Merge branch 'refactor/spi_slave_hal_iram_dma_replace' into 'master'

refactor(spi_slave): spi slave and slave HD hal iram dma_ll replace

Closes IDF-6152 and IDF-9656

See merge request espressif/esp-idf!27877
This commit is contained in:
Wan Lei 2024-04-30 20:16:18 +08:00
commit cceec04195
31 changed files with 483 additions and 512 deletions

View File

@ -55,6 +55,7 @@ menu "ESP-Driver:SPI Configurations"
default y
select PERIPH_CTRL_FUNC_IN_IRAM
select HAL_SPI_SLAVE_FUNC_IN_IRAM
select GDMA_CTRL_FUNC_IN_IRAM if SOC_GDMA_SUPPORTED
help
Place the SPI slave ISR in to IRAM to avoid possible cache miss.

View File

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2010-2022 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2010-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -167,6 +167,25 @@ esp_err_t spi_bus_initialize(spi_host_device_t host_id, const spi_bus_config_t *
*/
esp_err_t spi_bus_free(spi_host_device_t host_id);
/**
* @brief Helper function for malloc DMA capable memory for SPI driver
*
* @note This API will take care of the cache and hardware alignment internally.
* To free/release memory allocated by this helper function, simply calling `free()`
*
* @param[in] size Size in bytes, the amount of memory to allocate
* @param[out] out_ptr Pointer to the memory if allocated successfully
* @param[in] extra_heap_caps Extra heap caps based on MALLOC_CAP_DMA
* @param[out] actual_size Optional, Actual size for allocation in bytes, when the size you specified doesn't meet the internal alignment requirements,
* This value might be bigger than the size you specified. Set NULL if don't care this value.
*
* @return
* - ESP_ERR_INVALID_ARG Invalid argument
* - ESP_ERR_NO_MEM No enough memory for allocation
* - ESP_OK on success
*/
esp_err_t spi_bus_dma_memory_malloc(size_t size, void **out_ptr, uint32_t extra_heap_caps, size_t *actual_size);
#ifdef __cplusplus
}
#endif

View File

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2010-2023 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2010-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -25,18 +25,6 @@ extern "C"
{
#endif
#ifdef CONFIG_SPI_MASTER_ISR_IN_IRAM
#define SPI_MASTER_ISR_ATTR IRAM_ATTR
#else
#define SPI_MASTER_ISR_ATTR
#endif
#ifdef CONFIG_SPI_MASTER_IN_IRAM
#define SPI_MASTER_ATTR IRAM_ATTR
#else
#define SPI_MASTER_ATTR
#endif
//NOTE!! If both A and B are not defined, '#if (A==B)' is true, because GCC use 0 stand for undefined symbol
#if SOC_GPSPI_SUPPORTED && defined(SOC_GDMA_BUS_AXI) && (SOC_GDMA_TRIG_PERIPH_SPI2_BUS == SOC_GDMA_BUS_AXI)
#define DMA_DESC_MEM_ALIGN_SIZE 8
@ -46,6 +34,15 @@ typedef dma_descriptor_align8_t spi_dma_desc_t;
typedef dma_descriptor_align4_t spi_dma_desc_t;
#endif
#if SOC_NON_CACHEABLE_OFFSET
#include "hal/cache_ll.h"
#define ADDR_DMA_2_CPU(addr) ((typeof(addr))CACHE_LL_L2MEM_NON_CACHE_ADDR(addr))
#define ADDR_CPU_2_DMA(addr) ((typeof(addr))CACHE_LL_L2MEM_CACHE_ADDR(addr))
#else
#define ADDR_DMA_2_CPU(addr) (addr)
#define ADDR_CPU_2_DMA(addr) (addr)
#endif
/// Attributes of an SPI bus
typedef struct {
spi_bus_config_t bus_cfg; ///< Config used to initialize the bus

View File

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2023-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -36,6 +36,13 @@ typedef struct {
*/
void spi_dma_enable_burst(spi_dma_chan_handle_t chan_handle, bool data_burst, bool desc_burst);
/**
* Re-trigger a HW pre-load to pick up appended linked descriptor
*
* @param chan_handle Context of the spi_dma channel.
*/
void spi_dma_append(spi_dma_chan_handle_t chan_handle);
/**
* Reset dma channel for spi_dma
*
@ -51,6 +58,13 @@ void spi_dma_reset(spi_dma_chan_handle_t chan_handle);
*/
void spi_dma_start(spi_dma_chan_handle_t chan_handle, void *addr);
/**
* Get EOF descriptor for a dma channel
*
* @param chan_handle Context of the spi_dma channel.
*/
uint32_t spi_dma_get_eof_desc(spi_dma_chan_handle_t chan_handle);
#endif //!SOC_GDMA_SUPPORTED
#ifdef __cplusplus

View File

@ -5,3 +5,6 @@ entries:
if SOC_GDMA_SUPPORTED != y && (SPI_MASTER_ISR_IN_IRAM = y || SPI_SLAVE_ISR_IN_IRAM = y):
spi_dma: spi_dma_reset (noflash)
spi_dma: spi_dma_start (noflash)
if SOC_SPI_SUPPORT_SLAVE_HD_VER2 = y:
spi_dma: spi_dma_get_eof_desc (noflash)

View File

@ -14,7 +14,6 @@
#include "esp_rom_gpio.h"
#include "esp_heap_caps.h"
#include "soc/spi_periph.h"
#include "soc/ext_mem_defs.h"
#include "driver/spi_master.h"
#include "driver/gpio.h"
#include "esp_private/gpio.h"
@ -22,14 +21,12 @@
#include "esp_private/spi_common_internal.h"
#include "esp_private/spi_share_hw_ctrl.h"
#include "esp_private/esp_cache_private.h"
#include "esp_dma_utils.h"
#include "hal/spi_hal.h"
#include "hal/gpio_hal.h"
#if CONFIG_IDF_TARGET_ESP32
#include "soc/dport_reg.h"
#endif
#if SOC_GDMA_SUPPORTED
#include "esp_private/gdma.h"
#endif
static const char *SPI_TAG = "spi";
@ -289,8 +286,12 @@ esp_err_t spicommon_dma_desc_alloc(spi_dma_ctx_t *dma_ctx, int cfg_max_sz, int *
dma_desc_ct = 1; //default to 4k when max is not given
}
dma_ctx->dmadesc_tx = heap_caps_aligned_alloc(DMA_DESC_MEM_ALIGN_SIZE, sizeof(spi_dma_desc_t) * dma_desc_ct, MALLOC_CAP_DMA);
dma_ctx->dmadesc_rx = heap_caps_aligned_alloc(DMA_DESC_MEM_ALIGN_SIZE, sizeof(spi_dma_desc_t) * dma_desc_ct, MALLOC_CAP_DMA);
esp_dma_mem_info_t dma_mem_info = {
.dma_alignment_bytes = DMA_DESC_MEM_ALIGN_SIZE,
};
esp_dma_capable_malloc(sizeof(spi_dma_desc_t) * dma_desc_ct, &dma_mem_info, (void*)&dma_ctx->dmadesc_tx, NULL);
esp_dma_capable_malloc(sizeof(spi_dma_desc_t) * dma_desc_ct, &dma_mem_info, (void*)&dma_ctx->dmadesc_rx, NULL);
if (dma_ctx->dmadesc_tx == NULL || dma_ctx->dmadesc_rx == NULL) {
if (dma_ctx->dmadesc_tx) {
free(dma_ctx->dmadesc_tx);
@ -307,15 +308,7 @@ esp_err_t spicommon_dma_desc_alloc(spi_dma_ctx_t *dma_ctx, int cfg_max_sz, int *
return ESP_OK;
}
#if SOC_NON_CACHEABLE_OFFSET
#define ADDR_DMA_2_CPU(addr) ((typeof(addr))((uint32_t)(addr) + SOC_NON_CACHEABLE_OFFSET))
#define ADDR_CPU_2_DMA(addr) ((typeof(addr))((uint32_t)(addr) - SOC_NON_CACHEABLE_OFFSET))
#else
#define ADDR_DMA_2_CPU(addr) (addr)
#define ADDR_CPU_2_DMA(addr) (addr)
#endif
void SPI_MASTER_ISR_ATTR spicommon_dma_desc_setup_link(spi_dma_desc_t *dmadesc, const void *data, int len, bool is_rx)
void IRAM_ATTR spicommon_dma_desc_setup_link(spi_dma_desc_t *dmadesc, const void *data, int len, bool is_rx)
{
dmadesc = ADDR_DMA_2_CPU(dmadesc);
int n = 0;
@ -889,6 +882,15 @@ cleanup:
return err;
}
esp_err_t spi_bus_dma_memory_malloc(size_t size, void **out_ptr, uint32_t extra_heap_caps, size_t *actual_size)
{
esp_dma_mem_info_t dma_mem_info = {
.extra_heap_caps = extra_heap_caps,
.dma_alignment_bytes = DMA_DESC_MEM_ALIGN_SIZE,
};
return esp_dma_capable_malloc(size, &dma_mem_info, out_ptr, actual_size);
}
const spi_bus_attr_t* spi_bus_get_attr(spi_host_device_t host_id)
{
if (bus_ctx[host_id] == NULL) {

View File

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2023-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -21,8 +21,30 @@ void spi_dma_enable_burst(spi_dma_chan_handle_t chan_handle, bool data_burst, bo
}
}
#if SOC_SPI_SUPPORT_SLAVE_HD_VER2
void spi_dma_append(spi_dma_chan_handle_t chan_handle)
{
spi_dma_dev_t *spi_dma = SPI_LL_GET_HW(chan_handle.host_id);
if (chan_handle.dir == DMA_CHANNEL_DIRECTION_TX) {
spi_dma_ll_tx_restart(spi_dma, chan_handle.chan_id);
} else {
spi_dma_ll_rx_restart(spi_dma, chan_handle.chan_id);
}
}
/************************************* IRAM CONTEXT **************************************/
uint32_t spi_dma_get_eof_desc(spi_dma_chan_handle_t chan_handle)
{
spi_dma_dev_t *spi_dma = SPI_LL_GET_HW(chan_handle.host_id);
return (chan_handle.dir == DMA_CHANNEL_DIRECTION_TX) ?
spi_dma_ll_get_out_eof_desc_addr(spi_dma, chan_handle.chan_id) :
spi_dma_ll_get_in_suc_eof_desc_addr(spi_dma, chan_handle.chan_id);
}
#endif //SOC_SPI_SUPPORT_SLAVE_HD_VER2
void spi_dma_reset(spi_dma_chan_handle_t chan_handle)
{
spi_dma_dev_t *spi_dma = SPI_LL_GET_HW(chan_handle.host_id);

View File

@ -133,6 +133,27 @@ We have two bits to control the interrupt:
#include "esp_cache.h"
#endif
#ifdef CONFIG_SPI_MASTER_ISR_IN_IRAM
#define SPI_MASTER_ISR_ATTR IRAM_ATTR
#else
#define SPI_MASTER_ISR_ATTR
#endif
#ifdef CONFIG_SPI_MASTER_IN_IRAM
#define SPI_MASTER_ATTR IRAM_ATTR
#else
#define SPI_MASTER_ATTR
#endif
#if SOC_PERIPH_CLK_CTRL_SHARED
#define SPI_MASTER_PERI_CLOCK_ATOMIC() PERIPH_RCC_ATOMIC()
#else
#define SPI_MASTER_PERI_CLOCK_ATOMIC()
#endif
static const char *SPI_TAG = "spi_master";
#define SPI_CHECK(a, str, ret_val) ESP_RETURN_ON_FALSE_ISR(a, ret_val, SPI_TAG, str)
typedef struct spi_device_t spi_device_t;
/// struct to hold private transaction data (like tx and rx buffer for DMA).
@ -210,15 +231,6 @@ struct spi_device_t {
static spi_host_t* bus_driver_ctx[SOC_SPI_PERIPH_NUM] = {};
static const char *SPI_TAG = "spi_master";
#define SPI_CHECK(a, str, ret_val) ESP_RETURN_ON_FALSE_ISR(a, ret_val, SPI_TAG, str)
#if SOC_PERIPH_CLK_CTRL_SHARED
#define SPI_MASTER_PERI_CLOCK_ATOMIC() PERIPH_RCC_ATOMIC()
#else
#define SPI_MASTER_PERI_CLOCK_ATOMIC()
#endif
static void spi_intr(void *arg);
static void spi_bus_intr_enable(void *host);
static void spi_bus_intr_disable(void *host);

