freertos: pin timer task in core 0 plus fixed in SMP race conditions

freertos: replace the freertos regular malloc to the specific malloc from xtensa port for tcb and stack allocations

freertos: avoid the cpu1 to unwind pended ticks when xTaskResumeAll is called insed of an ISR

freertos: protected the xPortGetCoreID functions with missing critical sections

tests: re-eanble the ignored tests that was failling before race-condition fixes
This commit is contained in:
Felipe Neves 2020-09-30 12:56:52 -03:00 committed by Angus Gratton
parent 3057b76a7e
commit dfa2d547a7
6 changed files with 403 additions and 105 deletions

View File

@ -371,7 +371,7 @@ static void accessDPORT2_stall_other_cpu(void *pvParameters)
vTaskDelete(NULL);
}
TEST_CASE("Check stall workaround DPORT and Hi-interrupt", "[esp32] [ignore]")
TEST_CASE("Check stall workaround DPORT and Hi-interrupt", "[esp32]")
{
xt_highint5_read_apb = 0;
dport_test_result = false;

View File

@ -282,7 +282,7 @@ static void check_wake_stub(void)
TEST_ASSERT_NULL(esp_get_deep_sleep_wake_stub());
}
TEST_CASE_MULTIPLE_STAGES("can set sleep wake stub", "[deepsleep][ignore][reset=DEEPSLEEP_RESET]",
TEST_CASE_MULTIPLE_STAGES("can set sleep wake stub", "[deepsleep][reset=DEEPSLEEP_RESET]",
prepare_wake_stub,
check_wake_stub);

