mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
Merge branch 'bugfix/tw17012_wifi_interface_stop' into 'release/v2.1'
Bugfix/tw17012 wifi interface stop See merge request idf/esp-idf!2363
This commit is contained in:
commit
c5498468d8
@ -2163,7 +2163,6 @@ BaseType_t xAlreadyYielded = pdFALSE;
|
||||
{
|
||||
/* We can schedule the awoken task on this CPU. */
|
||||
xYieldPending[xPortGetCoreID()] = pdTRUE;
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -3023,6 +3022,8 @@ BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList )
|
||||
{
|
||||
TCB_t *pxUnblockedTCB;
|
||||
BaseType_t xReturn;
|
||||
BaseType_t xTaskCanBeReady;
|
||||
UBaseType_t i, uxTargetCPU;
|
||||
|
||||
/* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION. It can also be
|
||||
called from a critical section within an ISR. */
|
||||
@ -3046,7 +3047,24 @@ BaseType_t xReturn;
|
||||
return pdFALSE;
|
||||
}
|
||||
|
||||
if( uxSchedulerSuspended[ xPortGetCoreID() ] == ( UBaseType_t ) pdFALSE )
|
||||
/* Determine if the task can possibly be run on either CPU now, either because the scheduler
|
||||
the task is pinned to is running or because a scheduler is running on any CPU. */
|
||||
xTaskCanBeReady = pdFALSE;
|
||||
if ( pxUnblockedTCB->xCoreID == tskNO_AFFINITY ) {
|
||||
uxTargetCPU = xPortGetCoreID();
|
||||
for (i = 0; i < portNUM_PROCESSORS; i++) {
|
||||
if ( uxSchedulerSuspended[ i ] == ( UBaseType_t ) pdFALSE ) {
|
||||
xTaskCanBeReady = pdTRUE;
|
||||
break;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
uxTargetCPU = pxUnblockedTCB->xCoreID;
|
||||
xTaskCanBeReady = uxSchedulerSuspended[ uxTargetCPU ] == ( UBaseType_t ) pdFALSE;
|
||||
|
||||
}
|
||||
|
||||
if( xTaskCanBeReady )
|
||||
{
|
||||
( void ) uxListRemove( &( pxUnblockedTCB->xGenericListItem ) );
|
||||
prvAddTaskToReadyList( pxUnblockedTCB );
|
||||
@ -3054,8 +3072,8 @@ BaseType_t xReturn;
|
||||
else
|
||||
{
|
||||
/* The delayed and ready lists cannot be accessed, so hold this task
|
||||
pending until the scheduler is resumed. */
|
||||
vListInsertEnd( &( xPendingReadyList[ xPortGetCoreID() ] ), &( pxUnblockedTCB->xEventListItem ) );
|
||||
pending until the scheduler is resumed on this CPU. */
|
||||
vListInsertEnd( &( xPendingReadyList[ uxTargetCPU ] ), &( pxUnblockedTCB->xEventListItem ) );
|
||||
}
|
||||
|
||||
if ( tskCAN_RUN_HERE(pxUnblockedTCB->xCoreID) && pxUnblockedTCB->uxPriority >= pxCurrentTCB[ xPortGetCoreID() ]->uxPriority )
|
||||
|
@ -12,7 +12,7 @@
|
||||
#include "driver/timer.h"
|
||||
|
||||
static SemaphoreHandle_t isr_semaphore;
|
||||
static volatile unsigned isr_count, task_count;
|
||||
static volatile unsigned isr_count;
|
||||
|
||||
/* Timer ISR increments an ISR counter, and signals a
|
||||
mutex semaphore to wake up another counter task */
|
||||
@ -29,33 +29,42 @@ static void timer_group0_isr(void *vp_arg)
|
||||
}
|
||||
}
|
||||
|
||||
static void counter_task_fn(void *ignore)
|
||||
typedef struct {
|
||||
SemaphoreHandle_t trigger_sem;
|
||||
volatile unsigned counter;
|
||||
} counter_config_t;
|
||||
|
||||
static void counter_task_fn(void *vp_config)
|
||||
{
|
||||
counter_config_t *config = (counter_config_t *)vp_config;
|
||||
printf("counter_task running...\n");
|
||||
while(1) {
|
||||
xSemaphoreTake(isr_semaphore, portMAX_DELAY);
|
||||
task_count++;
|
||||
xSemaphoreTake(config->trigger_sem, portMAX_DELAY);
|
||||
config->counter++;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* This test verifies that an interrupt can wake up a task while the scheduler is disabled.
