spi: apply gdma allocator to SPI

This commit is contained in:
Armando 2021-01-27 21:56:16 +08:00 committed by bot
parent 2e670bf6af
commit c438ad5d72
17 changed files with 480 additions and 290 deletions

View File

@ -65,7 +65,9 @@ typedef struct {
spi_bus_config_t bus_cfg; ///< Config used to initialize the bus
uint32_t flags; ///< Flags (attributes) of the bus
int max_transfer_sz; ///< Maximum length of bytes available to send
int dma_chan; ///< DMA channel used
bool dma_enabled; ///< To enable DMA or not
int tx_dma_chan; ///< TX DMA channel, on ESP32 and ESP32S2, tx_dma_chan and rx_dma_chan are same
int rx_dma_chan; ///< RX DMA channel, on ESP32 and ESP32S2, tx_dma_chan and rx_dma_chan are same
int dma_desc_num; ///< DMA descriptor number of dmadesc_tx or dmadesc_rx.
lldesc_t *dmadesc_tx; ///< DMA descriptor array for TX
lldesc_t *dmadesc_rx; ///< DMA descriptor array for RX
@ -127,24 +129,30 @@ bool spicommon_periph_free(spi_host_device_t host);
bool spicommon_dma_chan_in_use(int dma_chan);
/**
* @brief Return the SPI DMA channel so other driver can claim it, or just to power down DMA.
*
* @param dma_chan channel to return
*
* @note This public API is deprecated.
*
* @return True if success; false otherwise.
*/
bool spicommon_dma_chan_free(int dma_chan);
/**
* @brief Try to claim a SPI DMA channel and connect it with SPI peripherals
* @brief Configure DMA for SPI Slave
*
* @param host_id SPI host ID
* @param dma_chan -1: auto dma allocate mode; 0: non-dma mode; 1 or 2: assign a specific DMA channel;
* @param[out] out_actual_dma_chan Actual DMA channel (if you choose to assign a specific DMA channel, this will be the channel you assigned before)
* @param[out] out_actual_tx_dma_chan Actual TX DMA channel (if you choose to assign a specific DMA channel, this will be the channel you assigned before)
* @param[out] out_actual_rx_dma_chan Actual RX DMA channel (if you choose to assign a specific DMA channel, this will be the channel you assigned before)
*
* @return
* - ESP_OK: On success
* - ESP_ERR_NO_MEM: No enough memory
* - ESP_ERR_INVALID_STATE: Driver invalid state, check the log message for details
*/
esp_err_t spicommon_alloc_dma(spi_host_device_t host_id, int dma_chan, uint32_t *out_actual_dma_chan);
esp_err_t spicommon_slave_alloc_dma(spi_host_device_t host_id, int dma_chan, uint32_t *out_actual_tx_dma_chan, uint32_t *out_actual_rx_dma_chan);
/**
* @brief Free DMA for SPI Slave
*
* @param host_id SPI host ID
* @param dma_chan Actual used DMA channel
*
* @return
* - ESP_OK: On success
*/
esp_err_t spicommon_slave_free_dma(spi_host_device_t host_id, int dma_chan);
/**
* @brief Connect a SPI peripheral to GPIO pins
@ -158,7 +166,6 @@ esp_err_t spicommon_alloc_dma(spi_host_device_t host_id, int dma_chan, uint32_t
*
* @param host SPI peripheral to be routed
* @param bus_config Pointer to a spi_bus_config struct detailing the GPIO pins
* @param dma_chan DMA-channel (1 or 2) to use, or 0 for no DMA.
* @param flags Combination of SPICOMMON_BUSFLAG_* flags, set to ensure the pins set are capable with some functions:
* - ``SPICOMMON_BUSFLAG_MASTER``: Initialize I/O in master mode
* - ``SPICOMMON_BUSFLAG_SLAVE``: Initialize I/O in slave mode
@ -180,7 +187,7 @@ esp_err_t spicommon_alloc_dma(spi_host_device_t host_id, int dma_chan, uint32_t
* - ESP_ERR_INVALID_ARG if parameter is invalid
* - ESP_OK on success
*/
esp_err_t spicommon_bus_initialize_io(spi_host_device_t host, const spi_bus_config_t *bus_config, int dma_chan, uint32_t flags, uint32_t *flags_o);
esp_err_t spicommon_bus_initialize_io(spi_host_device_t host, const spi_bus_config_t *bus_config, uint32_t flags, uint32_t *flags_o);
/**
* @brief Free the IO used by a SPI peripheral

View File

@ -86,7 +86,7 @@ typedef struct {
uint32_t address_bits; ///< address field bits, multiples of 8 and at least 8.
uint32_t dummy_bits; ///< dummy field bits, multiples of 8 and at least 8.
uint32_t queue_size; ///< Transaction queue size. This sets how many transactions can be 'in the air' (queued using spi_slave_hd_queue_trans but not yet finished using spi_slave_hd_get_trans_result) at the same time
uint32_t dma_chan; ///< DMA channel used. -1: auto dma allocate mode; 0: non-dma mode; 1 or 2: assign a specific DMA channel;
int dma_chan; ///< DMA channel used. -1: auto dma allocate mode; 0: non-dma mode; 1 or 2: assign a specific DMA channel;
spi_slave_hd_callback_config_t cb_config; ///< Callback configuration
} spi_slave_hd_slot_config_t;

