mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
Merge branch 'bugfix/hwcrypt_fault_inj' into 'master'
hwcrypto: Add more AES & SHA fault injection checks Closes IDF-786 See merge request espressif/esp-idf!5050
This commit is contained in:
commit
dedf346ccb
@ -26,7 +26,7 @@
|
||||
#define IDF_PERFORMANCE_MAX_ESP32_TIME_SHA1_32KB 5000
|
||||
#define IDF_PERFORMANCE_MAX_ESP32_TIME_SHA512_32KB 4500
|
||||
// AES-CBC hardware throughput (accounts for worst-case performance with PSRAM workaround)
|
||||
#define IDF_PERFORMANCE_MIN_AES_CBC_THROUGHPUT_MBSEC 8.5
|
||||
#define IDF_PERFORMANCE_MIN_AES_CBC_THROUGHPUT_MBSEC 8.2
|
||||
// floating point instructions per divide and per sqrt (configured for worst-case with PSRAM workaround)
|
||||
#define IDF_PERFORMANCE_MAX_ESP32_CYCLES_PER_DIV 70
|
||||
#define IDF_PERFORMANCE_MAX_ESP32_CYCLES_PER_SQRT 140
|
||||
|
@ -49,6 +49,11 @@
|
||||
*/
|
||||
static portMUX_TYPE aes_spinlock = portMUX_INITIALIZER_UNLOCKED;
|
||||
|
||||
static inline bool valid_key_length(const esp_aes_context *ctx)
|
||||
{
|
||||
return ctx->key_bytes == 128/8 || ctx->key_bytes == 192/8 || ctx->key_bytes == 256/8;
|
||||
}
|
||||
|
||||
void esp_aes_acquire_hardware( void )
|
||||
{
|
||||
portENTER_CRITICAL(&aes_spinlock);
|
||||
@ -93,6 +98,7 @@ int esp_aes_setkey( esp_aes_context *ctx, const unsigned char *key,
|
||||
}
|
||||
ctx->key_bytes = keybits / 8;
|
||||
memcpy(ctx->key, key, ctx->key_bytes);
|
||||
ctx->key_in_hardware = 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -102,28 +108,47 @@ int esp_aes_setkey( esp_aes_context *ctx, const unsigned char *key,
|
||||
*
|
||||
* Call only while holding esp_aes_acquire_hardware().
|
||||
*/
|
||||
static inline void esp_aes_setkey_hardware( esp_aes_context *ctx, int mode)
|
||||
static void esp_aes_setkey_hardware(esp_aes_context *ctx, int mode)
|
||||
{
|
||||
const uint32_t MODE_DECRYPT_BIT = 4;
|
||||
unsigned mode_reg_base = (mode == ESP_AES_ENCRYPT) ? 0 : MODE_DECRYPT_BIT;
|
||||
|
||||
ctx->key_in_hardware = 0;
|
||||
|
||||
for (int i = 0; i < ctx->key_bytes/4; ++i) {
|
||||
DPORT_REG_WRITE(AES_KEY_BASE + i * 4, *(((uint32_t *)ctx->key) + i));
|
||||
ctx->key_in_hardware += 4;
|
||||
}
|
||||
|
||||
DPORT_REG_WRITE(AES_MODE_REG, mode_reg_base + ((ctx->key_bytes / 8) - 2));
|
||||
|
||||
/* Fault injection check: all words of key data should have been written to hardware */
|
||||
if (ctx->key_in_hardware < 16
|
||||
|| ctx->key_in_hardware != ctx->key_bytes) {
|
||||
abort();
|
||||
}
|
||||
}
|
||||
|
||||
/* Run a single 16 byte block of AES, using the hardware engine.
|
||||
*
|
||||
* Call only while holding esp_aes_acquire_hardware().
|
||||
*/
|
||||
static void esp_aes_block(const void *input, void *output)
|
||||
static int esp_aes_block(esp_aes_context *ctx, const void *input, void *output)
|
||||
{
|
||||
const uint32_t *input_words = (const uint32_t *)input;
|
||||
uint32_t i0, i1, i2, i3;
|
||||
uint32_t *output_words = (uint32_t *)output;
|
||||
|
||||
/* If no key is written to hardware yet, either the user hasn't called
|
||||
mbedtls_aes_setkey_enc/mbedtls_aes_setkey_dec - meaning we also don't
|
||||
know which mode to use - or a fault skipped the
|
||||
key write to hardware. Treat this as a fatal error and zero the output block.
|
||||
*/
|
||||
if (ctx->key_in_hardware != ctx->key_bytes) {
|
||||
bzero(output, 16);
|
||||
return MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH;
|
||||
}
|
||||
|
||||
/* Storing i0,i1,i2,i3 in registers not an array
|
||||
helps a lot with optimisations at -Os level */
|
||||
i0 = input_words[0];
|
||||
@ -152,11 +177,14 @@ static void esp_aes_block(const void *input, void *output)
|
||||
Bypassing this check requires at least one additional fault.