View File

@ -742,7 +742,7 @@ void taskYIELD_OTHER_CORE( BaseType_t xCoreID, UBaseType_t uxPriority )
/* Allocate space for the TCB. Where the memory comes from depends
on the implementation of the port malloc function and whether or
not static allocation is being used. */
pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
pxNewTCB = ( TCB_t * ) pvPortMallocTcbMem( sizeof( TCB_t ) );
if( pxNewTCB != NULL )
{
@ -799,14 +799,14 @@ void taskYIELD_OTHER_CORE( BaseType_t xCoreID, UBaseType_t uxPriority )
/* Allocate space for the TCB. Where the memory comes from depends on
the implementation of the port malloc function and whether or not static
allocation is being used. */
pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
pxNewTCB = ( TCB_t * ) pvPortMallocTcbMem( sizeof( TCB_t ) );
if( pxNewTCB != NULL )
{
/* Allocate space for the stack used by the task being created.
The base of the stack memory stored in the TCB so the task can
be deleted later if required. */
pxNewTCB->pxStack = ( StackType_t * ) pvPortMalloc( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
pxNewTCB->pxStack = ( StackType_t * ) pvPortMallocStackMem( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
if( pxNewTCB->pxStack == NULL )
{
@ -821,12 +821,12 @@ void taskYIELD_OTHER_CORE( BaseType_t xCoreID, UBaseType_t uxPriority )
StackType_t *pxStack;
/* Allocate space for the stack used by the task being created. */
pxStack = pvPortMalloc( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation is the stack. */
pxStack = pvPortMallocStackMem( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation is the stack. */
if( pxStack != NULL )
{
/* Allocate space for the TCB. */
pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) ); /*lint !e9087 !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack, and the first member of TCB_t is always a pointer to the task's stack. */
pxNewTCB = ( TCB_t * ) pvPortMallocTcbMem( sizeof( TCB_t ) ); /*lint !e9087 !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack, and the first member of TCB_t is always a pointer to the task's stack. */
if( pxNewTCB != NULL )
{
@ -1313,7 +1313,7 @@ static void prvAddNewTaskToReadyList( TCB_t *pxNewTCB, TaskFunction_t pxTaskCode
not return. */
uxTaskNumber++;
if( pxTCB == pxCurrentTCB[xPortGetCoreID()] ||
if( pxTCB == pxCurrentTCB[core] ||
(portNUM_PROCESSORS > 1 && pxTCB == pxCurrentTCB[ !core ]) ||
(portNUM_PROCESSORS > 1 && pxTCB->xCoreID == (!core)) )
{
@ -1334,7 +1334,7 @@ static void prvAddNewTaskToReadyList( TCB_t *pxNewTCB, TaskFunction_t pxTaskCode
after which it is not possible to yield away from this task -
hence xYieldPending is used to latch that a context switch is
required. */
portPRE_TASK_DELETE_HOOK( pxTCB, &xYieldPending[xPortGetCoreID()] );
portPRE_TASK_DELETE_HOOK( pxTCB, &xYieldPending[core] );
}
else
{
@ -1362,7 +1362,7 @@ static void prvAddNewTaskToReadyList( TCB_t *pxNewTCB, TaskFunction_t pxTaskCode
been deleted. */
if( xSchedulerRunning != pdFALSE )
{
if( pxTCB == pxCurrentTCB[xPortGetCoreID()] )
if( pxTCB == pxCurrentTCB[core] )
{
configASSERT( xTaskGetSchedulerState() != taskSCHEDULER_SUSPENDED );
portYIELD_WITHIN_API();
@ -1719,10 +1719,14 @@ static void prvAddNewTaskToReadyList( TCB_t *pxNewTCB, TaskFunction_t pxTaskCode
/* The priority of a task other than the currently
running task is being raised. Is the priority being
raised above that of the running task? */
if( uxNewPriority >= pxCurrentTCB[xPortGetCoreID()]->uxPriority )
if ( tskCAN_RUN_HERE(pxTCB->xCoreID) && uxNewPriority >= pxCurrentTCB[ xPortGetCoreID() ]->uxPriority )