|
||||
|
||||
In the FreeRTOS implementation, this exercises the xPendingReadyList for that core.
|
||||
*/
|
||||
TEST_CASE("Handle pending context switch while scheduler disabled", "[freertos]")
|
||||
TEST_CASE("Scheduler disabled can handle a pending context switch on resume", "[freertos]")
|
||||
{
|
||||
task_count = 0;
|
||||
isr_count = 0;
|
||||
isr_semaphore = xSemaphoreCreateMutex();
|
||||
TaskHandle_t counter_task;
|
||||
|
||||
counter_config_t count_config = {
|
||||
.trigger_sem = isr_semaphore,
|
||||
.counter = 0,
|
||||
};
|
||||
|
||||
xTaskCreatePinnedToCore(counter_task_fn, "counter", 2048,
|
||||
NULL, UNITY_FREERTOS_PRIORITY + 1,
|
||||
&count_config, UNITY_FREERTOS_PRIORITY + 1,
|
||||
&counter_task, UNITY_FREERTOS_CPU);
|
||||
|
||||
/* Configure timer ISR */
|
||||
const timer_config_t config = {
|
||||
const timer_config_t timer_config = {
|
||||
.alarm_en = 1,
|
||||
.auto_reload = 1,
|
||||
.counter_dir = TIMER_COUNT_UP,
|
||||
@ -64,7 +73,7 @@ TEST_CASE("Handle pending context switch while scheduler disabled", "[freertos]"
|
||||
.counter_en = TIMER_PAUSE,
|
||||
};
|
||||
/* Configure timer */
|
||||
timer_init(TIMER_GROUP_0, TIMER_0, &config);
|
||||
timer_init(TIMER_GROUP_0, TIMER_0, &timer_config);
|
||||
timer_pause(TIMER_GROUP_0, TIMER_0);
|
||||
timer_set_counter_value(TIMER_GROUP_0, TIMER_0, 0);
|
||||
timer_set_alarm_value(TIMER_GROUP_0, TIMER_0, 1000);
|
||||
@ -75,20 +84,20 @@ TEST_CASE("Handle pending context switch while scheduler disabled", "[freertos]"
|
||||
vTaskDelay(5);
|
||||
|
||||
// Check some counts have been triggered via the ISR
|
||||
TEST_ASSERT(task_count > 10);
|
||||
TEST_ASSERT(count_config.counter > 10);
|
||||
TEST_ASSERT(isr_count > 10);
|
||||
|
||||
for (int i = 0; i < 20; i++) {
|
||||
vTaskSuspendAll();
|
||||
esp_intr_noniram_disable();
|
||||
|
||||
unsigned no_sched_task = task_count;
|
||||
unsigned no_sched_task = count_config.counter;
|
||||
|
||||
// scheduler off on this CPU...
|
||||
ets_delay_us(20 * 1000);
|
||||
|
||||
//TEST_ASSERT_NOT_EQUAL(no_sched_isr, isr_count);
|
||||
TEST_ASSERT_EQUAL(task_count, no_sched_task);
|
||||
TEST_ASSERT_EQUAL(count_config.counter, no_sched_task);
|
||||
|
||||
// disable timer interrupts
|
||||
timer_disable_intr(TIMER_GROUP_0, TIMER_0);
|
||||
@ -98,9 +107,139 @@ TEST_CASE("Handle pending context switch while scheduler disabled", "[freertos]"
|
||||
esp_intr_noniram_enable();
|
||||
xTaskResumeAll();
|
||||
|
||||
TEST_ASSERT_NOT_EQUAL(task_count, no_sched_task);
|
||||
TEST_ASSERT_NOT_EQUAL(count_config.counter, no_sched_task);
|
||||
}
|
||||
|
||||
vTaskDelete(counter_task);
|
||||
vSemaphoreDelete(isr_semaphore);
|
||||
}
|
||||
|
||||
/* Multiple tasks on different cores can be added to the pending ready list
|
||||
while scheduler is suspended, and should be started once the scheduler
|
||||
resumes.
