mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
Merge branch 'feature/check_block_after_burn_v4.2' into 'release/v4.2'
efuse: Validates data after burning and re-burnes it if necessary (v4.2) See merge request espressif/esp-idf!17704
This commit is contained in:
commit
c71a9e5704
@ -18,6 +18,9 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define ESP_EFUSE_LEN_OF_3_4_SCHEME_BLOCK_IN_BYTES (24)
|
||||
#define ESP_EFUSE_LEN_OF_REPEAT_BLOCK_IN_BYTES (16)
|
||||
|
||||
#define COUNT_EFUSE_REG_PER_BLOCK 8 /* The number of registers per block. */
|
||||
|
||||
#define ESP_EFUSE_SECURE_VERSION_NUM_BLOCK EFUSE_BLK3
|
||||
|
@ -97,8 +97,12 @@ esp_err_t esp_efuse_utility_fill_buff(unsigned int num_reg, esp_efuse_block_t ef
|
||||
*
|
||||
* If CONFIG_EFUSE_VIRTUAL is set, writing will not be performed.
|
||||
* After the function is completed, the writing registers are cleared.
|
||||
*
|
||||
* @return
|
||||
* - ESP_OK: The operation was successfully completed.
|
||||
* - ESP_FAIL: The operation was not successfully completed.
|
||||
*/
|
||||
void esp_efuse_utility_burn_efuses(void);
|
||||
esp_err_t esp_efuse_utility_burn_efuses(void);
|
||||
|
||||
/**
|
||||
* @brief Returns the number of array elements for placing these "bits" in an array with the length of each element equal to "size_of_base".
|
||||
@ -151,6 +155,19 @@ esp_err_t esp_efuse_utility_apply_new_coding_scheme(void);
|
||||
*/
|
||||
void esp_efuse_utility_clear_program_registers(void);
|
||||
|
||||
/**
|
||||
* @brief Checks the correctness of burned data in the given block.
|
||||
*
|
||||
* @note Internal use. Do not call it.
|
||||
*
|
||||
* @param[in] block Index of efuse block.
|
||||
* @param[in] r_data_len Block length for reading data in bytes (multiple of 4).
|
||||
*
|
||||
* @return True - written data are correct.
|
||||
* False - written data are incorrect.
|
||||
*/
|
||||
bool esp_efuse_utility_is_correct_written_data(esp_efuse_block_t block, unsigned r_data_len);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
@ -22,6 +22,8 @@
|
||||
|
||||
static const char *TAG = "efuse";
|
||||
|
||||
#define ESP_EFUSE_BLOCK_ERROR_BITS(error_reg, block) ((error_reg) & (0x0F << (4 * (block))))
|
||||
|
||||
#ifdef CONFIG_EFUSE_VIRTUAL
|
||||
extern uint32_t virt_blocks[EFUSE_BLK_MAX][COUNT_EFUSE_REG_PER_BLOCK];
|
||||
#endif // CONFIG_EFUSE_VIRTUAL
|
||||
@ -34,12 +36,14 @@ const esp_efuse_range_addr_t range_read_addr_blocks[] = {
|
||||
{EFUSE_BLK3_RDATA0_REG, EFUSE_BLK3_RDATA7_REG} // range address of EFUSE_BLK3
|
||||
};
|
||||
|
||||
/*Range addresses to write blocks*/
|
||||
static uint32_t write_mass_blocks[EFUSE_BLK_MAX][COUNT_EFUSE_REG_PER_BLOCK] = { 0 };
|
||||
|
||||
/*Range addresses to write blocks (it is not real regs, it is a buffer) */
|
||||
const esp_efuse_range_addr_t range_write_addr_blocks[] = {
|
||||