{
xYieldRequired = pdTRUE;
}
else if ( pxTCB->xCoreID != xPortGetCoreID() )
{
taskYIELD_OTHER_CORE( pxTCB->xCoreID, uxNewPriority );
}
else
{
mtCOVERAGE_TEST_MARKER();
@ -1857,6 +1861,7 @@ static void prvAddNewTaskToReadyList( TCB_t *pxNewTCB, TaskFunction_t pxTaskCode
void vTaskSuspend( TaskHandle_t xTaskToSuspend )
{
TCB_t *pxTCB;
TCB_t *curTCB;
taskENTER_CRITICAL( &xTaskQueueMutex );
{
@ -1888,6 +1893,7 @@ static void prvAddNewTaskToReadyList( TCB_t *pxNewTCB, TaskFunction_t pxTaskCode
}
vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xStateListItem ) );
curTCB = pxCurrentTCB[ xPortGetCoreID() ];
#if( configUSE_TASK_NOTIFICATIONS == 1 )
{
@ -1917,12 +1923,16 @@ static void prvAddNewTaskToReadyList( TCB_t *pxNewTCB, TaskFunction_t pxTaskCode
mtCOVERAGE_TEST_MARKER();
}
if( pxTCB == pxCurrentTCB[xPortGetCoreID()] )
if( pxTCB == curTCB )
{
if( xSchedulerRunning != pdFALSE )
{
/* The current task has just been suspended. */
configASSERT( uxSchedulerSuspended[xPortGetCoreID()] == 0 );
taskENTER_CRITICAL(&xTaskQueueMutex);
BaseType_t core = xPortGetCoreID();
taskEXIT_CRITICAL(&xTaskQueueMutex);
configASSERT( uxSchedulerSuspended[core] == 0 );
portYIELD_WITHIN_API();
}
else
@ -1936,7 +1946,9 @@ static void prvAddNewTaskToReadyList( TCB_t *pxNewTCB, TaskFunction_t pxTaskCode
NULL so when the next task is created pxCurrentTCB will
be set to point to it no matter what its relative priority
is. */
pxCurrentTCB[xPortGetCoreID()] = NULL;
taskENTER_CRITICAL(&xTaskQueueMutex);
pxCurrentTCB[ xPortGetCoreID() ] = NULL;
taskEXIT_CRITICAL(&xTaskQueueMutex);
}
else
{
@ -1945,10 +1957,24 @@ static void prvAddNewTaskToReadyList( TCB_t *pxNewTCB, TaskFunction_t pxTaskCode
}
}
else
{
if( xSchedulerRunning != pdFALSE )
{
/* A task other than the currently running task was suspended,
reset the next expected unblock time in case it referred to the
task that is now in the Suspended state. */
taskENTER_CRITICAL(&xTaskQueueMutex);
{
prvResetNextTaskUnblockTime();
}
taskEXIT_CRITICAL(&xTaskQueueMutex);
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
}
#endif /* INCLUDE_vTaskSuspend */
/*-----------------------------------------------------------*/
@ -2008,12 +2034,11 @@ static void prvAddNewTaskToReadyList( TCB_t *pxNewTCB, TaskFunction_t pxTaskCode
/* It does not make sense to resume the calling task. */
configASSERT( xTaskToResume );
taskENTER_CRITICAL( &xTaskQueueMutex );
/* The parameter cannot be NULL as it is impossible to resume the
currently executing task. */
if( ( pxTCB != pxCurrentTCB[xPortGetCoreID()] ) && ( pxTCB != NULL ) )
{
taskENTER_CRITICAL( &xTaskQueueMutex );
{
if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
{
@ -2046,12 +2071,11 @@ static void prvAddNewTaskToReadyList( TCB_t *pxNewTCB, TaskFunction_t pxTaskCode
mtCOVERAGE_TEST_MARKER();
}
}
taskEXIT_CRITICAL( &xTaskQueueMutex );
}
else
{
mtCOVERAGE_TEST_MARKER();
}
taskEXIT_CRITICAL( &xTaskQueueMutex );
}
#endif /* INCLUDE_vTaskSuspend */
@ -2314,60 +2338,59 @@ void vTaskSuspendAll( void )
#if ( configUSE_TICKLESS_IDLE != 0 )
#if ( portNUM_PROCESSORS > 1 )
static BaseType_t xHaveReadyTasks( void )
{
for (int i = tskIDLE_PRIORITY + 1; i < configMAX_PRIORITIES; ++i)
{
if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ i ] ) ) > 0 )
{
return pdTRUE;
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
return pdFALSE;
}
#endif // portNUM_PROCESSORS > 1
static TickType_t prvGetExpectedIdleTime( void )
{
TickType_t xReturn;
UBaseType_t uxHigherPriorityReadyTasks = pdFALSE;