|
||||
*/
|
||||
TEST_CASE("Scheduler disabled can wake multiple tasks on resume", "[freertos]")
|
||||
{
|
||||
#define TASKS_PER_PROC 4
|
||||
TaskHandle_t tasks[portNUM_PROCESSORS][TASKS_PER_PROC] = { 0 };
|
||||
counter_config_t counters[portNUM_PROCESSORS][TASKS_PER_PROC] = { 0 };
|
||||
|
||||
/* Start all the tasks, they will block on isr_semaphore */
|
||||
for (int p = 0; p < portNUM_PROCESSORS; p++) {
|
||||
for (int t = 0; t < TASKS_PER_PROC; t++) {
|
||||
counters[p][t].trigger_sem = xSemaphoreCreateMutex();
|
||||
TEST_ASSERT_NOT_NULL( counters[p][t].trigger_sem );
|
||||
TEST_ASSERT( xSemaphoreTake(counters[p][t].trigger_sem, 0) );
|
||||
xTaskCreatePinnedToCore(counter_task_fn, "counter", 2048,
|
||||
&counters[p][t], UNITY_FREERTOS_PRIORITY + 1,
|
||||
&tasks[p][t], p);
|
||||
TEST_ASSERT_NOT_NULL( tasks[p][t] );
|
||||
}
|
||||
}
|
||||
|
||||
/* takes a while to initialize tasks on both cores, sometimes... */
|
||||
vTaskDelay(TASKS_PER_PROC * portNUM_PROCESSORS * 3);
|
||||
|
||||
/* Check nothing is counting, each counter should be blocked on its trigger_sem */
|
||||
for (int p = 0; p < portNUM_PROCESSORS; p++) {
|
||||
for (int t = 0; t < TASKS_PER_PROC; t++) {
|
||||
TEST_ASSERT_EQUAL(0, counters[p][t].counter);
|
||||
}
|
||||
}
|
||||
|
||||
/* Suspend scheduler on this CPU */
|
||||
vTaskSuspendAll();
|
||||
|
||||
/* Give all the semaphores once. This will wake tasks immediately on the other
|
||||
CPU, but they are deferred here until the scheduler resumes.
|
||||
*/
|
||||
for (int p = 0; p < portNUM_PROCESSORS; p++) {
|
||||
for (int t = 0; t < TASKS_PER_PROC; t++) {
|
||||
xSemaphoreGive(counters[p][t].trigger_sem);
|
||||
}
|
||||
}
|
||||
|
||||
ets_delay_us(200); /* Let the other CPU do some things */
|
||||
|
||||
for (int p = 0; p < portNUM_PROCESSORS; p++) {
|
||||
for (int t = 0; t < TASKS_PER_PROC; t++) {
|
||||
int expected = (p == UNITY_FREERTOS_CPU) ? 0 : 1; // Has run if it was on the other CPU
|
||||
ets_printf("Checking CPU %d task %d (expected %d actual %d)\n", p, t, expected, counters[p][t].counter);
|
||||
TEST_ASSERT_EQUAL(expected, counters[p][t].counter);
|
||||
}
|
||||
}
|
||||
|
||||
/* Resume scheduler */
|
||||
xTaskResumeAll();
|
||||
|
||||
/* Now the tasks on both CPUs should have been woken once and counted once. */
|
||||
for (int p = 0; p < portNUM_PROCESSORS; p++) {
|
||||
for (int t = 0; t < TASKS_PER_PROC; t++) {
|
||||
ets_printf("Checking CPU %d task %d (expected 1 actual %d)\n", p, t, counters[p][t].counter);
|
||||
TEST_ASSERT_EQUAL(1, counters[p][t].counter);
|
||||
}
|
||||
}
|
||||
|
||||
/* Clean up */
|
||||
for (int p = 0; p < portNUM_PROCESSORS; p++) {
|
||||
for (int t = 0; t < TASKS_PER_PROC; t++) {
|
||||
vTaskDelete(tasks[p][t]);
|
||||
vSemaphoreDelete(counters[p][t].trigger_sem);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static volatile bool sched_suspended;
|
||||
static void suspend_scheduler_5ms_task_fn(void *ignore)
|
||||
{
|
||||
vTaskSuspendAll();
|
||||
sched_suspended = true;
|
||||
for (int i = 0; i <5; i++) {
|
||||
ets_delay_us(1000);
|
||||
}
|
||||
xTaskResumeAll();
|
||||
sched_suspended = false;
|
||||
vTaskDelete(NULL);
|
||||
}
|
||||
|
||||
#ifndef CONFIG_FREERTOS_UNICORE
|
||||
/* If the scheduler is disabled on one CPU (A) with a task blocked on something, and a task
|
||||
on B (where scheduler is running) wakes it, then the task on A should be woken on resume.
