esp_adc: support h2 oneshot mode and continuous mode

This commit is contained in:
Armando 2023-02-02 14:46:44 +08:00
parent aa892a18a3
commit d0e4d36fb6
47 changed files with 1176 additions and 99 deletions

View File

@ -2100,6 +2100,19 @@
- <<: *if-dev-push
changes: *patterns-component_ut
.rules:test:component_ut-esp32h2-adc:
rules:
- <<: *if-revert-branch
when: never
- <<: *if-protected
- <<: *if-label-build-only
when: never
- <<: *if-label-component_ut
- <<: *if-label-component_ut_esp32h2
- <<: *if-label-target_test
- <<: *if-dev-push
changes: *patterns-target_test-adc
.rules:test:component_ut-esp32h4-i154:
rules:
- <<: *if-revert-branch
@ -2567,6 +2580,19 @@
- <<: *if-dev-push
changes: *patterns-example_test
.rules:test:example_test-esp32h2-adc:
rules:
- <<: *if-revert-branch
when: never
- <<: *if-protected
- <<: *if-label-build-only
when: never
- <<: *if-label-example_test
- <<: *if-label-example_test_esp32h2
- <<: *if-label-target_test
- <<: *if-dev-push
changes: *patterns-target_test-adc
.rules:test:example_test-esp32s2:
rules:
- <<: *if-revert-branch

View File

@ -480,6 +480,14 @@ example_test_pytest_esp32c6_adc:
- build_pytest_examples_esp32c6
tags: [ esp32c6, adc ]
example_test_pytest_esp32h2_adc:
extends:
- .pytest_examples_dir_template
- .rules:test:example_test-esp32h2-adc
needs:
- build_pytest_examples_esp32h2
tags: [ esp32h2, adc ]
.pytest_components_dir_template:
extends: .pytest_template
variables:
@ -836,6 +844,14 @@ component_ut_pytest_esp32h2_generic:
tags: [ esp32h2, generic ]
parallel: 2
component_ut_pytest_esp32h2_adc:
extends:
- .pytest_components_dir_template
- .rules:test:component_ut-esp32h2-adc
needs:
- build_pytest_components_esp32h2
tags: [ esp32h2, adc ]
component_ut_pytest_esp32c6_generic_multi_device:
extends:
- .pytest_components_dir_template

View File

@ -101,7 +101,9 @@ static esp_pm_lock_handle_t s_adc2_arbiter_lock;
#endif //CONFIG_PM_ENABLE
#endif // !CONFIG_IDF_TARGET_ESP32
static esp_err_t adc_hal_convert(adc_unit_t adc_n, int channel, int *out_raw);
static uint32_t clk_src_freq_hz;
static esp_err_t adc_hal_convert(adc_unit_t adc_n, int channel, uint32_t clk_src_freq_hz, int *out_raw);
/*---------------------------------------------------------------
ADC Common
@ -276,6 +278,13 @@ esp_err_t adc1_config_channel_atten(adc1_channel_t channel, adc_atten_t atten)
ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(ADC_UNIT_1), ESP_ERR_INVALID_ARG, ADC_TAG, "invalid channel");
ESP_RETURN_ON_FALSE(atten < SOC_ADC_ATTEN_NUM, ESP_ERR_INVALID_ARG, ADC_TAG, "ADC Atten Err");
#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
if (!clk_src_freq_hz) {
esp_err_t ret = clk_tree_src_get_freq_hz(ADC_DIGI_CLK_SRC_DEFAULT, CLK_TREE_SRC_FREQ_PRECISION_CACHED, &clk_src_freq_hz);
assert(ret == ESP_OK);
}
#endif //#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
adc_common_gpio_init(ADC_UNIT_1, channel);
SARADC1_ENTER();
adc_rtc_chan_init(ADC_UNIT_1);
@ -387,7 +396,7 @@ int adc1_get_raw(adc1_channel_t channel)
#endif
adc_ll_set_controller(ADC_UNIT_1, ADC_LL_CTRL_RTC); //Set controller
adc_oneshot_ll_set_channel(ADC_UNIT_1, channel);
adc_hal_convert(ADC_UNIT_1, channel, &adc_value); //Start conversion, For ADC1, the data always valid.
adc_hal_convert(ADC_UNIT_1, channel, clk_src_freq_hz, &adc_value); //Start conversion, For ADC1, the data always valid.
#if !CONFIG_IDF_TARGET_ESP32
adc_ll_rtc_reset(); //Reset FSM of rtc controller
#endif
@ -428,6 +437,12 @@ esp_err_t adc2_config_channel_atten(adc2_channel_t channel, adc_atten_t atten)
{
ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(ADC_UNIT_2), ESP_ERR_INVALID_ARG, ADC_TAG, "invalid channel");
ESP_RETURN_ON_FALSE(atten <= SOC_ADC_ATTEN_NUM, ESP_ERR_INVALID_ARG, ADC_TAG, "ADC2 Atten Err");
#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
if (!clk_src_freq_hz) {
esp_err_t ret = clk_tree_src_get_freq_hz(ADC_DIGI_CLK_SRC_DEFAULT, CLK_TREE_SRC_FREQ_PRECISION_CACHED, &clk_src_freq_hz);
assert(ret == ESP_OK);
}
#endif //#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
adc_common_gpio_init(ADC_UNIT_2, channel);
@ -572,7 +587,7 @@ esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *
#endif //CONFIG_IDF_TARGET_ESP32
adc_oneshot_ll_set_channel(ADC_UNIT_2, channel);
ret = adc_hal_convert(ADC_UNIT_2, channel, &adc_value);
ret = adc_hal_convert(ADC_UNIT_2, channel, clk_src_freq_hz, &adc_value);
if (ret != ESP_OK) {
adc_value = -1;
}
@ -766,7 +781,7 @@ int adc1_get_raw(adc1_channel_t channel)
ADC_REG_LOCK_ENTER();
adc_oneshot_ll_set_atten(ADC_UNIT_1, channel, atten);
adc_hal_convert(ADC_UNIT_1, channel, &raw_out);
adc_hal_convert(ADC_UNIT_1, channel, clk_src_freq_hz, &raw_out);
ADC_REG_LOCK_EXIT();
sar_periph_ctrl_adc_oneshot_power_release();
@ -820,7 +835,7 @@ esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *
ADC_REG_LOCK_ENTER();
adc_oneshot_ll_set_atten(ADC_UNIT_2, channel, atten);
ret = adc_hal_convert(ADC_UNIT_2, channel, raw_out);
ret = adc_hal_convert(ADC_UNIT_2, channel, clk_src_freq_hz, raw_out);
ADC_REG_LOCK_EXIT();
sar_periph_ctrl_adc_oneshot_power_release();
@ -833,7 +848,7 @@ esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *
#endif //#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
static void adc_hal_onetime_start(adc_unit_t adc_n)
static void adc_hal_onetime_start(adc_unit_t adc_n, uint32_t clk_src_freq_hz)
{
#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
(void)adc_n;
@ -841,16 +856,13 @@ static void adc_hal_onetime_start(adc_unit_t adc_n)
* There is a hardware limitation. If the APB clock frequency is high, the step of this reg signal: ``onetime_start`` may not be captured by the
* ADC digital controller (when its clock frequency is too slow). A rough estimate for this step should be at least 3 ADC digital controller
* clock cycle.
*
* This limitation will be removed in hardware future versions.
*
*/
uint32_t digi_clk = APB_CLK_FREQ / (ADC_LL_CLKM_DIV_NUM_DEFAULT + ADC_LL_CLKM_DIV_A_DEFAULT / ADC_LL_CLKM_DIV_B_DEFAULT + 1);
uint32_t digi_clk = clk_src_freq_hz / (ADC_LL_CLKM_DIV_NUM_DEFAULT + ADC_LL_CLKM_DIV_A_DEFAULT / ADC_LL_CLKM_DIV_B_DEFAULT + 1);
//Convert frequency to time (us). Since decimals are removed by this division operation. Add 1 here in case of the fact that delay is not enough.
uint32_t delay = (1000 * 1000) / digi_clk + 1;
//3 ADC digital controller clock cycle
delay = delay * 3;
//This coefficient (8) is got from test. When digi_clk is not smaller than ``APB_CLK_FREQ/8``, no delay is needed.
//This coefficient (8) is got from test, and verified from DT. When digi_clk is not smaller than ``APB_CLK_FREQ/8``, no delay is needed.
if (digi_clk >= APB_CLK_FREQ/8) {
delay = 0;
}
@ -861,19 +873,21 @@ static void adc_hal_onetime_start(adc_unit_t adc_n)
//No need to delay here. Becuase if the start signal is not seen, there won't be a done intr.
#else
(void)clk_src_freq_hz;
adc_oneshot_ll_start(adc_n);
#endif
}
static esp_err_t adc_hal_convert(adc_unit_t adc_n, int channel, int *out_raw)
static esp_err_t adc_hal_convert(adc_unit_t adc_n, int channel, uint32_t clk_src_freq_hz, int *out_raw)
{
uint32_t event = (adc_n == ADC_UNIT_1) ? ADC_LL_EVENT_ADC1_ONESHOT_DONE : ADC_LL_EVENT_ADC2_ONESHOT_DONE;
adc_oneshot_ll_clear_event(event);
adc_oneshot_ll_disable_all_unit();
adc_oneshot_ll_enable(adc_n);
adc_oneshot_ll_set_channel(adc_n, channel);
adc_hal_onetime_start(adc_n);
adc_hal_onetime_start(adc_n, clk_src_freq_hz);
while (adc_oneshot_ll_get_event(event) != true) {
;

