mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
esp_hw_support: Update spinlocks to use esp_cpu_compare_and_set()
esp_cpu_compare_and_set() abstracts the atomic compare-and-set instruction by hiding the details of whether the target variable is in internal or external RAM. This commit updates "spinlocks.h" as follows: - esp_cpu_compare_and_set() is now called instead of "compare_set.h" - Refactored spinlock logic to be more optimized and have more stringent sanity checks
This commit is contained in:
parent
64117a0c59
commit
d37fa7e244
@ -5,15 +5,14 @@
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
#include "sdkconfig.h"
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#include "sdkconfig.h"
|
||||
#include "hal/cpu_hal.h"
|
||||
#include "compare_set.h"
|
||||
#include "soc/soc.h"
|
||||
#include "esp_cpu.h"
|
||||
|
||||
#if __XTENSA__
|
||||
#include "xtensa/xtruntime.h"
|
||||
#include "xt_utils.h"
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
@ -35,20 +34,7 @@ extern "C" {
|
||||
typedef struct {
|
||||
NEED_VOLATILE_MUX uint32_t owner;
|
||||
NEED_VOLATILE_MUX uint32_t count;
|
||||
}spinlock_t;
|
||||
|
||||
#if (CONFIG_SPIRAM)
|
||||
/**
|
||||
* @brief Check if the pointer is on external ram
|
||||
* @param p pointer
|
||||
* @return true: on external ram; false: not on external ram
|
||||
*/
|
||||
static inline bool __attribute__((always_inline)) spinlock_ptr_external_ram(const void *p)
|
||||
{
|
||||
//On esp32, this external virtual address rergion is for psram
|
||||
return ((intptr_t)p >= SOC_EXTRAM_DATA_LOW && (intptr_t)p < SOC_EXTRAM_DATA_HIGH);
|
||||
}
|
||||
#endif
|
||||
} spinlock_t;
|
||||
|
||||
/**
|
||||
* @brief Initialize a lock to its default state - unlocked
|
||||
@ -80,65 +66,68 @@ static inline void __attribute__((always_inline)) spinlock_initialize(spinlock_t
|
||||
static inline bool __attribute__((always_inline)) spinlock_acquire(spinlock_t *lock, int32_t timeout)
|
||||
{
|
||||
#if !CONFIG_FREERTOS_UNICORE && !BOOTLOADER_BUILD
|
||||
uint32_t result;
|
||||
uint32_t irq_status;
|
||||
uint32_t ccount_start;
|
||||
uint32_t core_id, other_core_id;
|
||||
bool lock_set;
|
||||
esp_cpu_cycle_count_t start_count;
|
||||
|
||||
assert(lock);
|
||||
irq_status = XTOS_SET_INTLEVEL(XCHAL_EXCM_LEVEL);
|
||||
|
||||
if(timeout != SPINLOCK_WAIT_FOREVER){
|
||||
RSR(CCOUNT, ccount_start);
|
||||
// Note: The core IDs are the full 32 bit (CORE_ID_REGVAL_PRO/CORE_ID_REGVAL_APP) values
|
||||
core_id = xt_utils_get_raw_core_id();
|
||||
other_core_id = CORE_ID_REGVAL_XOR_SWAP ^ core_id;
|
||||
|
||||
/* lock->owner should be one of SPINLOCK_FREE, CORE_ID_REGVAL_PRO,
|
||||
* CORE_ID_REGVAL_APP:
|
||||
* - If SPINLOCK_FREE, we want to atomically set to 'core_id'.
|
||||
* - If "our" core_id, we can drop through immediately.
|
||||
* - If "other_core_id", we spin here.
|
||||
*/
|
||||
|
||||
// The caller is already the owner of the lock. Simply increment the nesting count
|
||||
if (lock->owner == core_id) {
|
||||
assert(lock->count > 0 && lock->count < 0xFF); // Bad count value implies memory corruption
|
||||
lock->count++;
|
||||
XTOS_RESTORE_INTLEVEL(irq_status);
|
||||
return true;
|
||||
}
|
||||
|
||||
/*spin until we own a core */
|
||||
RSR(PRID, core_id);
|
||||
/* First attempt to take the lock.
|
||||
*
|
||||
* Note: We do a first attempt separately (instead of putting this into a loop) in order to avoid call to
|
||||
* esp_cpu_get_cycle_count(). This doing a first attempt separately makes acquiring a free lock quicker, which
|
||||
* is the case for the majority of spinlock_acquire() calls (as spinlocks are free most of the time since they
|
||||
* aren't meant to be held for long).