View File

@ -38,6 +38,7 @@
//This GDMA related part will be introduced by GDMA dedicated APIs in the future. Here we temporarily use macros.
#if SOC_GDMA_SUPPORTED
#include "esp_private/gdma.h"
#include "hal/gdma_ll.h"
#include "soc/gdma_channel.h"
#include "soc/spi_caps.h"
@ -70,43 +71,52 @@ typedef struct spi_device_t spi_device_t;
#define DMA_CHANNEL_ENABLED(dma_chan) (BIT(dma_chan-1))
typedef struct {
int host_id;
spi_destroy_func_t destroy_func;
void* destroy_arg;
spi_bus_attr_t bus_attr;
#if SOC_GDMA_SUPPORTED
gdma_channel_handle_t tx_channel;
gdma_channel_handle_t rx_channel;
#endif
} spicommon_bus_context_t;
#define MAIN_BUS_DEFAULT() { \
.host_id = 0, \
.bus_attr = { \
.dma_chan = 0, \
.tx_dma_chan = 0, \
.rx_dma_chan = 0, \
.max_transfer_sz = SOC_SPI_MAXIMUM_BUFFER_SIZE, \
.dma_desc_num= 0, \
}, \
}
//Periph 1 is 'claimed' by SPI flash code.
static atomic_bool spi_periph_claimed[SOC_SPI_PERIPH_NUM] = { ATOMIC_VAR_INIT(true), ATOMIC_VAR_INIT(false), ATOMIC_VAR_INIT(false),
#if SOC_SPI_PERIPH_NUM >= 4
static atomic_bool spi_periph_claimed[SOC_SPI_PERIPH_NUM] = { ATOMIC_VAR_INIT(true), ATOMIC_VAR_INIT(false),
#if (SOC_SPI_PERIPH_NUM >= 3)
ATOMIC_VAR_INIT(false),
#endif
#if (SOC_SPI_PERIPH_NUM >= 4)
ATOMIC_VAR_INIT(false),
#endif
};
static const char* spi_claiming_func[3] = {NULL, NULL, NULL};
#if !SOC_GDMA_SUPPORTED
static uint8_t spi_dma_chan_enabled = 0;
static portMUX_TYPE spi_dma_spinlock = portMUX_INITIALIZER_UNLOCKED;
#endif
static spicommon_bus_context_t s_mainbus = MAIN_BUS_DEFAULT();
static spicommon_bus_context_t* bus_ctx[SOC_SPI_PERIPH_NUM] = {&s_mainbus};
#if CONFIG_IDF_TARGET_ESP32 || SOC_GDMA_SUPPORTED
#if CONFIG_IDF_TARGET_ESP32
//ESP32S2 does not support DMA channel auto-allocation
//Each bit stands for 1 dma channel, used for auto-alloc dma channel
static uint32_t spi_dma_channel_code;
#endif
//----------------------------------------------------------alloc spi periph-------------------------------------------------------//
//Returns true if this peripheral is successfully claimed, false if otherwise.
bool spicommon_periph_claim(spi_host_device_t host, const char* source)
{
@ -145,6 +155,8 @@ int spicommon_irqdma_source_for_host(spi_host_device_t host)
return spi_periph_signal[host].irq_dma;
}
//----------------------------------------------------------esp32/s2 dma periph-------------------------------------------------------//
#if !SOC_GDMA_SUPPORTED
static inline periph_module_t get_dma_periph(int dma_chan)
{
#if CONFIG_IDF_TARGET_ESP32S2
@ -158,10 +170,6 @@ static inline periph_module_t get_dma_periph(int dma_chan)
}
#elif CONFIG_IDF_TARGET_ESP32
return PERIPH_SPI_DMA_MODULE;
#elif SOC_GDMA_SUPPORTED
return PERIPH_GDMA_MODULE;
#else
return 0;
#endif
}
@ -183,14 +191,152 @@ static bool spicommon_dma_chan_claim(int dma_chan)
return ret;
}
bool spicommon_dma_chan_in_use(int dma_chan)
static void spicommon_connect_spi_and_dma(spi_host_device_t host, int dma_chan)
{
assert(dma_chan ==1 || dma_chan == 2);
return spi_dma_chan_enabled & DMA_CHANNEL_ENABLED(dma_chan);
#if CONFIG_IDF_TARGET_ESP32
DPORT_SET_PERI_REG_BITS(DPORT_SPI_DMA_CHAN_SEL_REG, 3, dma_chan, (host * 2));
#elif CONFIG_IDF_TARGET_ESP32S2
//On ESP32S2, each SPI controller has its own DMA channel. So there is no need to connect them.
#endif
}
bool spicommon_dma_chan_free(int dma_chan)
#endif //#if !SOC_GDMA_SUPPORTED
bool spicommon_dma_chan_in_use(int dma_chan)
{
#if !SOC_GDMA_SUPPORTED
assert(dma_chan ==1 || dma_chan == 2);
return spi_dma_chan_enabled & DMA_CHANNEL_ENABLED(dma_chan);
#endif
return true;
}
//----------------------------------------------------------alloc dma periph-------------------------------------------------------//
static esp_err_t spicommon_alloc_dma(spi_host_device_t host_id, int dma_chan, uint32_t *out_actual_tx_dma_chan, uint32_t *out_actual_rx_dma_chan)
{
uint32_t actual_tx_dma_chan = 0;
uint32_t actual_rx_dma_chan = 0;
esp_err_t ret = ESP_OK;
#if !SOC_GDMA_SUPPORTED
//On ESP32 and ESP32S2, actual_tx_dma_chan and actual_rx_dma_chan are always same
if (dma_chan < 0) {
#if CONFIG_IDF_TARGET_ESP32
for (int i = 0; i < SOC_SPI_DMA_CHAN_NUM; i++) {
bool is_used = BIT(i) & spi_dma_channel_code;
if (!is_used) {
spi_dma_channel_code |= BIT(i);
actual_tx_dma_chan = i+1;
actual_rx_dma_chan = i+1;
break;
}
}
if (!actual_tx_dma_chan) {
SPI_CHECK(false, "no available dma channel", ESP_ERR_INVALID_STATE);
}
#elif CONFIG_IDF_TARGET_ESP32S2
//On ESP32S2, each SPI controller has its own DMA channel. So DMA channel auto-allocation is not supported
SPI_CHECK(false, "ESP32S2 does not support auto-alloc dma channel", ESP_ERR_INVALID_STATE);
#endif //#if CONFIG_IDF_TARGET_XXX
} else if (dma_chan > 0) {
actual_tx_dma_chan = dma_chan;
actual_rx_dma_chan = dma_chan;
} else { //dma_chan == 0
// Program won't reach here
abort();
}
bool dma_chan_claimed = spicommon_dma_chan_claim(actual_tx_dma_chan);
if (!dma_chan_claimed) {
spicommon_periph_free(host_id);
SPI_CHECK(false, "dma channel already in use", ESP_ERR_INVALID_STATE);
}
spicommon_connect_spi_and_dma(host_id, actual_tx_dma_chan);
#else //SOC_GDMA_SUPPORTED
spicommon_bus_context_t *ctx = bus_ctx[host_id];
if (dma_chan < 0) {
gdma_channel_alloc_config_t tx_alloc_config = {
.flags.reserve_sibling = 1,
.direction = GDMA_CHANNEL_DIRECTION_TX,
};
ret = gdma_new_channel(&tx_alloc_config, &ctx->tx_channel);
if (ret != ESP_OK) {
return ret;
}
gdma_channel_alloc_config_t rx_alloc_config = {
.direction = GDMA_CHANNEL_DIRECTION_RX,
.sibling_chan = ctx->tx_channel,
};
ret = gdma_new_channel(&rx_alloc_config, &ctx->rx_channel);
if (ret != ESP_OK) {
return ret;
}
if (host_id == SPI1_HOST) {
SPI_CHECK(false, "SPI1 does not support DMA mode", ESP_ERR_INVALID_STATE);
}
#if (SOC_SPI_PERIPH_NUM >= 2)
else if (host_id == SPI2_HOST) {
gdma_connect(ctx->rx_channel, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_SPI, 2));
gdma_connect(ctx->tx_channel, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_SPI, 2));
}
#endif
#if (SOC_SPI_PERIPH_NUM >= 3)
else {
//host_id == SPI3_HOST
gdma_connect(ctx->rx_channel, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_SPI, 3));
gdma_connect(ctx->tx_channel, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_SPI, 3));
}
#endif
gdma_get_channel_id(ctx->tx_channel, (int *)&actual_tx_dma_chan);
gdma_get_channel_id(ctx->rx_channel, (int *)&actual_rx_dma_chan);
} else if (dma_chan > 0) {
SPI_CHECK(false, "specifying a DMA channel is not supported, please use dma auto-alloc mode", ESP_ERR_INVALID_STATE);
} else { //dma_chan == 0
// Program won't reach here
}
#endif
*out_actual_tx_dma_chan = actual_tx_dma_chan;
*out_actual_rx_dma_chan = actual_rx_dma_chan;
return ret;
}
esp_err_t spicommon_slave_alloc_dma(spi_host_device_t host_id, int dma_chan, uint32_t *out_actual_tx_dma_chan, uint32_t *out_actual_rx_dma_chan)
{
esp_err_t ret = ESP_OK;
spicommon_bus_context_t *ctx = (spicommon_bus_context_t *)calloc(1, sizeof(spicommon_bus_context_t));
if (!ctx) {
ret = ESP_ERR_NO_MEM;
goto cleanup;
}
bus_ctx[host_id] = ctx;
ctx->host_id = host_id;
ret = spicommon_alloc_dma(host_id, dma_chan, out_actual_tx_dma_chan, out_actual_rx_dma_chan);
if (ret != ESP_OK) {
goto cleanup;
}
return ret;
cleanup:
free(ctx);
ctx = NULL;
return ret;
}
//----------------------------------------------------------free dma periph-------------------------------------------------------//
static esp_err_t spicommon_dma_chan_free(spi_host_device_t host_id, int dma_chan)
{
#if !SOC_GDMA_SUPPORTED
assert( dma_chan == 1 || dma_chan == 2 );
assert( spi_dma_chan_enabled & DMA_CHANNEL_ENABLED(dma_chan) );
@ -199,80 +345,32 @@ bool spicommon_dma_chan_free(int dma_chan)
periph_module_disable(get_dma_periph(dma_chan));
portEXIT_CRITICAL(&spi_dma_spinlock);
return true;
}
static void spicommon_connect_spi_and_dma(spi_host_device_t host, int dma_chan)
{
#if CONFIG_IDF_TARGET_ESP32
DPORT_SET_PERI_REG_BITS(DPORT_SPI_DMA_CHAN_SEL_REG, 3, dma_chan, (host * 2));
#elif CONFIG_IDF_TARGET_ESP32S2
//On ESP32S2, each SPI controller has its own DMA channel. So there is no need to connect them.
#elif SOC_GDMA_SUPPORTED
int gdma_chan, periph_id;
if (dma_chan == 1) {
gdma_chan = SOC_GDMA_SPI2_DMA_CHANNEL;
periph_id = SOC_GDMA_TRIG_PERIPH_SPI2;
#ifdef SOC_GDMA_TRIG_PERIPH_SPI3
} else if (dma_chan == 2) {
gdma_chan = SOC_GDMA_SPI3_DMA_CHANNEL;
periph_id = SOC_GDMA_TRIG_PERIPH_SPI3;
#endif
} else {
abort();
#else //SOC_GDMA_SUPPORTED
spicommon_bus_context_t *ctx = bus_ctx[host_id];
if (ctx->rx_channel) {
gdma_disconnect(ctx->rx_channel);
gdma_del_channel(ctx->rx_channel);
}
spi_dma_connect_rx_channel_to_periph(gdma_chan, periph_id);
spi_dma_connect_tx_channel_to_periph(gdma_chan, periph_id);
spi_dma_set_rx_channel_priority(gdma_chan, 1);
spi_dma_set_tx_channel_priority(gdma_chan, 1);
#endif //#elif SOC_GDMA_SUPPORTED
}
esp_err_t spicommon_alloc_dma(spi_host_device_t host_id, int dma_chan, uint32_t *out_actual_dma_chan)
{
uint32_t actual_dma_chan = 0;
#if !SOC_GDMA_SUPPORTED
if (dma_chan < 0) {
#if CONFIG_IDF_TARGET_ESP32
for (int i = 0; i < SOC_SPI_DMA_CHAN_NUM; i++) {
bool is_used = BIT(i) & spi_dma_channel_code;
if (!is_used) {
spi_dma_channel_code |= BIT(i);
actual_dma_chan = i+1;
break;
if (ctx->tx_channel) {
gdma_disconnect(ctx->tx_channel);
gdma_del_channel(ctx->tx_channel);
}
}
if (!actual_dma_chan) {
SPI_CHECK(false, "no available dma channel", ESP_ERR_INVALID_STATE);
}
#elif CONFIG_IDF_TARGET_ESP32S2
//On ESP32S2, each SPI controller has its own DMA channel. So DMA channel auto-allocation is not supported
SPI_CHECK(false, "ESP32S2 does not support auto-alloc dma channel", ESP_ERR_INVALID_STATE);
#endif //#if CONFIG_IDF_TARGET_XXX
} else if (dma_chan > 0) {
actual_dma_chan = dma_chan;
} else { //dma_chan == 0
// Program won't reach here
}
bool dma_chan_claimed = spicommon_dma_chan_claim(actual_dma_chan);
if (!dma_chan_claimed) {
spicommon_periph_free(host_id);
SPI_CHECK(false, "dma channel already in use", ESP_ERR_INVALID_STATE);
}
spicommon_connect_spi_and_dma(host_id, actual_dma_chan);
#elif SOC_GDMA_SUPPORTED
#endif
*out_actual_dma_chan = actual_dma_chan;
return ESP_OK;
}
esp_err_t spicommon_slave_free_dma(spi_host_device_t host_id, int dma_chan)
{
esp_err_t ret = spicommon_dma_chan_free(host_id, dma_chan);
free(bus_ctx[host_id]);
bus_ctx[host_id] = NULL;
return ret;
}
//----------------------------------------------------------IO general-------------------------------------------------------//
static bool bus_uses_iomux_pins(spi_host_device_t host, const spi_bus_config_t* bus_config)
{
if (bus_config->sclk_io_num>=0 &&
@ -304,7 +402,7 @@ Do the common stuff to hook up a SPI host to a bus defined by a bunch of GPIO pi
bus config struct and it'll set up the GPIO matrix and enable the device. If a pin is set to non-negative value,
it should be able to be initialized.
*/
esp_err_t spicommon_bus_initialize_io(spi_host_device_t host, const spi_bus_config_t *bus_config, int dma_chan, uint32_t flags, uint32_t* flags_o)
esp_err_t spicommon_bus_initialize_io(spi_host_device_t host, const spi_bus_config_t *bus_config, uint32_t flags, uint32_t* flags_o)
{
uint32_t temp_flag = 0;
@ -535,12 +633,14 @@ static inline bool is_valid_host(spi_host_device_t host)
return host >= SPI1_HOST && host <= SPI3_HOST;
}
//----------------------------------------------------------master bus init-------------------------------------------------------//
esp_err_t spi_bus_initialize(spi_host_device_t host_id, const spi_bus_config_t *bus_config, int dma_chan)
{
esp_err_t err = ESP_OK;
spicommon_bus_context_t *ctx = NULL;
spi_bus_attr_t *bus_attr = NULL;
uint32_t actual_dma_chan = 0;
uint32_t actual_tx_dma_chan = 0;
uint32_t actual_rx_dma_chan = 0;
SPI_CHECK(is_valid_host(host_id), "invalid host_id", ESP_ERR_INVALID_ARG);
SPI_CHECK(bus_ctx[host_id] == NULL, "SPI bus already initialized.", ESP_ERR_INVALID_STATE);
@ -549,7 +649,7 @@ esp_err_t spi_bus_initialize(spi_host_device_t host_id, const spi_bus_config_t *
#elif CONFIG_IDF_TARGET_ESP32S2
SPI_CHECK( dma_chan == 0 || dma_chan == host_id, "invalid dma channel", ESP_ERR_INVALID_ARG );
#elif SOC_GDMA_SUPPORTED
SPI_CHECK( dma_chan == -1, "invalid dma channel, chip only support spi dma channel auto-alloc", ESP_ERR_INVALID_ARG );
SPI_CHECK( dma_chan == 0 || dma_chan == -1, "invalid dma channel, chip only support spi dma channel auto-alloc", ESP_ERR_INVALID_ARG );
#endif
SPI_CHECK((bus_config->intr_flags & (ESP_INTR_FLAG_HIGH|ESP_INTR_FLAG_EDGE|ESP_INTR_FLAG_INTRDISABLED))==0, "intr flag not allowed", ESP_ERR_INVALID_ARG);
#ifndef CONFIG_SPI_MASTER_ISR_IN_IRAM
@ -565,16 +665,20 @@ esp_err_t spi_bus_initialize(spi_host_device_t host_id, const spi_bus_config_t *
err = ESP_ERR_NO_MEM;
goto cleanup;
}
bus_ctx[host_id] = ctx;
ctx->host_id = host_id;
bus_attr = &ctx->bus_attr;
bus_attr->bus_cfg = *bus_config;
if (dma_chan != 0) {
err = spicommon_alloc_dma(host_id, dma_chan, &actual_dma_chan);
bus_attr->dma_enabled = 1;
err = spicommon_alloc_dma(host_id, dma_chan, &actual_tx_dma_chan, &actual_rx_dma_chan);
if (err != ESP_OK) {
return err;
goto cleanup;
}
bus_attr->dma_chan = actual_dma_chan;
bus_attr->tx_dma_chan = actual_tx_dma_chan;
bus_attr->rx_dma_chan = actual_rx_dma_chan;
int dma_desc_ct = lldesc_get_required_num(bus_config->max_transfer_sz);
if (dma_desc_ct == 0) dma_desc_ct = 1; //default to 4k when max is not given
@ -588,6 +692,7 @@ esp_err_t spi_bus_initialize(spi_host_device_t host_id, const spi_bus_config_t *
}
bus_attr->dma_desc_num = dma_desc_ct;
} else {
bus_attr->dma_enabled = 0;
bus_attr->max_transfer_sz = SOC_SPI_MAXIMUM_BUFFER_SIZE;
bus_attr->dma_desc_num = 0;
}
@ -609,12 +714,11 @@ esp_err_t spi_bus_initialize(spi_host_device_t host_id, const spi_bus_config_t *
}
#endif //CONFIG_PM_ENABLE
err = spicommon_bus_initialize_io(host_id, bus_config, actual_dma_chan, SPICOMMON_BUSFLAG_MASTER | bus_config->flags, &bus_attr->flags);
err = spicommon_bus_initialize_io(host_id, bus_config, SPICOMMON_BUSFLAG_MASTER | bus_config->flags, &bus_attr->flags);
if (err != ESP_OK) {
goto cleanup;
}
bus_ctx[host_id] = ctx;
return ESP_OK;
cleanup:
@ -627,12 +731,15 @@ cleanup:
}
free(bus_attr->dmadesc_tx);
free(bus_attr->dmadesc_rx);
//On ESP32 and ESP32S2, actual_tx_dma_chan and actual_rx_dma_chan are always same
if (bus_attr->dma_enabled) {
spicommon_dma_chan_free(host_id, actual_tx_dma_chan);
}
free(ctx);
if (actual_dma_chan) {
spicommon_dma_chan_free(actual_dma_chan);
}
spicommon_periph_free(host_id);
free(bus_ctx[host_id]);
bus_ctx[host_id] = NULL;
return err;
}
@ -663,8 +770,10 @@ esp_err_t spi_bus_free(spi_host_device_t host_id)
free(bus_attr->dmadesc_rx);
free(bus_attr->dmadesc_tx);
if (bus_attr->dma_chan > 0) {
spicommon_dma_chan_free (bus_attr->dma_chan);
//On ESP32 and ESP32S2, actual_tx_dma_chan and actual_rx_dma_chan are always same
if (bus_attr->dma_enabled > 0) {
spicommon_dma_chan_free (host_id, bus_attr->tx_dma_chan);
}
spicommon_periph_free(host_id);