View File

@ -1,2 +1,2 @@
| Supported Targets | ESP32 | ESP32-C2 | ESP32-C3 | ESP32-C6 | ESP32-S2 | ESP32-S3 |
| ----------------- | ----- | -------- | -------- | -------- | -------- | -------- |
| Supported Targets | ESP32 | ESP32-C2 | ESP32-C3 | ESP32-C6 | ESP32-H2 | ESP32-S2 | ESP32-S3 |
| ----------------- | ----- | -------- | -------- | -------- | -------- | -------- | -------- |

View File

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Unlicense OR CC0-1.0
*/
@ -60,6 +60,13 @@
#define ADC_TEST_HIGH_VAL 4081
#define ADC_TEST_HIGH_THRESH 200
#elif CONFIG_IDF_TARGET_ESP32H2 // TODO: IDF-6216
#define ADC_TEST_LOW_VAL 2144
#define ADC_TEST_LOW_THRESH 200
#define ADC_TEST_HIGH_VAL 4081
#define ADC_TEST_HIGH_THRESH 200
#endif
//ADC Channels

View File

@ -10,6 +10,7 @@ from pytest_embedded import Dut
@pytest.mark.esp32s3
@pytest.mark.esp32c3
@pytest.mark.esp32c6
@pytest.mark.esp32h2
@pytest.mark.adc
@pytest.mark.parametrize(
'config',

View File

@ -1,8 +1,3 @@
if(IDF_TARGET STREQUAL "esp32h2")
# TODO : IDF-6214
return()
endif()
idf_build_get_property(target IDF_TARGET)
set(includes "include" "interface" "${target}/include" "deprecated/include")
@ -36,16 +31,6 @@ if(EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/deprecated/${target}/esp_adc_cal_legacy.c
list(APPEND srcs "deprecated/${target}/esp_adc_cal_legacy.c")
endif()
# ESP32H2-TODO
if(CONFIG_IDF_TARGET_ESP32H2)
# TODO: IDF-6214
list(REMOVE_ITEM srcs
"adc_cali_curve_fitting.c"
"adc_oneshot.c"
"adc_common.c"
)
endif()
idf_component_register(SRCS ${srcs}
INCLUDE_DIRS ${includes}
PRIV_REQUIRES driver efuse

View File

@ -0,0 +1,15 @@
/*
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
/**
* @file adc_cali_schemes.h
*
* @brief Supported calibration schemes
*/
//Now no scheme supported

View File

@ -1,2 +1,2 @@
| Supported Targets | ESP32 | ESP32-C2 | ESP32-C3 | ESP32-C6 | ESP32-S2 | ESP32-S3 |
| ----------------- | ----- | -------- | -------- | -------- | -------- | -------- |
| Supported Targets | ESP32 | ESP32-C2 | ESP32-C3 | ESP32-C6 | ESP32-H2 | ESP32-S2 | ESP32-S3 |
| ----------------- | ----- | -------- | -------- | -------- | -------- | -------- | -------- |

View File

@ -75,6 +75,14 @@ extern "C" {
#define ADC_TEST_LOW_VAL 2144
#define ADC_TEST_LOW_THRESH 200
#define ADC_TEST_HIGH_VAL 4081
#define ADC_TEST_HIGH_VAL_DMA 4081
#define ADC_TEST_HIGH_THRESH 200
#elif CONFIG_IDF_TARGET_ESP32H2 // TODO: IDF-6216
#define ADC_TEST_LOW_VAL 2144
#define ADC_TEST_LOW_THRESH 200
#define ADC_TEST_HIGH_VAL 4081
#define ADC_TEST_HIGH_VAL_DMA 4081
#define ADC_TEST_HIGH_THRESH 200

View File

@ -10,6 +10,7 @@ from pytest_embedded import Dut
@pytest.mark.esp32s3
@pytest.mark.esp32c3
@pytest.mark.esp32c6
@pytest.mark.esp32h2
@pytest.mark.adc
@pytest.mark.parametrize('config', [
'iram_safe',

View File

@ -104,7 +104,6 @@ if(NOT BOOTLOADER_BUILD)
if(CONFIG_IDF_TARGET_ESP32H2)
list(REMOVE_ITEM srcs
"adc_share_hw_ctrl.c" # TODO: IDF-6215
"sleep_cpu.c" # TODO: IDF-6267
"sleep_modes.c" # TODO: IDF-6267
)

View File

@ -71,7 +71,9 @@ void adc_calc_hw_calibration_code(adc_unit_t adc_n, adc_atten_t atten)
if (version == ESP_EFUSE_ADC_CALIB_VER) {
init_code = esp_efuse_rtc_calib_get_init_code(version, adc_n, atten);
} else {
}
#if SOC_ADC_SELF_HW_CALI_SUPPORTED
else {
ESP_EARLY_LOGD(TAG, "Calibration eFuse is not configured, use self-calibration for ICode");
sar_periph_ctrl_adc_oneshot_power_acquire();
portENTER_CRITICAL(&rtc_spinlock);
@ -81,6 +83,11 @@ void adc_calc_hw_calibration_code(adc_unit_t adc_n, adc_atten_t atten)
portEXIT_CRITICAL(&rtc_spinlock);
sar_periph_ctrl_adc_oneshot_power_release();
}
#else
else {
ESP_EARLY_LOGD(TAG, "ICode self-calibration isn't supported");
}
#endif //SOC_ADC_SELF_HW_CALI_SUPPORTED
s_adc_cali_param[adc_n][atten] = init_code;
ESP_EARLY_LOGV(TAG, "Calib(V%d) ADC%d atten=%d: %04X", version, adc_n + 1, atten, init_code);

View File

@ -28,12 +28,14 @@ void sar_periph_ctrl_init(void)
{
sar_ctrl_ll_force_power_ctrl_from_pwdet(true);
//TODO: IDF-6124
//Add other periph power control initialisation here
}
void sar_periph_ctrl_power_disable(void)
{
//TODO: IDF-6124
portENTER_CRITICAL_SAFE(&rtc_spinlock);
sar_ctrl_ll_force_power_ctrl_from_pwdet(false);
portEXIT_CRITICAL_SAFE(&rtc_spinlock);
}
/**

View File

@ -8,7 +8,8 @@ set(srcs "rtc_clk_init.c"
)
if(NOT BOOTLOADER_BUILD)
list(APPEND srcs "esp_crypto_lock.c")
list(APPEND srcs "sar_periph_ctrl.c"
"esp_crypto_lock.c")
endif()
add_prefix(srcs "${CMAKE_CURRENT_LIST_DIR}/" "${srcs}")

View File

@ -0,0 +1,108 @@
/*
* SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* SAR related peripherals are interdependent. This file
* provides a united control to these registers, as multiple
* components require these controls.
*
* Related peripherals are:
* - ADC
* - PWDET
*/
#include "esp_log.h"
#include "freertos/FreeRTOS.h"
#include "esp_private/sar_periph_ctrl.h"
#include "hal/sar_ctrl_ll.h"
static const char *TAG = "sar_periph_ctrl";
extern portMUX_TYPE rtc_spinlock;
void sar_periph_ctrl_init(void)
{
sar_ctrl_ll_force_power_ctrl_from_pwdet(true);
//Add other periph power control initialisation here
}
void sar_periph_ctrl_power_disable(void)
{
portENTER_CRITICAL_SAFE(&rtc_spinlock);
sar_ctrl_ll_force_power_ctrl_from_pwdet(false);
portEXIT_CRITICAL_SAFE(&rtc_spinlock);
}
/**
* This gets incremented when s_sar_power_acquire() is called,
* and decremented when s_sar_power_release() is called.
* PWDET is powered down when the value reaches zero.
* Should be modified within critical section.
*/
static int s_pwdet_power_on_cnt;
static void s_sar_power_acquire(void)
{
portENTER_CRITICAL_SAFE(&rtc_spinlock);
s_pwdet_power_on_cnt++;
if (s_pwdet_power_on_cnt == 1) {
sar_ctrl_ll_set_power_mode_from_pwdet(SAR_CTRL_LL_POWER_ON);
}
portEXIT_CRITICAL_SAFE(&rtc_spinlock);
}
static void s_sar_power_release(void)
{
portENTER_CRITICAL_SAFE(&rtc_spinlock);
s_pwdet_power_on_cnt--;
if (s_pwdet_power_on_cnt < 0) {
portEXIT_CRITICAL(&rtc_spinlock);
ESP_LOGE(TAG, "%s called, but s_pwdet_power_on_cnt == 0", __func__);
abort();
} else if (s_pwdet_power_on_cnt == 0) {
sar_ctrl_ll_set_power_mode_from_pwdet(SAR_CTRL_LL_POWER_FSM);
}
portEXIT_CRITICAL_SAFE(&rtc_spinlock);
}
/*------------------------------------------------------------------------------
* PWDET Power
*----------------------------------------------------------------------------*/
void sar_periph_ctrl_pwdet_power_acquire(void)
{
s_sar_power_acquire();
}
void sar_periph_ctrl_pwdet_power_release(void)
{
s_sar_power_release();
}
/*------------------------------------------------------------------------------
* ADC Power
*----------------------------------------------------------------------------*/
void sar_periph_ctrl_adc_oneshot_power_acquire(void)
{
s_sar_power_acquire();
}
void sar_periph_ctrl_adc_oneshot_power_release(void)
{
s_sar_power_release();
}
void sar_periph_ctrl_adc_continuous_power_acquire(void)
{
s_sar_power_acquire();
}
void sar_periph_ctrl_adc_continuous_power_release(void)
{
s_sar_power_release();
}

