mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
mqtt/ssl_ds example: Remove configure_ds.py script, use
esp-secure-cert-tool instread
This commit is contained in:
parent
33b51563dc
commit
d64bda5946
@ -40,22 +40,26 @@ openssl genrsa -out client.key
|
||||
openssl req -out client.csr -key client.key -new
|
||||
```
|
||||
|
||||
Paste the generated CSR in the [Mosquitto test certificate signer](https://test.mosquitto.org/ssl/index.php), click Submit and copy the downloaded `client.crt` in the `main` directory.
|
||||
|
||||
Please note, that the supplied file `client.crt` in the `main` directory is only a placeholder for your client certificate (i.e. the example "as is" would compile but would not connect to the broker)
|
||||
Paste the generated CSR in the [Mosquitto test certificate signer](https://test.mosquitto.org/ssl/index.php), click Submit and downloaded the `client.crt`. This `client.crt` file shall be used as the device certificate.
|
||||
|
||||
#### 3) Configure the DS peripheral
|
||||
|
||||
* The DS peripheral can be configured with the python script [configure_ds.py](README.md#configure_ds-py) by executing the following command
|
||||
* i) Install the [esp_secure_cert configuration utility](https://github.com/espressif/esp_secure_cert_mgr/tree/main/tools#esp_secure_cert-configuration-tool) with following command:
|
||||
```
|
||||
pip install esp-secure-cert-tool
|
||||
```
|
||||
* The DS peripheral can be configured by executing the following command:
|
||||
|
||||
```
|
||||
python configure_ds.py --port /* USB COM port */ --private-key /* RSA priv key */
|
||||
configure_esp_secure_cert.py -p /* Serial port */ --device-cert /* Device cert */ --private-key /* RSA priv key */ --target_chip /* target chip */ --configure_ds
|
||||
```
|
||||
|
||||
In the command USB COM port is nothing but the serial port to which the ESP chip is connected. see
|
||||
[check serial port](https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/establish-serial-connection.html#check-port-on-windows) for more details.
|
||||
RSA private key is nothing but the client private key ( RSA ) generated in Step 2.
|
||||
|
||||
> Note: More details about the `esp-secure-cert-tool` utility can be found [here](https://github.com/espressif/esp_secure_cert_mgr/tree/main/tools).
|
||||
|
||||
#### 4) Connection cofiguration
|
||||
* Open the project configuration menu (`idf.py menuconfig`)
|
||||
* Configure Wi-Fi or Ethernet under "Example Connection Configuration" menu. See "Establishing Wi-Fi or Ethernet Connection" section in [examples/protocols/README.md](../../README.md) for more details.
|
||||
|
@ -1,393 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
import argparse
|
||||
import hashlib
|
||||
import hmac
|
||||
import json
|
||||
import os
|
||||
import struct
|
||||
import subprocess
|
||||
import sys
|
||||
|
||||
from cryptography.hazmat.backends import default_backend
|
||||
from cryptography.hazmat.primitives import serialization
|
||||
from cryptography.hazmat.primitives.asymmetric import rsa
|
||||
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
|
||||
from cryptography.utils import int_to_bytes
|
||||
|
||||
try:
|
||||
import nvs_partition_gen as nvs_gen
|
||||
except ImportError:
|
||||
idf_path = os.getenv('IDF_PATH')
|
||||
if not idf_path or not os.path.exists(idf_path):
|
||||
raise Exception('IDF_PATH not found')
|
||||
sys.path.insert(0, os.path.join(idf_path, 'components', 'nvs_flash', 'nvs_partition_generator'))
|
||||
import nvs_partition_gen as nvs_gen
|
||||
|
||||
# Check python version is proper or not to avoid script failure
|
||||
assert sys.version_info >= (3, 6, 0), 'Python version too low.'