View File

@ -231,17 +231,18 @@ static esp_err_t spi_master_init_driver(spi_host_device_t host_id)
}
//assign the SPI, RX DMA and TX DMA peripheral registers beginning address
spi_hal_dma_config_t hal_dma_config = {
spi_hal_config_t hal_config = {
//On ESP32-S2 and earlier chips, DMA registers are part of SPI registers. Pass the registers of SPI peripheral to control it.
.dma_in = SPI_LL_GET_HW(host_id),
.dma_out = SPI_LL_GET_HW(host_id),
.dma_enabled = bus_attr->dma_enabled,
.dmadesc_tx = bus_attr->dmadesc_tx,
.dmadesc_rx = bus_attr->dmadesc_rx,
.dmadesc_n = bus_attr->dma_desc_num
.tx_dma_chan = bus_attr->tx_dma_chan,
.rx_dma_chan = bus_attr->rx_dma_chan,
.dmadesc_n = bus_attr->dma_desc_num,
};
spi_hal_init(&host->hal, host_id, &hal_dma_config);
host->hal.dma_enabled = (bus_attr->dma_chan != 0);
spi_hal_init(&host->hal, host_id, &hal_config);
if (host_id != SPI1_HOST) {
//SPI1 attributes are already initialized at start up.
@ -606,8 +607,9 @@ static void SPI_MASTER_ISR_ATTR spi_intr(void *arg)
//Okay, transaction is done.
const int cs = host->cur_cs;
//Tell common code DMA workaround that our DMA channel is idle. If needed, the code will do a DMA reset.
if (bus_attr->dma_chan) {
spicommon_dmaworkaround_idle(bus_attr->dma_chan);
if (bus_attr->dma_enabled) {
//This workaround is only for esp32, where tx_dma_chan and rx_dma_chan are always same
spicommon_dmaworkaround_idle(bus_attr->tx_dma_chan);
}
//cur_cs is changed to DEV_NUM_MAX here
@ -658,9 +660,10 @@ static void SPI_MASTER_ISR_ATTR spi_intr(void *arg)
if (trans_found) {
spi_trans_priv_t *const cur_trans_buf = &host->cur_trans_buf;
if (bus_attr->dma_chan != 0 && (cur_trans_buf->buffer_to_rcv || cur_trans_buf->buffer_to_send)) {
if (bus_attr->dma_enabled && (cur_trans_buf->buffer_to_rcv || cur_trans_buf->buffer_to_send)) {
//mark channel as active, so that the DMA will not be reset by the slave
spicommon_dmaworkaround_transfer_active(bus_attr->dma_chan);
//This workaround is only for esp32, where tx_dma_chan and rx_dma_chan are always same
spicommon_dmaworkaround_transfer_active(bus_attr->tx_dma_chan);
}
spi_new_trans(device_to_send, cur_trans_buf);
}
@ -693,7 +696,7 @@ static SPI_MASTER_ISR_ATTR esp_err_t check_trans_valid(spi_device_handle_t handl
SPI_CHECK(!((trans_desc->flags & (SPI_TRANS_MODE_DIO|SPI_TRANS_MODE_QIO)) && (handle->cfg.flags & SPI_DEVICE_3WIRE)), "incompatible iface params", ESP_ERR_INVALID_ARG);
SPI_CHECK(!((trans_desc->flags & (SPI_TRANS_MODE_DIO|SPI_TRANS_MODE_QIO)) && !is_half_duplex), "incompatible iface params", ESP_ERR_INVALID_ARG);
#ifdef CONFIG_IDF_TARGET_ESP32
SPI_CHECK(!is_half_duplex || bus_attr->dma_chan == 0 || !rx_enabled || !tx_enabled, "SPI half duplex mode does not support using DMA with both MOSI and MISO phases.", ESP_ERR_INVALID_ARG );
SPI_CHECK(!is_half_duplex || !bus_attr->dma_enabled || !rx_enabled || !tx_enabled, "SPI half duplex mode does not support using DMA with both MOSI and MISO phases.", ESP_ERR_INVALID_ARG );
#elif CONFIG_IDF_TARGET_ESP32S3
SPI_CHECK(!is_half_duplex || !tx_enabled || !rx_enabled, "SPI half duplex mode is not supported when both MOSI and MISO phases are enabled.", ESP_ERR_INVALID_ARG);
#endif
@ -788,7 +791,7 @@ esp_err_t SPI_MASTER_ATTR spi_device_queue_trans(spi_device_handle_t handle, spi
SPI_CHECK(!spi_bus_device_is_polling(handle), "Cannot queue new transaction while previous polling transaction is not terminated.", ESP_ERR_INVALID_STATE );
spi_trans_priv_t trans_buf;
ret = setup_priv_desc(trans_desc, &trans_buf, (host->bus_attr->dma_chan!=0));
ret = setup_priv_desc(trans_desc, &trans_buf, (host->bus_attr->dma_enabled));
if (ret != ESP_OK) return ret;
#ifdef CONFIG_PM_ENABLE
@ -877,8 +880,9 @@ esp_err_t SPI_MASTER_ISR_ATTR spi_device_acquire_bus(spi_device_t *device, TickT
//configure the device ahead so that we don't need to do it again in the following transactions
spi_setup_device(host->device[device->id]);
//the DMA is also occupied by the device, all the slave devices that using DMA should wait until bus released.
if (host->bus_attr->dma_chan != 0) {
spicommon_dmaworkaround_transfer_active(host->bus_attr->dma_chan);
if (host->bus_attr->dma_enabled) {
//This workaround is only for esp32, where tx_dma_chan and rx_dma_chan are always same
spicommon_dmaworkaround_transfer_active(host->bus_attr->tx_dma_chan);
}
return ESP_OK;
}
@ -893,8 +897,9 @@ void SPI_MASTER_ISR_ATTR spi_device_release_bus(spi_device_t *dev)
assert(0);
}
if (host->bus_attr->dma_chan != 0) {
spicommon_dmaworkaround_idle(host->bus_attr->dma_chan);
if (host->bus_attr->dma_enabled) {
//This workaround is only for esp32, where tx_dma_chan and rx_dma_chan are always same
spicommon_dmaworkaround_idle(host->bus_attr->tx_dma_chan);
}
//Tell common code DMA workaround that our DMA channel is idle. If needed, the code will do a DMA reset.
@ -928,7 +933,7 @@ esp_err_t SPI_MASTER_ISR_ATTR spi_device_polling_start(spi_device_handle_t handl
}
if (ret != ESP_OK) return ret;
ret = setup_priv_desc(trans_desc, &host->cur_trans_buf, (host->bus_attr->dma_chan!=0));
ret = setup_priv_desc(trans_desc, &host->cur_trans_buf, (host->bus_attr->dma_enabled));
if (ret!=ESP_OK) return ret;
//Polling, no interrupt is used.