View File

@ -236,8 +236,6 @@ if(NOT BOOTLOADER_BUILD)
)
list(REMOVE_ITEM srcs
"adc_oneshot_hal.c" # TODO: IDF-6214
"adc_hal_common.c" # TODO: IDF-6215
"esp32h2/rtc_cntl_hal.c"
"esp32h2/pmu_hal.c" # TODO: IDF-6267
)

View File

@ -104,6 +104,7 @@ void adc_hal_set_calibration_param(adc_unit_t adc_n, uint32_t param)
}
}
#if SOC_ADC_SELF_HW_CALI_SUPPORTED
static void cal_setup(adc_unit_t adc_n, adc_atten_t atten)
{
adc_hal_set_controller(adc_n, ADC_HAL_SINGLE_READ_MODE);
@ -205,4 +206,5 @@ uint32_t adc_hal_self_calibration(adc_unit_t adc_n, adc_atten_t atten, bool inte
return ret;
return 0;
}
#endif //#if SOC_ADC_SELF_HW_CALI_SUPPORTED
#endif //SOC_ADC_CALIBRATION_V1_SUPPORTED

View File

@ -85,9 +85,6 @@ static void adc_hal_onetime_start(adc_unit_t unit)
* There is a hardware limitation. If the APB clock frequency is high, the step of this reg signal: ``onetime_start`` may not be captured by the
* ADC digital controller (when its clock frequency is too slow). A rough estimate for this step should be at least 3 ADC digital controller
* clock cycle.
*
* This limitation will be removed in hardware future versions.
*
*/
uint32_t digi_clk = APB_CLK_FREQ / (ADC_LL_CLKM_DIV_NUM_DEFAULT + ADC_LL_CLKM_DIV_A_DEFAULT / ADC_LL_CLKM_DIV_B_DEFAULT + 1);
//Convert frequency to time (us). Since decimals are removed by this division operation. Add 1 here in case of the fact that delay is not enough.

View File

@ -26,9 +26,8 @@
extern "C" {
#endif
#define PWDET_CONF_REG 0x600A8010
#define PWDET_SAR_POWER_FORCE BIT(24)
#define PWDET_SAR_POWER_CNTL BIT(23)
#define PWDET_LL_SAR_POWER_FORCE_BIT BIT(24)
#define PWDET_LL_SAR_POWER_CNTL_BIT BIT(23)
typedef enum {
@ -48,13 +47,13 @@ typedef enum {
static inline void sar_ctrl_ll_set_power_mode_from_pwdet(sar_ctrl_ll_power_t mode)
{
if (mode == SAR_CTRL_LL_POWER_FSM) {
REG_CLR_BIT(PWDET_CONF_REG, PWDET_SAR_POWER_FORCE);
REG_CLR_BIT(PWDET_CONF_REG, PWDET_LL_SAR_POWER_FORCE_BIT);
} else if (mode == SAR_CTRL_LL_POWER_ON) {
REG_SET_BIT(PWDET_CONF_REG, PWDET_SAR_POWER_FORCE);
REG_SET_BIT(PWDET_CONF_REG, PWDET_SAR_POWER_CNTL);
REG_SET_BIT(PWDET_CONF_REG, PWDET_LL_SAR_POWER_FORCE_BIT);
REG_SET_BIT(PWDET_CONF_REG, PWDET_LL_SAR_POWER_CNTL_BIT);
} else if (mode == SAR_CTRL_LL_POWER_OFF) {
REG_SET_BIT(PWDET_CONF_REG, PWDET_SAR_POWER_FORCE);
REG_CLR_BIT(PWDET_CONF_REG, PWDET_SAR_POWER_CNTL);
REG_SET_BIT(PWDET_CONF_REG, PWDET_LL_SAR_POWER_FORCE_BIT);
REG_CLR_BIT(PWDET_CONF_REG, PWDET_LL_SAR_POWER_CNTL_BIT);
}
}

View File

@ -0,0 +1,28 @@
/*
* SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
/*---------------------------------------------------------------
Single Read
---------------------------------------------------------------*/
#define ADC_HAL_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
#define ADC_HAL_SAR_CLK_DIV_DEFAULT(PERIPH_NUM) (2)
/*---------------------------------------------------------------
DMA Read
---------------------------------------------------------------*/
#define ADC_HAL_DIGI_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
#define ADC_HAL_FSM_RSTB_WAIT_DEFAULT (8)
#define ADC_HAL_FSM_START_WAIT_DEFAULT (5)
#define ADC_HAL_FSM_STANDBY_WAIT_DEFAULT (100)
#define ADC_HAL_SAMPLE_CYCLE_DEFAULT (2)
#define ADC_HAL_DIGI_SAR_CLK_DIV_DEFAULT (2)
/*---------------------------------------------------------------
PWDET (Power Detect)
---------------------------------------------------------------*/
#define ADC_HAL_PWDET_CCT_DEFAULT (4)

