(systimer_hal.dev, SYSTIMER_LL_ALARM_CLOCK, false);
esp_intr_free(s_timer_interrupt_handle);
err_intr_alloc:
s_alarm_handler = NULL;
@ -160,9 +173,9 @@ err_intr_alloc:
void esp_timer_impl_deinit(void)
{
esp_intr_disable(s_timer_interrupt_handle);
systimer_ll_disable_alarm(SYSTIMER_ALARM_2);
systimer_ll_enable_alarm(systimer_hal.dev, SYSTIMER_LL_ALARM_CLOCK, false);
/* TODO: may need a spinlock, see the note related to SYSTIMER_INT_ENA_REG in systimer_hal_init */
systimer_ll_disable_alarm_int(SYSTIMER_ALARM_2);
systimer_ll_enable_alarm_int(systimer_hal.dev, SYSTIMER_LL_ALARM_CLOCK, false);
esp_intr_free(s_timer_interrupt_handle);
s_timer_interrupt_handle = NULL;
s_alarm_handler = NULL;
@ -176,7 +189,7 @@ uint64_t IRAM_ATTR esp_timer_impl_get_min_period_us(void)
uint64_t esp_timer_impl_get_alarm_reg(void)
{
portENTER_CRITICAL_SAFE(&s_time_update_lock);
uint64_t val = systimer_hal_get_alarm_value(SYSTIMER_ALARM_2);
uint64_t val = systimer_hal_get_alarm_value(&systimer_hal, SYSTIMER_LL_ALARM_CLOCK);
portEXIT_CRITICAL_SAFE(&s_time_update_lock);
return val;
}

View File

@ -147,17 +147,19 @@ void vPortExitCritical(void)
*/
void vPortSetupTimer(void)
{
/* Systimer HAL layer object */
static systimer_hal_context_t systimer_hal;
/* set system timer interrupt vector */
ESP_ERROR_CHECK(esp_intr_alloc(ETS_SYSTIMER_TARGET0_EDGE_INTR_SOURCE, ESP_INTR_FLAG_IRAM, vPortSysTickHandler, NULL, NULL));
ESP_ERROR_CHECK(esp_intr_alloc(ETS_SYSTIMER_TARGET0_EDGE_INTR_SOURCE, ESP_INTR_FLAG_IRAM, vPortSysTickHandler, &systimer_hal, NULL));
/* configure the timer */
systimer_hal_init();
systimer_hal_connect_alarm_counter(SYSTIMER_ALARM_0, SYSTIMER_COUNTER_1);
systimer_hal_enable_counter(SYSTIMER_COUNTER_1);
systimer_hal_counter_can_stall_by_cpu(SYSTIMER_COUNTER_1, 0, true);
systimer_hal_set_alarm_period(SYSTIMER_ALARM_0, 1000000UL / CONFIG_FREERTOS_HZ);
systimer_hal_select_alarm_mode(SYSTIMER_ALARM_0, SYSTIMER_ALARM_MODE_PERIOD);
systimer_hal_enable_alarm_int(SYSTIMER_ALARM_0);
systimer_hal_init(&systimer_hal);
systimer_hal_connect_alarm_counter(&systimer_hal, SYSTIMER_LL_ALARM_OS_TICK_CORE0, SYSTIMER_LL_COUNTER_OS_TICK);
systimer_hal_enable_counter(&systimer_hal, SYSTIMER_LL_COUNTER_OS_TICK);
systimer_hal_counter_can_stall_by_cpu(&systimer_hal, SYSTIMER_LL_COUNTER_OS_TICK, 0, true);
systimer_hal_set_alarm_period(&systimer_hal, SYSTIMER_LL_ALARM_OS_TICK_CORE0, 1000000UL / CONFIG_FREERTOS_HZ);
systimer_hal_select_alarm_mode(&systimer_hal, SYSTIMER_LL_ALARM_OS_TICK_CORE0, SYSTIMER_ALARM_MODE_PERIOD);
systimer_hal_enable_alarm_int(&systimer_hal, SYSTIMER_LL_ALARM_OS_TICK_CORE0);
}
void prvTaskExitError(void)
@ -227,7 +229,7 @@ StackType_t *pxPortInitialiseStack(StackType_t *pxTopOfStack, TaskFunction_t pxC
extern char _thread_local_start, _thread_local_end, _flash_rodata_start;
/* Byte pointer, so that subsequent calculations don't depend on sizeof(StackType_t). */
uint8_t* sp = (uint8_t*) pxTopOfStack;
uint8_t *sp = (uint8_t *) pxTopOfStack;
/* Set up TLS area.
* The following diagram illustrates the layout of link-time and run-time
@ -293,9 +295,9 @@ StackType_t *pxPortInitialiseStack(StackType_t *pxTopOfStack, TaskFunction_t pxC
IRAM_ATTR void vPortSysTickHandler(void *arg)
{
(void)arg;
systimer_hal_context_t *systimer_hal = (systimer_hal_context_t *)arg;
systimer_ll_clear_alarm_int(SYSTIMER_ALARM_0);
systimer_ll_clear_alarm_int(systimer_hal->dev, SYSTIMER_LL_ALARM_OS_TICK_CORE0);
#ifdef CONFIG_PM_TRACE
ESP_PM_TRACE_ENTER(TICK, xPortGetCoreID());
@ -380,8 +382,9 @@ void vPortSetStackWatchpoint(void *pxStackStart)
esp_cpu_set_watchpoint(STACK_WATCH_POINT_NUMBER, (char *)addr, STACK_WATCH_AREA_SIZE, ESP_WATCHPOINT_STORE);
}
uint32_t xPortGetTickRateHz(void) {
return (uint32_t)configTICK_RATE_HZ;
uint32_t xPortGetTickRateHz(void)
{
return (uint32_t)configTICK_RATE_HZ;
}
BaseType_t xPortInIsrContext(void)

View File

@ -56,11 +56,11 @@ if(NOT BOOTLOADER_BUILD)
"pcnt_hal.c"
"spi_flash_hal_gpspi.c"
"spi_slave_hd_hal.c"
"systimer_hal.c"
"touch_sensor_hal.c"
"esp32s2/adc_hal.c"
"esp32s2/brownout_hal.c"
"esp32s2/cp_dma_hal.c"
"esp32s2/systimer_hal.c"
"esp32s2/touch_sensor_hal.c"
"esp32s2/dac_hal.c"
"esp32s2/interrupt_descriptor_table.c"
@ -75,10 +75,10 @@ if(NOT BOOTLOADER_BUILD)
"pcnt_hal.c"
"spi_flash_hal_gpspi.c"
"spi_slave_hd_hal.c"
"systimer_hal.c"
"touch_sensor_hal.c"
"esp32s3/brownout_hal.c"
"esp32s3/interrupt_descriptor_table.c"
"esp32s3/systimer_hal.c"
"esp32s3/touch_sensor_hal.c")
endif()
@ -86,12 +86,12 @@ if(NOT BOOTLOADER_BUILD)
list(APPEND srcs
"ds_hal.c"
"gdma_hal.c"
"esp32c3/adc_hal.c"
"esp32c3/brownout_hal.c"
"esp32c3/systimer_hal.c"
"esp32c3/hmac_hal.c"
"spi_flash_hal_gpspi.c"
"spi_slave_hd_hal.c"
"systimer_hal.c"
"esp32c3/adc_hal.c"
"esp32c3/brownout_hal.c"
"esp32c3/hmac_hal.c"
"esp32c3/rtc_cntl_hal.c")
endif()
endif()

View File

@ -2,7 +2,7 @@ COMPONENT_SRCDIRS := . esp32
COMPONENT_ADD_INCLUDEDIRS := esp32/include include
COMPONENT_ADD_LDFRAGMENTS += linker.lf
COMPONENT_OBJEXCLUDE += ./spi_slave_hd_hal.o ./spi_flash_hal_gpspi.o ./spi_slave_hd_hal.o ./ds_hal.o ./gdma_hal.o ./lcd_hal.o
COMPONENT_OBJEXCLUDE += ./spi_slave_hd_hal.o ./spi_flash_hal_gpspi.o ./spi_slave_hd_hal.o ./ds_hal.o ./gdma_hal.o ./lcd_hal.o ./systimer_hal.o
ifndef CONFIG_ETH_USE_ESP32_EMAC
COMPONENT_OBJEXCLUDE += esp32/emac_hal.o