{EFUSE_BLK0_WDATA0_REG, EFUSE_BLK0_WDATA6_REG}, // range address of EFUSE_BLK0
|
||||
{EFUSE_BLK1_WDATA0_REG, EFUSE_BLK1_WDATA7_REG}, // range address of EFUSE_BLK1
|
||||
{EFUSE_BLK2_WDATA0_REG, EFUSE_BLK2_WDATA7_REG}, // range address of EFUSE_BLK2
|
||||
{EFUSE_BLK3_WDATA0_REG, EFUSE_BLK3_WDATA7_REG} // range address of EFUSE_BLK3
|
||||
{(uint32_t) &write_mass_blocks[EFUSE_BLK0][0], (uint32_t) &write_mass_blocks[EFUSE_BLK0][6]},
|
||||
{(uint32_t) &write_mass_blocks[EFUSE_BLK1][0], (uint32_t) &write_mass_blocks[EFUSE_BLK1][7]},
|
||||
{(uint32_t) &write_mass_blocks[EFUSE_BLK2][0], (uint32_t) &write_mass_blocks[EFUSE_BLK2][7]},
|
||||
{(uint32_t) &write_mass_blocks[EFUSE_BLK3][0], (uint32_t) &write_mass_blocks[EFUSE_BLK3][7]},
|
||||
};
|
||||
|
||||
#define EFUSE_CONF_WRITE 0x5A5A /* eFuse_pgm_op_ena, force no rd/wr disable. */
|
||||
@ -48,6 +52,16 @@ const esp_efuse_range_addr_t range_write_addr_blocks[] = {
|
||||
#define EFUSE_CMD_READ 0x01 /* Command to read. */
|
||||
|
||||
#ifndef CONFIG_EFUSE_VIRTUAL
|
||||
/* Addresses to write blocks*/
|
||||
const uint32_t start_write_addr[] = {
|
||||
EFUSE_BLK0_WDATA0_REG,
|
||||
EFUSE_BLK1_WDATA0_REG,
|
||||
EFUSE_BLK2_WDATA0_REG,
|
||||
EFUSE_BLK3_WDATA0_REG,
|
||||
};
|
||||
|
||||
static void apply_repeat_encoding(const uint8_t *in_bytes, uint32_t *out_words, size_t in_bytes_len);
|
||||
|
||||
// Update Efuse timing configuration
|
||||
static esp_err_t esp_efuse_set_timing(void)
|
||||
{
|
||||
@ -71,52 +85,146 @@ static esp_err_t esp_efuse_set_timing(void)
|
||||
REG_SET_FIELD(EFUSE_CLK_REG, EFUSE_CLK_SEL1, clk_sel1);
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
__attribute__((always_inline)) static inline bool efuse_ll_get_dec_warnings(unsigned block)
|
||||
{
|
||||
if (block == 0 || block > 4) {
|
||||
return false;
|
||||
}
|
||||
uint32_t error_reg = REG_GET_FIELD(EFUSE_DEC_STATUS_REG, EFUSE_DEC_WARNINGS);
|
||||
return ESP_EFUSE_BLOCK_ERROR_BITS(error_reg, block - 1) != 0;
|
||||
}
|
||||
|
||||
bool efuse_hal_is_coding_error_in_block(unsigned block)
|
||||
{
|
||||
return block > 0 &&
|
||||
esp_efuse_get_coding_scheme(block) == EFUSE_CODING_SCHEME_3_4 &&
|
||||
efuse_ll_get_dec_warnings(block);
|
||||
}
|
||||
|
||||
#endif // ifndef CONFIG_EFUSE_VIRTUAL
|
||||
|
||||
static void efuse_hal_clear_program_registers(void)
|
||||
{
|
||||
for (uint32_t r = EFUSE_BLK0_WDATA0_REG; r <= EFUSE_BLK0_WDATA6_REG; r += 4) {
|
||||
REG_WRITE(r, 0);
|
||||
}
|
||||
for (uint32_t r = EFUSE_BLK1_WDATA0_REG; r <= EFUSE_BLK1_WDATA7_REG; r += 4) {
|
||||
REG_WRITE(r, 0);
|
||||
}
|
||||
for (uint32_t r = EFUSE_BLK2_WDATA0_REG; r <= EFUSE_BLK2_WDATA7_REG; r += 4) {
|
||||
REG_WRITE(r, 0);
|
||||
}
|
||||
for (uint32_t r = EFUSE_BLK3_WDATA0_REG; r <= EFUSE_BLK3_WDATA7_REG; r += 4) {
|
||||
REG_WRITE(r, 0);
|
||||
}
|
||||
}
|
||||
|
||||
// Efuse read operation: copies data from physical efuses to efuse read registers.