View File

@ -67,7 +67,9 @@ typedef struct {
int max_transfer_sz;
QueueHandle_t trans_queue;
QueueHandle_t ret_queue;
int dma_chan;
bool dma_enabled;
uint32_t tx_dma_chan;
uint32_t rx_dma_chan;
#ifdef CONFIG_PM_ENABLE
esp_pm_lock_handle_t pm_lock;
#endif
@ -111,7 +113,8 @@ static inline void restore_cs(spi_slave_t *host)
esp_err_t spi_slave_initialize(spi_host_device_t host, const spi_bus_config_t *bus_config, const spi_slave_interface_config_t *slave_config, int dma_chan)
{
bool spi_chan_claimed;
uint32_t actual_dma_chan = 0;
uint32_t actual_tx_dma_chan = 0;
uint32_t actual_rx_dma_chan = 0;
esp_err_t ret = ESP_OK;
esp_err_t err;
//We only support HSPI/VSPI, period.
@ -121,7 +124,7 @@ esp_err_t spi_slave_initialize(spi_host_device_t host, const spi_bus_config_t *b
#elif CONFIG_IDF_TARGET_ESP32S2
SPI_CHECK( dma_chan == 0 || dma_chan == host, "invalid dma channel", ESP_ERR_INVALID_ARG );
#elif SOC_GDMA_SUPPORTED
SPI_CHECK( dma_chan == -1, "invalid dma channel, chip only support spi dma channel auto-alloc", ESP_ERR_INVALID_ARG );
SPI_CHECK( dma_chan == 0 || dma_chan == -1, "invalid dma channel, chip only support spi dma channel auto-alloc", ESP_ERR_INVALID_ARG );
#endif
SPI_CHECK((bus_config->intr_flags & (ESP_INTR_FLAG_HIGH|ESP_INTR_FLAG_EDGE|ESP_INTR_FLAG_INTRDISABLED))==0, "intr flag not allowed", ESP_ERR_INVALID_ARG);
#ifndef CONFIG_SPI_SLAVE_ISR_IN_IRAM
@ -132,14 +135,6 @@ esp_err_t spi_slave_initialize(spi_host_device_t host, const spi_bus_config_t *b
spi_chan_claimed=spicommon_periph_claim(host, "spi slave");
SPI_CHECK(spi_chan_claimed, "host already in use", ESP_ERR_INVALID_STATE);
bool use_dma = (dma_chan != 0);
if (use_dma) {
err = spicommon_alloc_dma(host, dma_chan, &actual_dma_chan);
if (err != ESP_OK) {
return err;
}
}
spihost[host] = malloc(sizeof(spi_slave_t));
if (spihost[host] == NULL) {
ret = ESP_ERR_NO_MEM;
@ -149,7 +144,16 @@ esp_err_t spi_slave_initialize(spi_host_device_t host, const spi_bus_config_t *b
memcpy(&spihost[host]->cfg, slave_config, sizeof(spi_slave_interface_config_t));
spihost[host]->id = host;
err = spicommon_bus_initialize_io(host, bus_config, actual_dma_chan, SPICOMMON_BUSFLAG_SLAVE|bus_config->flags, &spihost[host]->flags);
bool use_dma = (dma_chan != 0);
spihost[host]->dma_enabled = use_dma;
if (use_dma) {
ret = spicommon_slave_alloc_dma(host, dma_chan, &actual_tx_dma_chan, &actual_rx_dma_chan);
if (ret != ESP_OK) {
goto cleanup;
}
}
err = spicommon_bus_initialize_io(host, bus_config, SPICOMMON_BUSFLAG_SLAVE|bus_config->flags, &spihost[host]->flags);
if (err!=ESP_OK) {
ret = err;
goto cleanup;
@ -162,7 +166,8 @@ esp_err_t spi_slave_initialize(spi_host_device_t host, const spi_bus_config_t *b
if (use_dma) freeze_cs(spihost[host]);
int dma_desc_ct = 0;
spihost[host]->dma_chan = actual_dma_chan;
spihost[host]->tx_dma_chan = actual_tx_dma_chan;
spihost[host]->rx_dma_chan = actual_rx_dma_chan;
if (use_dma) {
//See how many dma descriptors we need and allocate them
dma_desc_ct = (bus_config->max_transfer_sz + SPI_MAX_DMA_LEN - 1) / SPI_MAX_DMA_LEN;
@ -220,6 +225,8 @@ esp_err_t spi_slave_initialize(spi_host_device_t host, const spi_bus_config_t *b
hal->tx_lsbfirst = (slave_config->flags & SPI_SLAVE_TXBIT_LSBFIRST) ? 1 : 0;
hal->mode = slave_config->mode;
hal->use_dma = use_dma;
hal->tx_dma_chan = actual_tx_dma_chan;
hal->rx_dma_chan = actual_rx_dma_chan;
spi_slave_hal_setup_device(hal);
@ -239,10 +246,15 @@ cleanup:
#endif
}
spi_slave_hal_deinit(&spihost[host]->hal);
//On ESP32 and ESP32S2, actual_tx_dma_chan and actual_rx_dma_chan are always same
if (spihost[host]->dma_enabled) {
spicommon_slave_free_dma(host, actual_tx_dma_chan);
}
free(spihost[host]);
spihost[host] = NULL;
spicommon_periph_free(host);
if (actual_dma_chan != 0) spicommon_dma_chan_free(actual_dma_chan);
return ret;
}
@ -252,8 +264,9 @@ esp_err_t spi_slave_free(spi_host_device_t host)
SPI_CHECK(spihost[host], "host not slave", ESP_ERR_INVALID_ARG);
if (spihost[host]->trans_queue) vQueueDelete(spihost[host]->trans_queue);
if (spihost[host]->ret_queue) vQueueDelete(spihost[host]->ret_queue);
if ( spihost[host]->dma_chan > 0 ) {
spicommon_dma_chan_free ( spihost[host]->dma_chan );
if (spihost[host]->dma_enabled) {
//On ESP32 and ESP32S2, actual_tx_dma_chan and actual_rx_dma_chan are always same
spicommon_slave_free_dma(host, spihost[host]->tx_dma_chan);
}
free(spihost[host]->hal.dmadesc_tx);
free(spihost[host]->hal.dmadesc_rx);
@ -274,9 +287,9 @@ esp_err_t SPI_SLAVE_ATTR spi_slave_queue_trans(spi_host_device_t host, const spi
BaseType_t r;
SPI_CHECK(is_valid_host(host), "invalid host", ESP_ERR_INVALID_ARG);
SPI_CHECK(spihost[host], "host not slave", ESP_ERR_INVALID_ARG);
SPI_CHECK(spihost[host]->dma_chan == 0 || trans_desc->tx_buffer==NULL || esp_ptr_dma_capable(trans_desc->tx_buffer),
SPI_CHECK(spihost[host]->dma_enabled == 0 || trans_desc->tx_buffer==NULL || esp_ptr_dma_capable(trans_desc->tx_buffer),
"txdata not in DMA-capable memory", ESP_ERR_INVALID_ARG);
SPI_CHECK(spihost[host]->dma_chan == 0 || trans_desc->rx_buffer==NULL ||
SPI_CHECK(spihost[host]->dma_enabled == 0 || trans_desc->rx_buffer==NULL ||
(esp_ptr_dma_capable(trans_desc->rx_buffer) && esp_ptr_word_aligned(trans_desc->rx_buffer) &&
(trans_desc->length%4==0)),
"rxdata not in DMA-capable memory or not WORD aligned", ESP_ERR_INVALID_ARG);
@ -332,7 +345,7 @@ static void SPI_SLAVE_ISR_ATTR spi_intr(void *arg)
assert(spi_slave_hal_usr_is_done(hal));
bool use_dma = host->dma_chan != 0;
bool use_dma = host->dma_enabled;
if (host->cur_trans) {
// When DMA is enabled, the slave rx dma suffers from unexpected transactions. Forbid reading until transaction ready.
if (use_dma) freeze_cs(host);
@ -341,7 +354,8 @@ static void SPI_SLAVE_ISR_ATTR spi_intr(void *arg)
host->cur_trans->trans_len = spi_slave_hal_get_rcv_bitlen(hal);
if (spi_slave_hal_dma_need_reset(hal)) {
spicommon_dmaworkaround_req_reset(host->dma_chan, spi_slave_restart_after_dmareset, host);
//On ESP32 and ESP32S2, actual_tx_dma_chan and actual_rx_dma_chan are always same
spicommon_dmaworkaround_req_reset(host->tx_dma_chan, spi_slave_restart_after_dmareset, host);
}
if (host->cfg.post_trans_cb) host->cfg.post_trans_cb(host->cur_trans);
//Okay, transaction is done.
@ -350,7 +364,8 @@ static void SPI_SLAVE_ISR_ATTR spi_intr(void *arg)
host->cur_trans = NULL;
}
if (use_dma) {
spicommon_dmaworkaround_idle(host->dma_chan);
//On ESP32 and ESP32S2, actual_tx_dma_chan and actual_rx_dma_chan are always same
spicommon_dmaworkaround_idle(host->tx_dma_chan);
if (spicommon_dmaworkaround_reset_in_progress()) {
//We need to wait for the reset to complete. Disable int (will be re-enabled on reset callback) and exit isr.
esp_intr_disable(host->intr);
@ -375,7 +390,8 @@ static void SPI_SLAVE_ISR_ATTR spi_intr(void *arg)
hal->tx_buffer = trans->tx_buffer;
if (use_dma) {
spicommon_dmaworkaround_transfer_active(host->dma_chan);
//On ESP32 and ESP32S2, actual_tx_dma_chan and actual_rx_dma_chan are always same
spicommon_dmaworkaround_transfer_active(host->tx_dma_chan);
}
spi_slave_hal_prepare_data(hal);

View File

@ -28,7 +28,9 @@
#define SPIHD_CHECK(cond,warn,ret) do{if(!(cond)){ESP_LOGE(TAG, warn); return ret;}} while(0)
typedef struct {
int dma_chan;
bool dma_enabled;
uint32_t tx_dma_chan;
uint32_t rx_dma_chan;
int max_transfer_sz;
uint32_t flags;
portMUX_TYPE int_spinlock;
@ -66,14 +68,15 @@ esp_err_t spi_slave_hd_init(spi_host_device_t host_id, const spi_bus_config_t *b
{
bool spi_chan_claimed;
bool append_mode = (config->flags & SPI_SLAVE_HD_APPEND_MODE);
uint32_t actual_dma_chan = 0;
uint32_t actual_tx_dma_chan = 0;
uint32_t actual_rx_dma_chan = 0;
esp_err_t ret = ESP_OK;
SPIHD_CHECK(VALID_HOST(host_id), "invalid host", ESP_ERR_INVALID_ARG);
#if CONFIG_IDF_TARGET_ESP32S2
SPIHD_CHECK(config->dma_chan == 0 || config->dma_chan == host_id, "invalid dma channel", ESP_ERR_INVALID_ARG);
#elif SOC_GDMA_SUPPORTED
SPI_CHECK(dma_chan == -1, "invalid dma channel, chip only support spi dma channel auto-alloc", ESP_ERR_INVALID_ARG);
SPIHD_CHECK(config->dma_chan == 0 || config->dma_chan == -1, "invalid dma channel, chip only support spi dma channel auto-alloc", ESP_ERR_INVALID_ARG);
#endif
#if !CONFIG_IDF_TARGET_ESP32S2
//Append mode is only supported on ESP32S2 now
@ -83,13 +86,6 @@ esp_err_t spi_slave_hd_init(spi_host_device_t host_id, const spi_bus_config_t *b
spi_chan_claimed = spicommon_periph_claim(host_id, "slave_hd");
SPIHD_CHECK(spi_chan_claimed, "host already in use", ESP_ERR_INVALID_STATE);
if (config->dma_chan != 0) {
ret = spicommon_alloc_dma(host_id, config->dma_chan, &actual_dma_chan);
if (ret != ESP_OK) {
return ret;
}
}
spi_slave_hd_slot_t* host = malloc(sizeof(spi_slave_hd_slot_t));
if (host == NULL) {
ret = ESP_ERR_NO_MEM;
@ -97,12 +93,20 @@ esp_err_t spi_slave_hd_init(spi_host_device_t host_id, const spi_bus_config_t *b
}
spihost[host_id] = host;
memset(host, 0, sizeof(spi_slave_hd_slot_t));
host->dma_chan = actual_dma_chan;
host->int_spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED;
host->dma_enabled = (config->dma_chan != 0);
ret = spicommon_bus_initialize_io(host_id, bus_config, actual_dma_chan,
SPICOMMON_BUSFLAG_SLAVE | bus_config->flags, &host->flags);
if (host->dma_enabled) {
ret = spicommon_slave_alloc_dma(host_id, config->dma_chan, &actual_tx_dma_chan, &actual_rx_dma_chan);
if (ret != ESP_OK) {
goto cleanup;
}
}
host->tx_dma_chan = actual_tx_dma_chan;
host->rx_dma_chan = actual_rx_dma_chan;
ret = spicommon_bus_initialize_io(host_id, bus_config, SPICOMMON_BUSFLAG_SLAVE | bus_config->flags, &host->flags);
if (ret != ESP_OK) {
goto cleanup;
}
@ -115,14 +119,16 @@ esp_err_t spi_slave_hd_init(spi_host_device_t host_id, const spi_bus_config_t *b
.host_id = host_id,
.dma_in = SPI_LL_GET_HW(host_id),
.dma_out = SPI_LL_GET_HW(host_id),
.dma_chan = actual_dma_chan,
.dma_enabled = host->dma_enabled,
.tx_dma_chan = host->tx_dma_chan,
.rx_dma_chan = host->rx_dma_chan,
.append_mode = append_mode,
.mode = config->mode,
.tx_lsbfirst = (config->flags & SPI_SLAVE_HD_RXBIT_LSBFIRST),
.rx_lsbfirst = (config->flags & SPI_SLAVE_HD_TXBIT_LSBFIRST),
};
if (actual_dma_chan != 0) {
if (host->dma_enabled) {
//Malloc for all the DMA descriptors
uint32_t total_desc_size = spi_slave_hd_hal_get_total_desc_size(&host->hal, bus_config->max_transfer_sz);
host->hal.dmadesc_tx = heap_caps_malloc(total_desc_size, MALLOC_CAP_DMA);
@ -245,8 +251,9 @@ esp_err_t spi_slave_hd_deinit(spi_host_device_t host_id)
}
spicommon_periph_free(host_id);
if (host->dma_chan) {
spicommon_dma_chan_free(host->dma_chan);
if (host->dma_enabled) {
//On ESP32S2, actual_tx_dma_chan and actual_rx_dma_chan are always same
spicommon_slave_free_dma(host_id, host->tx_dma_chan);
}
free(host);
spihost[host_id] = NULL;