View File

@ -13,139 +13,148 @@
// limitations under the License.
#pragma once
#include <stdint.h>
#include <stdbool.h>
#include <assert.h>
#include "soc/systimer_struct.h"
#define SYSTIMER_LL_COUNTER_CLOCK (0) // Counter used for "wallclock" time
#define SYSTIMER_LL_COUNTER_OS_TICK (1) // Counter used for OS tick
#define SYSTIMER_LL_ALARM_OS_TICK_CORE0 (0) // Alarm used for OS tick of CPU core 0
#define SYSTIMER_LL_ALARM_CLOCK (2) // Alarm used for "wallclock" time
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
#include <stdbool.h>
#include "soc/soc.h"
#include "soc/systimer_reg.h"
// All these functions get invoked either from ISR or HAL that linked to IRAM.
// Always inline these functions even no gcc optimization is applied.
/*******************counter*************************/
/******************* Clock *************************/
__attribute__((always_inline)) static inline void systimer_ll_enable_clock(void)
__attribute__((always_inline)) static inline void systimer_ll_enable_clock(systimer_dev_t *dev, bool en)
{
REG_SET_BIT(SYS_TIMER_SYSTIMER_CONF_REG, SYS_TIMER_CLK_EN);
dev->conf.clk_en = en;
}
__attribute__((always_inline)) static inline void systimer_ll_enable_counter(uint32_t counter_id)
{
REG_SET_BIT(SYS_TIMER_SYSTIMER_CONF_REG, 1 << (30 - counter_id));
}
/******************* Counter *************************/
__attribute__((always_inline)) static inline void systimer_ll_counter_can_stall_by_cpu(uint32_t counter_id, uint32_t cpu_id, bool can)
__attribute__((always_inline)) static inline void systimer_ll_enable_counter(systimer_dev_t *dev, uint32_t counter_id, bool en)
{
if (can) {
REG_SET_BIT(SYS_TIMER_SYSTIMER_CONF_REG, 1 << ((28 - counter_id * 2) - cpu_id));
if (en) {
dev->conf.val |= 1 << (30 - counter_id);
} else {
REG_CLR_BIT(SYS_TIMER_SYSTIMER_CONF_REG, 1 << ((28 - counter_id * 2) - cpu_id));
dev->conf.val &= ~(1 << (30 - counter_id));
}
}
__attribute__((always_inline)) static inline void systimer_ll_counter_snapshot(uint32_t counter_id)
__attribute__((always_inline)) static inline void systimer_ll_counter_can_stall_by_cpu(systimer_dev_t *dev, uint32_t counter_id, uint32_t cpu_id, bool can)
{
REG_SET_BIT(SYS_TIMER_SYSTIMER_UNIT0_OP_REG + 4 * counter_id, 1 << 30);
if (can) {
dev->conf.val |= 1 << ((28 - counter_id * 2) - cpu_id);
} else {
dev->conf.val &= ~(1 << ((28 - counter_id * 2) - cpu_id));
}
}
__attribute__((always_inline)) static inline bool systimer_ll_is_counter_value_valid(uint32_t counter_id)
__attribute__((always_inline)) static inline void systimer_ll_counter_snapshot(systimer_dev_t *dev, uint32_t counter_id)
{
return REG_GET_BIT(SYS_TIMER_SYSTIMER_UNIT0_OP_REG + 4 * counter_id, 1 << 29);
dev->unit_op[counter_id].timer_unit_update = 1;
}
__attribute__((always_inline)) static inline void systimer_ll_set_counter_value(uint32_t counter_id, uint64_t value)
__attribute__((always_inline)) static inline bool systimer_ll_is_counter_value_valid(systimer_dev_t *dev, uint32_t counter_id)
{
REG_WRITE(SYS_TIMER_SYSTIMER_UNIT0_LOAD_LO_REG + 8 * counter_id, value & 0xFFFFFFFF);
REG_WRITE(SYS_TIMER_SYSTIMER_UNIT0_LOAD_HI_REG, (value >> 32) & 0xFFFFF);
return dev->unit_op[counter_id].timer_unit_value_valid;
}
__attribute__((always_inline)) static inline uint32_t systimer_ll_get_counter_value_low(uint32_t counter_id)
__attribute__((always_inline)) static inline void systimer_ll_set_counter_value(systimer_dev_t *dev, uint32_t counter_id, uint64_t value)
{
return REG_READ(SYS_TIMER_SYSTIMER_UNIT0_VALUE_LO_REG + 8 * counter_id);
dev->unit_load_val[counter_id].hi.timer_unit_load_hi = value >> 32;
dev->unit_load_val[counter_id].lo.timer_unit_load_lo = value & 0xFFFFFFFF;
}
__attribute__((always_inline)) static inline uint32_t systimer_ll_get_counter_value_high(uint32_t counter_id)
__attribute__((always_inline)) static inline uint32_t systimer_ll_get_counter_value_low(systimer_dev_t *dev, uint32_t counter_id)
{
return REG_READ(SYS_TIMER_SYSTIMER_UNIT0_VALUE_HI_REG + 8 * counter_id);
return dev->unit_val[counter_id].lo.timer_unit_value_lo;
}
__attribute__((always_inline)) static inline void systimer_ll_apply_counter_value(uint32_t counter_id)
__attribute__((always_inline)) static inline uint32_t systimer_ll_get_counter_value_high(systimer_dev_t *dev, uint32_t counter_id)
{
REG_SET_BIT(SYS_TIMER_SYSTIMER_UNIT0_LOAD_REG + 4 * counter_id, SYS_TIMER_TIMER_UNIT0_LOAD);
return dev->unit_val[counter_id].hi.timer_unit_value_hi;
}
/*******************alarm*************************/
__attribute__((always_inline)) static inline void systimer_ll_set_alarm_target(uint32_t alarm_id, uint64_t value)
__attribute__((always_inline)) static inline void systimer_ll_apply_counter_value(systimer_dev_t *dev, uint32_t counter_id)
{
REG_WRITE(SYS_TIMER_SYSTIMER_TARGET0_LO_REG + alarm_id * 8, value & 0xFFFFFFFF);
REG_WRITE(SYS_TIMER_SYSTIMER_TARGET0_HI_REG + alarm_id * 8, (value >> 32) & 0xFFFFF);
dev->unit_load[counter_id].val = 0x01;
}
__attribute__((always_inline)) static inline uint64_t systimer_ll_get_alarm_target(uint32_t alarm_id)
/******************* Alarm *************************/
__attribute__((always_inline)) static inline void systimer_ll_set_alarm_target(systimer_dev_t *dev, uint32_t alarm_id, uint64_t value)
{
return ((uint64_t) REG_READ(SYS_TIMER_SYSTIMER_TARGET0_HI_REG + alarm_id * 8) << 32) \
| REG_READ(SYS_TIMER_SYSTIMER_TARGET0_LO_REG + alarm_id * 8);
dev->target_val[alarm_id].hi.timer_target_hi = value >> 32;
dev->target_val[alarm_id].lo.timer_target_lo = value & 0xFFFFFFFF;
}
__attribute__((always_inline)) static inline void systimer_ll_connect_alarm_counter(uint32_t alarm_id, uint32_t counter_id)
__attribute__((always_inline)) static inline uint64_t systimer_ll_get_alarm_target(systimer_dev_t *dev, uint32_t alarm_id)
{
REG_SET_FIELD(SYS_TIMER_SYSTIMER_TARGET0_CONF_REG + 4 * alarm_id, SYS_TIMER_TARGET0_TIMER_UNIT_SEL, counter_id);
return ((uint64_t)(dev->target_val[alarm_id].hi.timer_target_hi) << 32) | dev->target_val[alarm_id].lo.timer_target_lo;
}
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm_oneshot(uint32_t alarm_id)
__attribute__((always_inline)) static inline void systimer_ll_connect_alarm_counter(systimer_dev_t *dev, uint32_t alarm_id, uint32_t counter_id)
{
REG_CLR_BIT(SYS_TIMER_SYSTIMER_TARGET0_CONF_REG + alarm_id * 4, SYS_TIMER_TARGET0_PERIOD_MODE);
dev->target_conf[alarm_id].target_timer_unit_sel = counter_id;
}
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm_period(uint32_t alarm_id)
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm_oneshot(systimer_dev_t *dev, uint32_t alarm_id)
{
REG_SET_BIT(SYS_TIMER_SYSTIMER_TARGET0_CONF_REG + alarm_id * 4, SYS_TIMER_TARGET0_PERIOD_MODE);
dev->target_conf[alarm_id].target_period_mode = 0;
}
__attribute__((always_inline)) static inline void systimer_ll_set_alarm_period(uint32_t alarm_id, uint32_t period)
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm_period(systimer_dev_t *dev, uint32_t alarm_id)
{
REG_SET_FIELD(SYS_TIMER_SYSTIMER_TARGET0_CONF_REG + alarm_id * 4, SYS_TIMER_TARGET0_PERIOD, period);
dev->target_conf[alarm_id].target_period_mode = 1;
}
__attribute__((always_inline)) static inline void systimer_ll_apply_alarm_value(uint32_t alarm_id)
__attribute__((always_inline)) static inline void systimer_ll_set_alarm_period(systimer_dev_t *dev, uint32_t alarm_id, uint32_t period)
{
REG_SET_BIT(SYS_TIMER_SYSTIMER_COMP0_LOAD_REG + alarm_id * 4, SYS_TIMER_TIMER_COMP0_LOAD);
assert(period < (1 << 26));
dev->target_conf[alarm_id].target_period = period;
}
__attribute__((always_inline)) static inline void systimer_ll_disable_alarm(uint32_t alarm_id)
__attribute__((always_inline)) static inline void systimer_ll_apply_alarm_value(systimer_dev_t *dev, uint32_t alarm_id)
{
REG_CLR_BIT(SYS_TIMER_SYSTIMER_CONF_REG, 1 << (24 - alarm_id));
dev->comp_load[alarm_id].val = 0x01;
}
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm(uint32_t alarm_id)
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm(systimer_dev_t *dev, uint32_t alarm_id, bool en)
{
REG_SET_BIT(SYS_TIMER_SYSTIMER_CONF_REG, 1 << (24 - alarm_id));
if (en) {
dev->conf.val |= 1 << (24 - alarm_id);
} else {
dev->conf.val &= ~(1 << (24 - alarm_id));
}
}
/*******************interrupt*************************/
/******************* Interrupt *************************/
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm_int(uint32_t alarm_id)
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm_int(systimer_dev_t *dev, uint32_t alarm_id, bool en)
{
REG_SET_BIT(SYS_TIMER_SYSTIMER_INT_ENA_REG, 1 << alarm_id);
if (en) {
dev->int_ena.val |= 1 << alarm_id;
} else {
dev->int_ena.val &= ~(1 << alarm_id);
}
}
__attribute__((always_inline)) static inline void systimer_ll_disable_alarm_int(uint32_t alarm_id)
__attribute__((always_inline)) static inline bool systimer_ll_is_alarm_int_fired(systimer_dev_t *dev, uint32_t alarm_id)
{
REG_CLR_BIT(SYS_TIMER_SYSTIMER_INT_ENA_REG, 1 << alarm_id);
return dev->int_st.val & (1 << alarm_id);
}
__attribute__((always_inline)) static inline bool systimer_ll_is_alarm_int_fired(uint32_t alarm_id)
__attribute__((always_inline)) static inline void systimer_ll_clear_alarm_int(systimer_dev_t *dev, uint32_t alarm_id)
{
return REG_GET_BIT(SYS_TIMER_SYSTIMER_INT_RAW_REG, 1 << alarm_id);
}
__attribute__((always_inline)) static inline void systimer_ll_clear_alarm_int(uint32_t alarm_id)
{
REG_SET_BIT(SYS_TIMER_SYSTIMER_INT_CLR_REG, 1 << alarm_id);
dev->int_clr.val |= 1 << alarm_id;
}
#ifdef __cplusplus