|
||||
void esp_efuse_utility_clear_program_registers(void)
|
||||
{
|
||||
REG_WRITE(EFUSE_CONF_REG, EFUSE_CONF_READ);
|
||||
efuse_hal_clear_program_registers();
|
||||
}
|
||||
|
||||
// Burn values written to the efuse write registers
|
||||
void esp_efuse_utility_burn_efuses(void)
|
||||
esp_err_t esp_efuse_utility_burn_efuses(void)
|
||||
{
|
||||
esp_err_t error = ESP_OK;
|
||||
#ifdef CONFIG_EFUSE_VIRTUAL
|
||||
ESP_LOGW(TAG, "Virtual efuses enabled: Not really burning eFuses");
|
||||
for (int num_block = EFUSE_BLK0; num_block < EFUSE_BLK_MAX; num_block++) {
|
||||
esp_efuse_coding_scheme_t scheme = esp_efuse_get_coding_scheme(num_block);
|
||||
if (scheme == EFUSE_CODING_SCHEME_3_4) {
|
||||
uint8_t buf[COUNT_EFUSE_REG_PER_BLOCK * 4] = { 0 };
|
||||
int i = 0;
|
||||
for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4, ++i) {
|
||||
*((uint32_t*)buf + i) = REG_READ(addr_wr_block);
|
||||
}
|
||||
int j = 0;
|
||||
uint32_t out_buf[COUNT_EFUSE_REG_PER_BLOCK] = { 0 };
|
||||
for (int k = 0; k < 4; ++k, ++j) {
|
||||
memcpy((uint8_t*)out_buf + j * 6, &buf[k * 8], 6);
|
||||
}
|
||||
for (int k = 0; k < COUNT_EFUSE_REG_PER_BLOCK; ++k) {
|
||||
REG_WRITE(range_write_addr_blocks[num_block].start + k * 4, out_buf[k]);
|
||||
}
|
||||
}
|
||||
for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) {
|
||||
int subblock = 0;
|
||||
for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
|
||||
virt_blocks[num_block][subblock++] |= REG_READ(addr_wr_block);
|
||||
}
|
||||
}
|
||||
#else
|
||||
esp_efuse_set_timing();
|
||||
// Permanently update values written to the efuse write registers
|
||||
REG_WRITE(EFUSE_CONF_REG, EFUSE_CONF_WRITE);
|
||||
REG_WRITE(EFUSE_CMD_REG, EFUSE_CMD_PGM);
|
||||
while (REG_READ(EFUSE_CMD_REG) != 0) {};
|
||||
REG_WRITE(EFUSE_CONF_REG, EFUSE_CONF_READ);
|
||||
REG_WRITE(EFUSE_CMD_REG, EFUSE_CMD_READ);
|
||||
while (REG_READ(EFUSE_CMD_REG) != 0) {};
|
||||
#else // CONFIG_EFUSE_VIRTUAL
|
||||
if (esp_efuse_set_timing() != ESP_OK) {
|
||||
ESP_LOGE(TAG, "Efuse fields are not burnt");
|
||||
} else {
|
||||
// Permanently update values written to the efuse write registers
|
||||
// It is necessary to process blocks in the order from MAX-> EFUSE_BLK0, because EFUSE_BLK0 has protection bits for other blocks.
|
||||
for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) {
|
||||
esp_efuse_coding_scheme_t scheme = esp_efuse_get_coding_scheme(num_block);
|
||||
bool need_burn_block = false;
|
||||
for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
|
||||
if (REG_READ(addr_wr_block) != 0) {
|
||||
need_burn_block = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!need_burn_block) {
|
||||
continue;
|
||||
}
|
||||
if (error) {
|
||||
// It is done for a use case: BLOCK2 (Flash encryption key) could have an error (incorrect written data)
|
||||
// in this case we can not burn any data into BLOCK0 because it might set read/write protections of BLOCK2.