View File

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -181,14 +181,6 @@ esp_err_t spi_slave_initialize(spi_host_device_t host, const spi_bus_config_t *b
hal->dmadesc_tx = spihost[host]->dma_ctx->dmadesc_tx;
hal->dmadesc_rx = spihost[host]->dma_ctx->dmadesc_rx;
hal->dmadesc_n = spihost[host]->dma_ctx->dma_desc_num;
#if SOC_GDMA_SUPPORTED
//temporary used for gdma_ll alias in hal layer
gdma_get_channel_id(spihost[host]->dma_ctx->tx_dma_chan, (int *)&hal->tx_dma_chan);
gdma_get_channel_id(spihost[host]->dma_ctx->rx_dma_chan, (int *)&hal->rx_dma_chan);
#else
hal->tx_dma_chan = spihost[host]->dma_ctx->tx_dma_chan.chan_id;
hal->rx_dma_chan = spihost[host]->dma_ctx->rx_dma_chan.chan_id;
#endif
#if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE
size_t alignment;
@ -266,8 +258,6 @@ esp_err_t spi_slave_initialize(spi_host_device_t host, const spi_bus_config_t *b
//assign the SPI, RX DMA and TX DMA peripheral registers beginning address
spi_slave_hal_config_t hal_config = {
.host_id = host,
.dma_in = SPI_LL_GET_HW(host),
.dma_out = SPI_LL_GET_HW(host)
};
spi_slave_hal_init(hal, &hal_config);
@ -279,31 +269,7 @@ esp_err_t spi_slave_initialize(spi_host_device_t host, const spi_bus_config_t *b
return ESP_OK;
cleanup:
if (spihost[host]) {
if (spihost[host]->trans_queue) {
vQueueDelete(spihost[host]->trans_queue);
}
if (spihost[host]->ret_queue) {
vQueueDelete(spihost[host]->ret_queue);
}
#ifdef CONFIG_PM_ENABLE
if (spihost[host]->pm_lock) {
esp_pm_lock_release(spihost[host]->pm_lock);
esp_pm_lock_delete(spihost[host]->pm_lock);
}
#endif
}
spi_slave_hal_deinit(&spihost[host]->hal);
if (spihost[host]->dma_enabled) {
free(spihost[host]->dma_ctx->dmadesc_tx);
free(spihost[host]->dma_ctx->dmadesc_rx);
spicommon_dma_chan_free(spihost[host]->dma_ctx);
}
free(spihost[host]);
spihost[host] = NULL;
spicommon_periph_free(host);
spi_slave_free(host);
return ret;
}
@ -325,8 +291,10 @@ esp_err_t spi_slave_free(spi_host_device_t host)
spicommon_bus_free_io_cfg(&spihost[host]->bus_config);
esp_intr_free(spihost[host]->intr);
#ifdef CONFIG_PM_ENABLE
esp_pm_lock_release(spihost[host]->pm_lock);
esp_pm_lock_delete(spihost[host]->pm_lock);
if (spihost[host]->pm_lock) {
esp_pm_lock_release(spihost[host]->pm_lock);
esp_pm_lock_delete(spihost[host]->pm_lock);
}
#endif //CONFIG_PM_ENABLE
free(spihost[host]);
spihost[host] = NULL;
@ -553,6 +521,49 @@ esp_err_t SPI_SLAVE_ATTR spi_slave_transmit(spi_host_device_t host, spi_slave_tr
return ESP_OK;
}
#if SOC_GDMA_SUPPORTED // AHB_DMA_V1 and AXI_DMA
// dma is provided by gdma driver on these targets
#define spi_dma_reset gdma_reset
#define spi_dma_start(chan, addr) gdma_start(chan, (intptr_t)(addr))
#endif
static void SPI_SLAVE_ISR_ATTR s_spi_slave_dma_prepare_data(spi_dma_ctx_t *dma_ctx, spi_slave_hal_context_t *hal)
{
if (hal->rx_buffer) {
spicommon_dma_desc_setup_link(dma_ctx->dmadesc_rx, hal->rx_buffer, ((hal->bitlen + 7) / 8), true);
spi_dma_reset(dma_ctx->rx_dma_chan);
spi_slave_hal_hw_prepare_rx(hal->hw);
spi_dma_start(dma_ctx->rx_dma_chan, dma_ctx->dmadesc_rx);
}
if (hal->tx_buffer) {
spicommon_dma_desc_setup_link(dma_ctx->dmadesc_tx, hal->tx_buffer, (hal->bitlen + 7) / 8, false);
spi_dma_reset(dma_ctx->tx_dma_chan);
spi_slave_hal_hw_prepare_tx(hal->hw);
spi_dma_start(dma_ctx->tx_dma_chan, dma_ctx->dmadesc_tx);
}
}
static void SPI_SLAVE_ISR_ATTR s_spi_slave_prepare_data(spi_slave_t *host)
{
spi_slave_hal_context_t *hal = &host->hal;
if (host->dma_enabled) {
s_spi_slave_dma_prepare_data(host->dma_ctx, &host->hal);
} else {
//No DMA. Copy data to transmit buffers.
spi_slave_hal_push_tx_buffer(hal);
spi_slave_hal_hw_fifo_reset(hal, true, false);
}
spi_slave_hal_set_trans_bitlen(hal);
#ifdef CONFIG_IDF_TARGET_ESP32
//SPI Slave mode on ESP32 requires MOSI/MISO enable
spi_slave_hal_enable_data_line(hal);
#endif
}
#if CONFIG_IDF_TARGET_ESP32
static void SPI_SLAVE_ISR_ATTR spi_slave_restart_after_dmareset(void *arg)
{
@ -654,7 +665,8 @@ static void SPI_SLAVE_ISR_ATTR spi_intr(void *arg)
}
#endif //#if CONFIG_IDF_TARGET_ESP32
spi_slave_hal_prepare_data(hal);
spi_slave_hal_hw_reset(hal);
s_spi_slave_prepare_data(host);
//The slave rx dma get disturbed by unexpected transaction. Only connect the CS when slave is ready.
if (use_dma) {