View File

@ -1,128 +0,0 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sys/param.h>
#include "hal/systimer_hal.h"
#include "hal/systimer_ll.h"
#include "hal/systimer_types.h"
#include "soc/systimer_caps.h"
#include "hal/clk_gate_ll.h"
#define SYSTIMER_TICKS_PER_US (16) // Systimer clock source is fixed to 16MHz
uint64_t systimer_hal_get_counter_value(systimer_counter_id_t counter_id)
{
uint32_t lo, lo_start, hi;
/* Set the "update" bit and wait for acknowledgment */
systimer_ll_counter_snapshot(counter_id);
while (!systimer_ll_is_counter_value_valid(counter_id));
/* Read LO, HI, then LO again, check that LO returns the same value.
* This accounts for the case when an interrupt may happen between reading
* HI and LO values, and this function may get called from the ISR.
* In this case, the repeated read will return consistent values.
*/
lo_start = systimer_ll_get_counter_value_low(counter_id);
do {
lo = lo_start;
hi = systimer_ll_get_counter_value_high(counter_id);
lo_start = systimer_ll_get_counter_value_low(counter_id);
} while (lo_start != lo);
systimer_counter_value_t result = {
.lo = lo,
.hi = hi
};
return result.val;
}
uint64_t systimer_hal_get_time(systimer_counter_id_t counter_id)
{
return systimer_hal_get_counter_value(counter_id) / SYSTIMER_TICKS_PER_US;
}
void systimer_hal_set_alarm_target(systimer_alarm_id_t alarm_id, uint64_t target)
{
systimer_counter_value_t alarm = { .val = target * SYSTIMER_TICKS_PER_US};
systimer_ll_disable_alarm(alarm_id);
systimer_ll_set_alarm_target(alarm_id, alarm.val);
systimer_ll_apply_alarm_value(alarm_id);
systimer_ll_enable_alarm(alarm_id);
}
void systimer_hal_set_alarm_period(systimer_alarm_id_t alarm_id, uint32_t period)
{
systimer_ll_disable_alarm(alarm_id);
systimer_ll_set_alarm_period(alarm_id, period * SYSTIMER_TICKS_PER_US);
systimer_ll_apply_alarm_value(alarm_id);
systimer_ll_enable_alarm(alarm_id);
}
uint64_t systimer_hal_get_alarm_value(systimer_alarm_id_t alarm_id)
{
return systimer_ll_get_alarm_target(alarm_id);
}
void systimer_hal_enable_alarm_int(systimer_alarm_id_t alarm_id)
{
systimer_ll_enable_alarm_int(alarm_id);
}
void systimer_hal_on_apb_freq_update(uint32_t apb_ticks_per_us)
{
/* Nothing to do here, SYSTIMER clock is independent of APB clock */
(void)apb_ticks_per_us;
}
void systimer_hal_counter_value_advance(systimer_counter_id_t counter_id, int64_t time_us)
{
systimer_counter_value_t new_count = { .val = systimer_hal_get_counter_value(counter_id) + time_us * SYSTIMER_TICKS_PER_US };
systimer_ll_set_counter_value(counter_id, new_count.val);
systimer_ll_apply_counter_value(counter_id);
}
void systimer_hal_enable_counter(systimer_counter_id_t counter_id)
{
systimer_ll_enable_counter(counter_id);
}
void systimer_hal_init(void)
{
periph_ll_enable_clk_clear_rst(PERIPH_SYSTIMER_MODULE);
systimer_ll_enable_clock();
}
void systimer_hal_select_alarm_mode(systimer_alarm_id_t alarm_id, systimer_alarm_mode_t mode)
{
switch (mode) {
case SYSTIMER_ALARM_MODE_ONESHOT:
systimer_ll_enable_alarm_oneshot(alarm_id);
break;
case SYSTIMER_ALARM_MODE_PERIOD:
systimer_ll_enable_alarm_period(alarm_id);
break;
default:
break;
}
}
void systimer_hal_connect_alarm_counter(systimer_alarm_id_t alarm_id, systimer_counter_id_t counter_id)
{
systimer_ll_connect_alarm_counter(alarm_id, counter_id);
}
void systimer_hal_counter_can_stall_by_cpu(uint32_t counter_id, uint32_t cpu_id, bool can)
{
systimer_ll_counter_can_stall_by_cpu(counter_id, cpu_id, can);
}