View File

@ -947,8 +947,9 @@ static inline void spi_ll_enable_int(spi_dev_t *hw)
* Reset RX DMA which stores the data received from a peripheral into RAM.
*
* @param dma_in Beginning address of the DMA peripheral registers which stores the data received from a peripheral into RAM.
* @param channel DMA channel
*/
static inline void spi_dma_ll_rx_reset(spi_dma_dev_t *dma_in)
static inline void spi_dma_ll_rx_reset(spi_dma_dev_t *dma_in, uint32_t channel)
{
//Reset RX DMA peripheral
dma_in->dma_conf.in_rst = 1;
@ -959,9 +960,10 @@ static inline void spi_dma_ll_rx_reset(spi_dma_dev_t *dma_in)
* Start RX DMA.
*
* @param dma_in Beginning address of the DMA peripheral registers which stores the data received from a peripheral into RAM.
* @param channel DMA channel
* @param addr Address of the beginning DMA descriptor.
*/
static inline void spi_dma_ll_rx_start(spi_dma_dev_t *dma_in, lldesc_t *addr)
static inline void spi_dma_ll_rx_start(spi_dma_dev_t *dma_in, uint32_t channel, lldesc_t *addr)
{
dma_in->dma_in_link.addr = (int) addr & 0xFFFFF;
dma_in->dma_in_link.start = 1;
@ -971,9 +973,10 @@ static inline void spi_dma_ll_rx_start(spi_dma_dev_t *dma_in, lldesc_t *addr)
* Enable DMA RX channel burst for data
*
* @param dma_in Beginning address of the DMA peripheral registers which stores the data received from a peripheral into RAM.
* @param channel DMA channel
* @param enable True to enable, false to disable
*/
static inline void spi_dma_ll_rx_enable_burst_data(spi_dma_dev_t *dma_in, bool enable)
static inline void spi_dma_ll_rx_enable_burst_data(spi_dma_dev_t *dma_in, uint32_t channel, bool enable)
{
//This is not supported in esp32
}
@ -982,9 +985,10 @@ static inline void spi_dma_ll_rx_enable_burst_data(spi_dma_dev_t *dma_in, bool e
* Enable DMA RX channel burst for descriptor
*
* @param dma_in Beginning address of the DMA peripheral registers which stores the data received from a peripheral into RAM.
* @param channel DMA channel
* @param enable True to enable, false to disable
*/
static inline void spi_dma_ll_rx_enable_burst_desc(spi_dma_dev_t *dma_in, bool enable)
static inline void spi_dma_ll_rx_enable_burst_desc(spi_dma_dev_t *dma_in, uint32_t channel, bool enable)
{
dma_in->dma_conf.indscr_burst_en = enable;
}
@ -993,8 +997,9 @@ static inline void spi_dma_ll_rx_enable_burst_desc(spi_dma_dev_t *dma_in, bool e
* Reset TX DMA which transmits the data from RAM to a peripheral.
*
* @param dma_out Beginning address of the DMA peripheral registers which transmits the data from RAM to a peripheral.
* @param channel DMA channel
*/
static inline void spi_dma_ll_tx_reset(spi_dma_dev_t *dma_out)
static inline void spi_dma_ll_tx_reset(spi_dma_dev_t *dma_out, uint32_t channel)
{
//Reset TX DMA peripheral
dma_out->dma_conf.out_rst = 1;
@ -1005,9 +1010,10 @@ static inline void spi_dma_ll_tx_reset(spi_dma_dev_t *dma_out)
* Start TX DMA.
*
* @param dma_out Beginning address of the DMA peripheral registers which transmits the data from RAM to a peripheral.
* @param channel DMA channel
* @param addr Address of the beginning DMA descriptor.
*/
static inline void spi_dma_ll_tx_start(spi_dma_dev_t *dma_out, lldesc_t *addr)
static inline void spi_dma_ll_tx_start(spi_dma_dev_t *dma_out, uint32_t channel, lldesc_t *addr)
{
dma_out->dma_out_link.addr = (int) addr & 0xFFFFF;
dma_out->dma_out_link.start = 1;
@ -1017,9 +1023,10 @@ static inline void spi_dma_ll_tx_start(spi_dma_dev_t *dma_out, lldesc_t *addr)
* Enable DMA TX channel burst for data
*
* @param dma_out Beginning address of the DMA peripheral registers which transmits the data from RAM to a peripheral.
* @param channel DMA channel
* @param enable True to enable, false to disable
*/
static inline void spi_dma_ll_tx_enable_burst_data(spi_dma_dev_t *dma_out, bool enable)
static inline void spi_dma_ll_tx_enable_burst_data(spi_dma_dev_t *dma_out, uint32_t channel, bool enable)
{
dma_out->dma_conf.out_data_burst_en = enable;
}
@ -1028,9 +1035,10 @@ static inline void spi_dma_ll_tx_enable_burst_data(spi_dma_dev_t *dma_out, bool
* Enable DMA TX channel burst for descriptor
*
* @param dma_out Beginning address of the DMA peripheral registers which transmits the data from RAM to a peripheral.
* @param channel DMA channel
* @param enable True to enable, false to disable
*/
static inline void spi_dma_ll_tx_enable_burst_desc(spi_dma_dev_t *dma_out, bool enable)
static inline void spi_dma_ll_tx_enable_burst_desc(spi_dma_dev_t *dma_out, uint32_t channel, bool enable)
{
dma_out->dma_conf.outdscr_burst_en = enable;
}
@ -1039,9 +1047,10 @@ static inline void spi_dma_ll_tx_enable_burst_desc(spi_dma_dev_t *dma_out, bool
* Configuration of OUT EOF flag generation way
*
* @param dma_out Beginning address of the DMA peripheral registers which transmits the data from RAM to a peripheral.
* @param channel DMA channel
* @param enable 1: when dma pop all data from fifo 0:when ahb push all data to fifo.
*/
static inline void spi_dma_ll_set_out_eof_generation(spi_dma_dev_t *dma_out, bool enable)
static inline void spi_dma_ll_set_out_eof_generation(spi_dma_dev_t *dma_out, uint32_t channel, bool enable)
{
dma_out->dma_conf.out_eof_mode = enable;
}
@ -1050,9 +1059,10 @@ static inline void spi_dma_ll_set_out_eof_generation(spi_dma_dev_t *dma_out, boo
* Enable automatic outlink-writeback
*
* @param dma_out Beginning address of the DMA peripheral registers which transmits the data from RAM to a peripheral.
* @param channel DMA channel
* @param enable True to enable, false to disable
*/
static inline void spi_dma_ll_enable_out_auto_wrback(spi_dma_dev_t *dma_out, bool enable)
static inline void spi_dma_ll_enable_out_auto_wrback(spi_dma_dev_t *dma_out, uint32_t channel, bool enable)
{
//does not configure it in ESP32
}

View File

@ -1080,10 +1080,10 @@ static inline uint32_t spi_ll_slave_hd_get_last_addr(spi_dev_t* hw)
/**
* Reset RX DMA which stores the data received from a peripheral into RAM.
*
* @param hw Beginning address of the peripheral registers.
* @param dma_in Beginning address of the DMA peripheral registers which stores the data received from a peripheral into RAM.
* @param channel DMA channel
*/
static inline void spi_dma_ll_rx_reset(spi_dma_dev_t *dma_in)
static inline void spi_dma_ll_rx_reset(spi_dma_dev_t *dma_in, uint32_t channel)
{
//Reset RX DMA peripheral
dma_in->dma_in_link.dma_rx_ena = 0;
@ -1097,9 +1097,10 @@ static inline void spi_dma_ll_rx_reset(spi_dma_dev_t *dma_in)
* Start RX DMA.
*
* @param dma_in Beginning address of the DMA peripheral registers which stores the data received from a peripheral into RAM.
* @param channel DMA channel
* @param addr Address of the beginning DMA descriptor.
*/
static inline void spi_dma_ll_rx_start(spi_dma_dev_t *dma_in, lldesc_t *addr)
static inline void spi_dma_ll_rx_start(spi_dma_dev_t *dma_in, uint32_t channel, lldesc_t *addr)
{
dma_in->dma_in_link.addr = (int) addr & 0xFFFFF;
dma_in->dma_in_link.start = 1;
@ -1109,9 +1110,10 @@ static inline void spi_dma_ll_rx_start(spi_dma_dev_t *dma_in, lldesc_t *addr)
* Enable DMA RX channel burst for data
*
* @param dma_in Beginning address of the DMA peripheral registers which stores the data received from a peripheral into RAM.
* @param channel DMA channel
* @param enable True to enable, false to disable
*/
static inline void spi_dma_ll_rx_enable_burst_data(spi_dma_dev_t *dma_in, bool enable)
static inline void spi_dma_ll_rx_enable_burst_data(spi_dma_dev_t *dma_in, uint32_t channel, bool enable)
{
//This is not supported in esp32s2
}
@ -1120,9 +1122,10 @@ static inline void spi_dma_ll_rx_enable_burst_data(spi_dma_dev_t *dma_in, bool e
* Enable DMA TX channel burst for descriptor
*
* @param dma_in Beginning address of the DMA peripheral registers which stores the data received from a peripheral into RAM.
* @param channel DMA channel
* @param enable True to enable, false to disable
*/
static inline void spi_dma_ll_rx_enable_burst_desc(spi_dma_dev_t *dma_in, bool enable)
static inline void spi_dma_ll_rx_enable_burst_desc(spi_dma_dev_t *dma_in, uint32_t channel, bool enable)
{
dma_in->dma_conf.indscr_burst_en = enable;
}
@ -1130,10 +1133,10 @@ static inline void spi_dma_ll_rx_enable_burst_desc(spi_dma_dev_t *dma_in, bool e
/**
* Reset TX DMA which transmits the data from RAM to a peripheral.
*
* @param hw Beginning address of the peripheral registers.
* @param dma_out Beginning address of the DMA peripheral registers which transmits the data from RAM to a peripheral.
* @param channel DMA channel
*/
static inline void spi_dma_ll_tx_reset(spi_dma_dev_t *dma_out)
static inline void spi_dma_ll_tx_reset(spi_dma_dev_t *dma_out, uint32_t channel)
{
//Reset TX DMA peripheral
dma_out->dma_conf.out_rst = 1;
@ -1144,9 +1147,10 @@ static inline void spi_dma_ll_tx_reset(spi_dma_dev_t *dma_out)
* Start TX DMA.
*
* @param dma_out Beginning address of the DMA peripheral registers which transmits the data from RAM to a peripheral.
* @param channel DMA channel
* @param addr Address of the beginning DMA descriptor.
*/
static inline void spi_dma_ll_tx_start(spi_dma_dev_t *dma_out, lldesc_t *addr)
static inline void spi_dma_ll_tx_start(spi_dma_dev_t *dma_out, uint32_t channel, lldesc_t *addr)
{
dma_out->dma_out_link.addr = (int) addr & 0xFFFFF;
dma_out->dma_out_link.start = 1;
@ -1156,9 +1160,10 @@ static inline void spi_dma_ll_tx_start(spi_dma_dev_t *dma_out, lldesc_t *addr)
* Enable DMA TX channel burst for data
*
* @param dma_out Beginning address of the DMA peripheral registers which transmits the data from RAM to a peripheral.
* @param channel DMA channel
* @param enable True to enable, false to disable
*/
static inline void spi_dma_ll_tx_enable_burst_data(spi_dma_dev_t *dma_out, bool enable)
static inline void spi_dma_ll_tx_enable_burst_data(spi_dma_dev_t *dma_out, uint32_t channel, bool enable)
{
dma_out->dma_conf.out_data_burst_en = enable;
}
@ -1167,9 +1172,10 @@ static inline void spi_dma_ll_tx_enable_burst_data(spi_dma_dev_t *dma_out, bool
* Enable DMA TX channel burst for descriptor
*
* @param dma_out Beginning address of the DMA peripheral registers which transmits the data from RAM to a peripheral.
* @param channel DMA channel
* @param enable True to enable, false to disable
*/
static inline void spi_dma_ll_tx_enable_burst_desc(spi_dma_dev_t *dma_out, bool enable)
static inline void spi_dma_ll_tx_enable_burst_desc(spi_dma_dev_t *dma_out, uint32_t channel, bool enable)
{
dma_out->dma_conf.outdscr_burst_en = enable;
}
@ -1178,9 +1184,10 @@ static inline void spi_dma_ll_tx_enable_burst_desc(spi_dma_dev_t *dma_out, bool
* Configuration of OUT EOF flag generation way
*
* @param dma_out Beginning address of the DMA peripheral registers which transmits the data from RAM to a peripheral.
* @param channel DMA channel
* @param enable 1: when dma pop all data from fifo 0:when ahb push all data to fifo.
*/
static inline void spi_dma_ll_set_out_eof_generation(spi_dma_dev_t *dma_out, bool enable)
static inline void spi_dma_ll_set_out_eof_generation(spi_dma_dev_t *dma_out, uint32_t channel, bool enable)
{
dma_out->dma_conf.out_eof_mode = enable;
}
@ -1189,19 +1196,20 @@ static inline void spi_dma_ll_set_out_eof_generation(spi_dma_dev_t *dma_out, boo
* Enable automatic outlink-writeback
*
* @param dma_out Beginning address of the DMA peripheral registers which transmits the data from RAM to a peripheral.
* @param channel DMA channel
* @param enable True to enable, false to disable
*/
static inline void spi_dma_ll_enable_out_auto_wrback(spi_dma_dev_t *dma_out, bool enable)
static inline void spi_dma_ll_enable_out_auto_wrback(spi_dma_dev_t *dma_out, uint32_t channel, bool enable)
{
dma_out->dma_conf.out_auto_wrback = enable;
}
static inline void spi_dma_ll_rx_restart(spi_dma_dev_t *dma_in)
static inline void spi_dma_ll_rx_restart(spi_dma_dev_t *dma_in, uint32_t channel)
{
dma_in->dma_in_link.restart = 1;
}
static inline void spi_dma_ll_tx_restart(spi_dma_dev_t *dma_out)
static inline void spi_dma_ll_tx_restart(spi_dma_dev_t *dma_out, uint32_t channel)
{
dma_out->dma_out_link.restart = 1;
}