|
||||
ESP_LOGE(TAG, "BLOCK%d can not be burned because a previous block got an error, skipped.", num_block);
|
||||
continue;
|
||||
}
|
||||
efuse_hal_clear_program_registers();
|
||||
unsigned w_data_len;
|
||||
unsigned r_data_len;
|
||||
if (scheme == EFUSE_CODING_SCHEME_3_4) {
|
||||
esp_efuse_utility_apply_34_encoding((void *)range_write_addr_blocks[num_block].start, (uint32_t *)start_write_addr[num_block], ESP_EFUSE_LEN_OF_3_4_SCHEME_BLOCK_IN_BYTES);
|
||||
r_data_len = ESP_EFUSE_LEN_OF_3_4_SCHEME_BLOCK_IN_BYTES;
|
||||
w_data_len = 32;
|
||||
} else if (scheme == EFUSE_CODING_SCHEME_REPEAT) {
|
||||
apply_repeat_encoding((void *)range_write_addr_blocks[num_block].start, (uint32_t *)start_write_addr[num_block], ESP_EFUSE_LEN_OF_REPEAT_BLOCK_IN_BYTES);
|
||||
r_data_len = ESP_EFUSE_LEN_OF_REPEAT_BLOCK_IN_BYTES;
|
||||
w_data_len = 32;
|
||||
} else {
|
||||
r_data_len = (range_read_addr_blocks[num_block].end - range_read_addr_blocks[num_block].start) + sizeof(uint32_t);
|
||||
w_data_len = (range_write_addr_blocks[num_block].end - range_write_addr_blocks[num_block].start) + sizeof(uint32_t);
|
||||
memcpy((void *)start_write_addr[num_block], (void *)range_write_addr_blocks[num_block].start, w_data_len);
|
||||
}
|
||||
|
||||
uint32_t backup_write_data[8];
|
||||
memcpy(backup_write_data, (void *)start_write_addr[num_block], w_data_len);
|
||||
int repeat_burn_op = 1;
|
||||
bool correct_written_data;
|
||||
bool coding_error_before = efuse_hal_is_coding_error_in_block(num_block);
|
||||
if (coding_error_before) {
|
||||
ESP_LOGW(TAG, "BLOCK%d already has a coding error", num_block);
|
||||
}
|
||||
bool coding_error_occurred;
|
||||
|
||||
do {
|
||||
ESP_LOGI(TAG, "BURN BLOCK%d", num_block);
|
||||
// BURN a block
|
||||
REG_WRITE(EFUSE_CONF_REG, EFUSE_CONF_WRITE);
|
||||
REG_WRITE(EFUSE_CMD_REG, EFUSE_CMD_PGM);
|
||||
while (REG_READ(EFUSE_CMD_REG) != 0) {};
|
||||
REG_WRITE(EFUSE_CONF_REG, EFUSE_CONF_READ);
|
||||
REG_WRITE(EFUSE_CMD_REG, EFUSE_CMD_READ);
|
||||
while (REG_READ(EFUSE_CMD_REG) != 0) {};
|
||||
|
||||
bool coding_error_after = efuse_hal_is_coding_error_in_block(num_block);
|
||||
coding_error_occurred = (coding_error_before != coding_error_after) && coding_error_before == false;
|
||||
if (coding_error_occurred) {
|
||||
ESP_LOGW(TAG, "BLOCK%d got a coding error", num_block);
|
||||
}
|
||||
|
||||
correct_written_data = esp_efuse_utility_is_correct_written_data(num_block, r_data_len);
|
||||
if (!correct_written_data || coding_error_occurred) {
|
||||
ESP_LOGW(TAG, "BLOCK%d: next retry to fix an error [%d/3]...", num_block, repeat_burn_op);
|
||||
memcpy((void *)start_write_addr[num_block], (void *)backup_write_data, w_data_len);
|
||||
}
|
||||
|
||||
} while ((!correct_written_data || coding_error_occurred) && repeat_burn_op++ < 3);
|
||||
|
||||
if (coding_error_occurred) {
|
||||
ESP_LOGW(TAG, "Coding error was not fixed");
|
||||
}
|
||||
if (!correct_written_data) {
|
||||
ESP_LOGE(TAG, "Written data are incorrect");
|
||||
error = ESP_FAIL;
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif // CONFIG_EFUSE_VIRTUAL
|
||||
esp_efuse_utility_reset();
|
||||
return error;
|
||||
}
|
||||
|
||||
esp_err_t esp_efuse_utility_apply_34_encoding(const uint8_t *in_bytes, uint32_t *out_words, size_t in_bytes_len)
|
||||
@ -148,19 +256,15 @@ esp_err_t esp_efuse_utility_apply_34_encoding(const uint8_t *in_bytes, uint32_t
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
static bool read_w_data_and_check_fill(esp_efuse_block_t num_block, uint32_t *buf_w_data)
|
||||
#ifndef CONFIG_EFUSE_VIRTUAL
|
||||
|
||||
static void apply_repeat_encoding(const uint8_t *in_bytes, uint32_t *out_words, size_t in_bytes_len)
|
||||
{
|
||||
bool blk_is_filled = false;
|
||||
int i = 0;
|
||||
for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4, ++i) {
|
||||
buf_w_data[i] = REG_READ(addr_wr_block);
|
||||
if (buf_w_data[i] != 0) {
|
||||
REG_WRITE(addr_wr_block, 0);
|
||||
blk_is_filled = true;
|
||||
}
|
||||
for (unsigned i = 0; i < 2; i++) {
|
||||
memcpy(&out_words[i * 4], (uint32_t *)in_bytes, in_bytes_len);
|
||||
}
|
||||
return blk_is_filled;
|
||||
}
|
||||
#endif // CONFIG_EFUSE_VIRTUAL
|
||||
|
||||
static void read_r_data(esp_efuse_block_t num_block, uint32_t* buf_r_data)
|
||||
{
|
||||
@ -170,27 +274,30 @@ static void read_r_data(esp_efuse_block_t num_block, uint32_t* buf_r_data)
|
||||
}
|
||||
}
|
||||
|
||||
// After esp_efuse_write.. functions EFUSE_BLKx_WDATAx_REG were filled is not coded values.