View File

@ -1,4 +1,4 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
// Copyright 2020-2021 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
@ -13,124 +13,156 @@
// limitations under the License.
#pragma once
#include <stdint.h>
#include <stdbool.h>
#include <assert.h>
#include "soc/systimer_struct.h"
#define SYSTIMER_LL_COUNTER_CLOCK (0) // Counter used for "wallclock" time
#define SYSTIMER_LL_ALARM_CLOCK (2) // Alarm used for "wallclock" time
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
#include <stdbool.h>
#include "soc/soc.h"
#include "soc/systimer_reg.h"
// All these functions get invoked either from ISR or HAL that linked to IRAM.
// Always inline these functions even no gcc optimization is applied.
/*******************counter*************************/
/******************* Clock *************************/
__attribute__((always_inline)) static inline void systimer_ll_enable_clock(void)
__attribute__((always_inline)) static inline void systimer_ll_enable_clock(systimer_dev_t *dev, bool en)
{
REG_SET_BIT(SYSTIMER_CONF_REG, SYSTIMER_CLK_EN);
dev->conf.clk_en = en;
}
__attribute__((always_inline)) static inline void systimer_ll_apply_counter_value(void)
/******************* Counter *************************/
__attribute__((always_inline)) static inline void systimer_ll_enable_counter(systimer_dev_t *dev, uint32_t counter_id, bool en)
{
REG_SET_BIT(SYSTIMER_LOAD_REG, SYSTIMER_TIMER_LOAD);
// ESP32-S2 only has one counter in systimer group
(void)dev;
(void)counter_id;
}
__attribute__((always_inline)) static inline void systimer_ll_load_counter_value(uint64_t value)
__attribute__((always_inline)) static inline void systimer_ll_counter_can_stall_by_cpu(systimer_dev_t *dev, uint32_t counter_id, uint32_t cpu_id, bool can)
{
REG_WRITE(SYSTIMER_LOAD_LO_REG, value & 0xFFFFFFFF);
REG_WRITE(SYSTIMER_LOAD_HI_REG, (value & 0xFFFFFFFF00000000) >> 32);
(void)dev;
(void)counter_id;
(void)cpu_id;
(void)can;
}
__attribute__((always_inline)) static inline void systimer_ll_set_step_for_pll(uint32_t step)
__attribute__((always_inline)) static inline void systimer_ll_counter_snapshot(systimer_dev_t *dev, uint32_t counter_id)
{
REG_SET_FIELD(SYSTIMER_STEP_REG, SYSTIMER_TIMER_PLL_STEP, step);
(void)counter_id;
dev->update.timer_update = 1;
}
__attribute__((always_inline)) static inline void systimer_ll_set_step_for_xtal(uint32_t step)
__attribute__((always_inline)) static inline bool systimer_ll_is_counter_value_valid(systimer_dev_t *dev, uint32_t counter_id)
{
REG_SET_FIELD(SYSTIMER_STEP_REG, SYSTIMER_TIMER_XTAL_STEP, step);
(void)counter_id;
return dev->update.timer_value_valid;
}
__attribute__((always_inline)) static inline void systimer_ll_counter_snapshot(void)
__attribute__((always_inline)) static inline void systimer_ll_set_counter_value(systimer_dev_t *dev, uint32_t counter_id, uint64_t value)
{
REG_WRITE(SYSTIMER_UPDATE_REG, SYSTIMER_TIMER_UPDATE);
(void)counter_id;
dev->load_hi.timer_load_hi = value >> 32;
dev->load_lo.timer_load_lo = value;
}
__attribute__((always_inline)) static inline bool systimer_ll_is_counter_value_valid(void)
__attribute__((always_inline)) static inline uint32_t systimer_ll_get_counter_value_low(systimer_dev_t *dev, uint32_t counter_id)
{
return REG_GET_BIT(SYSTIMER_UPDATE_REG, SYSTIMER_TIMER_VALUE_VALID);
return dev->value_lo.timer_value_lo;
}
__attribute__((always_inline)) static inline uint32_t systimer_ll_get_counter_value_low(void)
__attribute__((always_inline)) static inline uint32_t systimer_ll_get_counter_value_high(systimer_dev_t *dev, uint32_t counter_id)
{
return REG_READ(SYSTIMER_VALUE_LO_REG);
return dev->value_hi.timer_value_hi;
}
__attribute__((always_inline)) static inline uint32_t systimer_ll_get_counter_value_high(void)
__attribute__((always_inline)) static inline void systimer_ll_apply_counter_value(systimer_dev_t *dev, uint32_t counter_id)
{
return REG_READ(SYSTIMER_VALUE_HI_REG);
dev->load.timer_load = 1;
}
/*******************alarm*************************/
__attribute__((always_inline)) static inline void systimer_ll_set_alarm_value(uint32_t alarm_id, uint64_t value)
__attribute__((always_inline)) static inline void systimer_ll_set_step_for_pll(systimer_dev_t *dev, uint32_t step)
{
REG_WRITE(SYSTIMER_TARGET0_LO_REG + alarm_id * 8, value & 0xFFFFFFFF);
REG_WRITE(SYSTIMER_TARGET0_HI_REG + alarm_id * 8, (value & 0xFFFFFFFF00000000) >> 32);
dev->step.timer_pll_step = step;
}
__attribute__((always_inline)) static inline uint64_t systimer_ll_get_alarm_value(uint32_t alarm_id)
__attribute__((always_inline)) static inline void systimer_ll_set_step_for_xtal(systimer_dev_t *dev, uint32_t step)
{
return (uint64_t)REG_READ(SYSTIMER_TARGET0_HI_REG + alarm_id * 8) << 32 | REG_READ(SYSTIMER_TARGET0_LO_REG + alarm_id * 8);
dev->step.timer_xtal_step = step;
}
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm(uint32_t alarm_id)
/******************* Alarm *************************/
__attribute__((always_inline)) static inline void systimer_ll_set_alarm_target(systimer_dev_t *dev, uint32_t alarm_id, uint64_t value)
{
REG_SET_BIT(SYSTIMER_TARGET0_CONF_REG + alarm_id * 4, BIT(31));
dev->target_val[alarm_id].hi.timer_target_hi = value >> 32;
dev->target_val[alarm_id].lo.timer_target_lo = value;
}
__attribute__((always_inline)) static inline void systimer_ll_disable_alarm(uint32_t alarm_id)
__attribute__((always_inline)) static inline uint64_t systimer_ll_get_alarm_target(systimer_dev_t *dev, uint32_t alarm_id)
{
REG_CLR_BIT(SYSTIMER_TARGET0_CONF_REG + alarm_id * 4, BIT(31));
return ((uint64_t)(dev->target_val[alarm_id].hi.timer_target_hi) << 32) | dev->target_val[alarm_id].lo.timer_target_lo;
}
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm_oneshot(uint32_t alarm_id)
__attribute__((always_inline)) static inline void systimer_ll_connect_alarm_counter(systimer_dev_t *dev, uint32_t alarm_id, uint32_t counter_id)
{
REG_CLR_BIT(SYSTIMER_TARGET0_CONF_REG + alarm_id * 4, BIT(30));
// On esp32-s2, counter int the systimer is fixed connectred to other three alarm comparators
(void)dev;
(void)alarm_id;
(void)counter_id;
}
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm_period(uint32_t alarm_id)
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm_oneshot(systimer_dev_t *dev, uint32_t alarm_id)
{
REG_SET_BIT(SYSTIMER_TARGET0_CONF_REG + alarm_id * 4, BIT(30));
dev->target_conf[alarm_id].target_period_mode = 0;
}
__attribute__((always_inline)) static inline void systimer_ll_set_alarm_period(uint32_t alarm_id, uint32_t period)
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm_period(systimer_dev_t *dev, uint32_t alarm_id)
{
REG_SET_FIELD(SYSTIMER_TARGET0_CONF_REG + alarm_id * 4, SYSTIMER_TARGET0_PERIOD, period);
dev->target_conf[alarm_id].target_period_mode = 1;
}
/*******************interrupt*************************/
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm_int(uint32_t alarm_id)
__attribute__((always_inline)) static inline void systimer_ll_set_alarm_period(systimer_dev_t *dev, uint32_t alarm_id, uint32_t period)
{
REG_SET_BIT(SYSTIMER_INT_ENA_REG, 1 << alarm_id);
assert(period < (1 << 30));
dev->target_conf[alarm_id].target_period = period;
}
__attribute__((always_inline)) static inline void systimer_ll_disable_alarm_int(uint32_t alarm_id)
__attribute__((always_inline)) static inline void systimer_ll_apply_alarm_value(systimer_dev_t *dev, uint32_t alarm_id)
{
REG_CLR_BIT(SYSTIMER_INT_ENA_REG, 1 << alarm_id);
(void)dev;
(void)alarm_id;
}
__attribute__((always_inline)) static inline bool systimer_ll_is_alarm_int_fired(uint32_t alarm_id)
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm(systimer_dev_t *dev, uint32_t alarm_id, bool en)
{
return REG_GET_BIT(SYSTIMER_INT_RAW_REG, 1 << alarm_id);
dev->target_conf[alarm_id].target_work_en = en;
}
__attribute__((always_inline)) static inline void systimer_ll_clear_alarm_int(uint32_t alarm_id)
/******************* Interrupt *************************/
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm_int(systimer_dev_t *dev, uint32_t alarm_id, bool en)
{
REG_SET_BIT(SYSTIMER_INT_CLR_REG, 1 << alarm_id);
if (en) {
dev->int_ena.val |= 1 << alarm_id;
} else {
dev->int_ena.val &= ~(1 << alarm_id);
}
}
__attribute__((always_inline)) static inline bool systimer_ll_is_alarm_int_fired(systimer_dev_t *dev, uint32_t alarm_id)
{
return dev->int_raw.val & (1 << alarm_id);
}
__attribute__((always_inline)) static inline void systimer_ll_clear_alarm_int(systimer_dev_t *dev, uint32_t alarm_id)
{
dev->int_clr.val |= 1 << alarm_id;
}
#ifdef __cplusplus