View File

@ -72,6 +72,7 @@ typedef struct {
typedef struct {
spi_dma_dev_t *dma_in; ///< Input DMA(DMA -> RAM) peripheral register address
spi_dma_dev_t *dma_out; ///< Output DMA(RAM -> DMA) peripheral register address
bool dma_enabled; ///< Whether the DMA is enabled, do not update after initialization
lldesc_t *dmadesc_tx; /**< Array of DMA descriptor used by the TX DMA.
* The amount should be larger than dmadesc_n. The driver should ensure that
* the data to be sent is shorter than the descriptors can hold.
@ -80,8 +81,10 @@ typedef struct {
* The amount should be larger than dmadesc_n. The driver should ensure that
* the data to be sent is shorter than the descriptors can hold.
*/
uint32_t tx_dma_chan; ///< TX DMA channel
uint32_t rx_dma_chan; ///< RX DMA channel
int dmadesc_n; ///< The amount of descriptors of both ``dmadesc_tx`` and ``dmadesc_rx`` that the HAL can use.
} spi_hal_dma_config_t;
} spi_hal_config_t;
/**
* Transaction configuration structure, this should be assigned by driver each time.
@ -104,12 +107,24 @@ typedef struct {
* Context that should be maintained by both the driver and the HAL.
*/
typedef struct {
/* These two need to be malloced by the driver first */
lldesc_t *dmadesc_tx; /**< Array of DMA descriptor used by the TX DMA.
* The amount should be larger than dmadesc_n. The driver should ensure that
* the data to be sent is shorter than the descriptors can hold.
*/
lldesc_t *dmadesc_rx; /**< Array of DMA descriptor used by the RX DMA.
* The amount should be larger than dmadesc_n. The driver should ensure that
* the data to be sent is shorter than the descriptors can hold.
*/
/* Configured by driver at initialization, don't touch */
spi_dev_t *hw; ///< Beginning address of the peripheral registers.
spi_dma_dev_t *dma_in; ///< Address of the DMA peripheral registers which stores the data received from a peripheral into RAM (DMA -> RAM).
spi_dma_dev_t *dma_out; ///< Address of the DMA peripheral registers which transmits the data from RAM to a peripheral (RAM -> DMA).
bool dma_enabled; ///< Whether the DMA is enabled, do not update after initialization
spi_hal_dma_config_t dma_config; ///< DMA configuration
uint32_t tx_dma_chan; ///< TX DMA channel
uint32_t rx_dma_chan; ///< RX DMA channel
int dmadesc_n; ///< The amount of descriptors of both ``dmadesc_tx`` and ``dmadesc_rx`` that the HAL can use.
/* Internal parameters, don't touch */
spi_hal_trans_config_t trans_config; ///< Transaction configuration
@ -146,8 +161,9 @@ typedef struct {
*
* @param hal Context of the HAL layer.
* @param host_id Index of the SPI peripheral. 0 for SPI1, 1 for HSPI (SPI2) and 2 for VSPI (SPI3).
* @param hal_config Configuration of the hal defined by the upper layer.
*/
void spi_hal_init(spi_hal_context_t *hal, uint32_t host_id, const spi_hal_dma_config_t *hal_dma_config);
void spi_hal_init(spi_hal_context_t *hal, uint32_t host_id, const spi_hal_config_t *hal_config);
/**
* Deinit the peripheral (and the context if needed).

View File

@ -56,6 +56,8 @@ typedef struct {
* the data to be sent is shorter than the descriptors can hold.
*/
int dmadesc_n; ///< The amount of descriptors of both ``dmadesc_tx`` and ``dmadesc_rx`` that the HAL can use.
uint32_t tx_dma_chan; ///< TX DMA channel
uint32_t rx_dma_chan; ///< RX DMA channel
/*
* configurations to be filled after ``spi_slave_hal_init``. Updated to

View File

@ -70,7 +70,9 @@ typedef struct {
uint32_t host_id; ///< Host ID of the spi peripheral
spi_dma_dev_t *dma_in; ///< Input DMA(DMA -> RAM) peripheral register address
spi_dma_dev_t *dma_out; ///< Output DMA(RAM -> DMA) peripheral register address
uint32_t dma_chan; ///< The dma channel used.
bool dma_enabled; ///< DMA enabled or not
uint32_t tx_dma_chan; ///< TX DMA channel used.
uint32_t rx_dma_chan; ///< RX DMA channel used.
bool append_mode; ///< True for DMA append mode, false for segment mode
uint32_t spics_io_num; ///< CS GPIO pin for this device
uint8_t mode; ///< SPI mode (0-3)
@ -94,7 +96,9 @@ typedef struct {
spi_dev_t *dev; ///< Beginning address of the peripheral registers.
spi_dma_dev_t *dma_in; ///< Address of the DMA peripheral registers which stores the data received from a peripheral into RAM.
spi_dma_dev_t *dma_out; ///< Address of the DMA peripheral registers which transmits the data from RAM to a peripheral.
bool dma_enabled; ///< DMA enabled or not
uint32_t tx_dma_chan; ///< TX DMA channel used.
uint32_t rx_dma_chan; ///< RX DMA channel used.
bool append_mode; ///< True for DMA append mode, false for segment mode
uint32_t dma_desc_num; ///< Number of the available DMA descriptors. Calculated from ``bus_max_transfer_size``.
spi_slave_hd_hal_desc_append_t *tx_cur_desc; ///< Current TX DMA descriptor that could be linked (set up).

View File

@ -22,12 +22,12 @@
#include "soc/gdma_struct.h"
#include "hal/gdma_ll.h"
#define spi_dma_ll_rx_enable_burst_data(dev, enable) gdma_ll_rx_enable_data_burst(&GDMA, SOC_GDMA_SPI2_DMA_CHANNEL, enable);
#define spi_dma_ll_tx_enable_burst_data(dev, enable) gdma_ll_tx_enable_data_burst(&GDMA, SOC_GDMA_SPI2_DMA_CHANNEL, enable);
#define spi_dma_ll_rx_enable_burst_desc(dev, enable) gdma_ll_rx_enable_descriptor_burst(&GDMA, SOC_GDMA_SPI2_DMA_CHANNEL, enable);
#define spi_dma_ll_tx_enable_burst_desc(dev, enable) gdma_ll_tx_enable_descriptor_burst(&GDMA, SOC_GDMA_SPI2_DMA_CHANNEL, enable);
#define spi_dma_ll_enable_out_auto_wrback(dev, enable) gdma_ll_tx_enable_auto_write_back(&GDMA, SOC_GDMA_SPI2_DMA_CHANNEL, enable);
#define spi_dma_ll_set_out_eof_generation(dev, enable) gdma_ll_tx_set_eof_mode(&GDMA, SOC_GDMA_SPI2_DMA_CHANNEL, enable);
#define spi_dma_ll_rx_enable_burst_data(dev, chan, enable) gdma_ll_rx_enable_data_burst(&GDMA, chan, enable);
#define spi_dma_ll_tx_enable_burst_data(dev, chan, enable) gdma_ll_tx_enable_data_burst(&GDMA, chan, enable);
#define spi_dma_ll_rx_enable_burst_desc(dev, chan, enable) gdma_ll_rx_enable_descriptor_burst(&GDMA, chan, enable);
#define spi_dma_ll_tx_enable_burst_desc(dev, chan, enable) gdma_ll_tx_enable_descriptor_burst(&GDMA, chan, enable);
#define spi_dma_ll_enable_out_auto_wrback(dev, chan, enable) gdma_ll_tx_enable_auto_write_back(&GDMA, chan, enable);
#define spi_dma_ll_set_out_eof_generation(dev, chan, enable) gdma_ll_tx_set_eof_mode(&GDMA, chan, enable);
#endif
static const char SPI_HAL_TAG[] = "spi_hal";
@ -39,19 +39,25 @@ static const char SPI_HAL_TAG[] = "spi_hal";
static void s_spi_hal_dma_init_config(const spi_hal_context_t *hal)
{
spi_dma_ll_rx_enable_burst_data(hal->dma_in, 1);
spi_dma_ll_tx_enable_burst_data(hal->dma_out, 1);
spi_dma_ll_rx_enable_burst_desc(hal->dma_in, 1);
spi_dma_ll_tx_enable_burst_desc(hal->dma_out, 1);
spi_dma_ll_rx_enable_burst_data(hal->dma_in, hal->rx_dma_chan, 1);
spi_dma_ll_tx_enable_burst_data(hal->dma_out, hal->tx_dma_chan, 1);
spi_dma_ll_rx_enable_burst_desc(hal->dma_in, hal->rx_dma_chan, 1);
spi_dma_ll_tx_enable_burst_desc(hal->dma_out, hal->tx_dma_chan ,1);
}
void spi_hal_init(spi_hal_context_t *hal, uint32_t host_id, const spi_hal_dma_config_t *dma_config)
void spi_hal_init(spi_hal_context_t *hal, uint32_t host_id, const spi_hal_config_t *config)
{
memset(hal, 0, sizeof(spi_hal_context_t));
spi_dev_t *hw = SPI_LL_GET_HW(host_id);
hal->hw = hw;
hal->dma_in = dma_config->dma_in;
hal->dma_out = dma_config->dma_out;
hal->dma_in = config->dma_in;
hal->dma_out = config->dma_out;
hal->dma_enabled = config->dma_enabled;
hal->dmadesc_tx = config->dmadesc_tx;
hal->dmadesc_rx = config->dmadesc_rx;
hal->tx_dma_chan = config->tx_dma_chan;
hal->rx_dma_chan = config->rx_dma_chan;
hal->dmadesc_n = config->dmadesc_n;
spi_ll_master_init(hw);
s_spi_hal_dma_init_config(hal);
@ -63,9 +69,6 @@ void spi_hal_init(spi_hal_context_t *hal, uint32_t host_id, const spi_hal_dma_co
spi_ll_enable_int(hw);
spi_ll_set_int_stat(hw);
spi_ll_set_mosi_delay(hw, 0, 0);
//Save the dma configuration in ``spi_hal_context_t``
memcpy(&hal->dma_config, dma_config, sizeof(spi_hal_dma_config_t));
}
void spi_hal_deinit(spi_hal_context_t *hal)