|
||||
// This function reads EFUSE_BLKx_WDATAx_REG registers, applies coding scheme and writes encoded values back to EFUSE_BLKx_WDATAx_REG.
|
||||
// This function just checkes that given data for blocks will not rise a coding issue during the burn operation.
|
||||
// Encoded data will be set during the burn operation.
|
||||
esp_err_t esp_efuse_utility_apply_new_coding_scheme()
|
||||
{
|
||||
uint8_t buf_w_data[COUNT_EFUSE_REG_PER_BLOCK * 4];
|
||||
uint8_t buf_r_data[COUNT_EFUSE_REG_PER_BLOCK * 4];
|
||||
uint32_t reg[COUNT_EFUSE_REG_PER_BLOCK];
|
||||
// start with EFUSE_BLK1. EFUSE_BLK0 - always uses EFUSE_CODING_SCHEME_NONE.
|
||||
for (int num_block = EFUSE_BLK1; num_block < EFUSE_BLK_MAX; num_block++) {
|
||||
esp_efuse_coding_scheme_t scheme = esp_efuse_get_coding_scheme(num_block);
|
||||
// check and apply a new coding scheme.
|
||||
if (scheme != EFUSE_CODING_SCHEME_NONE) {
|
||||
memset(buf_w_data, 0, sizeof(buf_w_data));
|
||||
memset((uint8_t*)reg, 0, sizeof(reg));
|
||||
if (read_w_data_and_check_fill(num_block, (uint32_t*)buf_w_data) == true) {
|
||||
bool is_write_data = false;
|
||||
for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
|
||||
if (REG_READ(addr_wr_block)) {
|
||||
is_write_data = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (is_write_data) {
|
||||
read_r_data(num_block, (uint32_t*)buf_r_data);
|
||||
uint8_t* buf_w_data = (uint8_t*)range_write_addr_blocks[num_block].start;
|
||||
if (scheme == EFUSE_CODING_SCHEME_3_4) {
|
||||
if (*((uint32_t*)buf_w_data + 6) != 0 || *((uint32_t*)buf_w_data + 7) != 0) {
|
||||
return ESP_ERR_CODING;
|
||||
}
|
||||
for (int i = 0; i < 24; ++i) {
|
||||
for (int i = 0; i < ESP_EFUSE_LEN_OF_3_4_SCHEME_BLOCK_IN_BYTES; ++i) {
|
||||
if (buf_w_data[i] != 0) {
|
||||
int st_offset_buf = (i / 6) * 6;
|
||||
// check that place is free.
|
||||
@ -200,32 +307,14 @@ esp_err_t esp_efuse_utility_apply_new_coding_scheme()
|
||||
return ESP_ERR_CODING;
|
||||
}
|
||||
}
|
||||
|
||||
esp_err_t err = esp_efuse_utility_apply_34_encoding(&buf_w_data[st_offset_buf], reg, 6);
|
||||
if (err != ESP_OK) {
|
||||
return err;
|
||||
}
|
||||
|
||||
int num_reg = (st_offset_buf / 6) * 2;
|
||||
for (int r = 0; r < 2; r++) {
|
||||
REG_WRITE(range_write_addr_blocks[num_block].start + (num_reg + r) * 4, reg[r]);
|
||||
}
|
||||
i = st_offset_buf + 5;
|
||||
}
|
||||
}
|
||||
} else if (scheme == EFUSE_CODING_SCHEME_REPEAT) {
|
||||
uint32_t* buf_32 = (uint32_t*)buf_w_data;
|
||||
for (int i = 4; i < 8; ++i) {
|
||||
if (*(buf_32 + i) != 0) {
|
||||
if (*((uint32_t*)buf_w_data + i) != 0) {
|
||||
return ESP_ERR_CODING;
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
if (buf_32[i] != 0) {
|
||||
REG_WRITE(range_write_addr_blocks[num_block].start + i * 4, buf_32[i]);
|
||||
REG_WRITE(range_write_addr_blocks[num_block].start + (i + 4) * 4, buf_32[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -23,6 +23,8 @@
|
||||
|
||||
static const char *TAG = "efuse";
|
||||
|
||||
#define ESP_EFUSE_BLOCK_ERROR_BITS(error_reg, block) ((error_reg) & (0x0F << (4 * (block))))
|
||||
|
||||
#ifdef CONFIG_EFUSE_VIRTUAL
|
||||
extern uint32_t virt_blocks[EFUSE_BLK_MAX][COUNT_EFUSE_REG_PER_BLOCK];
|
||||
#endif // CONFIG_EFUSE_VIRTUAL