View File

@ -1,148 +0,0 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sys/param.h>
#include <assert.h>
#include "soc/soc_caps.h"
#include "hal/systimer_hal.h"
#include "hal/systimer_ll.h"
#include "hal/systimer_types.h"
#include "soc/rtc.h"
#define SYSTIMER_TICKS_PER_US (80) // Number of timer ticks per microsecond
uint64_t systimer_hal_get_counter_value(systimer_counter_id_t counter_id)
{
uint32_t lo, lo_start, hi;
/* Set the "update" bit and wait for acknowledgment */
systimer_ll_counter_snapshot();
while (!systimer_ll_is_counter_value_valid());
/* Read LO, HI, then LO again, check that LO returns the same value.
* This accounts for the case when an interrupt may happen between reading
* HI and LO values, and this function may get called from the ISR.
* In this case, the repeated read will return consistent values.
*/
lo_start = systimer_ll_get_counter_value_low();
do {
lo = lo_start;
hi = systimer_ll_get_counter_value_high();
lo_start = systimer_ll_get_counter_value_low();
} while (lo_start != lo);
systimer_counter_value_t result = {
.lo = lo,
.hi = hi
};
return result.val;
}
uint64_t systimer_hal_get_time(systimer_counter_id_t counter_id)
{
return systimer_hal_get_counter_value(counter_id) / SYSTIMER_TICKS_PER_US;
}
void systimer_hal_set_alarm_target(systimer_alarm_id_t alarm_id, uint64_t timestamp)
{
int64_t offset = SYSTIMER_TICKS_PER_US * 2;
uint64_t now_time = systimer_hal_get_counter_value(SYSTIMER_COUNTER_0);
systimer_counter_value_t alarm = { .val = MAX(timestamp * SYSTIMER_TICKS_PER_US, now_time + offset) };
do {
systimer_ll_disable_alarm(alarm_id);
systimer_ll_set_alarm_value(alarm_id, alarm.val);
systimer_ll_enable_alarm(alarm_id);
now_time = systimer_hal_get_counter_value(SYSTIMER_COUNTER_0);
int64_t delta = (int64_t)alarm.val - (int64_t)now_time;
if (delta <= 0 && !systimer_ll_is_alarm_int_fired(alarm_id)) {
// new alarm is less than the counter and the interrupt flag is not set
offset += -1 * delta + SYSTIMER_TICKS_PER_US * 2;
alarm.val = now_time + offset;
} else {
// finish if either (alarm > counter) or the interrupt flag is already set.
break;
}
} while (1);
}
uint64_t systimer_hal_get_alarm_value(systimer_alarm_id_t alarm_id)
{
return systimer_ll_get_alarm_value(alarm_id);
}
void systimer_hal_enable_alarm_int(systimer_alarm_id_t alarm_id)
{
systimer_ll_enable_alarm_int(alarm_id);
}
void systimer_hal_on_apb_freq_update(uint32_t apb_ticks_per_us)
{
/* If this function was called when switching APB clock to PLL, don't need
* do anything: the SYSTIMER_TIMER_PLL_STEP is already correct.
* If this was called when switching APB clock to XTAL, need to adjust
* XTAL_STEP value accordingly.
*/
if (apb_ticks_per_us != SYSTIMER_TICKS_PER_US) {
assert((SYSTIMER_TICKS_PER_US % apb_ticks_per_us) == 0 && "TICK_PER_US should be divisible by APB frequency (in MHz)");
systimer_ll_set_step_for_xtal(SYSTIMER_TICKS_PER_US / apb_ticks_per_us);
}
}
void systimer_hal_counter_value_advance(systimer_counter_id_t counter_id, int64_t time_us)
{
systimer_counter_value_t new_count = { .val = systimer_hal_get_counter_value(counter_id) + time_us * SYSTIMER_TICKS_PER_US };
systimer_ll_load_counter_value(new_count.val);
systimer_ll_apply_counter_value();
}
void systimer_hal_enable_counter(systimer_counter_id_t counter_id)
{
(void)counter_id;
}
void systimer_hal_init(void)
{
assert(rtc_clk_xtal_freq_get() == 40 && "update the step for xtal to support other XTAL:APB frequency ratios");
systimer_ll_enable_clock();
/* Configure the counter:
* - increment by 1 when running from PLL (80 ticks per microsecond),
* - increment by 2 when running from XTAL (40 ticks per microsecond).
* Note that if the APB frequency is derived from XTAL with divider != 1,
* XTAL_STEP needs to be adjusted accordingly. For example, if
* the APB frequency is XTAL/4 = 10 MHz, then XTAL_STEP should be set to 8.
* This is handled in systimer_hal_on_apb_freq_update function.
*/
systimer_ll_set_step_for_pll(1);
systimer_ll_set_step_for_xtal(2);
}
void systimer_hal_select_alarm_mode(systimer_alarm_id_t alarm_id, systimer_alarm_mode_t mode)
{
switch (mode) {
case SYSTIMER_ALARM_MODE_ONESHOT:
systimer_ll_enable_alarm_oneshot(alarm_id);
break;
case SYSTIMER_ALARM_MODE_PERIOD:
systimer_ll_enable_alarm_period(alarm_id);
break;
default:
break;
}
}
void systimer_hal_connect_alarm_counter(systimer_alarm_id_t alarm_id, systimer_counter_id_t counter_id)
{
// esp32s2 only has one counter, so there's no need to connect alarm unit to counter
(void)alarm_id;
(void)counter_id;
}