/* uxHigherPriorityReadyTasks takes care of the case where
configUSE_PREEMPTION is 0, so there may be tasks above the idle priority
task that are in the Ready state, even though the idle task is
running. */
#if( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
{
if( uxTopReadyPriority > tskIDLE_PRIORITY )
{
uxHigherPriorityReadyTasks = pdTRUE;
}
}
#else
{
const UBaseType_t uxLeastSignificantBit = ( UBaseType_t ) 0x01;
/* When port optimised task selection is used the uxTopReadyPriority
variable is used as a bit map. If bits other than the least
significant bit are set then there are tasks that have a priority
above the idle priority that are in the Ready state. This takes
care of the case where the co-operative scheduler is in use. */
if( uxTopReadyPriority > uxLeastSignificantBit )
{
uxHigherPriorityReadyTasks = pdTRUE;
}
}
#endif
if( pxCurrentTCB[xPortGetCoreID()]->uxPriority > tskIDLE_PRIORITY )
taskENTER_CRITICAL(&xTaskQueueMutex);
if( pxCurrentTCB[ xPortGetCoreID() ]->uxPriority > tskIDLE_PRIORITY )
{
xReturn = 0;
}
else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > 1 )
#if portNUM_PROCESSORS > 1
/* This function is called from Idle task; in single core case this
* means that no higher priority tasks are ready to run, and we can
* enter sleep. In SMP case, there might be ready tasks waiting for
* the other CPU, so need to check all ready lists.
*/
else if( xHaveReadyTasks() )
{
xReturn = 0;
}
#endif // portNUM_PROCESSORS > 1
else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > portNUM_PROCESSORS )
{
/* There are other idle priority tasks in the ready state. If
time slicing is used then the very next tick interrupt must be
processed. */
xReturn = 0;
}
else if( uxHigherPriorityReadyTasks != pdFALSE )
{
/* There are tasks in the Ready state that have a priority above the
idle priority. This path can only be reached if
configUSE_PREEMPTION is 0. */
xReturn = 0;
}
else
{
xReturn = xNextTaskUnblockTime - xTickCount;
}
taskEXIT_CRITICAL(&xTaskQueueMutex);
return xReturn;
}
@ -2464,7 +2487,7 @@ TickType_t xTicksToNextUnblockTime;
decremented below. */
xTicksToNextUnblockTime = ( TickType_t ) 1;
}
else if( xTicksToNextUnblockTime > ( TickType_t ) 1 )
else if( xTicksToNextUnblockTime > ( TickType_t ) 1)
{
/* Move the tick count one short of the next unblock
time, then call xTaskIncrementTick() to move the tick
@ -3170,7 +3193,7 @@ BaseType_t xSwitchRequired = pdFALSE;
/* If xTask is NULL then we are calling our own task hook. */
if( xTask == NULL )
{
xTCB = pxCurrentTCB[xPortGetCoreID()];
xTCB = xTaskGetCurrentTaskHandle();
}
else
{
@ -4429,22 +4452,26 @@ TCB_t *pxTCB;
TaskHandle_t xTaskGetCurrentTaskHandle( void )
{
TaskHandle_t xReturn;
unsigned state;
/* A critical section is not required as this is not called from
an interrupt and the current TCB will always be the same for any
individual execution thread. */
xReturn = pxCurrentTCB[xPortGetCoreID()];
state = portENTER_CRITICAL_NESTED();
xReturn = pxCurrentTCB[ xPortGetCoreID() ];
portEXIT_CRITICAL_NESTED(state);
return xReturn;
}
TaskHandle_t xTaskGetCurrentTaskHandleForCPU( BaseType_t cpuid )
{
(void)cpuid;
return xTaskGetCurrentTaskHandle();
TaskHandle_t xReturn=NULL;
//Xtensa-specific: the pxCurrentPCB pointer is atomic so we shouldn't need a lock.
if (cpuid < portNUM_PROCESSORS) {
xReturn = pxCurrentTCB[ cpuid ];
}
return xReturn;
}
#endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */
/*-----------------------------------------------------------*/
@ -4484,6 +4511,7 @@ TCB_t *pxTCB;