View File

@ -0,0 +1,721 @@
/*
* SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <stdbool.h>
#include <stdlib.h>
#include "esp_attr.h"
#include "soc/adc_periph.h"
#include "soc/apb_saradc_struct.h"
#include "soc/apb_saradc_reg.h"
#include "soc/pmu_reg.h"
#include "soc/clk_tree_defs.h"
#include "soc/pcr_struct.h"
#include "hal/misc.h"
#include "hal/assert.h"
#include "hal/adc_types.h"
#include "hal/adc_types_private.h"
#include "hal/regi2c_ctrl.h"
#include "hal/sar_ctrl_ll.h"
#include "soc/regi2c_saradc.h"
#ifdef __cplusplus
extern "C" {
#endif
#define ADC_LL_CLKM_DIV_NUM_DEFAULT 15
#define ADC_LL_CLKM_DIV_B_DEFAULT 1
#define ADC_LL_CLKM_DIV_A_DEFAULT 0
#define ADC_LL_DEFAULT_CONV_LIMIT_EN 0
#define ADC_LL_DEFAULT_CONV_LIMIT_NUM 10
#define ADC_LL_EVENT_ADC1_ONESHOT_DONE BIT(31)
#define ADC_LL_EVENT_ADC2_ONESHOT_DONE BIT(30)
#define ADC_LL_EVENT_THRES0_HIGH BIT(29)
#define ADC_LL_EVENT_THRES1_HIGH BIT(28)
#define ADC_LL_EVENT_THRES0_LOW BIT(27)
#define ADC_LL_EVENT_THRES1_LOW BIT(26)
typedef enum {
ADC_POWER_BY_FSM = SAR_CTRL_LL_POWER_FSM, /*!< ADC XPD controlled by FSM. Used for polling mode */
ADC_POWER_SW_ON = SAR_CTRL_LL_POWER_ON, /*!< ADC XPD controlled by SW. power on. Used for DMA mode */
ADC_POWER_SW_OFF = SAR_CTRL_LL_POWER_OFF, /*!< ADC XPD controlled by SW. power off. */
ADC_POWER_MAX, /*!< For parameter check. */
} adc_ll_power_t;
typedef enum {
ADC_LL_CTRL_DIG = 0, ///< ADC digital controller
} adc_ll_controller_t;
/**
* @brief ADC digital controller (DMA mode) work mode.
*
* @note The conversion mode affects the sampling frequency:
* ESP32H2 only support ONLY_ADC1 mode
* SINGLE_UNIT_1: When the measurement is triggered, only ADC1 is sampled once.
*/
typedef enum {
ADC_LL_DIGI_CONV_ONLY_ADC1 = 0, // Only use ADC1 for conversion
} adc_ll_digi_convert_mode_t;
typedef struct {
union {
struct {
uint8_t atten: 2;
uint8_t channel: 3;
uint8_t unit: 1;
uint8_t reserved: 2;
};
uint8_t val;
};
} __attribute__((packed)) adc_ll_digi_pattern_table_t;
/*---------------------------------------------------------------
Digital controller setting
---------------------------------------------------------------*/
/**
* Set adc fsm interval parameter for digital controller. These values are fixed for same platforms.
*
* @param rst_wait cycles between DIG ADC controller reset ADC sensor and start ADC sensor.
* @param start_wait Delay time after open xpd.
* @param standby_wait Delay time to close xpd.
*/
static inline void adc_ll_digi_set_fsm_time(uint32_t rst_wait, uint32_t start_wait, uint32_t standby_wait)
{
// Internal FSM reset wait time
HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.saradc_fsm_wait, saradc_saradc_rstb_wait, rst_wait);
// Internal FSM start wait time
HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.saradc_fsm_wait, saradc_saradc_xpd_wait, start_wait);
// Internal FSM standby wait time
HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.saradc_fsm_wait, saradc_saradc_standby_wait, standby_wait);
}
/**
* Set adc sample cycle for digital controller.
*
* @note Normally, please use default value.
* @param sample_cycle Cycles between DIG ADC controller start ADC sensor and beginning to receive data from sensor.
* Range: 2 ~ 0xFF.
*/
static inline void adc_ll_set_sample_cycle(uint32_t sample_cycle)
{
/* Peripheral reg i2c has powered up in rtc_init, write directly */
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_SAMPLE_CYCLE_ADDR, sample_cycle);
}
/**
* Set SAR ADC module clock division factor.
* SAR ADC clock divided from digital controller clock.
*
* @param div Division factor.
*/
static inline void adc_ll_digi_set_clk_div(uint32_t div)
{
/* ADC clock divided from digital controller clock clk */
HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.saradc_ctrl, saradc_saradc_sar_clk_div, div);
}
/**
* Set adc max conversion number for digital controller.
* If the number of ADC conversion is equal to the maximum, the conversion is stopped.
*
* @param meas_num Max conversion number. Range: 0 ~ 255.
*/
static inline void adc_ll_digi_set_convert_limit_num(uint32_t meas_num)
{
HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.saradc_ctrl2, saradc_saradc_max_meas_num, meas_num);
}
/**
* Enable max conversion number detection for digital controller.
* If the number of ADC conversion is equal to the maximum, the conversion is stopped.
*
* @param enable true: enable; false: disable
*/
static inline void adc_ll_digi_convert_limit_enable(bool enable)
{
APB_SARADC.saradc_ctrl2.saradc_saradc_meas_num_limit = enable;
}
/**
* Set adc conversion mode for digital controller.
*
* @note ESP32H2 only support ADC1 single mode.
*
* @param mode Conversion mode select.
*/
static inline void adc_ll_digi_set_convert_mode(adc_ll_digi_convert_mode_t mode)
{
//ESP32H2 only supports ADC_LL_DIGI_CONV_ONLY_ADC1 mode
}
/**
* Set pattern table length for digital controller.
* The pattern table that defines the conversion rules for each SAR ADC. Each table has 4 items, in which channel selection,
* and attenuation are stored. When the conversion is started, the controller reads conversion rules from the
* pattern table one by one. For each controller the scan sequence has at most 8 different rules before repeating itself.
*
* @param adc_n ADC unit.
* @param patt_len Items range: 1 ~ 8.
*/
static inline void adc_ll_digi_set_pattern_table_len(adc_unit_t adc_n, uint32_t patt_len)
{
APB_SARADC.saradc_ctrl.saradc_saradc_sar_patt_len = patt_len - 1;
}
/**
* Set pattern table for digital controller.
* The pattern table that defines the conversion rules for each SAR ADC. Each table has 4 items, in which channel selection,
* resolution and attenuation are stored. When the conversion is started, the controller reads conversion rules from the
* pattern table one by one. For each controller the scan sequence has at most 8 different rules before repeating itself.
*
* @param adc_n ADC unit.
* @param pattern_index Items index. Range: 0 ~ 7.
* @param pattern Stored conversion rules.
*/
static inline void adc_ll_digi_set_pattern_table(adc_unit_t adc_n, uint32_t pattern_index, adc_digi_pattern_config_t table)
{
uint32_t tab;
uint8_t index = pattern_index / 4;
uint8_t offset = (pattern_index % 4) * 6;
adc_ll_digi_pattern_table_t pattern = {0};
pattern.val = (table.atten & 0x3) | ((table.channel & 0x7) << 2) | ((table.unit & 0x1) << 5);
if (index == 0) {
tab = APB_SARADC.saradc_sar_patt_tab1.saradc_saradc_sar_patt_tab1; // Read old register value
tab &= (~(0xFC0000 >> offset)); // Clear old data
tab |= ((uint32_t)(pattern.val & 0x3F) << 18) >> offset; // Fill in the new data
APB_SARADC.saradc_sar_patt_tab1.saradc_saradc_sar_patt_tab1 = tab; // Write back
} else {
tab = APB_SARADC.saradc_sar_patt_tab2.saradc_saradc_sar_patt_tab2; // Read old register value
tab &= (~(0xFC0000 >> offset)); // Clear old data
tab |= ((uint32_t)(pattern.val & 0x3F) << 18) >> offset; // Fill in the new data
APB_SARADC.saradc_sar_patt_tab2.saradc_saradc_sar_patt_tab2 = tab; // Write back
}
}
/**
* Reset the pattern table pointer, then take the measurement rule from table header in next measurement.
*
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_clear_pattern_table(adc_unit_t adc_n)
{
APB_SARADC.saradc_ctrl.saradc_saradc_sar_patt_p_clear = 1;
APB_SARADC.saradc_ctrl.saradc_saradc_sar_patt_p_clear = 0;
}
/**
* Sets the number of cycles required for the conversion to complete and wait for the arbiter to stabilize.
*
* @note Only ADC2 have arbiter function.
* @param cycle range: 0 ~ 4.
*/
static inline void adc_ll_digi_set_arbiter_stable_cycle(uint32_t cycle)
{
APB_SARADC.saradc_ctrl.saradc_saradc_wait_arb_cycle = cycle;
}
/**
* ADC Digital controller output data invert or not.
*
* @param adc_n ADC unit.
* @param inv_en data invert or not.
*/
static inline void adc_ll_digi_output_invert(adc_unit_t adc_n, bool inv_en)
{
if (adc_n == ADC_UNIT_1) {
APB_SARADC.saradc_ctrl2.saradc_saradc_sar1_inv = inv_en; // Enable / Disable ADC data invert