View File

@ -23,15 +23,15 @@
#include "soc/gdma_struct.h"
#include "hal/gdma_ll.h"
#define spi_dma_ll_rx_reset(dev) gdma_ll_rx_reset_channel(&GDMA, SOC_GDMA_SPI2_DMA_CHANNEL)
#define spi_dma_ll_tx_reset(dev) gdma_ll_tx_reset_channel(&GDMA, SOC_GDMA_SPI2_DMA_CHANNEL);
#define spi_dma_ll_rx_start(dev, addr) do {\
gdma_ll_rx_set_desc_addr(&GDMA, SOC_GDMA_SPI2_DMA_CHANNEL, (uint32_t)addr);\
gdma_ll_rx_start(&GDMA, SOC_GDMA_SPI2_DMA_CHANNEL);\
#define spi_dma_ll_rx_reset(dev, chan) gdma_ll_rx_reset_channel(&GDMA, chan)
#define spi_dma_ll_tx_reset(dev, chan) gdma_ll_tx_reset_channel(&GDMA, chan);
#define spi_dma_ll_rx_start(dev, chan, addr) do {\
gdma_ll_rx_set_desc_addr(&GDMA, chan, (uint32_t)addr);\
gdma_ll_rx_start(&GDMA, chan);\
} while (0)
#define spi_dma_ll_tx_start(dev, addr) do {\
gdma_ll_tx_set_desc_addr(&GDMA, SOC_GDMA_SPI2_DMA_CHANNEL, (uint32_t)addr);\
gdma_ll_tx_start(&GDMA, SOC_GDMA_SPI2_DMA_CHANNEL);\
#define spi_dma_ll_tx_start(dev, chan, addr) do {\
gdma_ll_tx_set_desc_addr(&GDMA, chan, (uint32_t)addr);\
gdma_ll_tx_start(&GDMA, chan);\
} while (0)
#endif
@ -143,12 +143,12 @@ void spi_hal_prepare_data(spi_hal_context_t *hal, const spi_hal_dev_config_t *de
if (!hal->dma_enabled) {
//No need to setup anything; we'll copy the result out of the work registers directly later.
} else {
lldesc_setup_link(hal->dma_config.dmadesc_rx, trans->rcv_buffer, ((trans->rx_bitlen + 7) / 8), true);
lldesc_setup_link(hal->dmadesc_rx, trans->rcv_buffer, ((trans->rx_bitlen + 7) / 8), true);
spi_dma_ll_rx_reset(hal->dma_in);
spi_dma_ll_rx_reset(hal->dma_in, hal->rx_dma_chan);
spi_ll_dma_rx_fifo_reset(hal->dma_in);
spi_ll_dma_rx_enable(hal->hw, 1);
spi_dma_ll_rx_start(hal->dma_in, hal->dma_config.dmadesc_rx);
spi_dma_ll_rx_start(hal->dma_in, hal->rx_dma_chan, hal->dmadesc_rx);
}
}
@ -157,7 +157,7 @@ void spi_hal_prepare_data(spi_hal_context_t *hal, const spi_hal_dev_config_t *de
//DMA temporary workaround: let RX DMA work somehow to avoid the issue in ESP32 v0/v1 silicon
if (hal->dma_enabled && !dev->half_duplex) {
spi_ll_dma_rx_enable(hal->hw, 1);
spi_dma_ll_rx_start(hal->dma_in, 0);
spi_dma_ll_rx_start(hal->dma_in, hal->rx_dma_chan, 0);
}
}
#endif
@ -167,12 +167,12 @@ void spi_hal_prepare_data(spi_hal_context_t *hal, const spi_hal_dev_config_t *de
//Need to copy data to registers manually
spi_ll_write_buffer(hw, trans->send_buffer, trans->tx_bitlen);
} else {
lldesc_setup_link(hal->dma_config.dmadesc_tx, trans->send_buffer, (trans->tx_bitlen + 7) / 8, false);
lldesc_setup_link(hal->dmadesc_tx, trans->send_buffer, (trans->tx_bitlen + 7) / 8, false);
spi_dma_ll_tx_reset(hal->dma_out);
spi_dma_ll_tx_reset(hal->dma_out, hal->tx_dma_chan);
spi_ll_dma_tx_fifo_reset(hal->dma_in);
spi_ll_dma_tx_enable(hal->hw, 1);
spi_dma_ll_tx_start(hal->dma_out, hal->dma_config.dmadesc_tx);
spi_dma_ll_tx_start(hal->dma_out, hal->tx_dma_chan, hal->dmadesc_tx);
}
}

View File

@ -7,20 +7,20 @@
#include "soc/gdma_struct.h"
#include "hal/gdma_ll.h"
#define spi_dma_ll_rx_enable_burst_data(dev, enable) gdma_ll_rx_enable_data_burst(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
#define spi_dma_ll_tx_enable_burst_data(dev, enable) gdma_ll_tx_enable_data_burst(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
#define spi_dma_ll_rx_enable_burst_desc(dev, enable) gdma_ll_rx_enable_descriptor_burst(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
#define spi_dma_ll_tx_enable_burst_desc(dev, enable) gdma_ll_tx_enable_descriptor_burst(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
#define spi_dma_ll_enable_out_auto_wrback(dev, enable) gdma_ll_tx_enable_auto_write_back(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
#define spi_dma_ll_set_out_eof_generation(dev, enable) gdma_ll_tx_set_eof_mode(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
#define spi_dma_ll_rx_enable_burst_data(dev, chan, enable) gdma_ll_rx_enable_data_burst(&GDMA, chan, enable);
#define spi_dma_ll_tx_enable_burst_data(dev, chan, enable) gdma_ll_tx_enable_data_burst(&GDMA, chan, enable);
#define spi_dma_ll_rx_enable_burst_desc(dev, chan, enable) gdma_ll_rx_enable_descriptor_burst(&GDMA, chan, enable);
#define spi_dma_ll_tx_enable_burst_desc(dev, chan, enable) gdma_ll_tx_enable_descriptor_burst(&GDMA, chan, enable);
#define spi_dma_ll_enable_out_auto_wrback(dev, chan, enable) gdma_ll_tx_enable_auto_write_back(&GDMA, chan, enable);
#define spi_dma_ll_set_out_eof_generation(dev, chan, enable) gdma_ll_tx_set_eof_mode(&GDMA, chan, enable);
#endif
static void s_spi_slave_hal_dma_init_config(const spi_slave_hal_context_t *hal)
{
spi_dma_ll_rx_enable_burst_data(hal->dma_in, 1);
spi_dma_ll_tx_enable_burst_data(hal->dma_out, 1);
spi_dma_ll_rx_enable_burst_desc(hal->dma_in, 1);
spi_dma_ll_tx_enable_burst_desc(hal->dma_out, 1);
spi_dma_ll_rx_enable_burst_data(hal->dma_in, hal->rx_dma_chan, 1);
spi_dma_ll_tx_enable_burst_data(hal->dma_out, hal->tx_dma_chan, 1);
spi_dma_ll_rx_enable_burst_desc(hal->dma_in, hal->rx_dma_chan, 1);
spi_dma_ll_tx_enable_burst_desc(hal->dma_out, hal->tx_dma_chan, 1);
}
void spi_slave_hal_init(spi_slave_hal_context_t *hal, const spi_slave_hal_config_t *hal_config)

View File

@ -7,15 +7,15 @@
#include "soc/gdma_struct.h"
#include "hal/gdma_ll.h"
#define spi_dma_ll_rx_reset(dev) gdma_ll_rx_reset_channel(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL)
#define spi_dma_ll_tx_reset(dev) gdma_ll_tx_reset_channel(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL);
#define spi_dma_ll_rx_start(dev, addr) do {\
gdma_ll_rx_set_desc_addr(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, (uint32_t)addr);\
gdma_ll_rx_start(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL);\
#define spi_dma_ll_rx_reset(dev, chan) gdma_ll_rx_reset_channel(&GDMA, chan)
#define spi_dma_ll_tx_reset(dev, chan) gdma_ll_tx_reset_channel(&GDMA, chan);
#define spi_dma_ll_rx_start(dev, chan, addr) do {\
gdma_ll_rx_set_desc_addr(&GDMA, chan, (uint32_t)addr);\
gdma_ll_rx_start(&GDMA, chan);\
} while (0)
#define spi_dma_ll_tx_start(dev, addr) do {\
gdma_ll_tx_set_desc_addr(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, (uint32_t)addr);\
gdma_ll_tx_start(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL);\
#define spi_dma_ll_tx_start(dev, chan, addr) do {\
gdma_ll_tx_set_desc_addr(&GDMA, chan, (uint32_t)addr);\
gdma_ll_tx_start(&GDMA, chan);\
} while (0)
#endif
@ -39,24 +39,24 @@ void spi_slave_hal_prepare_data(const spi_slave_hal_context_t *hal)
lldesc_setup_link(hal->dmadesc_rx, hal->rx_buffer, ((hal->bitlen + 7) / 8), true);
//reset dma inlink, this should be reset before spi related reset
spi_dma_ll_rx_reset(hal->dma_in);
spi_dma_ll_rx_reset(hal->dma_in, hal->rx_dma_chan);
spi_ll_dma_rx_fifo_reset(hal->dma_in);
spi_ll_slave_reset(hal->hw);
spi_ll_infifo_full_clr(hal->hw);
spi_ll_dma_rx_enable(hal->hw, 1);
spi_dma_ll_rx_start(hal->dma_in, &hal->dmadesc_rx[0]);
spi_dma_ll_rx_start(hal->dma_in, hal->rx_dma_chan, &hal->dmadesc_rx[0]);
}
if (hal->tx_buffer) {
lldesc_setup_link(hal->dmadesc_tx, hal->tx_buffer, (hal->bitlen + 7) / 8, false);
//reset dma outlink, this should be reset before spi related reset
spi_dma_ll_tx_reset(hal->dma_out);
spi_dma_ll_tx_reset(hal->dma_out, hal->tx_dma_chan);
spi_ll_dma_tx_fifo_reset(hal->dma_out);
spi_ll_slave_reset(hal->hw);
spi_ll_outfifo_empty_clr(hal->hw);
spi_ll_dma_tx_enable(hal->hw, 1);
spi_dma_ll_tx_start(hal->dma_out, (&hal->dmadesc_tx[0]));
spi_dma_ll_tx_start(hal->dma_out, hal->tx_dma_chan, (&hal->dmadesc_tx[0]));
}
} else {
//No DMA. Turn off SPI and copy data to transmit buffers.