View File

@ -1,4 +1,4 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
// Copyright 2021 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
@ -13,139 +13,149 @@
// limitations under the License.
#pragma once
#include <stdint.h>
#include <stdbool.h>
#include <assert.h>
#include "soc/systimer_struct.h"
#define SYSTIMER_LL_COUNTER_CLOCK (0) // Counter used for "wallclock" time
#define SYSTIMER_LL_COUNTER_OS_TICK (1) // Counter used for OS tick
#define SYSTIMER_LL_ALARM_OS_TICK_CORE0 (0) // Alarm used for OS tick of CPU core 0
#define SYSTIMER_LL_ALARM_OS_TICK_CORE1 (1) // Alarm used for OS tick of CPU core 1
#define SYSTIMER_LL_ALARM_CLOCK (2) // Alarm used for "wallclock" time
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
#include <stdbool.h>
#include "soc/soc.h"
#include "soc/sys_timer_reg.h"
// All these functions get invoked either from ISR or HAL that linked to IRAM.
// Always inline these functions even no gcc optimization is applied.
/*******************counter*************************/
/******************* Clock *************************/
__attribute__((always_inline)) static inline void systimer_ll_enable_clock(void)
__attribute__((always_inline)) static inline void systimer_ll_enable_clock(systimer_dev_t *dev, bool en)
{
REG_SET_BIT(SYS_TIMER_SYSTIMER_CONF_REG, SYS_TIMER_CLK_EN);
dev->conf.clk_en = en;
}
__attribute__((always_inline)) static inline void systimer_ll_enable_counter(uint32_t counter_id)
{
REG_SET_BIT(SYS_TIMER_SYSTIMER_CONF_REG, 1 << (30 - counter_id));
}
/******************* Counter *************************/
__attribute__((always_inline)) static inline void systimer_ll_counter_can_stall_by_cpu(uint32_t counter_id, uint32_t cpu_id, bool can)
__attribute__((always_inline)) static inline void systimer_ll_enable_counter(systimer_dev_t *dev, uint32_t counter_id, bool en)
{
if (can) {
REG_SET_BIT(SYS_TIMER_SYSTIMER_CONF_REG, 1 << ((28 - counter_id * 2) - cpu_id));
if (en) {
dev->conf.val |= 1 << (30 - counter_id);
} else {
REG_CLR_BIT(SYS_TIMER_SYSTIMER_CONF_REG, 1 << ((28 - counter_id * 2) - cpu_id));
dev->conf.val &= ~(1 << (30 - counter_id));
}
}
__attribute__((always_inline)) static inline void systimer_ll_counter_snapshot(uint32_t counter_id)
__attribute__((always_inline)) static inline void systimer_ll_counter_can_stall_by_cpu(systimer_dev_t *dev, uint32_t counter_id, uint32_t cpu_id, bool can)
{
REG_SET_BIT(SYS_TIMER_SYSTIMER_UNIT0_OP_REG + 4 * counter_id, 1 << 30);
if (can) {
dev->conf.val |= 1 << ((28 - counter_id * 2) - cpu_id);
} else {
dev->conf.val &= ~(1 << ((28 - counter_id * 2) - cpu_id));
}
}
__attribute__((always_inline)) static inline bool systimer_ll_is_counter_value_valid(uint32_t counter_id)
__attribute__((always_inline)) static inline void systimer_ll_counter_snapshot(systimer_dev_t *dev, uint32_t counter_id)
{
return REG_GET_BIT(SYS_TIMER_SYSTIMER_UNIT0_OP_REG + 4 * counter_id, 1 << 29);
dev->unit_op[counter_id].timer_unit_update = 1;
}
__attribute__((always_inline)) static inline void systimer_ll_set_counter_value(uint32_t counter_id, uint64_t value)
__attribute__((always_inline)) static inline bool systimer_ll_is_counter_value_valid(systimer_dev_t *dev, uint32_t counter_id)
{
REG_WRITE(SYS_TIMER_SYSTIMER_UNIT0_LOAD_LO_REG + 8 * counter_id, value & 0xFFFFFFFF);
REG_WRITE(SYS_TIMER_SYSTIMER_UNIT0_LOAD_HI_REG, (value >> 32) & 0xFFFFF);
return dev->unit_op[counter_id].timer_unit_value_valid;
}
__attribute__((always_inline)) static inline uint32_t systimer_ll_get_counter_value_low(uint32_t counter_id)
__attribute__((always_inline)) static inline void systimer_ll_set_counter_value(systimer_dev_t *dev, uint32_t counter_id, uint64_t value)
{
return REG_READ(SYS_TIMER_SYSTIMER_UNIT0_VALUE_LO_REG + 8 * counter_id);
dev->unit_load_val[counter_id].hi.timer_unit_load_hi = value >> 32;
dev->unit_load_val[counter_id].lo.timer_unit_load_lo = value & 0xFFFFFFFF;
}
__attribute__((always_inline)) static inline uint32_t systimer_ll_get_counter_value_high(uint32_t counter_id)
__attribute__((always_inline)) static inline uint32_t systimer_ll_get_counter_value_low(systimer_dev_t *dev, uint32_t counter_id)
{
return REG_READ(SYS_TIMER_SYSTIMER_UNIT0_VALUE_HI_REG + 8 * counter_id);
return dev->unit_val[counter_id].lo.timer_unit_value_lo;
}
__attribute__((always_inline)) static inline void systimer_ll_apply_counter_value(uint32_t counter_id)
__attribute__((always_inline)) static inline uint32_t systimer_ll_get_counter_value_high(systimer_dev_t *dev, uint32_t counter_id)
{
REG_SET_BIT(SYS_TIMER_SYSTIMER_UNIT0_LOAD_REG + 4 * counter_id, SYS_TIMER_TIMER_UNIT0_LOAD);
return dev->unit_val[counter_id].hi.timer_unit_value_hi;
}
/*******************alarm*************************/
__attribute__((always_inline)) static inline void systimer_ll_set_alarm_target(uint32_t alarm_id, uint64_t value)
__attribute__((always_inline)) static inline void systimer_ll_apply_counter_value(systimer_dev_t *dev, uint32_t counter_id)
{
REG_WRITE(SYS_TIMER_SYSTIMER_TARGET0_LO_REG + alarm_id * 8, value & 0xFFFFFFFF);
REG_WRITE(SYS_TIMER_SYSTIMER_TARGET0_HI_REG + alarm_id * 8, (value >> 32) & 0xFFFFF);
dev->unit_load[counter_id].val = 0x01;
}
__attribute__((always_inline)) static inline uint64_t systimer_ll_get_alarm_target(uint32_t alarm_id)
/******************* Alarm *************************/
__attribute__((always_inline)) static inline void systimer_ll_set_alarm_target(systimer_dev_t *dev, uint32_t alarm_id, uint64_t value)
{
return ((uint64_t) REG_READ(SYS_TIMER_SYSTIMER_TARGET0_HI_REG + alarm_id * 8) << 32) \
| REG_READ(SYS_TIMER_SYSTIMER_TARGET0_LO_REG + alarm_id * 8);
dev->target_val[alarm_id].hi.timer_target_hi = value >> 32;
dev->target_val[alarm_id].lo.timer_target_lo = value & 0xFFFFFFFF;
}
__attribute__((always_inline)) static inline void systimer_ll_connect_alarm_counter(uint32_t alarm_id, uint32_t counter_id)
__attribute__((always_inline)) static inline uint64_t systimer_ll_get_alarm_target(systimer_dev_t *dev, uint32_t alarm_id)
{
REG_SET_FIELD(SYS_TIMER_SYSTIMER_TARGET0_CONF_REG + 4 * alarm_id, SYS_TIMER_TARGET0_TIMER_UNIT_SEL, counter_id);
return ((uint64_t)(dev->target_val[alarm_id].hi.timer_target_hi) << 32) | dev->target_val[alarm_id].lo.timer_target_lo;
}
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm_oneshot(uint32_t alarm_id)
__attribute__((always_inline)) static inline void systimer_ll_connect_alarm_counter(systimer_dev_t *dev, uint32_t alarm_id, uint32_t counter_id)
{
REG_CLR_BIT(SYS_TIMER_SYSTIMER_TARGET0_CONF_REG + alarm_id * 4, SYS_TIMER_TARGET0_PERIOD_MODE);
dev->target_conf[alarm_id].target_timer_unit_sel = counter_id;
}
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm_period(uint32_t alarm_id)
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm_oneshot(systimer_dev_t *dev, uint32_t alarm_id)
{
REG_SET_BIT(SYS_TIMER_SYSTIMER_TARGET0_CONF_REG + alarm_id * 4, SYS_TIMER_TARGET0_PERIOD_MODE);
dev->target_conf[alarm_id].target_period_mode = 0;
}
__attribute__((always_inline)) static inline void systimer_ll_set_alarm_period(uint32_t alarm_id, uint32_t period)
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm_period(systimer_dev_t *dev, uint32_t alarm_id)
{
REG_SET_FIELD(SYS_TIMER_SYSTIMER_TARGET0_CONF_REG + alarm_id * 4, SYS_TIMER_TARGET0_PERIOD, period);
dev->target_conf[alarm_id].target_period_mode = 1;
}
__attribute__((always_inline)) static inline void systimer_ll_apply_alarm_value(uint32_t alarm_id)
__attribute__((always_inline)) static inline void systimer_ll_set_alarm_period(systimer_dev_t *dev, uint32_t alarm_id, uint32_t period)
{
REG_SET_BIT(SYS_TIMER_SYSTIMER_COMP0_LOAD_REG + alarm_id * 4, SYS_TIMER_TIMER_COMP0_LOAD);
assert(period < (1 << 26));
dev->target_conf[alarm_id].target_period = period;
}
__attribute__((always_inline)) static inline void systimer_ll_disable_alarm(uint32_t alarm_id)
__attribute__((always_inline)) static inline void systimer_ll_apply_alarm_value(systimer_dev_t *dev, uint32_t alarm_id)
{
REG_CLR_BIT(SYS_TIMER_SYSTIMER_CONF_REG, 1 << (24 - alarm_id));
dev->comp_load[alarm_id].val = 0x01;
}
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm(uint32_t alarm_id)
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm(systimer_dev_t *dev, uint32_t alarm_id, bool en)
{
REG_SET_BIT(SYS_TIMER_SYSTIMER_CONF_REG, 1 << (24 - alarm_id));
if (en) {
dev->conf.val |= 1 << (24 - alarm_id);
} else {
dev->conf.val &= ~(1 << (24 - alarm_id));
}
}
/*******************interrupt*************************/
/******************* Interrupt *************************/
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm_int(uint32_t alarm_id)
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm_int(systimer_dev_t *dev, uint32_t alarm_id, bool en)
{
REG_SET_BIT(SYS_TIMER_SYSTIMER_INT_ENA_REG, 1 << alarm_id);
if (en) {
dev->int_ena.val |= 1 << alarm_id;
} else {
dev->int_ena.val &= ~(1 << alarm_id);
}
}
__attribute__((always_inline)) static inline void systimer_ll_disable_alarm_int(uint32_t alarm_id)
__attribute__((always_inline)) static inline bool systimer_ll_is_alarm_int_fired(systimer_dev_t *dev, uint32_t alarm_id)
{
REG_CLR_BIT(SYS_TIMER_SYSTIMER_INT_ENA_REG, 1 << alarm_id);
return dev->int_st.val & (1 << alarm_id);
}
__attribute__((always_inline)) static inline bool systimer_ll_is_alarm_int_fired(uint32_t alarm_id)
__attribute__((always_inline)) static inline void systimer_ll_clear_alarm_int(systimer_dev_t *dev, uint32_t alarm_id)
{
return REG_GET_BIT(SYS_TIMER_SYSTIMER_INT_RAW_REG, 1 << alarm_id);
}
__attribute__((always_inline)) static inline void systimer_ll_clear_alarm_int(uint32_t alarm_id)
{
REG_SET_BIT(SYS_TIMER_SYSTIMER_INT_CLR_REG, 1 << alarm_id);
dev->int_clr.val |= 1 << alarm_id;
}
#ifdef __cplusplus