View File

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2010-2023 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2010-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -65,11 +65,18 @@ static spi_slave_hd_slot_t *spihost[SOC_SPI_PERIPH_NUM];
static const char TAG[] = "slave_hd";
#if SOC_GDMA_SUPPORTED
static bool spi_gdma_tx_channel_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data);
// for which dma is provided by gdma driver
#define spi_dma_reset gdma_reset
#define spi_dma_start(chan, addr) gdma_start(chan, (intptr_t)(addr))
#define spi_dma_append gdma_append
static bool s_spi_slave_hd_append_gdma_isr(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data);
#else
// by spi_dma, mainly esp32s2
static void s_spi_slave_hd_append_legacy_isr(void *arg);
#endif // SOC_GDMA_SUPPORTED
static void spi_slave_hd_intr_append(void *arg);
static void spi_slave_hd_intr_segment(void *arg);
static void s_spi_slave_hd_segment_isr(void *arg);
esp_err_t spi_slave_hd_init(spi_host_device_t host_id, const spi_bus_config_t *bus_config, const spi_slave_hd_slot_config_t *config)
{
@ -102,6 +109,16 @@ esp_err_t spi_slave_hd_init(spi_host_device_t host_id, const spi_bus_config_t *b
if (ret != ESP_OK) {
goto cleanup;
}
#if SOC_GDMA_SUPPORTED
gdma_strategy_config_t dma_strategy = {
.auto_update_desc = true,
.eof_till_data_popped = true,
};
gdma_apply_strategy(host->dma_ctx->tx_dma_chan, &dma_strategy);
#else
spi_dma_ll_enable_out_auto_wrback(SPI_LL_GET_HW(host->dma_ctx->tx_dma_chan.host_id), host->dma_ctx->tx_dma_chan.chan_id, 1);
spi_dma_ll_set_out_eof_generation(SPI_LL_GET_HW(host->dma_ctx->tx_dma_chan.host_id), host->dma_ctx->tx_dma_chan.chan_id, 1);
#endif
ret = spicommon_dma_desc_alloc(host->dma_ctx, bus_config->max_transfer_sz, &host->max_transfer_sz);
if (ret != ESP_OK) {
goto cleanup;
@ -141,8 +158,6 @@ esp_err_t spi_slave_hd_init(spi_host_device_t host_id, const spi_bus_config_t *b
spi_slave_hd_hal_config_t hal_config = {
.host_id = host_id,
.dma_in = SPI_LL_GET_HW(host_id),
.dma_out = SPI_LL_GET_HW(host_id),
.dma_enabled = host->dma_enabled,
.append_mode = append_mode,
.mode = config->mode,
@ -150,15 +165,6 @@ esp_err_t spi_slave_hd_init(spi_host_device_t host_id, const spi_bus_config_t *b
.rx_lsbfirst = (config->flags & SPI_SLAVE_HD_TXBIT_LSBFIRST),
};
#if SOC_GDMA_SUPPORTED
//temporary used for gdma_ll alias in hal layer
gdma_get_channel_id(host->dma_ctx->tx_dma_chan, (int *)&hal_config.tx_dma_chan);
gdma_get_channel_id(host->dma_ctx->rx_dma_chan, (int *)&hal_config.rx_dma_chan);
#else
hal_config.tx_dma_chan = host->dma_ctx->tx_dma_chan.chan_id;
hal_config.rx_dma_chan = host->dma_ctx->rx_dma_chan.chan_id;
#endif
//Init the hal according to the hal_config set above
spi_slave_hd_hal_init(&host->hal, &hal_config);
@ -192,34 +198,28 @@ esp_err_t spi_slave_hd_init(spi_host_device_t host_id, const spi_bus_config_t *b
//Alloc intr
if (!host->append_mode) {
//Seg mode
ret = esp_intr_alloc(spicommon_irqsource_for_host(host_id), 0, spi_slave_hd_intr_segment,
ret = esp_intr_alloc(spicommon_irqsource_for_host(host_id), 0, s_spi_slave_hd_segment_isr,
(void *)host, &host->intr);
if (ret != ESP_OK) {
goto cleanup;
}
ret = esp_intr_alloc(spicommon_irqdma_source_for_host(host_id), 0, spi_slave_hd_intr_segment,
ret = esp_intr_alloc(spicommon_irqdma_source_for_host(host_id), 0, s_spi_slave_hd_segment_isr,
(void *)host, &host->intr_dma);
if (ret != ESP_OK) {
goto cleanup;
}
} else {
//Append mode
//On ESP32S2, `cmd7` and `cmd8` interrupts registered as spi rx & tx interrupt are from SPI DMA interrupt source.
//although the `cmd7` and `cmd8` interrupt on spi are registered independently here
ret = esp_intr_alloc(spicommon_irqsource_for_host(host_id), 0, spi_slave_hd_intr_append,
(void *)host, &host->intr);
if (ret != ESP_OK) {
goto cleanup;
}
#if SOC_GDMA_SUPPORTED
// config gmda and ISR callback for gdma supported chip
gdma_tx_event_callbacks_t tx_cbs = {
.on_trans_eof = spi_gdma_tx_channel_callback
// config gmda event callback for gdma supported chip
gdma_rx_event_callbacks_t txrx_cbs = {
.on_recv_eof = s_spi_slave_hd_append_gdma_isr,
};
gdma_register_tx_event_callbacks(host->dma_ctx->tx_dma_chan, &tx_cbs, host);
gdma_register_tx_event_callbacks(host->dma_ctx->tx_dma_chan, (gdma_tx_event_callbacks_t *)&txrx_cbs, host);
gdma_register_rx_event_callbacks(host->dma_ctx->rx_dma_chan, &txrx_cbs, host);
#else
ret = esp_intr_alloc(spicommon_irqdma_source_for_host(host_id), 0, spi_slave_hd_intr_append,
//On ESP32S2, `cmd7` and `cmd8` are designed as all `spi_dma` events, so use `dma_src` only
ret = esp_intr_alloc(spicommon_irqdma_source_for_host(host_id), 0, s_spi_slave_hd_append_legacy_isr,
(void *)host, &host->intr_dma);
if (ret != ESP_OK) {
goto cleanup;
@ -321,8 +321,7 @@ static inline IRAM_ATTR BaseType_t intr_check_clear_callback(spi_slave_hd_slot_t
}
return cb_awoken;
}
static IRAM_ATTR void spi_slave_hd_intr_segment(void *arg)
static IRAM_ATTR void s_spi_slave_hd_segment_isr(void *arg)
{
spi_slave_hd_slot_t *host = (spi_slave_hd_slot_t *)arg;
spi_slave_hd_callback_config_t *callback = &host->callback;
@ -396,7 +395,10 @@ static IRAM_ATTR void spi_slave_hd_intr_segment(void *arg)
if (!host->tx_curr_trans.trans) {
ret = xQueueReceiveFromISR(host->tx_trans_queue, &host->tx_curr_trans, &awoken);
if (ret == pdTRUE) {
spi_slave_hd_hal_txdma(hal, host->tx_curr_trans.aligned_buffer, host->tx_curr_trans.trans->len);
spicommon_dma_desc_setup_link(hal->dmadesc_tx->desc, host->tx_curr_trans.aligned_buffer, host->tx_curr_trans.trans->len, false);
spi_dma_reset(host->dma_ctx->tx_dma_chan);
spi_slave_hd_hal_txdma(hal);
spi_dma_start(host->dma_ctx->tx_dma_chan, host->dma_ctx->dmadesc_tx);
tx_sent = true;
if (callback->cb_send_dma_ready) {
spi_slave_hd_event_t ev = {
@ -412,7 +414,10 @@ static IRAM_ATTR void spi_slave_hd_intr_segment(void *arg)
if (!host->rx_curr_trans.trans) {
ret = xQueueReceiveFromISR(host->rx_trans_queue, &host->rx_curr_trans, &awoken);
if (ret == pdTRUE) {
spi_slave_hd_hal_rxdma(hal, host->rx_curr_trans.aligned_buffer, host->rx_curr_trans.trans->len);
spicommon_dma_desc_setup_link(hal->dmadesc_rx->desc, host->rx_curr_trans.aligned_buffer, host->rx_curr_trans.trans->len, true);
spi_dma_reset(host->dma_ctx->rx_dma_chan);
spi_slave_hd_hal_rxdma(hal);
spi_dma_start(host->dma_ctx->rx_dma_chan, host->dma_ctx->dmadesc_rx);
rx_sent = true;
if (callback->cb_recv_dma_ready) {
spi_slave_hd_event_t ev = {
@ -528,31 +533,35 @@ static IRAM_ATTR void spi_slave_hd_append_rx_isr(void *arg)
}
#if SOC_GDMA_SUPPORTED
// 'spi_gdma_tx_channel_callback' used as spi tx interrupt of append mode on gdma supported target
static IRAM_ATTR bool spi_gdma_tx_channel_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data)
static IRAM_ATTR bool s_spi_slave_hd_append_gdma_isr(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data)
{
assert(event_data);
spi_slave_hd_append_tx_isr(user_data);
spi_slave_hd_slot_t *host = (spi_slave_hd_slot_t*)user_data;
host->hal.current_eof_addr = event_data->tx_eof_desc_addr;
if (host->dma_ctx->tx_dma_chan == dma_chan) {
spi_slave_hd_append_tx_isr(user_data);
} else {
spi_slave_hd_append_rx_isr(user_data);
}
return true;
}
#endif // SOC_GDMA_SUPPORTED
// SPI slave hd append isr entrance
static IRAM_ATTR void spi_slave_hd_intr_append(void *arg)
#else
static IRAM_ATTR void s_spi_slave_hd_append_legacy_isr(void *arg)
{
spi_slave_hd_slot_t *host = (spi_slave_hd_slot_t *)arg;
spi_slave_hd_hal_context_t *hal = &host->hal;
bool rx_done = false;
bool tx_done = false;
// Append Mode
portENTER_CRITICAL_ISR(&host->int_spinlock);
if (spi_slave_hd_hal_check_clear_event(hal, SPI_EV_RECV)) {
hal->current_eof_addr = spi_dma_get_eof_desc(host->dma_ctx->rx_dma_chan);
rx_done = true;
}
if (spi_slave_hd_hal_check_clear_event(hal, SPI_EV_SEND)) {
// NOTE: on gdma supported chips, this flag should NOT checked out, handle entrance is only `spi_gdma_tx_channel_callback`,
// otherwise, here should be target limited.
hal->current_eof_addr = spi_dma_get_eof_desc(host->dma_ctx->tx_dma_chan);
tx_done = true;
}
portEXIT_CRITICAL_ISR(&host->int_spinlock);
@ -564,6 +573,7 @@ static IRAM_ATTR void spi_slave_hd_intr_append(void *arg)
spi_slave_hd_append_tx_isr(arg);
}
}
#endif // SOC_GDMA_SUPPORTED
static void s_spi_slave_hd_destroy_priv_trans(spi_host_device_t host, spi_slave_hd_trans_priv_t *priv_trans, spi_slave_chan_t chan)
{
@ -626,6 +636,88 @@ static esp_err_t get_ret_queue_result(spi_host_device_t host_id, spi_slave_chan_
return ESP_OK;
}
esp_err_t s_spi_slave_hd_append_txdma(spi_slave_hd_slot_t *host, uint8_t *data, size_t len, void *arg)
{
spi_slave_hd_hal_context_t *hal = &host->hal;
//Check if there are enough available DMA descriptors for software to use
int num_required = (len + LLDESC_MAX_NUM_PER_DESC - 1) / LLDESC_MAX_NUM_PER_DESC;
int not_recycled_desc_num = hal->tx_used_desc_cnt - hal->tx_recycled_desc_cnt;
int available_desc_num = hal->dma_desc_num - not_recycled_desc_num;
if (num_required > available_desc_num) {
return ESP_ERR_INVALID_STATE;
}
spicommon_dma_desc_setup_link(hal->tx_cur_desc->desc, data, len, false);
hal->tx_cur_desc->arg = arg;
if (!hal->tx_dma_started) {
hal->tx_dma_started = true;
//start a link
hal->tx_dma_tail = hal->tx_cur_desc;
spi_dma_reset(host->dma_ctx->tx_dma_chan);
spi_slave_hd_hal_hw_prepare_tx(hal);
spi_dma_start(host->dma_ctx->tx_dma_chan, hal->tx_cur_desc->desc);
} else {
//there is already a consecutive link
ADDR_DMA_2_CPU(hal->tx_dma_tail->desc)->next = hal->tx_cur_desc->desc;
hal->tx_dma_tail = hal->tx_cur_desc;
spi_dma_append(host->dma_ctx->tx_dma_chan);
}
//Move the current descriptor pointer according to the number of the linked descriptors
for (int i = 0; i < num_required; i++) {
hal->tx_used_desc_cnt++;
hal->tx_cur_desc++;
if (hal->tx_cur_desc == hal->dmadesc_tx + hal->dma_desc_num) {
hal->tx_cur_desc = hal->dmadesc_tx;
}
}
return ESP_OK;
}
esp_err_t s_spi_slave_hd_append_rxdma(spi_slave_hd_slot_t *host, uint8_t *data, size_t len, void *arg)
{
spi_slave_hd_hal_context_t *hal = &host->hal;
//Check if there are enough available dma descriptors for software to use
int num_required = (len + LLDESC_MAX_NUM_PER_DESC - 1) / LLDESC_MAX_NUM_PER_DESC;
int not_recycled_desc_num = hal->rx_used_desc_cnt - hal->rx_recycled_desc_cnt;
int available_desc_num = hal->dma_desc_num - not_recycled_desc_num;
if (num_required > available_desc_num) {
return ESP_ERR_INVALID_STATE;
}
spicommon_dma_desc_setup_link(hal->rx_cur_desc->desc, data, len, false);
hal->rx_cur_desc->arg = arg;
if (!hal->rx_dma_started) {
hal->rx_dma_started = true;
//start a link
hal->rx_dma_tail = hal->rx_cur_desc;
spi_dma_reset(host->dma_ctx->rx_dma_chan);
spi_slave_hd_hal_hw_prepare_rx(hal);
spi_dma_start(host->dma_ctx->rx_dma_chan, hal->rx_cur_desc->desc);
} else {
//there is already a consecutive link
ADDR_DMA_2_CPU(hal->rx_dma_tail->desc)->next = hal->rx_cur_desc->desc;
hal->rx_dma_tail = hal->rx_cur_desc;
spi_dma_append(host->dma_ctx->rx_dma_chan);
}
//Move the current descriptor pointer according to the number of the linked descriptors
for (int i = 0; i < num_required; i++) {
hal->rx_used_desc_cnt++;
hal->rx_cur_desc++;
if (hal->rx_cur_desc == hal->dmadesc_rx + hal->dma_desc_num) {
hal->rx_cur_desc = hal->dmadesc_rx;
}
}
return ESP_OK;
}
//---------------------------------------------------------Segment Mode Transaction APIs-----------------------------------------------------------//
esp_err_t spi_slave_hd_queue_trans(spi_host_device_t host_id, spi_slave_chan_t chan, spi_slave_hd_data_t *trans, TickType_t timeout)
{
@ -682,7 +774,6 @@ esp_err_t spi_slave_hd_append_trans(spi_host_device_t host_id, spi_slave_chan_t
{
esp_err_t err;
spi_slave_hd_slot_t *host = spihost[host_id];
spi_slave_hd_hal_context_t *hal = &host->hal;
SPIHD_CHECK(trans->len <= SPI_MAX_DMA_LEN, "Currently we only support transaction with data length within 4092 bytes", ESP_ERR_INVALID_ARG);
SPIHD_CHECK(host->append_mode == 1, "This API should be used for SPI Slave HD Append Mode", ESP_ERR_INVALID_STATE);
@ -698,13 +789,13 @@ esp_err_t spi_slave_hd_append_trans(spi_host_device_t host_id, spi_slave_chan_t
if (ret == pdFALSE) {
return ESP_ERR_TIMEOUT;
}
err = spi_slave_hd_hal_txdma_append(hal, hd_priv_trans.aligned_buffer, trans->len, trans);
err = s_spi_slave_hd_append_txdma(host, hd_priv_trans.aligned_buffer, trans->len, trans);
} else {
BaseType_t ret = xSemaphoreTake(host->rx_cnting_sem, timeout);
if (ret == pdFALSE) {
return ESP_ERR_TIMEOUT;
}
err = spi_slave_hd_hal_rxdma_append(hal, hd_priv_trans.aligned_buffer, trans->len, trans);
err = s_spi_slave_hd_append_rxdma(host, hd_priv_trans.aligned_buffer, trans->len, trans);
}
if (err != ESP_OK) {
ESP_LOGE(TAG, "Wait until the DMA finishes its transaction");

View File

@ -404,7 +404,7 @@ esp_err_t gdma_apply_strategy(gdma_channel_handle_t dma_chan, const gdma_strateg
gdma_group_t *group = pair->group;
gdma_hal_context_t *hal = &group->hal;
gdma_hal_set_strategy(hal, pair->pair_id, dma_chan->direction, config->owner_check, config->auto_update_desc);
gdma_hal_set_strategy(hal, pair->pair_id, dma_chan->direction, config->owner_check, config->auto_update_desc, config->eof_till_data_popped);
return ESP_OK;
}

View File

@ -122,6 +122,7 @@ typedef struct {
typedef struct {
bool owner_check; /*!< If set / clear, DMA channel enables / disables checking owner validity */
bool auto_update_desc; /*!< If set / clear, DMA channel enables / disables hardware to update descriptor automatically (TX channel only) */
bool eof_till_data_popped; /*!< If set / clear, DMA channel out_eof event is triggered on out / in DMA hardware fifo */
} gdma_strategy_config_t;
/** @cond */

View File

@ -313,7 +313,7 @@ static inline void spi_ll_slave_reset(spi_dev_t *hw)
/**
* Reset SPI CPU TX FIFO
*
* On ESP32C3, this function is not seperated
* On ESP32C3, this function is not separated
*
* @param hw Beginning address of the peripheral registers.
*/
@ -326,7 +326,7 @@ static inline void spi_ll_cpu_tx_fifo_reset(spi_dev_t *hw)
/**
* Reset SPI CPU RX FIFO
*
* On ESP32C3, this function is not seperated
* On ESP32C3, this function is not separated
*
* @param hw Beginning address of the peripheral registers.
*/
@ -711,7 +711,7 @@ static inline void spi_ll_master_set_clock_by_reg(spi_dev_t *hw, const spi_ll_cl
* Get the frequency of given dividers. Don't use in app.
*
* @param fapb APB clock of the system.
* @param pre Pre devider.
* @param pre Pre divider.
* @param n Main divider.
*
* @return Frequency of given dividers.
@ -722,10 +722,10 @@ static inline int spi_ll_freq_for_pre_n(int fapb, int pre, int n)
}
/**
* Calculate the nearest frequency avaliable for master.
* Calculate the nearest frequency available for master.
*
* @param fapb APB clock of the system.
* @param hz Frequncy desired.
* @param hz Frequency desired.
* @param duty_cycle Duty cycle desired.
* @param out_reg Output address to store the calculated clock configurations for the return frequency.
*
@ -805,7 +805,7 @@ typeof(GPSPI2.clock) reg;
*
* @param hw Beginning address of the peripheral registers.
* @param fapb APB clock of the system.
* @param hz Frequncy desired.
* @param hz Frequency desired.
* @param duty_cycle Duty cycle desired.
*
* @return Actual frequency that is used.