|
||||
*/
|
||||
if(i0 == output_words[0] && i1 == output_words[1] && i2 == output_words[2] && i3 == output_words[3]) {
|
||||
// calling two zeroing functions to narrow the
|
||||
// window for a double-fault here
|
||||
// calling zeroing functions to narrow the
|
||||
// window for a double-fault of the abort step, here
|
||||
memset(output, 0, 16);
|
||||
mbedtls_platform_zeroize(output, 16);
|
||||
abort();
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
@ -166,11 +194,18 @@ int esp_internal_aes_encrypt( esp_aes_context *ctx,
|
||||
const unsigned char input[16],
|
||||
unsigned char output[16] )
|
||||
{
|
||||
int r;
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
esp_aes_setkey_hardware(ctx, ESP_AES_ENCRYPT);
|
||||
esp_aes_block(input, output);
|
||||
r = esp_aes_block(ctx, input, output);
|
||||
esp_aes_release_hardware();
|
||||
return 0;
|
||||
return r;
|
||||
}
|
||||
|
||||
void esp_aes_encrypt( esp_aes_context *ctx,
|
||||
@ -188,11 +223,18 @@ int esp_internal_aes_decrypt( esp_aes_context *ctx,
|
||||
const unsigned char input[16],
|
||||
unsigned char output[16] )
|
||||
{
|
||||
int r;
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
esp_aes_setkey_hardware(ctx, ESP_AES_DECRYPT);
|
||||
esp_aes_block(input, output);
|
||||
r = esp_aes_block(ctx, input, output);
|
||||
esp_aes_release_hardware();
|
||||
return 0;
|
||||
return r;
|
||||
}
|
||||
|
||||
void esp_aes_decrypt( esp_aes_context *ctx,
|
||||
@ -202,7 +244,6 @@ void esp_aes_decrypt( esp_aes_context *ctx,
|
||||
esp_internal_aes_decrypt(ctx, input, output);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* AES-ECB block encryption/decryption
|
||||
*/
|
||||
@ -211,12 +252,19 @@ int esp_aes_crypt_ecb( esp_aes_context *ctx,
|
||||
const unsigned char input[16],
|
||||
unsigned char output[16] )
|
||||
{
|
||||
int r;
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
esp_aes_setkey_hardware(ctx, mode);
|
||||
esp_aes_block(input, output);
|
||||
r = esp_aes_block(ctx, input, output);
|
||||
esp_aes_release_hardware();
|
||||
|
||||
return 0;
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
@ -240,14 +288,19 @@ int esp_aes_crypt_cbc( esp_aes_context *ctx,
|
||||
return ( ERR_ESP_AES_INVALID_INPUT_LENGTH );
|
||||
}
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
|
||||
esp_aes_setkey_hardware(ctx, mode);
|
||||
|
||||
if ( mode == ESP_AES_DECRYPT ) {
|
||||
while ( length > 0 ) {
|
||||
memcpy(temp, input_words, 16);
|
||||
esp_aes_block(input_words, output_words);
|
||||
esp_aes_block(ctx, input_words, output_words);
|
||||
|
||||
for ( i = 0; i < 4; i++ ) {
|
||||
output_words[i] = output_words[i] ^ iv_words[i];
|
||||
@ -266,7 +319,7 @@ int esp_aes_crypt_cbc( esp_aes_context *ctx,
|
||||
output_words[i] = input_words[i] ^ iv_words[i];
|
||||
}
|
||||
|
||||
esp_aes_block(output_words, output_words);
|
||||
esp_aes_block(ctx, output_words, output_words);
|
||||
memcpy( iv_words, output_words, 16 );
|
||||
|
||||
input_words += 4;
|
||||
@ -294,14 +347,19 @@ int esp_aes_crypt_cfb128( esp_aes_context *ctx,
|
||||
int c;
|
||||
size_t n = *iv_off;
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
|
||||
esp_aes_setkey_hardware(ctx, ESP_AES_ENCRYPT);
|
||||
|
||||
if ( mode == ESP_AES_DECRYPT ) {
|
||||
while ( length-- ) {
|
||||
if ( n == 0 ) {
|
||||
esp_aes_block(iv, iv );
|
||||
esp_aes_block(ctx, iv, iv);
|
||||
}
|
||||
|
||||
c = *input++;
|
||||
@ -313,7 +371,7 @@ int esp_aes_crypt_cfb128( esp_aes_context *ctx,
|
||||
} else {
|
||||
while ( length-- ) {
|
||||
if ( n == 0 ) {
|
||||
esp_aes_block(iv, iv );
|
||||
esp_aes_block(ctx, iv, iv);
|
||||
}
|
||||
|
||||
iv[n] = *output++ = (unsigned char)( iv[n] ^ *input++ );
|
||||