View File

@ -1,123 +0,0 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sys/param.h>
#include "soc/soc_caps.h"
#include "hal/systimer_hal.h"
#include "hal/systimer_ll.h"
#include "hal/systimer_types.h"
#include "hal/clk_gate_ll.h"
#define SYSTIMER_TICKS_PER_US (16) // Systimer clock source is fixed to 16MHz
uint64_t systimer_hal_get_counter_value(systimer_counter_id_t counter_id)
{
uint32_t lo, lo_start, hi;
/* Set the "update" bit and wait for acknowledgment */
systimer_ll_counter_snapshot(counter_id);
while (!systimer_ll_is_counter_value_valid(counter_id));
/* Read LO, HI, then LO again, check that LO returns the same value.
* This accounts for the case when an interrupt may happen between reading
* HI and LO values, and this function may get called from the ISR.
* In this case, the repeated read will return consistent values.
*/
lo_start = systimer_ll_get_counter_value_low(counter_id);
do {
lo = lo_start;
hi = systimer_ll_get_counter_value_high(counter_id);
lo_start = systimer_ll_get_counter_value_low(counter_id);
} while (lo_start != lo);
systimer_counter_value_t result = {
.lo = lo,
.hi = hi
};
return result.val;
}
uint64_t systimer_hal_get_time(systimer_counter_id_t counter_id)
{
return systimer_hal_get_counter_value(counter_id) / SYSTIMER_TICKS_PER_US;
}
void systimer_hal_set_alarm_target(systimer_alarm_id_t alarm_id, uint64_t target)
{
systimer_counter_value_t alarm = { .val = target * SYSTIMER_TICKS_PER_US};
systimer_ll_disable_alarm(alarm_id);
systimer_ll_set_alarm_target(alarm_id, alarm.val);
systimer_ll_apply_alarm_value(alarm_id);
systimer_ll_enable_alarm(alarm_id);
}
void systimer_hal_set_alarm_period(systimer_alarm_id_t alarm_id, uint32_t period)
{
systimer_ll_disable_alarm(alarm_id);
systimer_ll_set_alarm_period(alarm_id, period * SYSTIMER_TICKS_PER_US);
systimer_ll_apply_alarm_value(alarm_id);
systimer_ll_enable_alarm(alarm_id);
}
uint64_t systimer_hal_get_alarm_value(systimer_alarm_id_t alarm_id)
{
return systimer_ll_get_alarm_target(alarm_id);
}
void systimer_hal_enable_alarm_int(systimer_alarm_id_t alarm_id)
{
systimer_ll_enable_alarm_int(alarm_id);
}
void systimer_hal_on_apb_freq_update(uint32_t apb_ticks_per_us)
{
/* Nothing to do here, SYSTIMER clock is independent of APB clock */
(void)apb_ticks_per_us;
}
void systimer_hal_counter_value_advance(systimer_counter_id_t counter_id, int64_t time_us)
{
systimer_counter_value_t new_count = { .val = systimer_hal_get_counter_value(counter_id) + time_us * SYSTIMER_TICKS_PER_US };
systimer_ll_set_counter_value(counter_id, new_count.val);
systimer_ll_apply_counter_value(counter_id);
}
void systimer_hal_enable_counter(systimer_counter_id_t counter_id)
{
systimer_ll_enable_counter(counter_id);
}
void systimer_hal_init(void)
{
periph_ll_enable_clk_clear_rst(PERIPH_SYSTIMER_MODULE);
systimer_ll_enable_clock();
}
void systimer_hal_select_alarm_mode(systimer_alarm_id_t alarm_id, systimer_alarm_mode_t mode)
{
switch (mode) {
case SYSTIMER_ALARM_MODE_ONESHOT:
systimer_ll_enable_alarm_oneshot(alarm_id);
break;
case SYSTIMER_ALARM_MODE_PERIOD:
systimer_ll_enable_alarm_period(alarm_id);
break;
default:
break;
}
}
void systimer_hal_connect_alarm_counter(systimer_alarm_id_t alarm_id, systimer_counter_id_t counter_id)
{
systimer_ll_connect_alarm_counter(alarm_id, counter_id);
}

View File

@ -14,78 +14,91 @@
#pragma once
#include <stdint.h>
#include <stdbool.h>
#include "soc/soc_caps.h"
#include "soc/systimer_struct.h"
#include "hal/systimer_types.h"
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
#include <stdbool.h>
#include "hal/systimer_types.h"
/**
* @brief enable systimer counter
*/
void systimer_hal_enable_counter(systimer_counter_id_t counter_id);
/**
* @brief get current counter value
*/
uint64_t systimer_hal_get_counter_value(systimer_counter_id_t counter_id);
/**
* @brief get current time (in microseconds)
*/
uint64_t systimer_hal_get_time(systimer_counter_id_t counter_id);
/*
* @brief set alarm target value (used in one-shot mode)
*/
void systimer_hal_set_alarm_target(systimer_alarm_id_t alarm_id, uint64_t target);
/**
* @brief set alarm period value (used in period mode)
*/
void systimer_hal_set_alarm_period(systimer_alarm_id_t alarm_id, uint32_t period);
/**
* @brief get alarm time
*/
uint64_t systimer_hal_get_alarm_value(systimer_alarm_id_t alarm_id);
/**
* @brief enable alarm interrupt
*/
void systimer_hal_enable_alarm_int(systimer_alarm_id_t alarm_id);
/**
* @brief select alarm mode
*/
void systimer_hal_select_alarm_mode(systimer_alarm_id_t alarm_id, systimer_alarm_mode_t mode);
/**
* @brief update systimer step when apb clock gets changed
*/
void systimer_hal_on_apb_freq_update(uint32_t apb_ticks_per_us);
/**
* @brief move systimer counter value forward or backward
*/
void systimer_hal_counter_value_advance(systimer_counter_id_t counter_id, int64_t time_us);
typedef struct {
systimer_dev_t *dev;
} systimer_hal_context_t;
/**
* @brief initialize systimer in HAL layer
*/
void systimer_hal_init(void);
void systimer_hal_init(systimer_hal_context_t *hal);
/**
* @brief enable systimer counter
*/
void systimer_hal_enable_counter(systimer_hal_context_t *hal, uint32_t counter_id);
/**
* @brief get current counter value
*/
uint64_t systimer_hal_get_counter_value(systimer_hal_context_t *hal, uint32_t counter_id);
/**
* @brief get current time (in microseconds)
*/
uint64_t systimer_hal_get_time(systimer_hal_context_t *hal, uint32_t counter_id);
/*
* @brief set alarm target value (used in one-shot mode)
*/
void systimer_hal_set_alarm_target(systimer_hal_context_t *hal, uint32_t alarm_id, uint64_t target);
/**
* @brief set alarm period value (used in period mode)
*/
void systimer_hal_set_alarm_period(systimer_hal_context_t *hal, uint32_t alarm_id, uint32_t period);
/**
* @brief get alarm time
*/
uint64_t systimer_hal_get_alarm_value(systimer_hal_context_t *hal, uint32_t alarm_id);
/**
* @brief enable alarm interrupt
*/
void systimer_hal_enable_alarm_int(systimer_hal_context_t *hal, uint32_t alarm_id);
/**
* @brief select alarm mode
*/
void systimer_hal_select_alarm_mode(systimer_hal_context_t *hal, uint32_t alarm_id, systimer_alarm_mode_t mode);
/**
* @brief update systimer step when apb clock gets changed
*/
void systimer_hal_on_apb_freq_update(systimer_hal_context_t *hal, uint32_t apb_ticks_per_us);
/**
* @brief move systimer counter value forward or backward
*/
void systimer_hal_counter_value_advance(systimer_hal_context_t *hal, uint32_t counter_id, int64_t time_us);
/**
* @brief connect alarm unit to selected counter
*/
void systimer_hal_connect_alarm_counter(systimer_alarm_id_t alarm_id, systimer_counter_id_t counter_id);
void systimer_hal_connect_alarm_counter(systimer_hal_context_t *hal, uint32_t alarm_id, uint32_t counter_id);
/**
* @brief set if a counter should be stalled when CPU is halted by the debugger
*/
void systimer_hal_counter_can_stall_by_cpu(uint32_t counter_id, uint32_t cpu_id, bool can);
void systimer_hal_counter_can_stall_by_cpu(systimer_hal_context_t *hal, uint32_t counter_id, uint32_t cpu_id, bool can);
#if !SOC_SYSTIMER_FIXED_TICKS_US
/**
* @brief set increase steps for systimer counter on different clock source
*/
void systimer_hal_set_steps_per_tick(systimer_hal_context_t *hal, int clock_source, uint32_t steps);
#endif
#ifdef __cplusplus
}