View File

@ -315,7 +315,7 @@ static inline void spi_ll_slave_reset(spi_dev_t *hw)
/**
* Reset SPI CPU TX FIFO
*
* On ESP32C3, this function is not seperated
* On ESP32C3, this function is not separated
*
* @param hw Beginning address of the peripheral registers.
*/
@ -328,7 +328,7 @@ static inline void spi_ll_cpu_tx_fifo_reset(spi_dev_t *hw)
/**
* Reset SPI CPU RX FIFO
*
* On ESP32C3, this function is not seperated
* On ESP32C3, this function is not separated
*
* @param hw Beginning address of the peripheral registers.
*/
@ -713,7 +713,7 @@ static inline void spi_ll_master_set_clock_by_reg(spi_dev_t *hw, const spi_ll_cl
* Get the frequency of given dividers. Don't use in app.
*
* @param fapb APB clock of the system.
* @param pre Pre devider.
* @param pre Pre divider.
* @param n Main divider.
*
* @return Frequency of given dividers.
@ -724,10 +724,10 @@ static inline int spi_ll_freq_for_pre_n(int fapb, int pre, int n)
}
/**
* Calculate the nearest frequency avaliable for master.
* Calculate the nearest frequency available for master.
*
* @param fapb APB clock of the system.
* @param hz Frequncy desired.
* @param hz Frequency desired.
* @param duty_cycle Duty cycle desired.
* @param out_reg Output address to store the calculated clock configurations for the return frequency.
*
@ -807,7 +807,7 @@ static inline int spi_ll_master_cal_clock(int fapb, int hz, int duty_cycle, spi_
*
* @param hw Beginning address of the peripheral registers.
* @param fapb APB clock of the system.
* @param hz Frequncy desired.
* @param hz Frequency desired.
* @param duty_cycle Duty cycle desired.
*
* @return Actual frequency that is used.

View File

@ -307,7 +307,7 @@ static inline void spi_ll_slave_reset(spi_dev_t *hw)
/**
* Reset SPI CPU TX FIFO
*
* On ESP32C6, this function is not seperated
* On ESP32C6, this function is not separated
*
* @param hw Beginning address of the peripheral registers.
*/
@ -320,7 +320,7 @@ static inline void spi_ll_cpu_tx_fifo_reset(spi_dev_t *hw)
/**
* Reset SPI CPU RX FIFO
*
* On ESP32C6, this function is not seperated
* On ESP32C6, this function is not separated
*
* @param hw Beginning address of the peripheral registers.
*/
@ -705,7 +705,7 @@ static inline void spi_ll_master_set_clock_by_reg(spi_dev_t *hw, const spi_ll_cl
* Get the frequency of given dividers. Don't use in app.
*
* @param fapb APB clock of the system.
* @param pre Pre devider.
* @param pre Pre divider.
* @param n Main divider.
*
* @return Frequency of given dividers.
@ -716,10 +716,10 @@ static inline int spi_ll_freq_for_pre_n(int fapb, int pre, int n)
}
/**
* Calculate the nearest frequency avaliable for master.
* Calculate the nearest frequency available for master.
*
* @param fapb APB clock of the system.
* @param hz Frequncy desired.
* @param hz Frequency desired.
* @param duty_cycle Duty cycle desired.
* @param out_reg Output address to store the calculated clock configurations for the return frequency.
*
@ -799,7 +799,7 @@ static inline int spi_ll_master_cal_clock(int fapb, int hz, int duty_cycle, spi_
*
* @param hw Beginning address of the peripheral registers.
* @param fapb APB clock of the system.
* @param hz Frequncy desired.
* @param hz Frequency desired.
* @param duty_cycle Duty cycle desired.
*
* @return Actual frequency that is used.

View File

@ -306,7 +306,7 @@ static inline void spi_ll_slave_reset(spi_dev_t *hw)
/**
* Reset SPI CPU TX FIFO
*
* On ESP32H2, this function is not seperated
* On ESP32H2, this function is not separated
*
* @param hw Beginning address of the peripheral registers.
*/
@ -319,7 +319,7 @@ static inline void spi_ll_cpu_tx_fifo_reset(spi_dev_t *hw)
/**
* Reset SPI CPU RX FIFO
*
* On ESP32H2, this function is not seperated
* On ESP32H2, this function is not separated
*
* @param hw Beginning address of the peripheral registers.
*/
@ -704,7 +704,7 @@ static inline void spi_ll_master_set_clock_by_reg(spi_dev_t *hw, const spi_ll_cl
* Get the frequency of given dividers. Don't use in app.
*
* @param fapb APB clock of the system.
* @param pre Pre devider.
* @param pre Pre divider.
* @param n Main divider.
*
* @return Frequency of given dividers.
@ -715,10 +715,10 @@ static inline int spi_ll_freq_for_pre_n(int fapb, int pre, int n)
}
/**
* Calculate the nearest frequency avaliable for master.
* Calculate the nearest frequency available for master.
*
* @param fapb APB clock of the system.
* @param hz Frequncy desired.
* @param hz Frequency desired.
* @param duty_cycle Duty cycle desired.
* @param out_reg Output address to store the calculated clock configurations for the return frequency.
*
@ -798,7 +798,7 @@ static inline int spi_ll_master_cal_clock(int fapb, int hz, int duty_cycle, spi_
*
* @param hw Beginning address of the peripheral registers.
* @param fapb APB clock of the system.
* @param hz Frequncy desired.
* @param hz Frequency desired.
* @param duty_cycle Duty cycle desired.
*
* @return Actual frequency that is used.

View File

@ -358,7 +358,7 @@ static inline void spi_ll_slave_reset(spi_dev_t *hw)
/**
* Reset SPI CPU TX FIFO
*
* On P4, this function is not seperated
* On P4, this function is not separated
*
* @param hw Beginning address of the peripheral registers.
*/
@ -371,7 +371,7 @@ static inline void spi_ll_cpu_tx_fifo_reset(spi_dev_t *hw)
/**
* Reset SPI CPU RX FIFO
*
* On P4, this function is not seperated
* On P4, this function is not separated
*
* @param hw Beginning address of the peripheral registers.
*/
@ -760,7 +760,7 @@ static inline void spi_ll_master_set_clock_by_reg(spi_dev_t *hw, const spi_ll_cl
* Get the frequency of given dividers. Don't use in app.
*
* @param fapb APB clock of the system.
* @param pre Pre devider.
* @param pre Pre divider.
* @param n Main divider.
*
* @return Frequency of given dividers.
@ -771,10 +771,10 @@ static inline int spi_ll_freq_for_pre_n(int fapb, int pre, int n)
}
/**
* Calculate the nearest frequency avaliable for master.
* Calculate the nearest frequency available for master.
*
* @param fapb APB clock of the system.
* @param hz Frequncy desired.
* @param hz Frequency desired.
* @param duty_cycle Duty cycle desired.
* @param out_reg Output address to store the calculated clock configurations for the return frequency.
*
@ -854,7 +854,7 @@ static inline int spi_ll_master_cal_clock(int fapb, int hz, int duty_cycle, spi_
*
* @param hw Beginning address of the peripheral registers.
* @param fapb APB clock of the system.
* @param hz Frequncy desired.
* @param hz Frequency desired.
* @param duty_cycle Duty cycle desired.
*
* @return Actual frequency that is used.

View File

@ -337,7 +337,7 @@ static inline void spi_ll_cpu_rx_fifo_reset(spi_dev_t *hw)
/**
* Reset SPI DMA TX FIFO
*
* On ESP32S2, this function is not seperated
* On ESP32S2, this function is not separated
*
* @param hw Beginning address of the peripheral registers.
*/
@ -350,7 +350,7 @@ static inline void spi_ll_dma_tx_fifo_reset(spi_dev_t *hw)
/**
* Reset SPI DMA RX FIFO
*
* On ESP32S2, this function is not seperated
* On ESP32S2, this function is not separated
*
* @param hw Beginning address of the peripheral registers.
*/
@ -701,7 +701,7 @@ static inline void spi_ll_master_set_clock_by_reg(spi_dev_t *hw, const spi_ll_cl
* Get the frequency of given dividers. Don't use in app.
*
* @param fapb APB clock of the system.
* @param pre Pre devider.
* @param pre Pre divider.
* @param n main divider.
*
* @return Frequency of given dividers.
@ -712,10 +712,10 @@ static inline int spi_ll_freq_for_pre_n(int fapb, int pre, int n)
}
/**
* Calculate the nearest frequency avaliable for master.
* Calculate the nearest frequency available for master.
*
* @param fapb APB clock of the system.
* @param hz Frequncy desired.
* @param hz Frequency desired.
* @param duty_cycle Duty cycle desired.
* @param out_reg Output address to store the calculated clock configurations for the return frequency.
*
@ -795,7 +795,7 @@ static inline int spi_ll_master_cal_clock(int fapb, int hz, int duty_cycle, spi_
*
* @param hw Beginning address of the peripheral registers.
* @param fapb APB clock of the system.
* @param hz Frequncy desired.
* @param hz Frequency desired.
* @param duty_cycle Duty cycle desired.
*
* @return Actual frequency that is used.
@ -1079,10 +1079,10 @@ static inline uint32_t spi_ll_slave_get_rcv_bitlen(spi_dev_t *hw)
item(SPI_LL_INTR_WRBUF, slave.int_wr_buf_done_en, slv_wrbuf_dlen.wr_buf_done, slv_wrbuf_dlen.wr_buf_done=0) \
item(SPI_LL_INTR_RDDMA, slave.int_rd_dma_done_en, slv_rd_byte.rd_dma_done, slv_rd_byte.rd_dma_done=0) \
item(SPI_LL_INTR_WRDMA, slave.int_wr_dma_done_en, slave1.wr_dma_done, slave1.wr_dma_done=0) \
item(SPI_LL_INTR_SEG_DONE, slave.int_dma_seg_trans_en, hold.dma_seg_trans_done, hold.dma_seg_trans_done=0) \
item(SPI_LL_INTR_IN_SUC_EOF, dma_int_ena.in_suc_eof, dma_int_raw.in_suc_eof, dma_int_clr.in_suc_eof=1) \
item(SPI_LL_INTR_OUT_EOF, dma_int_ena.out_eof, dma_int_raw.out_eof, dma_int_clr.out_eof=1) \
item(SPI_LL_INTR_OUT_TOTAL_EOF, dma_int_ena.out_total_eof, dma_int_raw.out_total_eof, dma_int_clr.out_total_eof=1) \
item(SPI_LL_INTR_SEG_DONE, slave.int_dma_seg_trans_en, hold.dma_seg_trans_done, hold.dma_seg_trans_done=0) \
item(SPI_LL_INTR_IN_FULL, dma_int_ena.infifo_full_err, dma_int_raw.infifo_full_err, dma_int_clr.infifo_full_err=1) \
item(SPI_LL_INTR_OUT_EMPTY, dma_int_ena.outfifo_empty_err, dma_int_raw.outfifo_empty_err, dma_int_clr.outfifo_empty_err=1) \
item(SPI_LL_INTR_CMD7, dma_int_ena.cmd7, dma_int_raw.cmd7, dma_int_clr.cmd7=1) \
@ -1428,7 +1428,7 @@ static inline void spi_dma_ll_enable_out_auto_wrback(spi_dma_dev_t *dma_out, uin
}
/**
* Get the last outlink descriptor address when DMA produces out_eof intrrupt
* Get the last outlink descriptor address when DMA produces out_eof interrupt
*
* @param dma_out Beginning address of the DMA peripheral registers which transmits the data from RAM to a peripheral.
* @param channel DMA channel, for chip version compatibility, not used.