|
||||
*/
|
||||
TEST_CASE("Scheduler disabled on CPU B, tasks on A can wake", "[freertos]")
|
||||
{
|
||||
TaskHandle_t counter_task;
|
||||
SemaphoreHandle_t wake_sem = xSemaphoreCreateMutex();
|
||||
xSemaphoreTake(wake_sem, 0);
|
||||
counter_config_t count_config = {
|
||||
.trigger_sem = wake_sem,
|
||||
.counter = 0,
|
||||
};
|
||||
xTaskCreatePinnedToCore(counter_task_fn, "counter", 2048,
|
||||
&count_config, UNITY_FREERTOS_PRIORITY + 1,
|
||||
&counter_task, !UNITY_FREERTOS_CPU);
|
||||
|
||||
xTaskCreatePinnedToCore(suspend_scheduler_5ms_task_fn, "suspender", 2048,
|
||||
NULL, UNITY_FREERTOS_PRIORITY - 1,
|
||||
NULL, !UNITY_FREERTOS_CPU);
|
||||
|
||||
/* counter task is now blocked on other CPU, waiting for wake_sem, and we expect
|
||||
that this CPU's scheduler will be suspended for 5ms shortly... */
|
||||
while(!sched_suspended) { }
|
||||
|
||||
xSemaphoreGive(wake_sem);
|
||||
ets_delay_us(1000);
|
||||
// Bit of a race here if the other CPU resumes its scheduler, but 5ms is a long time... */
|
||||
TEST_ASSERT(sched_suspended);
|
||||
TEST_ASSERT_EQUAL(0, count_config.counter); // the other task hasn't woken yet, because scheduler is off
|
||||
TEST_ASSERT(sched_suspended);
|
||||
|
||||
/* wait for the rest of the 5ms... */
|
||||
while(sched_suspended) { }
|
||||
|
||||
ets_delay_us(100);
|
||||
TEST_ASSERT_EQUAL(1, count_config.counter); // when scheduler resumes, counter task should immediately count
|
||||
|
||||
vTaskDelete(counter_task);
|
||||
}
|
||||
#endif
|
||||
|
@ -59,6 +59,12 @@ void spi_flash_op_unlock()
|
||||
{
|
||||
xSemaphoreGive(s_flash_op_mutex);
|
||||
}
|
||||
/*
|
||||
If you're going to modify this, keep in mind that while the flash caches of the pro and app
|
||||
cpu are separate, the psram cache is *not*. If one of the CPUs returns from a flash routine
|
||||
with its cache enabled but the other CPUs cache is not enabled yet, you will have problems
|
||||
when accessing psram from the former CPU.
|
||||
*/
|
||||
|
||||
void IRAM_ATTR spi_flash_op_block_func(void* arg)
|
||||
{
|
||||
@ -67,8 +73,6 @@ void IRAM_ATTR spi_flash_op_block_func(void* arg)
|
||||
// Restore interrupts that aren't located in IRAM
|
||||
esp_intr_noniram_disable();
|
||||
uint32_t cpuid = (uint32_t) arg;
|
||||
// Disable cache so that flash operation can start
|
||||
spi_flash_disable_cache(cpuid, &s_flash_op_cache_state[cpuid]);
|
||||
// s_flash_op_complete flag is cleared on *this* CPU, otherwise the other
|
||||
// CPU may reset the flag back to false before IPC task has a chance to check it
|
||||
// (if it is preempted by an ISR taking non-trivial amount of time)
|
||||
@ -122,8 +126,12 @@ void IRAM_ATTR spi_flash_disable_interrupts_caches_and_other_cpu()
|
||||
}
|
||||
// Kill interrupts that aren't located in IRAM
|
||||
esp_intr_noniram_disable();
|
||||
// Disable cache on this CPU as well
|
||||
// This CPU executes this routine, with non-IRAM interrupts and the scheduler
|
||||
// disabled. The other CPU is spinning in the spi_flash_op_block_func task, also
|
||||
// with non-iram interrupts and the scheduler disabled. None of these CPUs will
|
||||
// touch external RAM or flash this way, so we can safely disable caches.