|
||||
@ -66,6 +68,25 @@ static esp_err_t esp_efuse_set_timing(void)
|
||||
uint32_t clock_hz = esp_clk_apb_freq();
|
||||
return ets_efuse_set_timing(clock_hz) ? ESP_FAIL : ESP_OK;
|
||||
}
|
||||
|
||||
static bool efuse_hal_is_coding_error_in_block(unsigned block)
|
||||
{
|
||||
if (block == 0) {
|
||||
for (unsigned i = 0; i < 5; i++) {
|
||||
if (REG_READ(EFUSE_RD_REPEAT_ERR0_REG + i * 4)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
} else if (block <= 10) {
|
||||
// EFUSE_RD_RS_ERR0_REG: (hi) BLOCK8, BLOCK7, BLOCK6, BLOCK5, BLOCK4, BLOCK3, BLOCK2, BLOCK1 (low)
|
||||
// EFUSE_RD_RS_ERR1_REG: BLOCK10, BLOCK9
|
||||
block--;
|
||||
uint32_t error_reg = REG_READ(EFUSE_RD_RS_ERR0_REG + (block / 8) * 4);
|
||||
return ESP_EFUSE_BLOCK_ERROR_BITS(error_reg, block % 8) != 0;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
#endif // ifndef CONFIG_EFUSE_VIRTUAL
|
||||
|
||||
// Efuse read operation: copies data from physical efuses to efuse read registers.
|
||||
@ -76,8 +97,9 @@ void esp_efuse_utility_clear_program_registers(void)
|
||||
}
|
||||
|
||||
// Burn values written to the efuse write registers
|
||||
void esp_efuse_utility_burn_efuses(void)
|
||||
esp_err_t esp_efuse_utility_burn_efuses(void)
|
||||
{
|
||||
esp_err_t error = ESP_OK;
|
||||
#ifdef CONFIG_EFUSE_VIRTUAL
|
||||
ESP_LOGW(TAG, "Virtual efuses enabled: Not really burning eFuses");
|
||||
for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) {
|
||||
@ -86,30 +108,90 @@ void esp_efuse_utility_burn_efuses(void)
|
||||
virt_blocks[num_block][subblock++] |= REG_READ(addr_wr_block);
|
||||
}
|
||||
}
|
||||
#else
|
||||
#else // CONFIG_EFUSE_VIRTUAL
|
||||
if (esp_efuse_set_timing() != ESP_OK) {
|
||||
ESP_LOGE(TAG, "Efuse fields are not burnt");
|
||||
} else {
|
||||
// Permanently update values written to the efuse write registers
|
||||
// It is necessary to process blocks in the order from MAX-> EFUSE_BLK0, because EFUSE_BLK0 has protection bits for other blocks.
|
||||
for (int num_block = EFUSE_BLK_MAX - 1; num_block >= EFUSE_BLK0; num_block--) {
|
||||
bool need_burn_block = false;
|
||||
for (uint32_t addr_wr_block = range_write_addr_blocks[num_block].start; addr_wr_block <= range_write_addr_blocks[num_block].end; addr_wr_block += 4) {
|
||||
if (REG_READ(addr_wr_block) != 0) {
|
||||
if (esp_efuse_get_coding_scheme(num_block) == EFUSE_CODING_SCHEME_RS) {
|
||||
uint8_t block_rs[12];
|
||||
ets_efuse_rs_calculate((void *)range_write_addr_blocks[num_block].start, block_rs);
|
||||
memcpy((void *)EFUSE_PGM_CHECK_VALUE0_REG, block_rs, sizeof(block_rs));
|
||||
}
|
||||
int data_len = (range_write_addr_blocks[num_block].end - range_write_addr_blocks[num_block].start) + sizeof(uint32_t);
|
||||
memcpy((void *)EFUSE_PGM_DATA0_REG, (void *)range_write_addr_blocks[num_block].start, data_len);
|
||||
ets_efuse_program(num_block);
|
||||
need_burn_block = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!need_burn_block) {
|
||||
continue;
|
||||
}
|
||||
if (error) {
|
||||
// It is done for a use case: BLOCK2 (Flash encryption key) could have an error (incorrect written data)
|
||||
// in this case we can not burn any data into BLOCK0 because it might set read/write protections of BLOCK2.