View File

@ -322,7 +322,7 @@ static inline void spi_ll_slave_reset(spi_dev_t *hw)
/**
* Reset SPI CPU TX FIFO
*
* On ESP32S3, this function is not seperated
* On ESP32S3, this function is not separated
*
* @param hw Beginning address of the peripheral registers.
*/
@ -335,7 +335,7 @@ static inline void spi_ll_cpu_tx_fifo_reset(spi_dev_t *hw)
/**
* Reset SPI CPU RX FIFO
*
* On ESP32S3, this function is not seperated
* On ESP32S3, this function is not separated
*
* @param hw Beginning address of the peripheral registers.
*/
@ -732,7 +732,7 @@ static inline void spi_ll_master_set_clock_by_reg(spi_dev_t *hw, const spi_ll_cl
* Get the frequency of given dividers. Don't use in app.
*
* @param fapb APB clock of the system.
* @param pre Pre devider.
* @param pre Pre divider.
* @param n Main divider.
*
* @return Frequency of given dividers.
@ -743,10 +743,10 @@ static inline int spi_ll_freq_for_pre_n(int fapb, int pre, int n)
}
/**
* Calculate the nearest frequency avaliable for master.
* Calculate the nearest frequency available for master.
*
* @param fapb APB clock of the system.
* @param hz Frequncy desired.
* @param hz Frequency desired.
* @param duty_cycle Duty cycle desired.
* @param out_reg Output address to store the calculated clock configurations for the return frequency.
*
@ -826,7 +826,7 @@ static inline int spi_ll_master_cal_clock(int fapb, int hz, int duty_cycle, spi_
*
* @param hw Beginning address of the peripheral registers.
* @param fapb APB clock of the system.
* @param hz Frequncy desired.
* @param hz Frequency desired.
* @param duty_cycle Duty cycle desired.
*
* @return Actual frequency that is used.

View File

@ -102,14 +102,16 @@ void gdma_ahb_hal_set_ext_mem_align(gdma_hal_context_t *hal, int chan_id, gdma_c
}
#endif
void gdma_ahb_hal_set_strategy(gdma_hal_context_t *hal, int chan_id, gdma_channel_direction_t dir, bool en_owner_check, bool en_desc_write_back)
void gdma_ahb_hal_set_strategy(gdma_hal_context_t *hal, int chan_id, gdma_channel_direction_t dir, bool en_owner_check, bool en_desc_write_back, bool eof_till_popped)
{
if (dir == GDMA_CHANNEL_DIRECTION_RX) {
gdma_ll_rx_enable_owner_check(hal->dev, chan_id, en_owner_check);
// RX direction always has the descriptor write-back feature enabled
// RX direction don't need config eof_mode
} else {
gdma_ll_tx_enable_owner_check(hal->dev, chan_id, en_owner_check);
gdma_ll_tx_enable_auto_write_back(hal->dev, chan_id, en_desc_write_back);
gdma_ll_tx_set_eof_mode(hal->dev, chan_id, eof_till_popped);
}
}

View File

@ -91,14 +91,16 @@ void gdma_ahb_hal_enable_burst(gdma_hal_context_t *hal, int chan_id, gdma_channe
}
}
void gdma_ahb_hal_set_strategy(gdma_hal_context_t *hal, int chan_id, gdma_channel_direction_t dir, bool en_owner_check, bool en_desc_write_back)
void gdma_ahb_hal_set_strategy(gdma_hal_context_t *hal, int chan_id, gdma_channel_direction_t dir, bool en_owner_check, bool en_desc_write_back, bool eof_till_popped)
{
if (dir == GDMA_CHANNEL_DIRECTION_RX) {
ahb_dma_ll_rx_enable_owner_check(hal->ahb_dma_dev, chan_id, en_owner_check);
// RX direction always has the descriptor write-back feature enabled
// RX direction don't need config eof_mode
} else {
ahb_dma_ll_tx_enable_owner_check(hal->ahb_dma_dev, chan_id, en_owner_check);
ahb_dma_ll_tx_enable_auto_write_back(hal->ahb_dma_dev, chan_id, en_desc_write_back);
ahb_dma_ll_tx_set_eof_mode(hal->ahb_dma_dev, chan_id, eof_till_popped);
}
}

View File

@ -91,14 +91,16 @@ void gdma_axi_hal_enable_burst(gdma_hal_context_t *hal, int chan_id, gdma_channe
}
}
void gdma_axi_hal_set_strategy(gdma_hal_context_t *hal, int chan_id, gdma_channel_direction_t dir, bool en_owner_check, bool en_desc_write_back)
void gdma_axi_hal_set_strategy(gdma_hal_context_t *hal, int chan_id, gdma_channel_direction_t dir, bool en_owner_check, bool en_desc_write_back, bool eof_till_popped)
{
if (dir == GDMA_CHANNEL_DIRECTION_RX) {
axi_dma_ll_rx_enable_owner_check(hal->axi_dma_dev, chan_id, en_owner_check);
// RX direction always has the descriptor write-back feature enabled
// RX direction don't need config eof_mode
} else {
axi_dma_ll_tx_enable_owner_check(hal->axi_dma_dev, chan_id, en_owner_check);
axi_dma_ll_tx_enable_auto_write_back(hal->axi_dma_dev, chan_id, en_desc_write_back);
axi_dma_ll_tx_set_eof_mode(hal->axi_dma_dev, chan_id, eof_till_popped);
}
}

View File

@ -60,9 +60,9 @@ void gdma_hal_set_ext_mem_align(gdma_hal_context_t *hal, int chan_id, gdma_chann
}
}
void gdma_hal_set_strategy(gdma_hal_context_t *hal, int chan_id, gdma_channel_direction_t dir, bool en_owner_check, bool en_desc_write_back)
void gdma_hal_set_strategy(gdma_hal_context_t *hal, int chan_id, gdma_channel_direction_t dir, bool en_owner_check, bool en_desc_write_back, bool eof_till_popped)
{
hal->set_strategy(hal, chan_id, dir, en_owner_check, en_desc_write_back);
hal->set_strategy(hal, chan_id, dir, en_owner_check, en_desc_write_back, eof_till_popped);
}
void gdma_hal_enable_intr(gdma_hal_context_t *hal, int chan_id, gdma_channel_direction_t dir, uint32_t intr_event_mask, bool en_or_dis)

View File

@ -81,7 +81,7 @@ struct gdma_hal_context_t {
void (*disconnect_peri)(gdma_hal_context_t *hal, int chan_id, gdma_channel_direction_t dir); /// Disconnect the channel from a peripheral
void (*enable_burst)(gdma_hal_context_t *hal, int chan_id, gdma_channel_direction_t dir, bool en_data_burst, bool en_desc_burst); /// Enable burst mode
void (*set_ext_mem_align)(gdma_hal_context_t *hal, int chan_id, gdma_channel_direction_t dir, uint8_t align); /// Set the alignment of the external memory
void (*set_strategy)(gdma_hal_context_t *hal, int chan_id, gdma_channel_direction_t dir, bool en_owner_check, bool en_desc_write_back); /// Set some misc strategy of the channel behaviour
void (*set_strategy)(gdma_hal_context_t *hal, int chan_id, gdma_channel_direction_t dir, bool en_owner_check, bool en_desc_write_back, bool eof_till_popped); /// Set some misc strategy of the channel behaviour
uint32_t (*get_intr_status_reg)(gdma_hal_context_t *hal, int chan_id, gdma_channel_direction_t dir); // Get the interrupt status register address
void (*enable_intr)(gdma_hal_context_t *hal, int chan_id, gdma_channel_direction_t dir, uint32_t intr_event_mask, bool en_or_dis); /// Enable the channel interrupt
void (*clear_intr)(gdma_hal_context_t *hal, int chan_id, gdma_channel_direction_t dir, uint32_t intr_event_mask); /// Clear the channel interrupt
@ -117,7 +117,7 @@ void gdma_hal_enable_burst(gdma_hal_context_t *hal, int chan_id, gdma_channel_di
void gdma_hal_set_ext_mem_align(gdma_hal_context_t *hal, int chan_id, gdma_channel_direction_t dir, uint8_t align);
void gdma_hal_set_strategy(gdma_hal_context_t *hal, int chan_id, gdma_channel_direction_t dir, bool en_owner_check, bool en_desc_write_back);
void gdma_hal_set_strategy(gdma_hal_context_t *hal, int chan_id, gdma_channel_direction_t dir, bool en_owner_check, bool en_desc_write_back, bool eof_till_popped);
void gdma_hal_enable_intr(gdma_hal_context_t *hal, int chan_id, gdma_channel_direction_t dir, uint32_t intr_event_mask, bool en_or_dis);

View File

@ -30,7 +30,7 @@ void gdma_ahb_hal_enable_burst(gdma_hal_context_t *hal, int chan_id, gdma_channe
void gdma_ahb_hal_set_ext_mem_align(gdma_hal_context_t *hal, int chan_id, gdma_channel_direction_t dir, uint8_t align);
void gdma_ahb_hal_set_strategy(gdma_hal_context_t *hal, int chan_id, gdma_channel_direction_t dir, bool en_owner_check, bool en_desc_write_back);
void gdma_ahb_hal_set_strategy(gdma_hal_context_t *hal, int chan_id, gdma_channel_direction_t dir, bool en_owner_check, bool en_desc_write_back, bool eof_till_popped);
void gdma_ahb_hal_enable_intr(gdma_hal_context_t *hal, int chan_id, gdma_channel_direction_t dir, uint32_t intr_event_mask, bool en_or_dis);

View File

@ -30,7 +30,7 @@ void gdma_axi_hal_enable_burst(gdma_hal_context_t *hal, int chan_id, gdma_channe
void gdma_axi_hal_set_ext_mem_align(gdma_hal_context_t *hal, int chan_id, gdma_channel_direction_t dir, uint8_t align);
void gdma_axi_hal_set_strategy(gdma_hal_context_t *hal, int chan_id, gdma_channel_direction_t dir, bool en_owner_check, bool en_desc_write_back);
void gdma_axi_hal_set_strategy(gdma_hal_context_t *hal, int chan_id, gdma_channel_direction_t dir, bool en_owner_check, bool en_desc_write_back, bool eof_till_popped);
void gdma_axi_hal_enable_intr(gdma_hal_context_t *hal, int chan_id, gdma_channel_direction_t dir, uint32_t intr_event_mask, bool en_or_dis);