View File

@ -29,31 +29,31 @@
#include "soc/gdma_struct.h"
#include "hal/gdma_ll.h"
#define spi_dma_ll_rx_reset(dev) gdma_ll_rx_reset_channel(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL)
#define spi_dma_ll_tx_reset(dev) gdma_ll_tx_reset_channel(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL);
#define spi_dma_ll_rx_enable_burst_data(dev, enable) gdma_ll_rx_enable_data_burst(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
#define spi_dma_ll_tx_enable_burst_data(dev, enable) gdma_ll_tx_enable_data_burst(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
#define spi_dma_ll_rx_enable_burst_desc(dev, enable) gdma_ll_rx_enable_descriptor_burst(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
#define spi_dma_ll_tx_enable_burst_desc(dev, enable) gdma_ll_tx_enable_descriptor_burst(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
#define spi_dma_ll_enable_out_auto_wrback(dev, enable) gdma_ll_tx_enable_auto_write_back(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
#define spi_dma_ll_set_out_eof_generation(dev, enable) gdma_ll_tx_set_eof_mode(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, enable);
#define spi_dma_ll_rx_start(dev, addr) do {\
gdma_ll_rx_set_desc_addr(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, (uint32_t)addr);\
gdma_ll_rx_start(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL);\
#define spi_dma_ll_rx_reset(dev, chan) gdma_ll_rx_reset_channel(&GDMA, chan)
#define spi_dma_ll_tx_reset(dev, chan) gdma_ll_tx_reset_channel(&GDMA, chan);
#define spi_dma_ll_rx_enable_burst_data(dev, chan, enable) gdma_ll_rx_enable_data_burst(&GDMA, chan, enable);
#define spi_dma_ll_tx_enable_burst_data(dev, chan, enable) gdma_ll_tx_enable_data_burst(&GDMA, chan, enable);
#define spi_dma_ll_rx_enable_burst_desc(dev, chan, enable) gdma_ll_rx_enable_descriptor_burst(&GDMA, chan, enable);
#define spi_dma_ll_tx_enable_burst_desc(dev, chan, enable) gdma_ll_tx_enable_descriptor_burst(&GDMA, chan, enable);
#define spi_dma_ll_enable_out_auto_wrback(dev, chan, enable) gdma_ll_tx_enable_auto_write_back(&GDMA, chan, enable);
#define spi_dma_ll_set_out_eof_generation(dev, chan, enable) gdma_ll_tx_set_eof_mode(&GDMA, chan, enable);
#define spi_dma_ll_rx_start(dev, chan, addr) do {\
gdma_ll_rx_set_desc_addr(&GDMA, chan, (uint32_t)addr);\
gdma_ll_rx_start(&GDMA, chan);\
} while (0)
#define spi_dma_ll_tx_start(dev, addr) do {\
gdma_ll_tx_set_desc_addr(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL, (uint32_t)addr);\
gdma_ll_tx_start(&GDMA, SOC_GDMA_SPI3_DMA_CHANNEL);\
#define spi_dma_ll_tx_start(dev, chan, addr) do {\
gdma_ll_tx_set_desc_addr(&GDMA, chan, (uint32_t)addr);\
gdma_ll_tx_start(&GDMA, chan);\
} while (0)
#endif
static void s_spi_slave_hd_hal_dma_init_config(const spi_slave_hd_hal_context_t *hal)
{
spi_dma_ll_rx_enable_burst_data(hal->dma_in, 1);
spi_dma_ll_tx_enable_burst_data(hal->dma_out, 1);
spi_dma_ll_rx_enable_burst_desc(hal->dma_in, 1);
spi_dma_ll_tx_enable_burst_desc(hal->dma_out, 1);
spi_dma_ll_enable_out_auto_wrback(hal->dma_out, 1);
spi_dma_ll_rx_enable_burst_data(hal->dma_in, hal->rx_dma_chan, 1);
spi_dma_ll_tx_enable_burst_data(hal->dma_out, hal->tx_dma_chan, 1);
spi_dma_ll_rx_enable_burst_desc(hal->dma_in, hal->rx_dma_chan, 1);
spi_dma_ll_tx_enable_burst_desc(hal->dma_out, hal->tx_dma_chan, 1);
spi_dma_ll_enable_out_auto_wrback(hal->dma_out, hal->tx_dma_chan, 1);
}
void spi_slave_hd_hal_init(spi_slave_hd_hal_context_t *hal, const spi_slave_hd_hal_config_t *hal_config)
@ -62,6 +62,9 @@ void spi_slave_hd_hal_init(spi_slave_hd_hal_context_t *hal, const spi_slave_hd_h
hal->dev = hw;
hal->dma_in = hal_config->dma_in;
hal->dma_out = hal_config->dma_out;
hal->dma_enabled = hal_config->dma_enabled;
hal->tx_dma_chan = hal_config->tx_dma_chan;
hal->rx_dma_chan = hal_config->rx_dma_chan;
hal->append_mode = hal_config->append_mode;
hal->rx_cur_desc = hal->dmadesc_rx;
hal->tx_cur_desc = hal->dmadesc_tx;
@ -75,7 +78,7 @@ void spi_slave_hd_hal_init(spi_slave_hd_hal_context_t *hal, const spi_slave_hd_h
spi_ll_set_dummy(hw, hal_config->dummy_bits);
spi_ll_set_rx_lsbfirst(hw, hal_config->rx_lsbfirst);
spi_ll_set_tx_lsbfirst(hw, hal_config->tx_lsbfirst);
spi_ll_slave_set_mode(hw, hal_config->mode, (hal_config->dma_chan != 0));
spi_ll_slave_set_mode(hw, hal_config->mode, (hal_config->dma_enabled));
spi_ll_disable_intr(hw, UINT32_MAX);
spi_ll_clear_intr(hw, UINT32_MAX);
@ -134,14 +137,14 @@ void spi_slave_hd_hal_rxdma(spi_slave_hd_hal_context_t *hal, uint8_t *out_buf, s
lldesc_setup_link(&hal->dmadesc_rx->desc, out_buf, len, true);
spi_ll_dma_rx_fifo_reset(hal->dev);
spi_dma_ll_rx_reset(hal->dma_in);
spi_dma_ll_rx_reset(hal->dma_in, hal->rx_dma_chan);
spi_ll_slave_reset(hal->dev);
spi_ll_infifo_full_clr(hal->dev);
spi_ll_clear_intr(hal->dev, SPI_LL_INTR_CMD7);
spi_ll_slave_set_rx_bitlen(hal->dev, len * 8);
spi_ll_dma_rx_enable(hal->dev, 1);
spi_dma_ll_rx_start(hal->dma_in, &hal->dmadesc_rx->desc);
spi_dma_ll_rx_start(hal->dma_in, hal->rx_dma_chan, &hal->dmadesc_rx->desc);
}
void spi_slave_hd_hal_txdma(spi_slave_hd_hal_context_t *hal, uint8_t *data, size_t len)
@ -149,13 +152,13 @@ void spi_slave_hd_hal_txdma(spi_slave_hd_hal_context_t *hal, uint8_t *data, size
lldesc_setup_link(&hal->dmadesc_tx->desc, data, len, false);
spi_ll_dma_tx_fifo_reset(hal->dev);
spi_dma_ll_tx_reset(hal->dma_out);
spi_dma_ll_tx_reset(hal->dma_out, hal->tx_dma_chan);
spi_ll_slave_reset(hal->dev);
spi_ll_outfifo_empty_clr(hal->dev);
spi_ll_clear_intr(hal->dev, SPI_LL_INTR_CMD8);
spi_ll_dma_tx_enable(hal->dev, 1);
spi_dma_ll_tx_start(hal->dma_out, &hal->dmadesc_tx->desc);
spi_dma_ll_tx_start(hal->dma_out, hal->tx_dma_chan, &hal->dmadesc_tx->desc);
}
static spi_ll_intr_t get_event_intr(spi_slave_hd_hal_context_t *hal, spi_event_t ev)
@ -333,18 +336,18 @@ esp_err_t spi_slave_hd_hal_txdma_append(spi_slave_hd_hal_context_t *hal, uint8_t
hal->tx_dma_head = hal->tx_cur_desc;
hal->tx_dma_tail = hal->tx_cur_desc;
spi_dma_ll_tx_reset(hal->dma_out);
spi_dma_ll_tx_reset(hal->dma_out, hal->tx_dma_chan);
spi_ll_outfifo_empty_clr(hal->dev);
spi_ll_clear_intr(hal->dev, SPI_LL_INTR_OUT_EOF);
spi_ll_dma_tx_enable(hal->dev, 1);
spi_dma_ll_tx_start(hal->dma_out, &hal->tx_dma_head->desc);
spi_dma_ll_tx_start(hal->dma_out, hal->tx_dma_chan, &hal->tx_dma_head->desc);
} else {
//there is already a link
STAILQ_NEXT(&hal->tx_dma_tail->desc, qe) = &hal->tx_cur_desc->desc;
hal->tx_dma_tail = hal->tx_cur_desc;
spi_dma_ll_tx_restart(hal->dma_out);
spi_dma_ll_tx_restart(hal->dma_out, hal->tx_dma_chan);
}
//Move the current descriptor pointer according to the number of the linked descriptors
@ -376,18 +379,18 @@ esp_err_t spi_slave_hd_hal_rxdma_append(spi_slave_hd_hal_context_t *hal, uint8_t
hal->rx_dma_head = hal->rx_cur_desc;
hal->rx_dma_tail = hal->rx_cur_desc;
spi_dma_ll_rx_reset(hal->dma_in);
spi_dma_ll_rx_reset(hal->dma_in, hal->rx_dma_chan);
spi_ll_infifo_full_clr(hal->dev);
spi_ll_clear_intr(hal->dev, SPI_LL_INTR_CMD7);
spi_ll_dma_rx_enable(hal->dev, 1);
spi_dma_ll_rx_start(hal->dma_in, &hal->rx_dma_head->desc);
spi_dma_ll_rx_start(hal->dma_in, hal->rx_dma_chan, &hal->rx_dma_head->desc);
} else {
//there is already a link
STAILQ_NEXT(&hal->rx_dma_tail->desc, qe) = &hal->rx_cur_desc->desc;
hal->rx_dma_tail = hal->rx_cur_desc;
spi_dma_ll_rx_restart(hal->dma_in);
spi_dma_ll_rx_restart(hal->dma_in, hal->rx_dma_chan);
}
//Move the current descriptor pointer according to the number of the linked descriptors

View File

@ -14,7 +14,7 @@
#pragma once
#define SOC_SPI_PERIPH_NUM 4
#define SOC_SPI_PERIPH_NUM 2
#define SOC_SPI_DMA_CHAN_NUM 3
#define SOC_SPI_PERIPH_CS_NUM(i) 3