TCB_t * const pxMutexHolderTCB = pxMutexHolder;
BaseType_t xReturn = pdFALSE;
taskENTER_CRITICAL(&xTaskQueueMutex);
/* If the mutex was given back by an interrupt while the queue was
locked then the mutex holder might now be NULL. _RB_ Is this still
needed as interrupts can no longer use mutexes? */
@ -4560,6 +4588,7 @@ TCB_t *pxTCB;
{
mtCOVERAGE_TEST_MARKER();
}
taskEXIT_CRITICAL(&xTaskQueueMutex);
return xReturn;
}
@ -4574,6 +4603,7 @@ TCB_t *pxTCB;
TCB_t * const pxTCB = pxMutexHolder;
BaseType_t xReturn = pdFALSE;
taskENTER_CRITICAL(&xTaskQueueMutex);
if( pxMutexHolder != NULL )
{
/* A task can only have an inherited priority if it holds the mutex.
@ -4640,6 +4670,7 @@ TCB_t *pxTCB;
{
mtCOVERAGE_TEST_MARKER();
}
taskEXIT_CRITICAL(&xTaskQueueMutex);
return xReturn;
}
@ -4655,6 +4686,7 @@ TCB_t *pxTCB;
UBaseType_t uxPriorityUsedOnEntry, uxPriorityToUse;
const UBaseType_t uxOnlyOneMutexHeld = ( UBaseType_t ) 1;
taskENTER_CRITICAL(&xTaskQueueMutex);
if( pxMutexHolder != NULL )
{
/* If pxMutexHolder is not NULL then the holder must hold at least
@ -4747,6 +4779,7 @@ TCB_t *pxTCB;
{
mtCOVERAGE_TEST_MARKER();
}
taskEXIT_CRITICAL(&xTaskQueueMutex);
}
#endif /* configUSE_MUTEXES */
@ -5071,11 +5104,13 @@ TickType_t uxTaskResetEventItemValue( void )
{
TickType_t uxReturn;
uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCB[xPortGetCoreID()]->xEventListItem ) );
taskENTER_CRITICAL(&xTaskQueueMutex);
uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCB[ xPortGetCoreID() ]->xEventListItem ) );
/* Reset the event list item to its normal value - so it can be used with
queues and semaphores. */
listSET_LIST_ITEM_VALUE( &( pxCurrentTCB[xPortGetCoreID()]->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB[xPortGetCoreID()]->uxPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
listSET_LIST_ITEM_VALUE( &( pxCurrentTCB[ xPortGetCoreID() ]->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB[ xPortGetCoreID() ]->uxPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
taskEXIT_CRITICAL(&xTaskQueueMutex);
return uxReturn;
}
@ -5083,16 +5118,21 @@ TickType_t uxReturn;
#if ( configUSE_MUTEXES == 1 )
TaskHandle_t pvTaskIncrementMutexHeldCount( void )
void *pvTaskIncrementMutexHeldCount( void )
{
/* If xSemaphoreCreateMutex() is called before any tasks have been created
then pxCurrentTCB[xPortGetCoreID()] will be NULL. */
if( pxCurrentTCB[xPortGetCoreID()] != NULL )
{
( pxCurrentTCB[xPortGetCoreID()]->uxMutexesHeld )++;
}
TCB_t *curTCB;
return pxCurrentTCB[xPortGetCoreID()];
/* If xSemaphoreCreateMutex() is called before any tasks have been created
then pxCurrentTCB will be NULL. */
taskENTER_CRITICAL(&xTaskQueueMutex);
if( pxCurrentTCB[ xPortGetCoreID() ] != NULL )
{
( pxCurrentTCB[ xPortGetCoreID() ]->uxMutexesHeld )++;
}
curTCB = pxCurrentTCB[ xPortGetCoreID() ];
taskEXIT_CRITICAL(&xTaskQueueMutex);
return curTCB;
}
#endif /* configUSE_MUTEXES */
@ -5615,7 +5655,10 @@ TickType_t uxReturn;
uint32_t ulTaskGetIdleRunTimeCounter( void )
{
taskENTER_CRITICAL(&xTaskQueueMutex);
tskTCB *pxTCB = (tskTCB *)xIdleTaskHandle[xPortGetCoreID()];
taskEXIT_CRITICAL(&xTaskQueueMutex);
return pxTCB->ulRunTimeCounter;
}
@ -5794,7 +5837,7 @@ const TickType_t xConstTickCount = xTickCount;
for (i = 0; i < portNUM_PROCESSORS; i++) {
if( uxTask >= uxArraySize )
break;
prvTaskGetSnapshotsFromList( pxTaskSnapshotArray, &uxTask, uxArraySize, &( xPendingReadyList[xPortGetCoreID()]) );
prvTaskGetSnapshotsFromList( pxTaskSnapshotArray, &uxTask, uxArraySize, &( xPendingReadyList[i]) );
}
#if( INCLUDE_vTaskDelete == 1 )