View File

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -52,8 +52,6 @@ typedef dma_descriptor_align8_t spi_dma_desc_t;
typedef struct {
/* configured by driver at initialization, don't touch */
spi_dev_t *hw; ///< Beginning address of the peripheral registers.
spi_dma_dev_t *dma_in; ///< Address of the DMA peripheral registers which stores the data received from a peripheral into RAM.
spi_dma_dev_t *dma_out; ///< Address of the DMA peripheral registers which transmits the data from RAM to a peripheral.
/* should be configured by driver at initialization */
spi_dma_desc_t *dmadesc_rx; /**< Array of DMA descriptor used by the TX DMA.
* The amount should be larger than dmadesc_n. The driver should ensure that
@ -64,8 +62,6 @@ typedef struct {
* the data to be sent is shorter than the descriptors can hold.
*/
int dmadesc_n; ///< The amount of descriptors of both ``dmadesc_tx`` and ``dmadesc_rx`` that the HAL can use.
uint32_t tx_dma_chan; ///< TX DMA channel
uint32_t rx_dma_chan; ///< RX DMA channel
/*
* configurations to be filled after ``spi_slave_hal_init``. Updated to
@ -92,8 +88,6 @@ typedef struct {
typedef struct {
uint32_t host_id; ///< SPI controller ID
spi_dma_dev_t *dma_in; ///< Input DMA(DMA -> RAM) peripheral register address
spi_dma_dev_t *dma_out; ///< Output DMA(RAM -> DMA) peripheral register address
} spi_slave_hal_config_t;
/**
@ -119,11 +113,53 @@ void spi_slave_hal_deinit(spi_slave_hal_context_t *hal);
void spi_slave_hal_setup_device(const spi_slave_hal_context_t *hal);
/**
* Prepare the data for the current transaction.
* Prepare rx hardware for a new DMA trans
*
* @param hw Beginning address of the peripheral registers.
*/
void spi_slave_hal_hw_prepare_rx(spi_dev_t *hw);
/**
* Prepare tx hardware for a new DMA trans
*
* @param hw Beginning address of the peripheral registers.
*/
void spi_slave_hal_hw_prepare_tx(spi_dev_t *hw);
/**
* Rest peripheral registers to default value
*
* @param hal Context of the HAL layer.
*/
void spi_slave_hal_prepare_data(const spi_slave_hal_context_t *hal);
void spi_slave_hal_hw_reset(spi_slave_hal_context_t *hal);
/**
* Rest hw fifo in peripheral, for a CPU controlled trans
*
* @param hal Context of the HAL layer.
*/
void spi_slave_hal_hw_fifo_reset(spi_slave_hal_context_t *hal, bool tx_rst, bool rx_rst);
/**
* Push data needed to be transmit into hw fifo
*
* @param hal Context of the HAL layer.
*/
void spi_slave_hal_push_tx_buffer(spi_slave_hal_context_t *hal);
/**
* Config transaction bit length for slave
*
* @param hal Context of the HAL layer.
*/
void spi_slave_hal_set_trans_bitlen(spi_slave_hal_context_t *hal);
/**
* Enable/Disable miso/mosi signals in peripheral
*
* @param hal Context of the HAL layer.
*/
void spi_slave_hal_enable_data_line(spi_slave_hal_context_t *hal);
/**
* Trigger start a user-defined transaction.
@ -140,7 +176,7 @@ void spi_slave_hal_user_start(const spi_slave_hal_context_t *hal);
bool spi_slave_hal_usr_is_done(spi_slave_hal_context_t* hal);
/**
* Post transaction operations, fetch data from the buffer and recored the length.
* Post transaction operations, fetch data from the buffer and recorded the length.
*
* @param hal Context of the HAL layer.
*/

View File

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -84,11 +84,7 @@ typedef struct {
/// Configuration of the HAL
typedef struct {
uint32_t host_id; ///< Host ID of the spi peripheral
spi_dma_dev_t *dma_in; ///< Input DMA(DMA -> RAM) peripheral register address
spi_dma_dev_t *dma_out; ///< Output DMA(RAM -> DMA) peripheral register address
bool dma_enabled; ///< DMA enabled or not
uint32_t tx_dma_chan; ///< TX DMA channel used.
uint32_t rx_dma_chan; ///< RX DMA channel used.
bool append_mode; ///< True for DMA append mode, false for segment mode
uint32_t spics_io_num; ///< CS GPIO pin for this device
uint8_t mode; ///< SPI mode (0-3)
@ -110,13 +106,10 @@ typedef struct {
/* address of the hardware */
spi_dev_t *dev; ///< Beginning address of the peripheral registers.
spi_dma_dev_t *dma_in; ///< Address of the DMA peripheral registers which stores the data received from a peripheral into RAM.
spi_dma_dev_t *dma_out; ///< Address of the DMA peripheral registers which transmits the data from RAM to a peripheral.
bool dma_enabled; ///< DMA enabled or not
uint32_t tx_dma_chan; ///< TX DMA channel used.
uint32_t rx_dma_chan; ///< RX DMA channel used.
bool append_mode; ///< True for DMA append mode, false for segment mode
uint32_t dma_desc_num; ///< Number of the available DMA descriptors. Calculated from ``bus_max_transfer_size``.
uint32_t current_eof_addr;
spi_slave_hd_hal_desc_append_t *tx_cur_desc; ///< Current TX DMA descriptor that could be linked (set up).
spi_slave_hd_hal_desc_append_t *tx_dma_head; ///< Head of the linked TX DMA descriptors which are not used by hardware
spi_slave_hd_hal_desc_append_t *tx_dma_tail; ///< Tail of the linked TX DMA descriptors which are not used by hardware
@ -165,7 +158,7 @@ bool spi_slave_hd_hal_check_clear_event(spi_slave_hd_hal_context_t* hal, spi_eve
bool spi_slave_hd_hal_check_disable_event(spi_slave_hd_hal_context_t* hal, spi_event_t ev);
/**
* @brief Enable to invole the ISR of corresponding event.
* @brief Enable to involve the ISR of corresponding event.
*
* @note The function, compared with :cpp:func:`spi_slave_hd_hal_enable_event_intr`, contains a
* workaround to force trigger the interrupt, even if the interrupt source cannot be initialized
@ -194,7 +187,7 @@ void spi_slave_hd_hal_enable_event_intr(spi_slave_hd_hal_context_t* hal, spi_eve
* @param[out] out_buf Buffer to receive the data
* @param len Maximul length to receive
*/
void spi_slave_hd_hal_rxdma(spi_slave_hd_hal_context_t *hal, uint8_t *out_buf, size_t len);
void spi_slave_hd_hal_rxdma(spi_slave_hd_hal_context_t *hal);
/**
* @brief Get the length of total received data
@ -204,6 +197,13 @@ void spi_slave_hd_hal_rxdma(spi_slave_hd_hal_context_t *hal, uint8_t *out_buf, s
*/
int spi_slave_hd_hal_rxdma_seg_get_len(spi_slave_hd_hal_context_t *hal);
/**
* @brief Prepare hardware for a new dma rx trans
*
* @param hal Context of the HAL layer
*/
void spi_slave_hd_hal_hw_prepare_rx(spi_slave_hd_hal_context_t *hal);
////////////////////////////////////////////////////////////////////////////////
// TX DMA
////////////////////////////////////////////////////////////////////////////////
@ -214,7 +214,14 @@ int spi_slave_hd_hal_rxdma_seg_get_len(spi_slave_hd_hal_context_t *hal);
* @param data Buffer of data to send
* @param len Size of the buffer, also the maximum length to send
*/
void spi_slave_hd_hal_txdma(spi_slave_hd_hal_context_t *hal, uint8_t *data, size_t len);
void spi_slave_hd_hal_txdma(spi_slave_hd_hal_context_t *hal);
/**
* @brief Prepare hardware for a new dma tx trans
*
* @param hal Context of the HAL layer
*/
void spi_slave_hd_hal_hw_prepare_tx(spi_slave_hd_hal_context_t *hal);
////////////////////////////////////////////////////////////////////////////////
// Shared buffer
@ -223,7 +230,7 @@ void spi_slave_hd_hal_txdma(spi_slave_hd_hal_context_t *hal, uint8_t *data, size
* @brief Read from the shared register buffer
*
* @param hal Context of the HAL layer
* @param addr Address of the shared regsiter to read
* @param addr Address of the shared register to read
* @param out_data Buffer to store the read data
* @param len Length to read from the shared buffer
*/
@ -294,7 +301,7 @@ bool spi_slave_hd_hal_get_rx_finished_trans(spi_slave_hd_hal_context_t *hal, voi
* @param hal Context of the HAL layer
* @param data Buffer of the transaction data
* @param len Length of the data
* @param arg Pointer used by the caller to indicate the tranaction. Will be returned by ``spi_slave_hd_hal_get_tx_finished_trans`` when transaction is finished
* @param arg Pointer used by the caller to indicate the transaction. Will be returned by ``spi_slave_hd_hal_get_tx_finished_trans`` when transaction is finished
* @return
* - ESP_OK: on success
* - ESP_ERR_INVALID_STATE: Function called in invalid state.
@ -307,7 +314,7 @@ esp_err_t spi_slave_hd_hal_txdma_append(spi_slave_hd_hal_context_t *hal, uint8_t
* @param hal Context of the HAL layer
* @param data Buffer of the transaction data
* @param len Length of the data
* @param arg Pointer used by the caller to indicate the tranaction. Will be returned by ``spi_slave_hd_hal_get_rx_finished_trans`` when transaction is finished
* @param arg Pointer used by the caller to indicate the transaction. Will be returned by ``spi_slave_hd_hal_get_rx_finished_trans`` when transaction is finished
* @return
* - ESP_OK: on success
* - ESP_ERR_INVALID_STATE: Function called in invalid state.

View File

@ -4,10 +4,7 @@
void spi_slave_hal_init(spi_slave_hal_context_t *hal, const spi_slave_hal_config_t *hal_config)
{
spi_dev_t *hw = SPI_LL_GET_HW(hal_config->host_id);
hal->hw = hw;
hal->dma_in = hal_config->dma_in;
hal->dma_out = hal_config->dma_out;
hal->hw = SPI_LL_GET_HW(hal_config->host_id);
spi_ll_slave_init(hal->hw);