}
}
/**
* Set the interval clock cycle for the digital controller to trigger the measurement.
* Expression: `trigger_meas_freq` = `controller_clk` / 2 / interval.
*
* @note The trigger interval should not be smaller than the sampling time of the SAR ADC.
* @param cycle The clock cycle (trigger interval) of the measurement. Range: 30 ~ 4095.
*/
static inline void adc_ll_digi_set_trigger_interval(uint32_t cycle)
{
APB_SARADC.saradc_ctrl2.saradc_saradc_timer_target = cycle;
}
/**
* Enable digital controller timer to trigger the measurement.
*/
static inline void adc_ll_digi_trigger_enable(void)
{
APB_SARADC.saradc_ctrl2.saradc_saradc_timer_en = 1;
}
/**
* Disable digital controller timer to trigger the measurement.
*/
static inline void adc_ll_digi_trigger_disable(void)
{
APB_SARADC.saradc_ctrl2.saradc_saradc_timer_en = 0;
}
/**
* Set ADC digital controller clock division factor. The clock divided from `APLL` or `APB` clock.
* Expression: controller_clk = (APLL or APB) / (div_num + div_a / div_b + 1).
*
* @param div_num Division factor. Range: 0 ~ 255.
* @param div_b Division factor. Range: 1 ~ 63.
* @param div_a Division factor. Range: 0 ~ 63.
*/
static inline void adc_ll_digi_controller_clk_div(uint32_t div_num, uint32_t div_b, uint32_t div_a)
{
HAL_FORCE_MODIFY_U32_REG_FIELD(PCR.saradc_clkm_conf, saradc_clkm_div_num, div_num);
PCR.saradc_clkm_conf.saradc_clkm_div_b = div_b;
PCR.saradc_clkm_conf.saradc_clkm_div_a = div_a;
}
/**
* Enable clock and select clock source for ADC digital controller.
*
* @param clk_src clock source for ADC digital controller.
*/
static inline void adc_ll_digi_clk_sel(adc_continuous_clk_src_t clk_src)
{
switch (clk_src) {
case ADC_DIGI_CLK_SRC_XTAL:
PCR.saradc_clkm_conf.saradc_clkm_sel = 0;
break;
case ADC_DIGI_CLK_SRC_PLL_F96M:
PCR.saradc_clkm_conf.saradc_clkm_sel = 1;
break;
case ADC_DIGI_CLK_SRC_RC_FAST:
PCR.saradc_clkm_conf.saradc_clkm_sel = 2;
break;
default:
HAL_ASSERT(false && "unsupported clock");
}
// Enable ADC_CTRL_CLK (i.e. digital domain clock)
APB_SARADC.saradc_ctrl.saradc_saradc_sar_clk_gated = 1;
}
/**
* Disable clock for ADC digital controller.
*/
static inline void adc_ll_digi_controller_clk_disable(void)
{
APB_SARADC.saradc_ctrl.saradc_saradc_sar_clk_gated = 0;
}
/**
* Reset adc digital controller filter.
*
* @param idx Filter index
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_filter_reset(adc_digi_iir_filter_t idx, adc_unit_t adc_n)
{
(void)adc_n;
APB_SARADC.saradc_filter_ctrl0.saradc_apb_saradc_filter_reset = 1;
APB_SARADC.saradc_filter_ctrl0.saradc_apb_saradc_filter_reset = 0;
}
/**
* Set adc digital controller filter coeff.
*
* @param idx filter index
* @param adc_n adc unit
* @param channel adc channel
* @param coeff filter coeff
*/
static inline void adc_ll_digi_filter_set_factor(adc_digi_iir_filter_t idx, adc_unit_t adc_n, adc_channel_t channel, adc_digi_iir_filter_coeff_t coeff)
{
uint32_t factor_reg_val = 0;
switch (coeff) {
case ADC_DIGI_IIR_FILTER_COEFF_2:
factor_reg_val = 1;
break;
case ADC_DIGI_IIR_FILTER_COEFF_4:
factor_reg_val = 2;
break;
case ADC_DIGI_IIR_FILTER_COEFF_8:
factor_reg_val = 3;
break;
case ADC_DIGI_IIR_FILTER_COEFF_16:
factor_reg_val = 4;
break;
case ADC_DIGI_IIR_FILTER_COEFF_64:
factor_reg_val = 6;
break;
default:
HAL_ASSERT(false);
}
if (idx == ADC_DIGI_IIR_FILTER_0) {
APB_SARADC.saradc_filter_ctrl0.saradc_apb_saradc_filter_channel0 = ((adc_n + 1) << 3) | (channel & 0x7);
APB_SARADC.saradc_filter_ctrl1.saradc_apb_saradc_filter_factor0 = factor_reg_val;
} else if (idx == ADC_DIGI_IIR_FILTER_1) {
APB_SARADC.saradc_filter_ctrl0.saradc_apb_saradc_filter_channel1 = ((adc_n + 1) << 3) | (channel & 0x7);
APB_SARADC.saradc_filter_ctrl1.saradc_apb_saradc_filter_factor1 = factor_reg_val;
}
}
/**
* Enable adc digital controller filter.
* Filtering the ADC data to obtain smooth data at higher sampling rates.
*
* @param idx filter index
* @param adc_n ADC unit
* @param enable Enable / Disable
*/
static inline void adc_ll_digi_filter_enable(adc_digi_iir_filter_t idx, adc_unit_t adc_n, bool enable)
{
(void)adc_n;
if (!enable) {
if (idx == ADC_DIGI_IIR_FILTER_0) {
APB_SARADC.saradc_filter_ctrl0.saradc_apb_saradc_filter_channel0 = 0xF;
APB_SARADC.saradc_filter_ctrl1.saradc_apb_saradc_filter_factor0 = 0;
} else if (idx == ADC_DIGI_IIR_FILTER_1) {
APB_SARADC.saradc_filter_ctrl0.saradc_apb_saradc_filter_channel1 = 0xF;
APB_SARADC.saradc_filter_ctrl1.saradc_apb_saradc_filter_factor1 = 0;
}
}
//nothing to do to enable, after adc_ll_digi_filter_set_factor, it's enabled.
}
/**
* Set monitor mode of adc digital controller.
*
* @note If the channel info is not supported, the monitor function will not be enabled.
* @param adc_n ADC unit.
* @param is_larger true: If ADC_OUT > threshold, Generates monitor interrupt.
* false: If ADC_OUT < threshold, Generates monitor interrupt.
*/
static inline void adc_ll_digi_monitor_set_mode(adc_digi_monitor_idx_t idx, adc_digi_monitor_t *cfg)
{
if (idx == ADC_DIGI_MONITOR_IDX0) {
APB_SARADC.saradc_thres0_ctrl.saradc_apb_saradc_thres0_channel = (cfg->adc_unit << 3) | (cfg->channel & 0x7);
APB_SARADC.saradc_thres0_ctrl.saradc_apb_saradc_thres0_high = cfg->h_threshold;
APB_SARADC.saradc_thres0_ctrl.saradc_apb_saradc_thres0_low = cfg->l_threshold;
} else { // ADC_DIGI_MONITOR_IDX1
APB_SARADC.saradc_thres1_ctrl.saradc_apb_saradc_thres1_channel = (cfg->adc_unit << 3) | (cfg->channel & 0x7);
APB_SARADC.saradc_thres1_ctrl.saradc_apb_saradc_thres1_low = cfg->h_threshold;
APB_SARADC.saradc_thres1_ctrl.saradc_apb_saradc_thres1_low = cfg->l_threshold;
}
}
/**
* Enable/disable monitor of adc digital controller.
*
* @note If the channel info is not supported, the monitor function will not be enabled.
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_monitor_disable(adc_digi_monitor_idx_t idx)
{
if (idx == ADC_DIGI_MONITOR_IDX0) {
APB_SARADC.saradc_thres0_ctrl.saradc_apb_saradc_thres0_channel = 0xF;
} else { // ADC_DIGI_MONITOR_IDX1
APB_SARADC.saradc_thres1_ctrl.saradc_apb_saradc_thres1_channel = 0xF;
}
}
/**
* Set DMA eof num of adc digital controller.
* If the number of measurements reaches `dma_eof_num`, then `dma_in_suc_eof` signal is generated.
*
* @param num eof num of DMA.
*/
static inline void adc_ll_digi_dma_set_eof_num(uint32_t num)
{
HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.saradc_dma_conf, saradc_apb_adc_eof_num, num);
}
/**
* Enable output data to DMA from adc digital controller.
*/
static inline void adc_ll_digi_dma_enable(void)
{
APB_SARADC.saradc_dma_conf.saradc_apb_adc_trans = 1;
}
/**
* Disable output data to DMA from adc digital controller.
*/
static inline void adc_ll_digi_dma_disable(void)
{
APB_SARADC.saradc_dma_conf.saradc_apb_adc_trans = 0;
}
/**
* Reset adc digital controller.
*/
static inline void adc_ll_digi_reset(void)
{
APB_SARADC.saradc_dma_conf.saradc_apb_adc_reset_fsm = 1;
APB_SARADC.saradc_dma_conf.saradc_apb_adc_reset_fsm = 0;
}
/*---------------------------------------------------------------
PWDET(Power detect) controller setting
---------------------------------------------------------------*/
/**
* Set adc cct for PWDET controller.
*
* @note Capacitor tuning of the PA power monitor. cct set to the same value with PHY.
* @param cct Range: 0 ~ 7.
*/
static inline void adc_ll_pwdet_set_cct(uint32_t cct)
{
(void)cct;
}
/**
* Get adc cct for PWDET controller.
*
* @note Capacitor tuning of the PA power monitor. cct set to the same value with PHY.
* @return cct Range: 0 ~ 7.
*/
static inline uint32_t adc_ll_pwdet_get_cct(void)
{
return 0;
}
/*---------------------------------------------------------------
Common setting
---------------------------------------------------------------*/
/**
* Set ADC module power management.
*
* @param manage Set ADC power status.
*/
static inline void adc_ll_set_power_manage(adc_ll_power_t manage)
{
/* Bit1 0:Fsm 1: SW mode
Bit0 0:SW mode power down 1: SW mode power on */
if (manage == ADC_POWER_SW_ON) {