|
||||
*/
|
||||
lock_set = esp_cpu_compare_and_set(&lock->owner, SPINLOCK_FREE, core_id);
|
||||
if (lock_set || timeout == SPINLOCK_NO_WAIT) {
|
||||
// We've successfully taken the lock, or we are not retrying
|
||||
goto exit;
|
||||
}
|
||||
|
||||
/* Note: coreID is the full 32 bit core ID (CORE_ID_REGVAL_PRO/CORE_ID_REGVAL_APP) */
|
||||
|
||||
other_core_id = CORE_ID_REGVAL_XOR_SWAP ^ core_id;
|
||||
// First attempt to take the lock has failed. Retry until the lock is taken, or until we timeout.
|
||||
start_count = esp_cpu_get_cycle_count();
|
||||
do {
|
||||
|
||||
/* lock->owner should be one of SPINLOCK_FREE, CORE_ID_REGVAL_PRO,
|
||||
* CORE_ID_REGVAL_APP:
|
||||
* - If SPINLOCK_FREE, we want to atomically set to 'core_id'.
|
||||
* - If "our" core_id, we can drop through immediately.
|
||||
* - If "other_core_id", we spin here.
|
||||
*/
|
||||
result = core_id;
|
||||
|
||||
#if (CONFIG_SPIRAM)
|
||||
if (spinlock_ptr_external_ram(lock)) {
|
||||
compare_and_set_extram(&lock->owner, SPINLOCK_FREE, &result);
|
||||
} else {
|
||||
#endif
|
||||
compare_and_set_native(&lock->owner, SPINLOCK_FREE, &result);
|
||||
#if (CONFIG_SPIRAM)
|
||||
}
|
||||
#endif
|
||||
if(result != other_core_id) {
|
||||
lock_set = esp_cpu_compare_and_set(&lock->owner, SPINLOCK_FREE, core_id);
|
||||
if (lock_set) {
|
||||
break;
|
||||
}
|
||||
// Keep looping if we are waiting forever, or check if we have timed out
|
||||
} while ((timeout == SPINLOCK_WAIT_FOREVER) || (esp_cpu_get_cycle_count() - start_count) <= timeout);
|
||||
|
||||
if (timeout != SPINLOCK_WAIT_FOREVER) {
|
||||
uint32_t ccount_now;
|
||||
ccount_now = cpu_hal_get_cycle_count();
|
||||
if (ccount_now - ccount_start > (unsigned)timeout) {
|
||||
XTOS_RESTORE_INTLEVEL(irq_status);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}while(1);
|
||||
exit:
|
||||
if (lock_set) {
|
||||
assert(lock->owner == core_id);
|
||||
assert(lock->count == 0); // This is the first time the lock is set, so count should still be 0
|
||||
lock->count++; // Finally, we increment the lock count
|
||||
} else { // We timed out waiting for lock
|
||||
assert(lock->owner == SPINLOCK_FREE || lock->owner == other_core_id);
|
||||
assert(lock->count < 0xFF); // Bad count value implies memory corruption
|
||||
}
|
||||
|
||||
/* any other value implies memory corruption or uninitialized mux */
|
||||
assert(result == core_id || result == SPINLOCK_FREE);
|
||||
assert((result == SPINLOCK_FREE) == (lock->count == 0)); /* we're first to lock iff count is zero */
|
||||
assert(lock->count < 0xFF); /* Bad count value implies memory corruption */
|
||||
|
||||
lock->count++;
|
||||
XTOS_RESTORE_INTLEVEL(irq_status);
|
||||
return true;
|
||||
return lock_set;
|
||||
|
||||
#else // !CONFIG_FREERTOS_UNICORE
|
||||
return true;
|
||||
@ -167,11 +156,11 @@ static inline void __attribute__((always_inline)) spinlock_release(spinlock_t *l
|
||||
assert(lock);
|
||||
irq_status = XTOS_SET_INTLEVEL(XCHAL_EXCM_LEVEL);
|
||||
|
||||
RSR(PRID, core_id);
|
||||
assert(core_id == lock->owner); // This is a mutex we didn't lock, or it's corrupt
|
||||
core_id = xt_utils_get_raw_core_id();
|
||||
assert(core_id == lock->owner); // This is a lock that we didn't acquire, or the lock is corrupt
|
||||
lock->count--;
|
||||
|
||||
if(!lock->count) {
|
||||
if (!lock->count) { // If this is the last recursive release of the lock, mark the lock as free
|
||||
lock->owner = SPINLOCK_FREE;
|
||||
} else {
|
||||
assert(lock->count < 0x100); // Indicates memory corruption
|
||||
|
Loading…
x
Reference in New Issue
Block a user