View File

@ -1,39 +1,7 @@
#include "hal/spi_slave_hal.h"
#include "hal/spi_ll.h"
#include "soc/ext_mem_defs.h"
#include "soc/soc_caps.h"
//This GDMA related part will be introduced by GDMA dedicated APIs in the future. Here we temporarily use macros.
#if SOC_GDMA_SUPPORTED
#if (SOC_GDMA_TRIG_PERIPH_SPI2_BUS == SOC_GDMA_BUS_AHB) && (SOC_AHB_GDMA_VERSION == 1)
#include "soc/gdma_struct.h"
#include "hal/gdma_ll.h"
#define spi_dma_ll_rx_reset(dev, chan) gdma_ll_rx_reset_channel(&GDMA, chan)
#define spi_dma_ll_tx_reset(dev, chan) gdma_ll_tx_reset_channel(&GDMA, chan);
#define spi_dma_ll_rx_start(dev, chan, addr) do {\
gdma_ll_rx_set_desc_addr(&GDMA, chan, (uint32_t)addr);\
gdma_ll_rx_start(&GDMA, chan);\
} while (0)
#define spi_dma_ll_tx_start(dev, chan, addr) do {\
gdma_ll_tx_set_desc_addr(&GDMA, chan, (uint32_t)addr);\
gdma_ll_tx_start(&GDMA, chan);\
} while (0)
#elif (SOC_GDMA_TRIG_PERIPH_SPI2_BUS == SOC_GDMA_BUS_AXI) //TODO: IDF-6152, refactor spi hal layer
#include "hal/axi_dma_ll.h"
#define spi_dma_ll_rx_reset(dev, chan) axi_dma_ll_rx_reset_channel(&AXI_DMA, chan)
#define spi_dma_ll_tx_reset(dev, chan) axi_dma_ll_tx_reset_channel(&AXI_DMA, chan);
#define spi_dma_ll_rx_start(dev, chan, addr) do {\
axi_dma_ll_rx_set_desc_addr(&AXI_DMA, chan, (uint32_t)addr);\
axi_dma_ll_rx_start(&AXI_DMA, chan);\
} while (0)
#define spi_dma_ll_tx_start(dev, chan, addr) do {\
axi_dma_ll_tx_set_desc_addr(&AXI_DMA, chan, (uint32_t)addr);\
axi_dma_ll_tx_start(&AXI_DMA, chan);\
} while (0)
#endif
#endif //SOC_GDMA_SUPPORTED
bool spi_slave_hal_usr_is_done(spi_slave_hal_context_t* hal)
{
return spi_ll_usr_is_done(hal->hw);
@ -45,89 +13,48 @@ void spi_slave_hal_user_start(const spi_slave_hal_context_t *hal)
spi_ll_user_start(hal->hw);
}
#if SOC_NON_CACHEABLE_OFFSET
#define ADDR_DMA_2_CPU(addr) ((typeof(addr))((uint32_t)(addr) + SOC_NON_CACHEABLE_OFFSET))
#define ADDR_CPU_2_DMA(addr) ((typeof(addr))((uint32_t)(addr) - SOC_NON_CACHEABLE_OFFSET))
#else
#define ADDR_DMA_2_CPU(addr) (addr)
#define ADDR_CPU_2_DMA(addr) (addr)
#endif
static void s_spi_slave_hal_dma_desc_setup_link(spi_dma_desc_t *dmadesc, const void *data, int len, bool is_rx)
void spi_slave_hal_hw_prepare_rx(spi_dev_t *hw)
{
dmadesc = ADDR_DMA_2_CPU(dmadesc);
int n = 0;
while (len) {
int dmachunklen = len;
if (dmachunklen > DMA_DESCRIPTOR_BUFFER_MAX_SIZE_4B_ALIGNED) {
dmachunklen = DMA_DESCRIPTOR_BUFFER_MAX_SIZE_4B_ALIGNED;
}
if (is_rx) {
//Receive needs DMA length rounded to next 32-bit boundary
dmadesc[n].dw0.size = (dmachunklen + 3) & (~3);
} else {
dmadesc[n].dw0.size = dmachunklen;
dmadesc[n].dw0.length = dmachunklen;
}
dmadesc[n].buffer = (uint8_t *)data;
dmadesc[n].dw0.suc_eof = 0;
dmadesc[n].dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_DMA;
dmadesc[n].next = ADDR_CPU_2_DMA(&dmadesc[n + 1]);
len -= dmachunklen;
data += dmachunklen;
n++;
}
dmadesc[n - 1].dw0.suc_eof = 1; //Mark last DMA desc as end of stream.
dmadesc[n - 1].next = NULL;
spi_ll_dma_rx_fifo_reset(hw);
spi_ll_infifo_full_clr(hw);
spi_ll_dma_rx_enable(hw, 1);
}
void spi_slave_hal_prepare_data(const spi_slave_hal_context_t *hal)
void spi_slave_hal_hw_prepare_tx(spi_dev_t *hw)
{
if (hal->use_dma) {
spi_ll_dma_tx_fifo_reset(hw);
spi_ll_outfifo_empty_clr(hw);
spi_ll_dma_tx_enable(hw, 1);
}
//Fill DMA descriptors
if (hal->rx_buffer) {
s_spi_slave_hal_dma_desc_setup_link(hal->dmadesc_rx, hal->rx_buffer, ((hal->bitlen + 7) / 8), true);
void spi_slave_hal_hw_reset(spi_slave_hal_context_t *hal)
{
spi_ll_slave_reset(hal->hw);
}
//reset dma inlink, this should be reset before spi related reset
spi_dma_ll_rx_reset(hal->dma_in, hal->rx_dma_chan);
spi_ll_dma_rx_fifo_reset(hal->dma_in);
spi_ll_slave_reset(hal->hw);
spi_ll_infifo_full_clr(hal->hw);
void spi_slave_hal_hw_fifo_reset(spi_slave_hal_context_t *hal, bool tx_rst, bool rx_rst)
{
tx_rst ? spi_ll_cpu_tx_fifo_reset(hal->hw) : 0;
rx_rst ? spi_ll_cpu_rx_fifo_reset(hal->hw) : 0;
}
spi_ll_dma_rx_enable(hal->hw, 1);
spi_dma_ll_rx_start(hal->dma_in, hal->rx_dma_chan, (lldesc_t *)hal->dmadesc_rx);
}
if (hal->tx_buffer) {
s_spi_slave_hal_dma_desc_setup_link(hal->dmadesc_tx, hal->tx_buffer, (hal->bitlen + 7) / 8, false);
//reset dma outlink, this should be reset before spi related reset
spi_dma_ll_tx_reset(hal->dma_out, hal->tx_dma_chan);
spi_ll_dma_tx_fifo_reset(hal->dma_out);
spi_ll_slave_reset(hal->hw);
spi_ll_outfifo_empty_clr(hal->hw);
spi_ll_dma_tx_enable(hal->hw, 1);
spi_dma_ll_tx_start(hal->dma_out, hal->tx_dma_chan, (lldesc_t *)hal->dmadesc_tx);
}
} else {
//No DMA. Turn off SPI and copy data to transmit buffers.
if (hal->tx_buffer) {
spi_ll_slave_reset(hal->hw);
spi_ll_write_buffer(hal->hw, hal->tx_buffer, hal->bitlen);
}
spi_ll_cpu_tx_fifo_reset(hal->hw);
void spi_slave_hal_push_tx_buffer(spi_slave_hal_context_t *hal)
{
if (hal->tx_buffer) {
spi_ll_write_buffer(hal->hw, hal->tx_buffer, hal->bitlen);
}
}
void spi_slave_hal_set_trans_bitlen(spi_slave_hal_context_t *hal)
{
spi_ll_slave_set_rx_bitlen(hal->hw, hal->bitlen);
spi_ll_slave_set_tx_bitlen(hal->hw, hal->bitlen);
}
#ifdef CONFIG_IDF_TARGET_ESP32
//SPI Slave mode on ESP32 requires MOSI/MISO enable
spi_ll_enable_mosi(hal->hw, (hal->rx_buffer == NULL) ? 0 : 1);
spi_ll_enable_miso(hal->hw, (hal->tx_buffer == NULL) ? 0 : 1);
#endif
void spi_slave_hal_enable_data_line(spi_slave_hal_context_t *hal)
{
spi_ll_enable_mosi(hal->hw, (hal->rx_buffer != NULL));
spi_ll_enable_miso(hal->hw, (hal->tx_buffer != NULL));
}
void spi_slave_hal_store_result(spi_slave_hal_context_t *hal)