APB_SARADC.saradc_ctrl.saradc_saradc_sar_clk_gated = 1;
APB_SARADC.saradc_ctrl.saradc_saradc_xpd_sar_force = 3;
} else if (manage == ADC_POWER_BY_FSM) {
APB_SARADC.saradc_ctrl.saradc_saradc_sar_clk_gated = 1;
APB_SARADC.saradc_ctrl.saradc_saradc_xpd_sar_force = 0;
} else if (manage == ADC_POWER_SW_OFF) {
APB_SARADC.saradc_ctrl.saradc_saradc_sar_clk_gated = 0;
APB_SARADC.saradc_ctrl.saradc_saradc_xpd_sar_force = 2;
}
}
__attribute__((always_inline))
static inline void adc_ll_set_controller(adc_unit_t adc_n, adc_ll_controller_t ctrl)
{
//Not used on ESP32H2
}
/* ADC calibration code. */
/**
* @brief Set common calibration configuration. Should be shared with other parts (PWDET).
*/
__attribute__((always_inline))
static inline void adc_ll_calibration_init(adc_unit_t adc_n)
{
HAL_ASSERT(adc_n == ADC_UNIT_1);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_DREF_ADDR, 1);
}
/**
* Set the calibration result to ADC.
*
* @note Different ADC units and different attenuation options use different calibration data (initial data).
*
* @param adc_n ADC index number.
*/
__attribute__((always_inline))
static inline void adc_ll_set_calibration_param(adc_unit_t adc_n, uint32_t param)
{
HAL_ASSERT(adc_n == ADC_UNIT_1);
uint8_t msb = param >> 8;
uint8_t lsb = param & 0xFF;
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_HIGH_ADDR, msb);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_LOW_ADDR, lsb);
}
/*---------------------------------------------------------------
Oneshot Read
---------------------------------------------------------------*/
/**
* Set adc output data format for oneshot mode
*
* @note ESP32H2 Oneshot mode only supports 12bit.
* @param adc_n ADC unit.
* @param bits Output data bits width option.
*/
static inline void adc_oneshot_ll_set_output_bits(adc_unit_t adc_n, adc_bitwidth_t bits)
{
//ESP32H2 only supports 12bit, leave here for compatibility
HAL_ASSERT(bits == ADC_BITWIDTH_12 || bits == ADC_BITWIDTH_DEFAULT);
}
/**
* Enable adc channel to start convert.
*
* @note Only one channel can be selected for measurement.
*
* @param adc_n ADC unit.
* @param channel ADC channel number for each ADCn.
*/
static inline void adc_oneshot_ll_set_channel(adc_unit_t adc_n, adc_channel_t channel)
{
HAL_ASSERT(adc_n == ADC_UNIT_1);
APB_SARADC.saradc_onetime_sample.saradc_saradc_onetime_channel = ((adc_n << 3) | channel);
}
/**
* Disable adc channel to start convert.
*
* @note Only one channel can be selected in once measurement.
*
* @param adc_n ADC unit.
*/
static inline void adc_oneshot_ll_disable_channel(adc_unit_t adc_n)
{
HAL_ASSERT(adc_n == ADC_UNIT_1);
APB_SARADC.saradc_onetime_sample.saradc_saradc_onetime_channel = ((adc_n << 3) | 0xF);
}
/**
* Start oneshot conversion by software
*
* @param val Usage: set to 1 to start the ADC conversion. The step signal should at least keep 3 ADC digital controller clock cycle,
* otherwise the step signal may not be captured by the ADC digital controller when its frequency is slow.
* This hardware limitation will be removed in future versions.
*/
static inline void adc_oneshot_ll_start(bool val)
{
APB_SARADC.saradc_onetime_sample.saradc_saradc_onetime_start = val;
}
/**
* Clear the event for each ADCn for Oneshot mode
*
* @param event ADC event
*/
static inline void adc_oneshot_ll_clear_event(uint32_t event_mask)
{
APB_SARADC.saradc_int_clr.val |= event_mask;
}
/**
* Check the event for each ADCn for Oneshot mode
*
* @param event ADC event
*
* @return
* -true : The conversion process is finish.
* -false : The conversion process is not finish.
*/
static inline bool adc_oneshot_ll_get_event(uint32_t event_mask)
{
return (APB_SARADC.saradc_int_raw.val & event_mask);
}
/**
* Get the converted value for each ADCn for controller.
*
* @param adc_n ADC unit.
* @return
* - Converted value.
*/
static inline uint32_t adc_oneshot_ll_get_raw_result(adc_unit_t adc_n)
{
HAL_ASSERT(adc_n == ADC_UNIT_1);
uint32_t ret_val = 0;
ret_val = APB_SARADC.saradc_sar1data_status.saradc_apb_saradc1_data & 0xfff;
return ret_val;
}
/**
* Analyze whether the obtained raw data is correct.
* ADC2 can use arbiter. The arbitration result is stored in the channel information of the returned data.
*
* @param adc_n ADC unit.
* @param raw_data ADC raw data input (convert value).
* @return
* - 1: The data is correct to use.
* - 0: The data is invalid.
*/
static inline bool adc_oneshot_ll_raw_check_valid(adc_unit_t adc_n, uint32_t raw_data)
{
HAL_ASSERT(adc_n == ADC_UNIT_1);
return true;
}
/**
* ADC module RTC output data invert or not.
*
* @param adc_n ADC unit.
* @param inv_en data invert or not.
*/
static inline void adc_oneshot_ll_output_invert(adc_unit_t adc_n, bool inv_en)
{
HAL_ASSERT(adc_n == ADC_UNIT_1);
(void)inv_en;
//For compatibility
}
/**
* Enable oneshot conversion trigger
*
* @param adc_n ADC unit
*/
static inline void adc_oneshot_ll_enable(adc_unit_t adc_n)
{
HAL_ASSERT(adc_n == ADC_UNIT_1);
APB_SARADC.saradc_onetime_sample.saradc_saradc1_onetime_sample = 1;
}
/**
* Disable oneshot conversion trigger for all the ADC units
*/
static inline void adc_oneshot_ll_disable_all_unit(void)
{
APB_SARADC.saradc_onetime_sample.saradc_saradc1_onetime_sample = 0;
APB_SARADC.saradc_onetime_sample.saradc_saradc2_onetime_sample = 0;
}
/**
* Set attenuation
*
* @note Attenuation is for all channels
*
* @param adc_n ADC unit
* @param channel ADC channel
* @param atten ADC attenuation
*/
static inline void adc_oneshot_ll_set_atten(adc_unit_t adc_n, adc_channel_t channel, adc_atten_t atten)
{
HAL_ASSERT(adc_n == ADC_UNIT_1);
(void)channel;
// Attenuation is for all channels, unit and channel are for compatibility
APB_SARADC.saradc_onetime_sample.saradc_saradc_onetime_atten = atten;
}
/**
* Get the attenuation of a particular channel on ADCn.
*
* @param adc_n ADC unit.
* @param channel ADCn channel number.
* @return atten The attenuation option.
*/
__attribute__((always_inline))
static inline adc_atten_t adc_ll_get_atten(adc_unit_t adc_n, adc_channel_t channel)
{
HAL_ASSERT(adc_n == ADC_UNIT_1);
(void)channel;
return (adc_atten_t)APB_SARADC.saradc_onetime_sample.saradc_saradc_onetime_atten;
}
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,72 @@
/*
* SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* SAR related peripherals are interdependent.
* Related peripherals are:
* - ADC
* - PWDET
*
* All of above peripherals require SAR to work correctly.
* As SAR has some registers that will influence above mentioned peripherals.
* This file gives an abstraction for such registers
*/
#pragma once
#include <stdlib.h>
#include <stdbool.h>
#include "soc/soc.h"
#include "soc/apb_saradc_struct.h"
#ifdef __cplusplus
extern "C" {
#endif
#define PWDET_LL_SAR_POWER_FORCE_BIT BIT(24)
#define PWDET_LL_SAR_POWER_CNTL_BIT BIT(23)
typedef enum {
SAR_CTRL_LL_POWER_FSM, //SAR power controlled by FSM
SAR_CTRL_LL_POWER_ON, //SAR power on
SAR_CTRL_LL_POWER_OFF, //SAR power off
} sar_ctrl_ll_power_t;
/*---------------------------------------------------------------
SAR power control
---------------------------------------------------------------*/
/**
* @brief Set SAR power mode when controlled by PWDET
*
* @param[in] mode See `sar_ctrl_ll_power_t`
*/
static inline void sar_ctrl_ll_set_power_mode_from_pwdet(sar_ctrl_ll_power_t mode)
{
if (mode == SAR_CTRL_LL_POWER_FSM) {
REG_CLR_BIT(PWDET_CONF_REG, PWDET_LL_SAR_POWER_FORCE_BIT);
} else if (mode == SAR_CTRL_LL_POWER_ON) {
REG_SET_BIT(PWDET_CONF_REG, PWDET_LL_SAR_POWER_FORCE_BIT);
REG_SET_BIT(PWDET_CONF_REG, PWDET_LL_SAR_POWER_CNTL_BIT);
} else if (mode == SAR_CTRL_LL_POWER_OFF) {
REG_SET_BIT(PWDET_CONF_REG, PWDET_LL_SAR_POWER_FORCE_BIT);
REG_CLR_BIT(PWDET_CONF_REG, PWDET_LL_SAR_POWER_CNTL_BIT);
}
}
/**
* @brief Set SAR power ctrl source
*
* @param[in] force set PWDET as SAR power ctrl source when force is true
*/
static inline void sar_ctrl_ll_force_power_ctrl_from_pwdet(bool force)
{
APB_SARADC.saradc_ctrl.saradc_saradc2_pwdet_drv = force;
}
#ifdef __cplusplus
}
#endif