|
||||
|
||||
esp_ds_data_dir = 'esp_ds_data'
|
||||
# hmac_key_file is generated when HMAC_KEY is calculated, it is used when burning HMAC_KEY to efuse
|
||||
hmac_key_file = esp_ds_data_dir + '/hmac_key.bin'
|
||||
# csv and bin filenames are default filenames for nvs partition files created with this script
|
||||
csv_filename = esp_ds_data_dir + '/pre_prov.csv'
|
||||
bin_filename = esp_ds_data_dir + '/pre_prov.bin'
|
||||
expected_json_path = os.path.join('build', 'config', 'sdkconfig.json')
|
||||
# Targets supported by the script
|
||||
supported_targets = {'esp32s2', 'esp32c3', 'esp32s3'}
|
||||
supported_key_size = {'esp32s2':[1024, 2048, 3072, 4096], 'esp32c3':[1024, 2048, 3072], 'esp32s3':[1024, 2048, 3072, 4096]}
|
||||
|
||||
|
||||
# @return
|
||||
# on success idf_target - value of the IDF_TARGET read from build/config/sdkconfig.json
|
||||
# on failure None
|
||||
def get_idf_target():
|
||||
if os.path.exists(expected_json_path):
|
||||
sdkconfig = json.load(open(expected_json_path))
|
||||
idf_target_read = sdkconfig['IDF_TARGET']
|
||||
return idf_target_read
|
||||
else:
|
||||
print('ERROR: IDF_TARGET has not been set for the supported targets,'
|
||||
"\nplase execute command \"idf.py set-target {TARGET}\" in the example directory")
|
||||
return None
|
||||
|
||||
|
||||
def load_privatekey(key_file_path, password=None):
|
||||
key_file = open(key_file_path, 'rb')
|
||||
key = key_file.read()
|
||||
key_file.close()
|
||||
return serialization.load_pem_private_key(key, password=password, backend=default_backend())
|
||||
|
||||
|
||||
def number_as_bytes(number, pad_bits=None):
|
||||
"""
|
||||
Given a number, format as a little endian array of bytes
|
||||
"""
|
||||
result = int_to_bytes(number)[::-1]
|
||||
while pad_bits is not None and len(result) < (pad_bits // 8):
|
||||
result += b'\x00'
|
||||
return result
|
||||
|
||||
|
||||
# @return
|
||||
# c : ciphertext_c
|
||||
# iv : initialization vector
|
||||
# key_size : key size of the RSA private key in bytes.
|
||||
# @input
|
||||
# privkey : path to the RSA private key
|
||||
# priv_key_pass : path to the RSA privaete key password
|
||||
# hmac_key : HMAC key value ( to calculate DS params)
|
||||
# idf_target : The target chip for the script (e.g. esp32s2, esp32c3, esp32s3)
|
||||
# @info
|
||||
# The function calculates the encrypted private key parameters.
|
||||
# Consult the DS documentation (available for the ESP32-S2) in the esp-idf programming guide for more details about the variables and calculations.