View File

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -14,79 +14,21 @@
#include "soc/spi_periph.h"
#include "soc/lldesc.h"
#include "soc/soc_caps.h"
#include "soc/ext_mem_defs.h"
#include "hal/spi_slave_hd_hal.h"
#include "hal/assert.h"
//This GDMA related part will be introduced by GDMA dedicated APIs in the future. Here we temporarily use macros.
#if SOC_GDMA_SUPPORTED
#if (SOC_GDMA_TRIG_PERIPH_SPI2_BUS == SOC_GDMA_BUS_AHB) && (SOC_AHB_GDMA_VERSION == 1)
#include "soc/gdma_struct.h"
#include "hal/gdma_ll.h"
#define spi_dma_ll_tx_restart(dev, chan) gdma_ll_tx_restart(&GDMA, chan)
#define spi_dma_ll_rx_restart(dev, chan) gdma_ll_rx_restart(&GDMA, chan)
#define spi_dma_ll_rx_reset(dev, chan) gdma_ll_rx_reset_channel(&GDMA, chan)
#define spi_dma_ll_tx_reset(dev, chan) gdma_ll_tx_reset_channel(&GDMA, chan)
#define spi_dma_ll_enable_out_auto_wrback(dev, chan, enable) gdma_ll_tx_enable_auto_write_back(&GDMA, chan, enable)
#define spi_dma_ll_set_out_eof_generation(dev, chan, enable) gdma_ll_tx_set_eof_mode(&GDMA, chan, enable)
#define spi_dma_ll_get_out_eof_desc_addr(dev, chan) gdma_ll_tx_get_eof_desc_addr(&GDMA, chan)
#define spi_dma_ll_get_in_suc_eof_desc_addr(dev, chan) gdma_ll_rx_get_success_eof_desc_addr(&GDMA, chan)
#define spi_dma_ll_rx_start(dev, chan, addr) do {\
gdma_ll_rx_set_desc_addr(&GDMA, chan, (uint32_t)addr);\
gdma_ll_rx_start(&GDMA, chan);\
} while (0)
#define spi_dma_ll_tx_start(dev, chan, addr) do {\
gdma_ll_tx_set_desc_addr(&GDMA, chan, (uint32_t)addr);\
gdma_ll_tx_start(&GDMA, chan);\
} while (0)
#elif (SOC_GDMA_TRIG_PERIPH_SPI2_BUS == SOC_GDMA_BUS_AXI)
#include "hal/axi_dma_ll.h"
#define spi_dma_ll_tx_restart(dev, chan) axi_dma_ll_tx_restart(&AXI_DMA, chan)
#define spi_dma_ll_rx_restart(dev, chan) axi_dma_ll_rx_restart(&AXI_DMA, chan)
#define spi_dma_ll_rx_reset(dev, chan) axi_dma_ll_rx_reset_channel(&AXI_DMA, chan)
#define spi_dma_ll_tx_reset(dev, chan) axi_dma_ll_tx_reset_channel(&AXI_DMA, chan)
#define spi_dma_ll_enable_out_auto_wrback(dev, chan, enable) axi_dma_ll_tx_enable_auto_write_back(&AXI_DMA, chan, enable)
#define spi_dma_ll_set_out_eof_generation(dev, chan, enable) axi_dma_ll_tx_set_eof_mode(&AXI_DMA, chan, enable)
#define spi_dma_ll_get_out_eof_desc_addr(dev, chan) axi_dma_ll_tx_get_eof_desc_addr(&AXI_DMA, chan)
#define spi_dma_ll_get_in_suc_eof_desc_addr(dev, chan) axi_dma_ll_rx_get_success_eof_desc_addr(&AXI_DMA, chan)
#define spi_dma_ll_rx_start(dev, chan, addr) do {\
axi_dma_ll_rx_set_desc_addr(&AXI_DMA, chan, (uint32_t)addr);\
axi_dma_ll_rx_start(&AXI_DMA, chan);\
} while (0)
#define spi_dma_ll_tx_start(dev, chan, addr) do {\
axi_dma_ll_tx_set_desc_addr(&AXI_DMA, chan, (uint32_t)addr);\
axi_dma_ll_tx_start(&AXI_DMA, chan);\
} while (0)
#endif
#endif //SOC_GDMA_SUPPORTED
static void s_spi_slave_hd_hal_dma_init_config(const spi_slave_hd_hal_context_t *hal)
{
spi_dma_ll_enable_out_auto_wrback(hal->dma_out, hal->tx_dma_chan, 1);
spi_dma_ll_set_out_eof_generation(hal->dma_out, hal->tx_dma_chan, 1);
}
void spi_slave_hd_hal_init(spi_slave_hd_hal_context_t *hal, const spi_slave_hd_hal_config_t *hal_config)
{
spi_dev_t *hw = SPI_LL_GET_HW(hal_config->host_id);
hal->dev = hw;
hal->dma_in = hal_config->dma_in;
hal->dma_out = hal_config->dma_out;
hal->dma_enabled = hal_config->dma_enabled;
hal->tx_dma_chan = hal_config->tx_dma_chan;
hal->rx_dma_chan = hal_config->rx_dma_chan;
hal->append_mode = hal_config->append_mode;
hal->tx_cur_desc = hal->dmadesc_tx;
hal->rx_cur_desc = hal->dmadesc_rx;
hal->tx_dma_head = hal->dmadesc_tx + hal->dma_desc_num -1;
hal->rx_dma_head = hal->dmadesc_rx + hal->dma_desc_num -1;
//Configure slave
if (hal_config->dma_enabled) {
s_spi_slave_hd_hal_dma_init_config(hal);
}
spi_ll_slave_hd_init(hw);
spi_ll_set_addr_bitlen(hw, hal_config->address_bits);
spi_ll_set_command_bitlen(hw, hal_config->command_bits);
@ -115,11 +57,8 @@ void spi_slave_hd_hal_init(spi_slave_hd_hal_context_t *hal, const spi_slave_hd_h
spi_ll_set_intr(hw, SPI_LL_INTR_TRANS_DONE);
}
} else {
#if SOC_GDMA_SUPPORTED
spi_ll_enable_intr(hw, SPI_LL_INTR_CMD7);
#else
spi_ll_clear_intr(hw, SPI_LL_INTR_OUT_EOF | SPI_LL_INTR_CMD7);
spi_ll_enable_intr(hw, SPI_LL_INTR_OUT_EOF | SPI_LL_INTR_CMD7);
#if !SOC_GDMA_SUPPORTED
spi_ll_enable_intr(hw, SPI_LL_INTR_CMD7 | SPI_LL_INTR_CMD8);
#endif //SOC_GDMA_SUPPORTED
}
@ -132,42 +71,14 @@ void spi_slave_hd_hal_init(spi_slave_hd_hal_context_t *hal, const spi_slave_hd_h
}
#if SOC_NON_CACHEABLE_OFFSET
#define ADDR_DMA_2_CPU(addr) ((typeof(addr))((uint32_t)(addr) + 0x40000000))
#define ADDR_CPU_2_DMA(addr) ((typeof(addr))((uint32_t)(addr) - 0x40000000))
#include "hal/cache_ll.h"
#define ADDR_DMA_2_CPU(addr) ((typeof(addr))CACHE_LL_L2MEM_NON_CACHE_ADDR(addr))
#define ADDR_CPU_2_DMA(addr) ((typeof(addr))CACHE_LL_L2MEM_CACHE_ADDR(addr))
#else
#define ADDR_DMA_2_CPU(addr) (addr)
#define ADDR_CPU_2_DMA(addr) (addr)
#endif
static void s_spi_hal_dma_desc_setup_link(spi_dma_desc_t *dmadesc, const void *data, int len, bool is_rx)
{
dmadesc = ADDR_DMA_2_CPU(dmadesc);
int n = 0;
while (len) {
int dmachunklen = len;
if (dmachunklen > DMA_DESCRIPTOR_BUFFER_MAX_SIZE_4B_ALIGNED) {
dmachunklen = DMA_DESCRIPTOR_BUFFER_MAX_SIZE_4B_ALIGNED;
}
if (is_rx) {
//Receive needs DMA length rounded to next 32-bit boundary
dmadesc[n].dw0.size = (dmachunklen + 3) & (~3);
dmadesc[n].dw0.length = (dmachunklen + 3) & (~3);
} else {
dmadesc[n].dw0.size = dmachunklen;
dmadesc[n].dw0.length = dmachunklen;
}
dmadesc[n].buffer = (uint8_t *)data;
dmadesc[n].dw0.suc_eof = 0;
dmadesc[n].dw0.owner = 1;
dmadesc[n].next = ADDR_CPU_2_DMA(&dmadesc[n + 1]);
len -= dmachunklen;
data += dmachunklen;
n++;
}
dmadesc[n - 1].dw0.suc_eof = 1; //Mark last DMA desc as end of stream.
dmadesc[n - 1].next = NULL;
}
static int s_desc_get_received_len_addr(spi_dma_desc_t* head, spi_dma_desc_t** out_next, void **out_buff_head)
{
spi_dma_desc_t* desc_cpu = ADDR_DMA_2_CPU(head);
@ -188,41 +99,38 @@ static int s_desc_get_received_len_addr(spi_dma_desc_t* head, spi_dma_desc_t** o
return len;
}
void spi_slave_hd_hal_rxdma(spi_slave_hd_hal_context_t *hal, uint8_t *out_buf, size_t len)
void spi_slave_hd_hal_hw_prepare_rx(spi_slave_hd_hal_context_t *hal)
{
s_spi_hal_dma_desc_setup_link(hal->dmadesc_rx->desc, out_buf, len, true);
spi_ll_dma_rx_fifo_reset(hal->dev);
spi_dma_ll_rx_reset(hal->dma_in, hal->rx_dma_chan);
spi_ll_slave_reset(hal->dev);
spi_ll_infifo_full_clr(hal->dev);
spi_ll_clear_intr(hal->dev, SPI_LL_INTR_CMD7);
spi_ll_dma_rx_enable(hal->dev, 1);
spi_dma_ll_rx_start(hal->dma_in, hal->rx_dma_chan, (lldesc_t *)hal->dmadesc_rx->desc);
}
void spi_slave_hd_hal_txdma(spi_slave_hd_hal_context_t *hal, uint8_t *data, size_t len)
void spi_slave_hd_hal_hw_prepare_tx(spi_slave_hd_hal_context_t *hal)
{
s_spi_hal_dma_desc_setup_link(hal->dmadesc_tx->desc, data, len, false);
spi_ll_dma_tx_fifo_reset(hal->dev);
spi_dma_ll_tx_reset(hal->dma_out, hal->tx_dma_chan);
spi_ll_slave_reset(hal->dev);
spi_ll_outfifo_empty_clr(hal->dev);
spi_ll_clear_intr(hal->dev, SPI_LL_INTR_CMD8);
spi_ll_dma_tx_enable(hal->dev, 1);
spi_dma_ll_tx_start(hal->dma_out, hal->tx_dma_chan, (lldesc_t *)hal->dmadesc_tx->desc);
}
void spi_slave_hd_hal_rxdma(spi_slave_hd_hal_context_t *hal)
{
spi_ll_slave_reset(hal->dev);
spi_ll_clear_intr(hal->dev, SPI_LL_INTR_CMD7);
spi_slave_hd_hal_hw_prepare_rx(hal);
}
void spi_slave_hd_hal_txdma(spi_slave_hd_hal_context_t *hal)
{
spi_ll_slave_reset(hal->dev);
spi_ll_clear_intr(hal->dev, SPI_LL_INTR_CMD8);
spi_slave_hd_hal_hw_prepare_tx(hal);
}
static spi_ll_intr_t get_event_intr(spi_slave_hd_hal_context_t *hal, spi_event_t ev)
{
spi_ll_intr_t intr = 0;
#if CONFIG_IDF_TARGET_ESP32S2
if ((ev & SPI_EV_SEND) && hal->append_mode) intr |= SPI_LL_INTR_OUT_EOF;
#endif
if ((ev & SPI_EV_SEND) && !hal->append_mode) intr |= SPI_LL_INTR_CMD8;
if (ev & SPI_EV_SEND) intr |= SPI_LL_INTR_CMD8;
if (ev & SPI_EV_RECV) intr |= SPI_LL_INTR_CMD7;
if (ev & SPI_EV_BUF_TX) intr |= SPI_LL_INTR_RDBUF;
if (ev & SPI_EV_BUF_RX) intr |= SPI_LL_INTR_WRBUF;
@ -315,8 +223,7 @@ int spi_slave_hd_hal_rxdma_seg_get_len(spi_slave_hd_hal_context_t *hal)
bool spi_slave_hd_hal_get_tx_finished_trans(spi_slave_hd_hal_context_t *hal, void **out_trans, void **real_buff_addr)
{
uint32_t desc_now = spi_dma_ll_get_out_eof_desc_addr(hal->dma_out, hal->tx_dma_chan);
if ((uint32_t)hal->tx_dma_head->desc == desc_now) {
if ((uint32_t)hal->tx_dma_head->desc == hal->current_eof_addr) {
return false;
}
@ -333,8 +240,7 @@ bool spi_slave_hd_hal_get_tx_finished_trans(spi_slave_hd_hal_context_t *hal, voi
bool spi_slave_hd_hal_get_rx_finished_trans(spi_slave_hd_hal_context_t *hal, void **out_trans, void **real_buff_addr, size_t *out_len)
{
uint32_t desc_now = spi_dma_ll_get_in_suc_eof_desc_addr(hal->dma_in, hal->rx_dma_chan);
if ((uint32_t)hal->rx_dma_head->desc == desc_now) {
if ((uint32_t)hal->rx_dma_head->desc == hal->current_eof_addr) {
return false;
}
@ -348,85 +254,3 @@ bool spi_slave_hd_hal_get_rx_finished_trans(spi_slave_hd_hal_context_t *hal, voi
hal->rx_recycled_desc_cnt++;
return true;
}
esp_err_t spi_slave_hd_hal_txdma_append(spi_slave_hd_hal_context_t *hal, uint8_t *data, size_t len, void *arg)
{
//Check if there are enough available DMA descriptors for software to use
int num_required = (len + LLDESC_MAX_NUM_PER_DESC - 1) / LLDESC_MAX_NUM_PER_DESC;
int not_recycled_desc_num = hal->tx_used_desc_cnt - hal->tx_recycled_desc_cnt;
int available_desc_num = hal->dma_desc_num - not_recycled_desc_num;
if (num_required > available_desc_num) {
return ESP_ERR_INVALID_STATE;
}
s_spi_hal_dma_desc_setup_link(hal->tx_cur_desc->desc, data, len, false);
hal->tx_cur_desc->arg = arg;
if (!hal->tx_dma_started) {
hal->tx_dma_started = true;
//start a link
hal->tx_dma_tail = hal->tx_cur_desc;
spi_ll_dma_tx_fifo_reset(hal->dma_out);
spi_ll_outfifo_empty_clr(hal->dev);
spi_dma_ll_tx_reset(hal->dma_out, hal->tx_dma_chan);
spi_ll_dma_tx_enable(hal->dev, 1);
spi_dma_ll_tx_start(hal->dma_out, hal->tx_dma_chan, (lldesc_t *)hal->tx_cur_desc->desc);
} else {
//there is already a consecutive link
ADDR_DMA_2_CPU(hal->tx_dma_tail->desc)->next = hal->tx_cur_desc->desc;
hal->tx_dma_tail = hal->tx_cur_desc;
spi_dma_ll_tx_restart(hal->dma_out, hal->tx_dma_chan);
}
//Move the current descriptor pointer according to the number of the linked descriptors
for (int i = 0; i < num_required; i++) {
hal->tx_used_desc_cnt++;
hal->tx_cur_desc++;
if (hal->tx_cur_desc == hal->dmadesc_tx + hal->dma_desc_num) {
hal->tx_cur_desc = hal->dmadesc_tx;
}
}
return ESP_OK;
}
esp_err_t spi_slave_hd_hal_rxdma_append(spi_slave_hd_hal_context_t *hal, uint8_t *data, size_t len, void *arg)
{
//Check if there are enough available dma descriptors for software to use
int num_required = (len + LLDESC_MAX_NUM_PER_DESC - 1) / LLDESC_MAX_NUM_PER_DESC;
int not_recycled_desc_num = hal->rx_used_desc_cnt - hal->rx_recycled_desc_cnt;
int available_desc_num = hal->dma_desc_num - not_recycled_desc_num;
if (num_required > available_desc_num) {
return ESP_ERR_INVALID_STATE;
}
s_spi_hal_dma_desc_setup_link(hal->rx_cur_desc->desc, data, len, false);
hal->rx_cur_desc->arg = arg;
if (!hal->rx_dma_started) {
hal->rx_dma_started = true;
//start a link
hal->rx_dma_tail = hal->rx_cur_desc;
spi_dma_ll_rx_reset(hal->dma_in, hal->rx_dma_chan);
spi_ll_dma_rx_fifo_reset(hal->dma_in);
spi_ll_infifo_full_clr(hal->dev);
spi_ll_dma_rx_enable(hal->dev, 1);
spi_dma_ll_rx_start(hal->dma_in, hal->rx_dma_chan, (lldesc_t *)hal->rx_cur_desc->desc);
} else {
//there is already a consecutive link
ADDR_DMA_2_CPU(hal->rx_dma_tail->desc)->next = hal->rx_cur_desc->desc;
hal->rx_dma_tail = hal->rx_cur_desc;
spi_dma_ll_rx_restart(hal->dma_in, hal->rx_dma_chan);
}
//Move the current descriptor pointer according to the number of the linked descriptors
for (int i = 0; i < num_required; i++) {
hal->rx_used_desc_cnt++;
hal->rx_cur_desc++;
if (hal->rx_cur_desc == hal->dmadesc_rx + hal->dma_desc_num) {
hal->rx_cur_desc = hal->dmadesc_rx;
}
}
return ESP_OK;
}