View File

@ -184,7 +184,7 @@ typedef struct {
};
} adc_digi_output_data_t;
#elif CONFIG_IDF_TARGET_ESP32C6
#elif CONFIG_IDF_TARGET_ESP32C6 || CONFIG_IDF_TARGET_ESP32H2
/**
* @brief ADC digital controller (DMA mode) output data format.
* Used to analyze the acquired ADC (DMA) data.

View File

@ -22,9 +22,10 @@
#define IDF_PERFORMANCE_MAX_SPI_PER_TRANS_NO_POLLING_NO_DMA 32
#define IDF_PERFORMANCE_MAX_SPI_PER_TRANS_POLLING_NO_DMA 15
#define IDF_PERFORMANCE_MAX_ADC_CONTINUOUS_STD_ATTEN3_NO_FILTER 8
#define IDF_PERFORMANCE_MAX_ADC_CONTINUOUS_STD_ATTEN3_FILTER_2 7
#define IDF_PERFORMANCE_MAX_ADC_CONTINUOUS_STD_ATTEN3_FILTER_4 7
#define IDF_PERFORMANCE_MAX_ADC_CONTINUOUS_STD_ATTEN3_FILTER_8 7
#define IDF_PERFORMANCE_MAX_ADC_CONTINUOUS_STD_ATTEN3_FILTER_16 7
#define IDF_PERFORMANCE_MAX_ADC_CONTINUOUS_STD_ATTEN3_FILTER_64 7
//TODO: IDF-5312
#define IDF_PERFORMANCE_MAX_ADC_CONTINUOUS_STD_ATTEN3_NO_FILTER 10
#define IDF_PERFORMANCE_MAX_ADC_CONTINUOUS_STD_ATTEN3_FILTER_2 10
#define IDF_PERFORMANCE_MAX_ADC_CONTINUOUS_STD_ATTEN3_FILTER_4 10
#define IDF_PERFORMANCE_MAX_ADC_CONTINUOUS_STD_ATTEN3_FILTER_8 10
#define IDF_PERFORMANCE_MAX_ADC_CONTINUOUS_STD_ATTEN3_FILTER_16 10
#define IDF_PERFORMANCE_MAX_ADC_CONTINUOUS_STD_ATTEN3_FILTER_64 10

View File

@ -27,9 +27,10 @@
#define IDF_PERFORMANCE_MAX_CYCLES_PER_DIV 70
#define IDF_PERFORMANCE_MAX_CYCLES_PER_SQRT 140
#define IDF_PERFORMANCE_MAX_ADC_CONTINUOUS_STD_ATTEN3_NO_FILTER 8
#define IDF_PERFORMANCE_MAX_ADC_CONTINUOUS_STD_ATTEN3_FILTER_2 7
#define IDF_PERFORMANCE_MAX_ADC_CONTINUOUS_STD_ATTEN3_FILTER_4 7
#define IDF_PERFORMANCE_MAX_ADC_CONTINUOUS_STD_ATTEN3_FILTER_8 7
#define IDF_PERFORMANCE_MAX_ADC_CONTINUOUS_STD_ATTEN3_FILTER_16 7
#define IDF_PERFORMANCE_MAX_ADC_CONTINUOUS_STD_ATTEN3_FILTER_64 7
//TODO: IDF-6216
#define IDF_PERFORMANCE_MAX_ADC_CONTINUOUS_STD_ATTEN3_NO_FILTER 10
#define IDF_PERFORMANCE_MAX_ADC_CONTINUOUS_STD_ATTEN3_FILTER_2 10
#define IDF_PERFORMANCE_MAX_ADC_CONTINUOUS_STD_ATTEN3_FILTER_4 10
#define IDF_PERFORMANCE_MAX_ADC_CONTINUOUS_STD_ATTEN3_FILTER_8 10
#define IDF_PERFORMANCE_MAX_ADC_CONTINUOUS_STD_ATTEN3_FILTER_16 10
#define IDF_PERFORMANCE_MAX_ADC_CONTINUOUS_STD_ATTEN3_FILTER_64 10

View File

@ -163,6 +163,18 @@ config SOC_ADC_CALIBRATION_V1_SUPPORTED
bool
default y
config SOC_ADC_SELF_HW_CALI_SUPPORTED
bool
default y
config SOC_ADC_DIG_CLK_XTAL_SUPPORTED
bool
default y
config SOC_ADC_DIG_CLK_PLL_F80M_SUPPORTED
bool
default y
config SOC_BROWNOUT_RESET_SUPPORTED
bool
default y

View File

@ -79,6 +79,7 @@
/*!< Calibration */
#define SOC_ADC_CALIBRATION_V1_SUPPORTED (1) /*!< support HW offset calibration version 1*/
#define SOC_ADC_SELF_HW_CALI_SUPPORTED (1) /*!< support HW offset self calibration */
/*-------------------------- BROWNOUT CAPS -----------------------------------*/
#define SOC_BROWNOUT_RESET_SUPPORTED 1

View File

@ -243,6 +243,14 @@ config SOC_ADC_CALIBRATION_V1_SUPPORTED
bool
default y
config SOC_ADC_SELF_HW_CALI_SUPPORTED
bool
default y
config SOC_ADC_DIG_CLK_APB_SUPPORTED
bool
default y
config SOC_APB_BACKUP_DMA
bool
default y

View File

@ -107,6 +107,7 @@
/*!< Calibration */
#define SOC_ADC_CALIBRATION_V1_SUPPORTED (1) /*!< support HW offset calibration version 1*/
#define SOC_ADC_SELF_HW_CALI_SUPPORTED (1) /*!< support HW offset self calibration */
/*-------------------------- APB BACKUP DMA CAPS -------------------------------*/
#define SOC_APB_BACKUP_DMA (1)

View File

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -76,3 +76,5 @@
#define DR_REG_CPU_BUS_MONITOR_BASE 0x600C2000
#define DR_REG_INTPRI_BASE 0x600C5000
#define DR_REG_EXTMEM_BASE 0x600C8000
#define PWDET_CONF_REG 0x600A8010

View File

@ -10,10 +10,10 @@
const int adc_channel_io_map[SOC_ADC_PERIPH_NUM][SOC_ADC_MAX_CHANNEL_NUM] = {
/* ADC1 */
{
ADC1_CHANNEL_0_GPIO_NUM, ADC1_CHANNEL_1_GPIO_NUM, ADC1_CHANNEL_2_GPIO_NUM, ADC1_CHANNEL_3_GPIO_NUM, ADC1_CHANNEL_4_GPIO_NUM
ADC1_CHANNEL_0_GPIO_NUM,
ADC1_CHANNEL_1_GPIO_NUM,
ADC1_CHANNEL_2_GPIO_NUM,
ADC1_CHANNEL_3_GPIO_NUM,
ADC1_CHANNEL_4_GPIO_NUM,
},
/* ADC2 */
{
ADC2_CHANNEL_0_GPIO_NUM, -1, -1, -1, -1
}
};

View File

@ -3,6 +3,10 @@
# using gen_soc_caps_kconfig.py, do not edit manually
#####################################################
config SOC_ADC_SUPPORTED
bool
default y
config SOC_DEDICATED_GPIO_SUPPORTED
bool
default y
@ -143,10 +147,6 @@ config SOC_ADC_DIG_CTRL_SUPPORTED
bool
default y
config SOC_ADC_ARBITER_SUPPORTED
bool
default y
config SOC_ADC_DIG_IIR_FILTER_SUPPORTED
bool
default y
@ -155,6 +155,10 @@ config SOC_ADC_MONITOR_SUPPORTED
bool
default y
config SOC_ADC_DMA_SUPPORTED
bool
default y
config SOC_ADC_PERIPH_NUM
int
default 1
@ -179,6 +183,10 @@ config SOC_ADC_DIGI_MAX_BITWIDTH
int
default 12
config SOC_ADC_DIGI_MIN_BITWIDTH
int
default 12
config SOC_ADC_DIGI_IIR_FILTER_NUM
int
default 2
@ -187,6 +195,14 @@ config SOC_ADC_DIGI_MONITOR_NUM
int
default 2
config SOC_ADC_DIGI_RESULT_BYTES
int
default 4
config SOC_ADC_DIGI_DATA_BYTES_PER_CONV
int
default 4
config SOC_ADC_SAMPLE_FREQ_THRES_HIGH
int
default 83333

View File

@ -6,20 +6,17 @@
#pragma once
#define ADC1_GPIO0_CHANNEL 0
#define ADC1_CHANNEL_0_GPIO_NUM 0
#define ADC1_GPIO1_CHANNEL 0
#define ADC1_CHANNEL_0_GPIO_NUM 1
#define ADC1_GPIO1_CHANNEL 1
#define ADC1_CHANNEL_1_GPIO_NUM 1
#define ADC1_GPIO2_CHANNEL 1
#define ADC1_CHANNEL_1_GPIO_NUM 2
#define ADC1_GPIO2_CHANNEL 2
#define ADC1_CHANNEL_2_GPIO_NUM 2
#define ADC1_GPIO3_CHANNEL 2
#define ADC1_CHANNEL_2_GPIO_NUM 3
#define ADC1_GPIO3_CHANNEL 3
#define ADC1_CHANNEL_3_GPIO_NUM 3
#define ADC1_GPIO4_CHANNEL 3
#define ADC1_CHANNEL_3_GPIO_NUM 4
#define ADC1_GPIO4_CHANNEL 4
#define ADC1_CHANNEL_4_GPIO_NUM 4
#define ADC2_GPIO5_CHANNEL 0
#define ADC2_CHANNEL_0_GPIO_NUM 5
#define ADC1_GPIO5_CHANNEL 4
#define ADC1_CHANNEL_4_GPIO_NUM 5