|
||||
def calculate_ds_parameters(privkey, priv_key_pass, hmac_key, idf_target):
|
||||
private_key = load_privatekey(privkey, priv_key_pass)
|
||||
if not isinstance(private_key, rsa.RSAPrivateKey):
|
||||
print('ERROR: Only RSA private keys are supported')
|
||||
sys.exit(-1)
|
||||
if hmac_key is None:
|
||||
print('ERROR: hmac_key cannot be None')
|
||||
sys.exit(-2)
|
||||
|
||||
priv_numbers = private_key.private_numbers()
|
||||
pub_numbers = private_key.public_key().public_numbers()
|
||||
Y = priv_numbers.d
|
||||
M = pub_numbers.n
|
||||
key_size = private_key.key_size
|
||||
if key_size not in supported_key_size[idf_target]:
|
||||
print('ERROR: Private key size {0} not supported for the target {1},\nthe supported key sizes are {2}'
|
||||
.format(key_size, idf_target, str(supported_key_size[idf_target])))
|
||||
sys.exit(-1)
|
||||
|
||||
iv = os.urandom(16)
|
||||
|
||||
rr = 1 << (key_size * 2)
|
||||
rinv = rr % pub_numbers.n
|
||||
mprime = - rsa._modinv(M, 1 << 32)
|
||||
mprime &= 0xFFFFFFFF
|
||||
length = key_size // 32 - 1
|
||||
|
||||
# get max supported key size for the respective target
|
||||
max_len = max(supported_key_size[idf_target])
|
||||
aes_key = hmac.HMAC(hmac_key, b'\xFF' * 32, hashlib.sha256).digest()
|
||||
|
||||
md_in = number_as_bytes(Y, max_len) + \
|
||||
number_as_bytes(M, max_len) + \
|
||||
number_as_bytes(rinv, max_len) + \
|
||||
struct.pack('<II', mprime, length) + \
|
||||
iv
|
||||
|
||||
# expected_len = max_len_Y + max_len_M + max_len_rinv + (mprime + length packed (8 bytes))+ iv (16 bytes)
|
||||
expected_len = (max_len / 8) * 3 + 8 + 16
|
||||
assert len(md_in) == expected_len
|
||||
md = hashlib.sha256(md_in).digest()
|
||||
# In case of ESP32-S2
|
||||
# Y4096 || M4096 || Rb4096 || M_prime32 || LENGTH32 || MD256 || 0x08*8
|
||||
# In case of ESP32-C3
|
||||
# Y3072 || M3072 || Rb3072 || M_prime32 || LENGTH32 || MD256 || 0x08*8
|
||||
p = number_as_bytes(Y, max_len) + \
|
||||
number_as_bytes(M, max_len) + \
|
||||
number_as_bytes(rinv, max_len) + \
|
||||
md + \
|
||||
struct.pack('<II', mprime, length) + \
|
||||
b'\x08' * 8
|
||||
|
||||
# expected_len = max_len_Y + max_len_M + max_len_rinv + md (32 bytes) + (mprime + length packed (8bytes)) + padding (8 bytes)
|
||||
expected_len = (max_len / 8) * 3 + 32 + 8 + 8
|
||||
assert len(p) == expected_len
|
||||
|
||||
cipher = Cipher(algorithms.AES(aes_key), modes.CBC(iv), backend=default_backend())
|
||||
encryptor = cipher.encryptor()
|
||||
c = encryptor.update(p) + encryptor.finalize()
|
||||
return c, iv, key_size
|
||||
|
||||
|
||||
# @info
|
||||
# The function makes use of the "espefuse.py" script to read the efuse summary
|
||||
def efuse_summary(args, idf_target):
|
||||
os.system('python $IDF_PATH/components/esptool_py/esptool/espefuse.py --chip {0} -p {1} summary'.format(idf_target, (args.port)))
|
||||
|
||||
|
||||
# @info
|
||||
# The function makes use of the "espefuse.py" script to burn the HMAC key on the efuse.
|
||||
def efuse_burn_key(args, idf_target):
|
||||
# In case of a development (default) usecase we disable the read protection.
|
||||
key_block_status = '--no-read-protect'
|
||||
|
||||
if args.production is True:
|
||||
# Whitespace character will have no additional effect on the command and
|
||||
# read protection will be enabled as the default behaviour of the command
|
||||
key_block_status = ' '
|
||||
|
||||
os.system('python $IDF_PATH/components/esptool_py/esptool/espefuse.py --chip {0} -p {1} burn_key '
|
||||
'{2} {3} HMAC_DOWN_DIGITAL_SIGNATURE {4}'
|
||||
.format((idf_target), (args.port), ('BLOCK_KEY' + str(args.efuse_key_id)), (hmac_key_file), (key_block_status)))