|
||||
ESP_LOGE(TAG, "BLOCK%d can not be burned because a previous block got an error, skipped.", num_block);
|
||||
continue;
|
||||
}
|
||||
ets_efuse_clear_program_registers();
|
||||
if (esp_efuse_get_coding_scheme(num_block) == EFUSE_CODING_SCHEME_RS) {
|
||||
uint8_t block_rs[12];
|
||||
ets_efuse_rs_calculate((void *)range_write_addr_blocks[num_block].start, block_rs);
|
||||
memcpy((void *)EFUSE_PGM_CHECK_VALUE0_REG, block_rs, sizeof(block_rs));
|
||||
}
|
||||
unsigned r_data_len = (range_read_addr_blocks[num_block].end - range_read_addr_blocks[num_block].start) + sizeof(uint32_t);
|
||||
unsigned data_len = (range_write_addr_blocks[num_block].end - range_write_addr_blocks[num_block].start) + sizeof(uint32_t);
|
||||
memcpy((void *)EFUSE_PGM_DATA0_REG, (void *)range_write_addr_blocks[num_block].start, data_len);
|
||||
|
||||
uint32_t backup_write_data[8 + 3]; // 8 words are data and 3 words are RS coding data
|
||||
memcpy(backup_write_data, (void *)EFUSE_PGM_DATA0_REG, sizeof(backup_write_data));
|
||||
int repeat_burn_op = 1;
|
||||
bool correct_written_data;
|
||||
bool coding_error_before = efuse_hal_is_coding_error_in_block(num_block);
|
||||
if (coding_error_before) {
|
||||
ESP_LOGW(TAG, "BLOCK%d already has a coding error", num_block);
|
||||
}
|
||||
bool coding_error_occurred;
|
||||
|
||||
do {
|
||||
ESP_LOGI(TAG, "BURN BLOCK%d", num_block);
|
||||
ets_efuse_program(num_block); // BURN a block
|
||||
|
||||
bool coding_error_after;
|
||||
for (unsigned i = 0; i < 5; i++) {
|
||||
ets_efuse_read();
|
||||
coding_error_after = efuse_hal_is_coding_error_in_block(num_block);
|
||||
if (coding_error_after == true) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
coding_error_occurred = (coding_error_before != coding_error_after) && coding_error_before == false;
|
||||
if (coding_error_occurred) {
|
||||
ESP_LOGW(TAG, "BLOCK%d got a coding error", num_block);
|
||||
}
|
||||
|
||||
correct_written_data = esp_efuse_utility_is_correct_written_data(num_block, r_data_len);
|
||||
if (!correct_written_data || coding_error_occurred) {
|
||||
ESP_LOGW(TAG, "BLOCK%d: next retry to fix an error [%d/3]...", num_block, repeat_burn_op);
|
||||
memcpy((void *)EFUSE_PGM_DATA0_REG, (void *)backup_write_data, sizeof(backup_write_data));
|
||||
}
|
||||
|
||||
} while ((!correct_written_data || coding_error_occurred) && repeat_burn_op++ < 3);
|
||||
|
||||
if (coding_error_occurred) {
|
||||
ESP_LOGW(TAG, "Coding error was not fixed");
|
||||
if (num_block == 0) {
|
||||
ESP_LOGE(TAG, "BLOCK0 got a coding error, which might be critical for security");
|
||||
error = ESP_FAIL;
|
||||
}
|
||||
}
|
||||
if (!correct_written_data) {
|
||||
ESP_LOGE(TAG, "Written data are incorrect");
|
||||
error = ESP_FAIL;
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif // CONFIG_EFUSE_VIRTUAL
|
||||
esp_efuse_utility_reset();
|
||||
return error;
|
||||
}
|
||||
|
||||
// After esp_efuse_write.. functions EFUSE_BLKx_WDATAx_REG were filled is not coded values.