View File

@ -0,0 +1,254 @@
/*
* Test features that are backported from version FreeRTOS 9.0.0.
*
* 1) Test backported timer functions
* - xTimerCreateStatic(), vTimerSetTimerId(), xTimerGetPeriod(), xTimerGetExpiryTime()
* 2) Test backported queue/semaphore functions
* - xQueueCreateStatic()
* - xSemaphoreCreateBinaryStatic(), xSemaphoreCreateCountingStatic(), uxSemaphoreGetCount()
* - xSemaphoreCreateMutexStatic(), xSemaphoreCreateRecursiveMutexStatic()
* 3) Test static allocation of tasks
* - xTaskCreateStaticPinnedToCore()
* 4) Test static allocation of event group
* - xEventGroupCreateStatic()
* 5) Test Thread Local Storage Pointers and Deletion Callbacks
* - vTaskSetThreadLocalStoragePointerAndDelCallback()
* - pvTaskGetThreadLocalStoragePointer()
*
* Note: The *pcQueueGetName() function is also backported, but is not tested in
* the following test cases (see Queue Registry test cases instead)
* For more details please refer the the ESP-IDF FreeRTOS changes documentation
*/
#include <stdio.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/timers.h"
#include "freertos/queue.h"
#include "freertos/semphr.h"
#include "freertos/event_groups.h"
#include "unity.h"
#include "test_utils.h"
/* ---------------------Test 1: Backported Timer functions-----------------------
* Test xTimerCreateStatic(), vTimerSetTimerId(), xTimerGetPeriod(), xTimerGetExpiryTime()
*
* This test creates a one-shot static timer, sets/checks the timer's id and period. Then ensures
* the timer cb is executed in a timely fashion.
*/
#define TMR_PERIOD_TICKS 10
#define TIMER_ID 0xFF
#define TICK_DELTA 5
static StaticTimer_t timer_buffer;
static TickType_t tmr_ideal_exp;
static void tmr_cb(TimerHandle_t xtimer)
{
//Check cb is called in timely fashion
TEST_ASSERT_UINT32_WITHIN(TICK_DELTA, tmr_ideal_exp, xTaskGetTickCount());
}
//No need for smp test as Timer Task always runs on core 0
TEST_CASE("Test FreeRTOS backported timer functions", "[freertos]")
{
//Create one shot static timer with period TMR_PERIOD_TICKS
TimerHandle_t tmr_handle = xTimerCreateStatic("static_tmr", TMR_PERIOD_TICKS, pdFALSE, NULL, tmr_cb, &timer_buffer);
TEST_ASSERT_EQUAL(TMR_PERIOD_TICKS, xTimerGetPeriod(tmr_handle)); //Test xTimerGetPeriod()
vTimerSetTimerID(tmr_handle, (void *)TIMER_ID);
TEST_ASSERT_EQUAL(TIMER_ID, (uint32_t)pvTimerGetTimerID(tmr_handle)); //Test vTimerSetTimerID()
TEST_ASSERT_EQUAL(pdTRUE, xTimerStart(tmr_handle, 1)); //Start Timer
tmr_ideal_exp = xTaskGetTickCount() + TMR_PERIOD_TICKS; //Calculate ideal expiration time
vTaskDelay(2); //Need to yield to allow daemon task to process start command, or else expiration time will be NULL
TEST_ASSERT_UINT32_WITHIN(TICK_DELTA, tmr_ideal_exp, xTimerGetExpiryTime(tmr_handle)); //Test xTimerGetExpiryTime()
vTaskDelay(2*TMR_PERIOD_TICKS); //Delay until one shot timer has triggered
TEST_ASSERT_EQUAL(pdPASS, xTimerDelete(tmr_handle, portMAX_DELAY)); //Clean up
}
/* ---------------Test backported queue/semaphore functions-------------------
* xQueueCreateStatic()
* xSemaphoreCreateBinaryStatic(), xSemaphoreCreateCountingStatic()
* xSemaphoreCreateMutexStatic(), xSemaphoreCreateRecursiveMutexStatic()
* uxSemaphoreGetCount() is also tested on the static counting semaphore
*
* This test creates various static queue/semphrs listed above and tests them by
* doing a simple send/give and rec/take.
*/
#define ITEM_SIZE 3
#define NO_OF_ITEMS 3
#define DELAY_TICKS 2
static StaticQueue_t queue_buffer; //Queues, Semaphores, and Mutex use the same queue structure
static uint8_t queue_storage_area[(ITEM_SIZE*NO_OF_ITEMS)]; //Queue storage provided in separate buffer to queue struct
TEST_CASE("Test FreeRTOS backported Queue and Semphr functions", "[freertos]")
{
//Test static queue
uint8_t queue_item_to_send[ITEM_SIZE];
uint8_t queue_item_received[ITEM_SIZE];
for(int i = 0; i < ITEM_SIZE; i++){
queue_item_to_send[i] = (0xF << i);
}
QueueHandle_t handle = xQueueCreateStatic(NO_OF_ITEMS, ITEM_SIZE,(uint8_t*) &queue_storage_area, &queue_buffer);
TEST_ASSERT_EQUAL(pdTRUE, xQueueSendToBack(handle, &queue_item_to_send, DELAY_TICKS));
vTaskDelay(1);
TEST_ASSERT_EQUAL(pdTRUE, xQueueReceive(handle, queue_item_received, DELAY_TICKS));
vTaskDelay(1);
for(int i = 0; i < ITEM_SIZE; i++){
TEST_ASSERT_EQUAL(queue_item_to_send[i], queue_item_received[i]); //Check received contents are correct
}
vQueueDelete(handle); //Technically not needed as deleting static queue/semphr doesn't clear static memory
//Test static binary semaphore
handle = xSemaphoreCreateBinaryStatic(&queue_buffer); //Queue and Semphr handles are the same
TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreGive(handle));
vTaskDelay(1);
TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(handle, DELAY_TICKS));
vTaskDelay(1);
vSemaphoreDelete(handle);
//Test static counting semaphore and uxSemaphoreGetCount()
handle = xSemaphoreCreateCountingStatic(NO_OF_ITEMS, 0, &queue_buffer);
for(int i = 0; i < NO_OF_ITEMS; i++){
TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreGive(handle));
}
vTaskDelay(1);
TEST_ASSERT_EQUAL(NO_OF_ITEMS, uxSemaphoreGetCount(handle)); //Test uxSemaphoreGetCount()