|
||||
|
||||
|
||||
# @info
|
||||
# Generate a custom csv file of encrypted private key parameters.
|
||||
# The csv file is required by the nvs_partition_generator utility to create the nvs partition.
|
||||
def generate_csv_file(c, iv, hmac_key_id, key_size, csv_file):
|
||||
|
||||
with open(csv_file, 'wt', encoding='utf8') as f:
|
||||
f.write('# This is a generated csv file containing required parameters for the Digital Signature operation\n')
|
||||
f.write('key,type,encoding,value\nesp_ds_ns,namespace,,\n')
|
||||
f.write('esp_ds_c,data,hex2bin,%s\n' % (c.hex()))
|
||||
f.write('esp_ds_iv,data,hex2bin,%s\n' % (iv.hex()))
|
||||
f.write('esp_ds_key_id,data,u8,%d\n' % (hmac_key_id))
|
||||
f.write('esp_ds_rsa_len,data,u16,%d\n' % (key_size))
|
||||
|
||||
|
||||
class DefineArgs(object):
|
||||
def __init__(self, attributes):
|
||||
for key, value in attributes.items():
|
||||
self.__setattr__(key, value)
|
||||
|
||||
|
||||
# @info
|
||||
# This function uses the nvs_partition_generater utility
|
||||
# to generate the nvs partition of the encrypted private key parameters.
|
||||
def generate_nvs_partition(input_filename, output_filename):
|
||||
|
||||
nvs_args = DefineArgs({
|
||||
'input': input_filename,
|
||||
'outdir': os.getcwd(),
|
||||
'output': output_filename,
|
||||
'size': hex(0x3000),
|
||||
'version': 2,
|
||||
'keyfile':None,
|
||||
})
|
||||
|
||||
nvs_gen.generate(nvs_args, is_encr_enabled=False, encr_key=None)
|
||||
|
||||
|
||||
# @return
|
||||
# The json formatted summary of the efuse.
|
||||
def get_efuse_summary_json(args, idf_target):
|
||||
_efuse_summary = None
|
||||
try:
|
||||
_efuse_summary = subprocess.check_output(('python $IDF_PATH/components/esptool_py/esptool/espefuse.py '
|
||||
'--chip {0} -p {1} summary --format json'.format(idf_target, (args.port))), shell=True)
|
||||
except subprocess.CalledProcessError as e:
|
||||
print((e.output).decode('UTF-8'))
|
||||
sys.exit(-1)
|
||||
|
||||
_efuse_summary = _efuse_summary.decode('UTF-8')
|
||||
# Remove everything before actual json data from efuse_summary command output.
|
||||
_efuse_summary = _efuse_summary[_efuse_summary.find('{'):]
|
||||
try:
|
||||
_efuse_summary_json = json.loads(_efuse_summary)
|
||||
except json.JSONDecodeError:
|
||||
print('ERROR: failed to parse the json output')
|
||||
sys.exit(-1)
|
||||
return _efuse_summary_json
|
||||
|
||||
|
||||
# @return
|
||||
# on success: 256 bit HMAC key present in the given key_block (args.efuse_key_id)
|
||||
# on failure: None
|
||||
# @info
|
||||
# This function configures the provided efuse key_block.
|
||||
# If the provided efuse key_block is empty the function generates a new HMAC key and burns it in the efuse key_block.
|
||||
# If the key_block already contains a key the function reads the key from the efuse key_block
|
||||
def configure_efuse_key_block(args, idf_target):
|
||||
efuse_summary_json = get_efuse_summary_json(args, idf_target)
|
||||
key_blk = 'BLOCK_KEY' + str(args.efuse_key_id)
|
||||
key_purpose = 'KEY_PURPOSE_' + str(args.efuse_key_id)
|
||||
|
||||
kb_writeable = efuse_summary_json[key_blk]['writeable']
|
||||
kb_readable = efuse_summary_json[key_blk]['readable']
|
||||
hmac_key_read = None
|
||||
|
||||
# If the efuse key block is writable (empty) then generate and write
|
||||
# the new hmac key and check again
|
||||
# If the efuse key block is not writable (already contains a key) then check if it is redable
|
||||
if kb_writeable is True:
|
||||
print('Provided key block (KEY BLOCK %1d) is writable\n Generating a new key and burning it in the efuse..\n' % (args.efuse_key_id))
|
||||
|
||||
new_hmac_key = os.urandom(32)
|
||||
with open(hmac_key_file, 'wb') as key_file:
|
||||
key_file.write(new_hmac_key)
|
||||
# Burn efuse key
|
||||
efuse_burn_key(args, idf_target)
|
||||
if args.production is False:
|
||||
# Read fresh summary of the efuse to read the key value from efuse.
|
||||
# If the key read from efuse matches with the key generated
|
||||
# on host then burn_key operation was successfull
|
||||
new_efuse_summary_json = get_efuse_summary_json(args, idf_target)
|
||||
hmac_key_read = new_efuse_summary_json[key_blk]['value']
|
||||
print(hmac_key_read)
|
||||
hmac_key_read = bytes.fromhex(hmac_key_read)
|
||||
if new_hmac_key == hmac_key_read:
|
||||
print('Key was successfully written to the efuse (KEY BLOCK %1d)' % (args.efuse_key_id))
|
||||
else:
|
||||
print('ERROR: Failed to burn the hmac key to efuse (KEY BLOCK %1d),'
|
||||
'\nPlease execute the script again using a different key id' % (args.efuse_key_id))
|
||||
return None
|
||||
else:
|
||||
new_efuse_summary_json = get_efuse_summary_json(args, idf_target)
|
||||
if new_efuse_summary_json[key_purpose]['value'] != 'HMAC_DOWN_DIGITAL_SIGNATURE':
|
||||
print('ERROR: Failed to verify the key purpose of the key block{})'.format(args.efuse_key_id))
|
||||
return None
|
||||
hmac_key_read = new_hmac_key
|
||||
else:
|
||||
# If the efuse key block is redable, then read the key from efuse block and use it for encrypting the RSA private key parameters.
|
||||
# If the efuse key block is not redable or it has key purpose set to a different
|
||||
# value than "HMAC_DOWN_DIGITAL_SIGNATURE" then we cannot use it for DS operation
|
||||
if kb_readable is True:
|
||||
if efuse_summary_json[key_purpose]['value'] == 'HMAC_DOWN_DIGITAL_SIGNATURE':
|
||||
print('Provided efuse key block (KEY BLOCK %1d) already contains a key with key_purpose=HMAC_DOWN_DIGITAL_SIGNATURE,'
|
||||
'\nusing the same key for encrypting the private key data...\n' % (args.efuse_key_id))
|
||||
hmac_key_read = efuse_summary_json[key_blk]['value']
|
||||
hmac_key_read = bytes.fromhex(hmac_key_read)
|
||||
if args.keep_ds_data is True:
|
||||
with open(hmac_key_file, 'wb') as key_file:
|
||||
key_file.write(hmac_key_read)
|
||||
else:
|
||||
print('ERROR: Provided efuse key block ((KEY BLOCK %1d)) contains a key with key purpose different'
|
||||
'than HMAC_DOWN_DIGITAL_SIGNATURE,\nplease execute the script again with a different value of the efuse key id.' % (args.efuse_key_id))
|
||||
return None
|
||||
else:
|
||||
print('ERROR: Provided efuse key block (KEY BLOCK %1d) is not readable and writeable,'
|
||||
'\nplease execute the script again with a different value of the efuse key id.' % (args.efuse_key_id))
|
||||
return None
|
||||
|
||||
# Return the hmac key burned into the efuse
|
||||
return hmac_key_read
|
||||
|
||||
|
||||
def cleanup(args):
|
||||
if args.keep_ds_data is False:
|
||||
if os.path.exists(hmac_key_file):
|
||||
os.remove(hmac_key_file)
|
||||
if os.path.exists(csv_filename):
|
||||
os.remove(csv_filename)
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description='''Generate an HMAC key and burn it in the desired efuse key block (required for Digital Signature),
|
||||
Generates an NVS partition containing the encrypted private key parameters from the client private key.