|
||||
|
@ -94,7 +94,7 @@ esp_err_t esp_efuse_write_field_blob(const esp_efuse_desc_t* field[], const void
|
||||
if (err == ESP_OK) {
|
||||
err = esp_efuse_utility_apply_new_coding_scheme();
|
||||
if (err == ESP_OK) {
|
||||
esp_efuse_utility_burn_efuses();
|
||||
err = esp_efuse_utility_burn_efuses();
|
||||
}
|
||||
}
|
||||
esp_efuse_utility_reset();
|
||||
@ -129,7 +129,7 @@ esp_err_t esp_efuse_write_field_cnt(const esp_efuse_desc_t* field[], size_t cnt)
|
||||
if (err == ESP_OK) {
|
||||
err = esp_efuse_utility_apply_new_coding_scheme();
|
||||
if (err == ESP_OK) {
|
||||
esp_efuse_utility_burn_efuses();
|
||||
err = esp_efuse_utility_burn_efuses();
|
||||
}
|
||||
}
|
||||
esp_efuse_utility_reset();
|
||||
@ -193,7 +193,7 @@ esp_err_t esp_efuse_write_reg(esp_efuse_block_t blk, unsigned int num_reg, uint3
|
||||
if (err == ESP_OK) {
|
||||
err = esp_efuse_utility_apply_new_coding_scheme();
|
||||
if (err == ESP_OK) {
|
||||
esp_efuse_utility_burn_efuses();
|
||||
err = esp_efuse_utility_burn_efuses();
|
||||
}
|
||||
}
|
||||
esp_efuse_utility_reset();
|
||||
@ -271,7 +271,7 @@ esp_err_t esp_efuse_batch_write_commit(void)
|
||||
} else {
|
||||
esp_err_t err = esp_efuse_utility_apply_new_coding_scheme();
|
||||
if (err == ESP_OK) {
|
||||
esp_efuse_utility_burn_efuses();
|
||||
err = esp_efuse_utility_burn_efuses();
|
||||
}
|
||||
esp_efuse_batch_write_cancel();
|
||||
return err;
|
||||
|
@ -354,3 +354,29 @@ static bool check_range_of_bits(esp_efuse_block_t blk, int offset_in_bits, int s
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool esp_efuse_utility_is_correct_written_data(esp_efuse_block_t block, unsigned r_data_len)
|
||||
{
|
||||
uint32_t* w_data = (uint32_t*)range_write_addr_blocks[block].start;
|
||||
uint32_t* r_data = (uint32_t*)range_read_addr_blocks[block].start;
|
||||
|
||||
bool correct_written_data = memcmp(w_data, r_data, r_data_len) == 0;
|
||||
if (correct_written_data) {
|
||||
ESP_LOGI(TAG, "BURN BLOCK%d - OK (write block == read block)", block);
|
||||
return true;
|
||||
}
|
||||
|
||||
correct_written_data = true;
|
||||
for (unsigned i = 0; i < r_data_len / 4; i++) {
|
||||
if ((*(r_data + i) & *(w_data + i)) != *(w_data + i)) {
|
||||
correct_written_data = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (correct_written_data) {
|
||||
ESP_LOGI(TAG, "BURN BLOCK%d - OK (all write block bits are set)", block);
|
||||
} else {
|
||||
ESP_LOGE(TAG, "BURN BLOCK%d - ERROR (written bits != read bits)", block);
|
||||
}
|
||||
return correct_written_data;
|
||||
}
|
||||
|
@ -169,7 +169,7 @@ TEST_CASE("Test Coding Scheme for efuse manager", "[efuse]")
|
||||
}
|
||||
printf("\n");
|
||||
#endif
|
||||
TEST_ASSERT_EQUAL_HEX32_ARRAY(encoded, w_data_after_coding, 8);
|
||||
TEST_ASSERT_EQUAL_HEX32_ARRAY(buf, w_data_after_coding, 8);
|
||||
}
|
||||
esp_efuse_utility_reset();
|
||||
bootloader_random_disable();
|
||||
@ -193,7 +193,7 @@ TEST_CASE("Test data does not match the coding scheme", "[efuse]")
|
||||
esp_efuse_utility_reset();
|
||||
|
||||
for (int i = 0; i < count_useful_reg; ++i) {
|
||||
REG_WRITE(EFUSE_BLK2_WDATA0_REG + i * 4, 0xABCDEF01 + i);
|
||||
TEST_ESP_OK(esp_efuse_utility_write_reg(2, i, 0xABCDEF01 + i));
|
||||
}
|
||||
|
||||
if (coding_scheme == EFUSE_CODING_SCHEME_NONE) {
|
||||
|
Loading…
Reference in New Issue
Block a user