@ -342,13 +400,18 @@ int esp_aes_crypt_cfb8( esp_aes_context *ctx,
|
||||
unsigned char c;
|
||||
unsigned char ov[17];
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
|
||||
esp_aes_setkey_hardware(ctx, ESP_AES_ENCRYPT);
|
||||
|
||||
while ( length-- ) {
|
||||
memcpy( ov, iv, 16 );
|
||||
esp_aes_block(iv, iv);
|
||||
esp_aes_block(ctx, iv, iv);
|
||||
|
||||
if ( mode == ESP_AES_DECRYPT ) {
|
||||
ov[16] = *input;
|
||||
@ -382,13 +445,18 @@ int esp_aes_crypt_ctr( esp_aes_context *ctx,
|
||||
int c, i;
|
||||
size_t n = *nc_off;
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
|
||||
esp_aes_setkey_hardware(ctx, ESP_AES_ENCRYPT);
|
||||
|
||||
while ( length-- ) {
|
||||
if ( n == 0 ) {
|
||||
esp_aes_block(nonce_counter, stream_block);
|
||||
esp_aes_block(ctx, nonce_counter, stream_block);
|
||||
|
||||
for ( i = 16; i > 0; i-- )
|
||||
if ( ++nonce_counter[i - 1] != 0 ) {
|
||||
@ -432,13 +500,17 @@ int esp_aes_crypt_ofb( esp_aes_context *ctx,
|
||||
return( MBEDTLS_ERR_AES_BAD_INPUT_DATA );
|
||||
}
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
|
||||
esp_aes_setkey_hardware(ctx, ESP_AES_ENCRYPT);
|
||||
|
||||
while( length-- ) {
|
||||
if( n == 0 ) {
|
||||
esp_aes_block( iv, iv );
|
||||
esp_aes_block(ctx, iv, iv);
|
||||
}
|
||||
*output++ = *input++ ^ iv[n];
|
||||
|
||||
|
@ -228,6 +228,7 @@ void esp_sha_read_digest_state(esp_sha_type sha_type, void *digest_state)
|
||||
{
|
||||
uint32_t *digest_state_words = NULL;
|
||||
uint32_t *reg_addr_buf = NULL;
|
||||
uint32_t word_len = sha_length(sha_type)/4;
|
||||
#ifndef NDEBUG
|
||||
{
|
||||
SemaphoreHandle_t *engine_state = sha_get_engine_state(sha_type);
|
||||
@ -250,15 +251,25 @@ void esp_sha_read_digest_state(esp_sha_type sha_type, void *digest_state)
|
||||
if(sha_type == SHA2_384 || sha_type == SHA2_512) {
|
||||
/* for these ciphers using 64-bit states, swap each pair of words */
|
||||
DPORT_INTERRUPT_DISABLE(); // Disable interrupt only on current CPU.
|
||||
for(int i = 0; i < sha_length(sha_type)/4; i += 2) {
|
||||
for(int i = 0; i < word_len; i += 2) {
|
||||
digest_state_words[i+1] = DPORT_SEQUENCE_REG_READ((uint32_t)®_addr_buf[i]);
|
||||
digest_state_words[i] = DPORT_SEQUENCE_REG_READ((uint32_t)®_addr_buf[i+1]);
|
||||
}
|
||||
DPORT_INTERRUPT_RESTORE(); // restore the previous interrupt level
|
||||
} else {
|
||||
esp_dport_access_read_buffer(digest_state_words, (uint32_t)®_addr_buf[0], sha_length(sha_type)/4);
|
||||
esp_dport_access_read_buffer(digest_state_words, (uint32_t)®_addr_buf[0], word_len);
|
||||
}
|
||||
esp_sha_unlock_memory_block();
|
||||
|
||||
/* Fault injection check: verify SHA engine actually ran,
|
||||
state is not all zeroes.
|
||||
*/
|
||||
for (int i = 0; i < word_len; i++) {
|
||||
if (digest_state_words[i] != 0) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
abort(); // SHA peripheral returned all zero state, probably due to fault injection
|
||||
}
|
||||
|
||||
void esp_sha_block(esp_sha_type sha_type, const void *data_block, bool is_first_block)
|
||||
|
@ -41,17 +41,13 @@ extern "C" {
|
||||
/**
|
||||
* \brief AES context structure
|
||||
*
|
||||
* \note buf is able to hold 32 extra bytes, which can be used:
|
||||
* - for alignment purposes if VIA padlock is used, and/or
|
||||
* - to simplify key expansion in the 256-bit case by
|
||||
* generating an extra round key
|
||||
*/
|
||||
typedef struct {
|
||||
uint8_t key_bytes;
|
||||
volatile uint8_t key_in_hardware; /* This variable is used for fault injection checks, so marked volatile to avoid optimisation */
|
||||
uint8_t key[32];
|
||||
} esp_aes_context;
|
||||
|
||||
|
||||
/**
|
||||
* \brief The AES XTS context-type definition.
|
||||
*/
|
||||
|
Loading…
Reference in New Issue
Block a user