|
||||
''')
|
||||
|
||||
parser.add_argument(
|
||||
'--private-key',
|
||||
dest='privkey',
|
||||
default='client.key',
|
||||
metavar='relative/path/to/client-priv-key',
|
||||
help='relative path to client private key')
|
||||
|
||||
parser.add_argument(
|
||||
'--pwd', '--password',
|
||||
dest='priv_key_pass',
|
||||
metavar='[password]',
|
||||
help='the password associated with the private key')
|
||||
|
||||
parser.add_argument(
|
||||
'--summary',
|
||||
dest='summary',action='store_true',
|
||||
help='Provide this option to print efuse summary of the chip')
|
||||
|
||||
parser.add_argument(
|
||||
'--efuse_key_id',
|
||||
dest='efuse_key_id', type=int, choices=range(1,6),
|
||||
metavar='[key_id] ',
|
||||
default=1,
|
||||
help='Provide the efuse key_id which contains/will contain HMAC_KEY, default is 1')
|
||||
|
||||
parser.add_argument(
|
||||
'--port', '-p',
|
||||
dest='port',
|
||||
metavar='[port]',
|
||||
required=True,
|
||||
help='UART com port to which the ESP device is connected')
|
||||
|
||||
parser.add_argument(
|
||||
'--keep_ds_data_on_host','-keep_ds_data',
|
||||
dest='keep_ds_data', action='store_true',
|
||||
help='Keep encrypted private key data and key on host machine for testing purpose')
|
||||
|
||||
parser.add_argument(
|
||||
'--production', '-prod',
|
||||
dest='production', action='store_true',
|
||||
help='Enable production configurations. e.g.keep efuse key block read protection enabled')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
idf_target = get_idf_target()
|
||||
if idf_target not in supported_targets:
|
||||
if idf_target is not None:
|
||||
print('ERROR: The script does not support the target %s' % idf_target)
|
||||
sys.exit(-1)
|
||||
idf_target = str(idf_target)
|
||||
|
||||
if args.summary is not False:
|
||||
efuse_summary(args, idf_target)
|
||||
sys.exit(0)
|
||||
|
||||
if (os.path.exists(args.privkey) is False):
|
||||
print('ERROR: The provided private key file does not exist')
|
||||
sys.exit(-1)
|
||||
|
||||
if (os.path.exists(esp_ds_data_dir) is False):
|
||||
os.makedirs(esp_ds_data_dir)
|
||||
|
||||
# Burn hmac_key on the efuse block (if it is empty) or read it
|
||||
# from the efuse block (if the efuse block already contains a key).
|
||||
hmac_key_read = configure_efuse_key_block(args, idf_target)
|
||||
if hmac_key_read is None:
|
||||
sys.exit(-1)
|
||||
|
||||
# Calculate the encrypted private key data along with all other parameters
|
||||
c, iv, key_size = calculate_ds_parameters(args.privkey, args.priv_key_pass, hmac_key_read, idf_target)
|
||||
|
||||
# Generate csv file for the DS data and generate an NVS partition.
|
||||
generate_csv_file(c, iv, args.efuse_key_id, key_size, csv_filename)
|
||||
generate_nvs_partition(csv_filename, bin_filename)
|
||||
cleanup(args)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
3
examples/protocols/mqtt/ssl_ds/main/idf_component.yml
Normal file
3
examples/protocols/mqtt/ssl_ds/main/idf_component.yml
Normal file
@ -0,0 +1,3 @@
|
||||
## IDF Component Manager Manifest File
|
||||
dependencies:
|
||||
espressif/esp_secure_cert_mgr: "^2.0.0"
|
Loading…
Reference in New Issue
Block a user