View File

@ -0,0 +1,188 @@
// Copyright 2021 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sys/param.h>
#include "soc/soc_caps.h"
#include "hal/systimer_hal.h"
#include "hal/systimer_ll.h"
#include "hal/systimer_types.h"
#include "hal/clk_gate_ll.h"
// Number of timer ticks per microsecond
#if SOC_SYSTIMER_FIXED_TICKS_US
#define SYSTIMER_TICKS_PER_US (SOC_SYSTIMER_FIXED_TICKS_US)
#else
#define SYSTIMER_TICKS_PER_US (80)
#endif
void systimer_hal_init(systimer_hal_context_t *hal)
{
hal->dev = &SYSTIMER;
periph_ll_enable_clk_clear_rst(PERIPH_SYSTIMER_MODULE);
systimer_ll_enable_clock(hal->dev, true);
}
uint64_t systimer_hal_get_counter_value(systimer_hal_context_t *hal, uint32_t counter_id)
{
uint32_t lo, lo_start, hi;
/* Set the "update" bit and wait for acknowledgment */
systimer_ll_counter_snapshot(hal->dev, counter_id);
while (!systimer_ll_is_counter_value_valid(hal->dev, counter_id));
/* Read LO, HI, then LO again, check that LO returns the same value.
* This accounts for the case when an interrupt may happen between reading
* HI and LO values, and this function may get called from the ISR.
* In this case, the repeated read will return consistent values.
*/
lo_start = systimer_ll_get_counter_value_low(hal->dev, counter_id);
do {
lo = lo_start;
hi = systimer_ll_get_counter_value_high(hal->dev, counter_id);
lo_start = systimer_ll_get_counter_value_low(hal->dev, counter_id);
} while (lo_start != lo);
systimer_counter_value_t result = {
.lo = lo,
.hi = hi
};
return result.val;
}
uint64_t systimer_hal_get_time(systimer_hal_context_t *hal, uint32_t counter_id)
{
return systimer_hal_get_counter_value(hal, counter_id) / SYSTIMER_TICKS_PER_US;
}
#if SOC_SYSTIMER_ALARM_MISS_COMPENSATE
void systimer_hal_set_alarm_target(systimer_hal_context_t *hal, uint32_t alarm_id, uint64_t target)
{
systimer_counter_value_t alarm = { .val = target * SYSTIMER_TICKS_PER_US};
systimer_ll_enable_alarm(hal->dev, alarm_id, false);
systimer_ll_set_alarm_target(hal->dev, alarm_id, alarm.val);
systimer_ll_apply_alarm_value(hal->dev, alarm_id);
systimer_ll_enable_alarm(hal->dev, alarm_id, true);
}
#else
void systimer_hal_set_alarm_target(systimer_hal_context_t *hal, uint32_t alarm_id, uint64_t timestamp)
{
int64_t offset = SYSTIMER_TICKS_PER_US * 2;
uint64_t now_time = systimer_hal_get_counter_value(hal, 0);
systimer_counter_value_t alarm = { .val = MAX(timestamp * SYSTIMER_TICKS_PER_US, now_time + offset) };
do {
systimer_ll_enable_alarm(hal->dev, alarm_id, false);
systimer_ll_set_alarm_target(hal->dev, alarm_id, alarm.val);
systimer_ll_enable_alarm(hal->dev, alarm_id, true);
now_time = systimer_hal_get_counter_value(hal, 0);
int64_t delta = (int64_t)alarm.val - (int64_t)now_time;
if (delta <= 0 && !systimer_ll_is_alarm_int_fired(hal->dev, alarm_id)) {
// new alarm is less than the counter and the interrupt flag is not set
offset += -1 * delta + SYSTIMER_TICKS_PER_US * 2;
alarm.val = now_time + offset;
} else {
// finish if either (alarm > counter) or the interrupt flag is already set.
break;
}
} while (1);
}
#endif
void systimer_hal_set_alarm_period(systimer_hal_context_t *hal, uint32_t alarm_id, uint32_t period)
{
systimer_ll_enable_alarm(hal->dev, alarm_id, false);
systimer_ll_set_alarm_period(hal->dev, alarm_id, period * SYSTIMER_TICKS_PER_US);
systimer_ll_apply_alarm_value(hal->dev, alarm_id);
systimer_ll_enable_alarm(hal->dev, alarm_id, true);
}
uint64_t systimer_hal_get_alarm_value(systimer_hal_context_t *hal, uint32_t alarm_id)
{
return systimer_ll_get_alarm_target(hal->dev, alarm_id);
}
void systimer_hal_enable_alarm_int(systimer_hal_context_t *hal, uint32_t alarm_id)
{
systimer_ll_enable_alarm_int(hal->dev, alarm_id, true);
}
void systimer_hal_counter_value_advance(systimer_hal_context_t *hal, uint32_t counter_id, int64_t time_us)
{
systimer_counter_value_t new_count = { .val = systimer_hal_get_counter_value(hal, counter_id) + time_us * SYSTIMER_TICKS_PER_US };
systimer_ll_set_counter_value(hal->dev, counter_id, new_count.val);
systimer_ll_apply_counter_value(hal->dev, counter_id);
}
void systimer_hal_enable_counter(systimer_hal_context_t *hal, uint32_t counter_id)
{
systimer_ll_enable_counter(hal->dev, counter_id, true);
}
void systimer_hal_select_alarm_mode(systimer_hal_context_t *hal, uint32_t alarm_id, systimer_alarm_mode_t mode)
{
switch (mode) {
case SYSTIMER_ALARM_MODE_ONESHOT:
systimer_ll_enable_alarm_oneshot(hal->dev, alarm_id);
break;
case SYSTIMER_ALARM_MODE_PERIOD:
systimer_ll_enable_alarm_period(hal->dev, alarm_id);
break;
default:
break;
}
}
void systimer_hal_connect_alarm_counter(systimer_hal_context_t *hal, uint32_t alarm_id, uint32_t counter_id)
{
systimer_ll_connect_alarm_counter(hal->dev, alarm_id, counter_id);
}
void systimer_hal_counter_can_stall_by_cpu(systimer_hal_context_t *hal, uint32_t counter_id, uint32_t cpu_id, bool can)
{
systimer_ll_counter_can_stall_by_cpu(hal->dev, counter_id, cpu_id, can);
}
#if !SOC_SYSTIMER_FIXED_TICKS_US
void systimer_hal_set_steps_per_tick(systimer_hal_context_t *hal, int clock_source, uint32_t steps)
{
/* Configure the counter:
* - increment by 1 when running from PLL (80 ticks per microsecond),
* - increment by 2 when running from XTAL (40 ticks per microsecond).
* Note that if the APB frequency is derived from XTAL with divider != 1,
* XTAL_STEP needs to be adjusted accordingly. For example, if
* the APB frequency is XTAL/4 = 10 MHz, then XTAL_STEP should be set to 8.
* This is handled in systimer_hal_on_apb_freq_update function.
*/
switch (clock_source) {
case 0:
systimer_ll_set_step_for_xtal(hal->dev, steps);
break;
case 1:
systimer_ll_set_step_for_pll(hal->dev, steps);
default:
break;
}
}
void systimer_hal_on_apb_freq_update(systimer_hal_context_t *hal, uint32_t apb_ticks_per_us)
{
/* If this function was called when switching APB clock to PLL, don't need
* do anything: the SYSTIMER_TIMER_PLL_STEP is already correct.
* If this was called when switching APB clock to XTAL, need to adjust
* XTAL_STEP value accordingly.
*/
if (apb_ticks_per_us != SYSTIMER_TICKS_PER_US) {
assert((SYSTIMER_TICKS_PER_US % apb_ticks_per_us) == 0 && "TICK_PER_US should be divisible by APB frequency (in MHz)");
systimer_ll_set_step_for_xtal(hal->dev, SYSTIMER_TICKS_PER_US / apb_ticks_per_us);
}
}
#endif