for(int i = 0; i < NO_OF_ITEMS; i++){
TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(handle, DELAY_TICKS));
}
vTaskDelay(1);
TEST_ASSERT_EQUAL(0, uxSemaphoreGetCount(handle));
vSemaphoreDelete(handle);
//Test static mutex
handle = xSemaphoreCreateMutexStatic(&queue_buffer);
TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(handle, DELAY_TICKS));
vTaskDelay(1);
TEST_ASSERT_EQUAL_PTR((void *)xTaskGetCurrentTaskHandle(), xSemaphoreGetMutexHolder(handle)); //Current task should now hold mutex
TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreGive(handle));
vTaskDelay(1);
TEST_ASSERT_EQUAL_PTR(NULL, xSemaphoreGetMutexHolder(handle)); //Mutex should have been released
vSemaphoreDelete(handle);
//Test static mutex recursive
handle = xSemaphoreCreateRecursiveMutexStatic(&queue_buffer);
for(int i = 0; i < NO_OF_ITEMS; i++){
TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTakeRecursive(handle, DELAY_TICKS));
}
vTaskDelay(1);
TEST_ASSERT_EQUAL_PTR((void *)xTaskGetCurrentTaskHandle(), xSemaphoreGetMutexHolder(handle)); //Current task should hold mutex
for(int i = 0; i < NO_OF_ITEMS; i++){
TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreGiveRecursive(handle));
}
vTaskDelay(1);
TEST_ASSERT_EQUAL_PTR(NULL, xSemaphoreGetMutexHolder(handle)); //Mutex should have been released
vSemaphoreDelete(handle);
}
/* -----------------Test backported static task allocation -------------------
* Test xTaskCreateStaticPinnedToCore() but creating static task on each core
* and checking the task cb has run successfully.
*/
#define STACK_SIZE 2048 //Task stack size
static StackType_t task_stack[STACK_SIZE]; //Static buffer for task stack
static StaticTask_t task_buffer; //Static buffer for TCB
static bool has_run[portNUM_PROCESSORS];
static void task(void *arg)
{
has_run[xPortGetCoreID()] = true; //Signify static task cb has run
vTaskDelete(NULL);
}
TEST_CASE("Test FreeRTOS static task allocation", "[freertos]")
{
for(int core = 0; core < portNUM_PROCESSORS; core++){
has_run[core] = false; //Clear has_run flag
TaskHandle_t handle = xTaskCreateStaticPinnedToCore(task, "static task", STACK_SIZE, NULL,
UNITY_FREERTOS_PRIORITY + 1, (StackType_t *)&task_stack,
(StaticTask_t *)&task_buffer, core);
vTaskDelay(5); //Allow for static task to run, delete, and idle to clean up
TEST_ASSERT_NOT_EQUAL(NULL, handle); //Check static task was successfully allocated
TEST_ASSERT_TRUE(has_run[core]) //Check static task has run
}
}
/* ------------- Test backported static event group allocation -------------------
* Test xEventGroupCreateStatic() but creating static event group then waiting
* for an event.
*/
#define WAIT_BITS 0x01 //Wait for first bit
static StaticEventGroup_t event_group;
static EventGroupHandle_t eg_handle;
TEST_CASE("Test FreeRTOS backported eventgroup functions", "[freertos]")
{
eg_handle = xEventGroupCreateStatic((StaticEventGroup_t *)&event_group);
xEventGroupSetBits(eg_handle, WAIT_BITS);
TEST_ASSERT_EQUAL(WAIT_BITS, xEventGroupWaitBits(eg_handle, WAIT_BITS, pdTRUE, pdTRUE, portMAX_DELAY));
//Cleanup static event
vEventGroupDelete(eg_handle);
}
/* --------Test backported thread local storage pointer and deletion cb feature----------
* vTaskSetThreadLocalStoragePointerAndDelCallback()
* pvTaskGetThreadLocalStoragePointer(),
*
* This test creates a task and set's the task's TLSPs. The task is then deleted
* which should trigger the deletion cb.
*/
#define NO_OF_TLSP configNUM_THREAD_LOCAL_STORAGE_POINTERS
#define TLSP_SET_BASE 0x0F //0b1111 to be bit shifted by index
#define TLSP_DEL_BASE 0x05 //0b0101 to be bit shifted by index
//The variables pointed to by Thread Local Storage Pointer
static uint32_t task_storage[portNUM_PROCESSORS][NO_OF_TLSP] = {0};
static void del_cb(int index, void *ptr)
{
*((uint32_t *)ptr) = (TLSP_DEL_BASE << index); //Indicate deletion by setting task storage element to a unique value
}
static void task_cb(void *arg)
{
int core = xPortGetCoreID();
for(int i = 0; i < NO_OF_TLSP; i++){
task_storage[core][i] = (TLSP_SET_BASE << i); //Give each element of task_storage a unique number
vTaskSetThreadLocalStoragePointerAndDelCallback(NULL, i, (void *)&task_storage[core][i], del_cb); //Set each TLSP to point to a task storage element
}
for(int i = 0; i < NO_OF_TLSP; i++){
uint32_t * tlsp = (uint32_t *)pvTaskGetThreadLocalStoragePointer(NULL, i);
TEST_ASSERT_EQUAL(*tlsp, (TLSP_SET_BASE << i)); //Check if TLSP points to the correct task storage element by checking unique value
}
vTaskDelete(NULL); //Delete Task to Trigger TSLP deletion callback
}
TEST_CASE("Test FreeRTOS thread local storage pointers and del cb", "[freertos]")
{
//Create Task
for(int core = 0; core < portNUM_PROCESSORS; core++){
xTaskCreatePinnedToCore(task_cb, "task", 1024, NULL, UNITY_FREERTOS_PRIORITY+1, NULL, core);
}
vTaskDelay(10); //Delay long enough for tasks to run to completion
for(int core = 0; core < portNUM_PROCESSORS; core++){
for(int i = 0; i < NO_OF_TLSP; i++){
TEST_ASSERT_EQUAL((TLSP_DEL_BASE << i), task_storage[core][i]); //Check del_cb ran by checking task storage for unique value
}
}
}