View File

@ -367,16 +367,15 @@ typedef enum {
/**
* @brief Array initializer for all supported clock sources of ADC digital controller
*/
// TODO: temporary support, need to check while supporting
#define SOC_ADC_DIGI_CLKS {SOC_MOD_CLK_XTAL, SOC_MOD_CLK_PLL_F96M}
#define SOC_ADC_DIGI_CLKS {SOC_MOD_CLK_XTAL, SOC_MOD_CLK_PLL_F96M, SOC_MOD_CLK_RC_FAST}
/**
* @brief ADC digital controller clock source
*/
// TODO: temporary support, need to check while supporting
typedef enum {
ADC_DIGI_CLK_SRC_XTAL = SOC_MOD_CLK_XTAL, /*!< Select XTAL as the source clock */
ADC_DIGI_CLK_SRC_PLL_F96M = SOC_MOD_CLK_PLL_F96M, /*!< Select PLL_F96M as the source clock */
ADC_DIGI_CLK_SRC_RC_FAST = SOC_MOD_CLK_RC_FAST, /*!< Select RC_FAST as the source clock */
ADC_DIGI_CLK_SRC_DEFAULT = SOC_MOD_CLK_PLL_F96M, /*!< Select PLL_F96M as the default clock choice */
} soc_periph_adc_digi_clk_src_t;

View File

@ -66,3 +66,5 @@
#define DR_REG_ASSIST_DEBUG_BASE 0x600C2000
#define DR_REG_INTPRI_BASE 0x600C5000
#define DR_REG_EXTMEM_BASE 0x600C8000
#define PWDET_CONF_REG 0x600A8010

View File

@ -30,6 +30,14 @@
#define ADC_SAR2_DREF_ADDR_MSB 0x6
#define ADC_SAR2_DREF_ADDR_LSB 0x4
#define ADC_SAR1_INITIAL_CODE_HIGH_ADDR 0x1
#define ADC_SAR1_INITIAL_CODE_HIGH_ADDR_MSB 0x3
#define ADC_SAR1_INITIAL_CODE_HIGH_ADDR_LSB 0x0
#define ADC_SAR1_INITIAL_CODE_LOW_ADDR 0x0
#define ADC_SAR1_INITIAL_CODE_LOW_ADDR_MSB 0x7
#define ADC_SAR1_INITIAL_CODE_LOW_ADDR_LSB 0x0
#define I2C_SARADC_TSENS_DAC 0x6
#define I2C_SARADC_TSENS_DAC_MSB 3
#define I2C_SARADC_TSENS_DAC_LSB 3

View File

@ -25,7 +25,7 @@
#pragma once
/*-------------------------- COMMON CAPS ---------------------------------------*/
// #define SOC_ADC_SUPPORTED 1 // TODO: IDF-6214
#define SOC_ADC_SUPPORTED 1
#define SOC_DEDICATED_GPIO_SUPPORTED 1
#define SOC_UART_SUPPORTED 1
#define SOC_GDMA_SUPPORTED 1
@ -80,11 +80,12 @@
/*-------------------------- ADC CAPS -------------------------------*/
/*!< SAR ADC Module*/
#define SOC_ADC_DIG_CTRL_SUPPORTED 1
#define SOC_ADC_ARBITER_SUPPORTED 1
#define SOC_ADC_DIG_IIR_FILTER_SUPPORTED 1
#define SOC_ADC_MONITOR_SUPPORTED 1
#define SOC_ADC_DIG_SUPPORTED_UNIT(UNIT) 1 //Digital controller supported ADC unit
#define SOC_ADC_DMA_SUPPORTED 1
#define SOC_ADC_PERIPH_NUM (1U)
#define SOC_ADC_CHANNEL_NUM(PERIPH_NUM) ((PERIPH_NUM==0)? 5 : 1)
#define SOC_ADC_CHANNEL_NUM(PERIPH_NUM) (5)
#define SOC_ADC_MAX_CHANNEL_NUM (5)
#define SOC_ADC_ATTEN_NUM (4)
@ -92,8 +93,11 @@
#define SOC_ADC_DIGI_CONTROLLER_NUM (1U)
#define SOC_ADC_PATT_LEN_MAX (8) /*!< One pattern table, each contains 8 items. Each item takes 1 byte */
#define SOC_ADC_DIGI_MAX_BITWIDTH (12)
#define SOC_ADC_DIGI_MIN_BITWIDTH (12)
#define SOC_ADC_DIGI_IIR_FILTER_NUM (2)
#define SOC_ADC_DIGI_MONITOR_NUM (2)
#define SOC_ADC_DIGI_RESULT_BYTES (4)
#define SOC_ADC_DIGI_DATA_BYTES_PER_CONV (4)
/*!< F_sample = F_digi_con / 2 / interval. F_digi_con = 5M for now. 30 <= interval<= 4095 */
#define SOC_ADC_SAMPLE_FREQ_THRES_HIGH 83333
#define SOC_ADC_SAMPLE_FREQ_THRES_LOW 611

View File

@ -259,6 +259,14 @@ config SOC_ADC_CALIBRATION_V1_SUPPORTED
bool
default y
config SOC_ADC_SELF_HW_CALI_SUPPORTED
bool
default y
config SOC_ADC_RTC_CLK_RC_FAST_SUPPORTED
bool
default y
config SOC_BROWNOUT_RESET_SUPPORTED
bool
default y

View File

@ -117,6 +117,7 @@
/*!< Calibration */
#define SOC_ADC_CALIBRATION_V1_SUPPORTED (1) /*!< support HW offset calibration version 1*/
#define SOC_ADC_SELF_HW_CALI_SUPPORTED (1) /*!< support HW offset self calibration */
/*-------------------------- BROWNOUT CAPS -----------------------------------*/
#define SOC_BROWNOUT_RESET_SUPPORTED 1

View File

@ -295,6 +295,14 @@ config SOC_ADC_CALIBRATION_V1_SUPPORTED
bool
default y
config SOC_ADC_SELF_HW_CALI_SUPPORTED
bool
default y
config SOC_ADC_RTC_CLK_RC_FAST_SUPPORTED
bool
default y
config SOC_APB_BACKUP_DMA
bool
default y

View File

@ -109,6 +109,7 @@
/*!< Calibration */
#define SOC_ADC_CALIBRATION_V1_SUPPORTED (1) /*!< support HW offset calibration version 1*/
#define SOC_ADC_SELF_HW_CALI_SUPPORTED (1) /*!< support HW offset self calibration */
/*-------------------------- APB BACKUP DMA CAPS -------------------------------*/

View File

@ -44,8 +44,6 @@ api-reference/storage/mass_mfg
api-reference/storage/index
api-reference/storage/nvs_partition_parse
api-reference/peripherals/sdspi_share
api-reference/peripherals/adc_continuous
api-reference/peripherals/adc_oneshot
api-reference/peripherals/usb_host
api-reference/peripherals/usb_device
api-reference/peripherals/sdspi_host

View File

@ -1,5 +1,5 @@
| Supported Targets | ESP32 | ESP32-C3 | ESP32-C6 | ESP32-S2 | ESP32-S3 |
| ----------------- | ----- | -------- | -------- | -------- | -------- |
| Supported Targets | ESP32 | ESP32-C3 | ESP32-C6 | ESP32-H2 | ESP32-S2 | ESP32-S3 |
| ----------------- | ----- | -------- | -------- | -------- | -------- | -------- |
# ADC DMA Example

View File

@ -10,6 +10,7 @@ from pytest_embedded.dut import Dut
@pytest.mark.esp32s3
@pytest.mark.esp32c3
@pytest.mark.esp32c6
@pytest.mark.esp32h2
@pytest.mark.adc
def test_adc_continuous(dut: Dut) -> None:
res = dut.expect(r'TASK: ret is 0, ret_num is (\d+)')

View File

@ -1,5 +1,5 @@
| Supported Targets | ESP32 | ESP32-C2 | ESP32-C3 | ESP32-C6 | ESP32-S2 | ESP32-S3 |
| ----------------- | ----- | -------- | -------- | -------- | -------- | -------- |
| Supported Targets | ESP32 | ESP32-C2 | ESP32-C3 | ESP32-C6 | ESP32-H2 | ESP32-S2 | ESP32-S3 |
| ----------------- | ----- | -------- | -------- | -------- | -------- | -------- | -------- |
# ADC Single Read Example

View File

@ -10,6 +10,7 @@ from pytest_embedded.dut import Dut
@pytest.mark.esp32s3
@pytest.mark.esp32c3
@pytest.mark.esp32c6
@pytest.mark.esp32h2
@pytest.mark.adc
def test_adc_oneshot(dut: Dut) -> None:
dut.expect(r'EXAMPLE: ADC1 Channel\[(\d+)\] Raw Data: (\d+)', timeout=5)