|
||||
spi_flash_disable_cache(cpuid, &s_flash_op_cache_state[cpuid]);
|
||||
spi_flash_disable_cache(other_cpuid, &s_flash_op_cache_state[other_cpuid]);
|
||||
}
|
||||
|
||||
void IRAM_ATTR spi_flash_enable_interrupts_caches_and_other_cpu()
|
||||
@ -133,22 +141,20 @@ void IRAM_ATTR spi_flash_enable_interrupts_caches_and_other_cpu()
|
||||
#ifndef NDEBUG
|
||||
// Sanity check: flash operation ends on the same CPU as it has started
|
||||
assert(cpuid == s_flash_op_cpu);
|
||||
// More sanity check: if scheduler isn't started, only CPU0 can call this.
|
||||
assert(!(xTaskGetSchedulerState() == taskSCHEDULER_NOT_STARTED && cpuid != 0));
|
||||
s_flash_op_cpu = -1;
|
||||
#endif
|
||||
|
||||
// Re-enable cache on this CPU
|
||||
// Re-enable cache on both CPUs. After this, cache (flash and external RAM) should work again.
|
||||
spi_flash_restore_cache(cpuid, s_flash_op_cache_state[cpuid]);
|
||||
spi_flash_restore_cache(other_cpuid, s_flash_op_cache_state[other_cpuid]);
|
||||
|
||||
if (xTaskGetSchedulerState() == taskSCHEDULER_NOT_STARTED) {
|
||||
// Scheduler is not running yet — this means we are running on PRO CPU.
|
||||
// other_cpuid is APP CPU, and it is either in reset or is spinning in
|
||||
// user_start_cpu1, which is in IRAM. So we can simply reenable cache.
|
||||
assert(other_cpuid == 1);
|
||||
spi_flash_restore_cache(other_cpuid, s_flash_op_cache_state[other_cpuid]);
|
||||
} else {
|
||||
if (xTaskGetSchedulerState() != taskSCHEDULER_NOT_STARTED) {
|
||||
// Signal to spi_flash_op_block_task that flash operation is complete
|
||||
s_flash_op_complete = true;
|
||||
}
|
||||
|
||||
// Re-enable non-iram interrupts
|
||||
esp_intr_noniram_enable();
|
||||
|
||||
|
@ -95,6 +95,11 @@ void IRAM_ATTR spi_flash_guard_set(const spi_flash_guard_funcs_t *funcs)
|
||||
s_flash_guard_ops = funcs;
|
||||
}
|
||||
|
||||
const spi_flash_guard_funcs_t *IRAM_ATTR spi_flash_guard_get()
|
||||
{
|
||||
return s_flash_guard_ops;
|
||||
}
|
||||
|
||||
size_t IRAM_ATTR spi_flash_get_chip_size()
|
||||
{
|
||||
return g_rom_flashchip.chip_size;
|
||||
|
@ -297,6 +297,15 @@ typedef struct {
|
||||
*/
|
||||
void spi_flash_guard_set(const spi_flash_guard_funcs_t* funcs);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Get the guard functions used for flash access
|
||||
*
|
||||
* @return The guard functions that were set via spi_flash_guard_set(). These functions
|
||||
* can be called if implementing custom low-level SPI flash operations.
|
||||
*/
|
||||
const spi_flash_guard_funcs_t *spi_flash_guard_get();
|
||||
|
||||
/**
|
||||
* @brief Default OS-aware flash access guard functions
|
||||
*/
|
||||
|
Loading…
x
Reference in New Issue
Block a user