View File

@ -246,13 +246,14 @@ BaseType_t xReturn = pdFAIL;
uint32_t ulTimerTaskStackSize;
vApplicationGetTimerTaskMemory( &pxTimerTaskTCBBuffer, &pxTimerTaskStackBuffer, &ulTimerTaskStackSize );
xTimerTaskHandle = xTaskCreateStatic( prvTimerTask,
xTimerTaskHandle = xTaskCreateStaticPinnedToCore( prvTimerTask,
configTIMER_SERVICE_TASK_NAME,
ulTimerTaskStackSize,
NULL,
( ( UBaseType_t ) configTIMER_TASK_PRIORITY ) | portPRIVILEGE_BIT,
pxTimerTaskStackBuffer,
pxTimerTaskTCBBuffer );
pxTimerTaskTCBBuffer,
0 );
if( xTimerTaskHandle != NULL )
{
@ -261,12 +262,12 @@ BaseType_t xReturn = pdFAIL;
}
#else
{
xReturn = xTaskCreate( prvTimerTask,
xReturn = xTaskCreatePinnedToCore( prvTimerTask,
configTIMER_SERVICE_TASK_NAME,
configTIMER_TASK_STACK_DEPTH,
NULL,
( ( UBaseType_t ) configTIMER_TASK_PRIORITY ) | portPRIVILEGE_BIT,
&xTimerTaskHandle );
&xTimerTaskHandle, 0 );
}
#endif /* configSUPPORT_STATIC_ALLOCATION */
}

View File

@ -129,7 +129,7 @@ done:
vTaskDelete(NULL);
}
TEST_CASE("multiple tasks can access wl handle simultaneously", "[wear_levelling][ignore]")
TEST_CASE("multiple tasks can access wl handle simultaneously", "[wear_levelling]")
{
const esp_partition_t *partition = get_test_data_partition();
wl_handle_t handle;