fix(dma): feat(adc): support ADC oneshot mod on ESP32P4

This commit is contained in:
gaoxu 2024-03-28 15:16:12 +08:00 committed by Gao Xu
parent f36d034f7f
commit c1edeca849
32 changed files with 970 additions and 54 deletions

View File

@ -70,7 +70,7 @@ extern portMUX_TYPE rtc_spinlock; //TODO: Will be placed in the appropriate posi
#define FSM_ENTER() RTC_ENTER_CRITICAL()
#define FSM_EXIT() RTC_EXIT_CRITICAL()
#if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
#if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3 || CONFIG_IDF_TARGET_ESP32P4
//prevent ADC1 being used by I2S dma and other tasks at the same time.
static _lock_t adc1_dma_lock;
#define SARADC1_ACQUIRE() _lock_acquire( &adc1_dma_lock )
@ -172,7 +172,7 @@ static void adc_rtc_chan_init(adc_unit_t adc_unit)
esp_err_t adc_common_gpio_init(adc_unit_t adc_unit, adc_channel_t channel)
{
ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(adc_unit), ESP_ERR_INVALID_ARG, ADC_TAG, "invalid channel");
#if ADC_LL_RTC_GPIO_SUPPORTED
gpio_num_t gpio_num = 0;
//If called with `ADC_UNIT_BOTH (ADC_UNIT_1 | ADC_UNIT_2)`, both if blocks will be run
if (adc_unit == ADC_UNIT_1) {
@ -188,7 +188,7 @@ esp_err_t adc_common_gpio_init(adc_unit_t adc_unit, adc_channel_t channel)
ESP_RETURN_ON_ERROR(rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_DISABLED), ADC_TAG, "rtc_gpio_set_direction fail");
ESP_RETURN_ON_ERROR(rtc_gpio_pulldown_dis(gpio_num), ADC_TAG, "rtc_gpio_pulldown_dis fail");
ESP_RETURN_ON_ERROR(rtc_gpio_pullup_dis(gpio_num), ADC_TAG, "rtc_gpio_pullup_dis fail");
#endif
return ESP_OK;
}

View File

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -81,6 +81,18 @@ typedef enum {
ADC1_CHANNEL_6, /*!< ADC1 channel 6 is GPIO6 */
ADC1_CHANNEL_MAX,
} adc1_channel_t;
#elif CONFIG_IDF_TARGET_ESP32P4
typedef enum {
ADC1_CHANNEL_0 = 0, /*!< ADC1 channel 0 is GPIO16 */
ADC1_CHANNEL_1, /*!< ADC1 channel 1 is GPIO17 */
ADC1_CHANNEL_2, /*!< ADC1 channel 2 is GPIO18 */
ADC1_CHANNEL_3, /*!< ADC1 channel 3 is GPIO19 */
ADC1_CHANNEL_4, /*!< ADC1 channel 4 is GPIO20 */
ADC1_CHANNEL_5, /*!< ADC1 channel 5 is GPIO21 */
ADC1_CHANNEL_6, /*!< ADC1 channel 6 is GPIO22 */
ADC1_CHANNEL_7, /*!< ADC1 channel 7 is GPIO23 */
ADC1_CHANNEL_MAX,
} adc1_channel_t;
#endif // CONFIG_IDF_TARGET_*
#if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
@ -103,6 +115,17 @@ typedef enum {
ADC2_CHANNEL_0 = 0, /*!< ADC2 channel 0 is GPIO5 */
ADC2_CHANNEL_MAX,
} adc2_channel_t;
#elif CONFIG_IDF_TARGET_ESP32P4
typedef enum {
ADC2_CHANNEL_0 = 0, /*!< ADC2 channel 0 is GPIO49 */
ADC2_CHANNEL_1, /*!< ADC2 channel 1 is GPIO50 */
ADC2_CHANNEL_2, /*!< ADC2 channel 2 is GPIO51 */
ADC2_CHANNEL_3, /*!< ADC2 channel 3 is GPIO52 */
ADC2_CHANNEL_4, /*!< ADC2 channel 4 is GPIO53 */
ADC2_CHANNEL_5, /*!< ADC2 channel 5 is GPIO54 */
ADC2_CHANNEL_MAX,
} adc2_channel_t;
#endif
#if SOC_ADC_DMA_SUPPORTED

View File

@ -1,2 +1,2 @@
| Supported Targets | ESP32 | ESP32-C2 | ESP32-C3 | ESP32-C6 | ESP32-H2 | ESP32-S2 | ESP32-S3 |
| ----------------- | ----- | -------- | -------- | -------- | -------- | -------- | -------- |
| Supported Targets | ESP32 | ESP32-C2 | ESP32-C3 | ESP32-C6 | ESP32-H2 | ESP32-P4 | ESP32-S2 | ESP32-S3 |
| ----------------- | ----- | -------- | -------- | -------- | -------- | -------- | -------- | -------- |

View File

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2022-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Unlicense OR CC0-1.0
*/
@ -67,6 +67,13 @@
#define ADC_TEST_HIGH_VAL 3390
#define ADC_TEST_HIGH_THRESH 200
#elif CONFIG_IDF_TARGET_ESP32P4
#define ADC_TEST_LOW_VAL 3100
#define ADC_TEST_LOW_THRESH 200
#define ADC_TEST_HIGH_VAL 4095
#define ADC_TEST_HIGH_THRESH 200
#endif
//ADC Channels

View File

@ -1,6 +1,5 @@
# SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
# SPDX-License-Identifier: CC0-1.0
import pytest
from pytest_embedded import Dut
@ -11,6 +10,7 @@ from pytest_embedded import Dut
@pytest.mark.esp32c3
@pytest.mark.esp32c6
@pytest.mark.esp32h2
@pytest.mark.esp32p4
@pytest.mark.adc
@pytest.mark.parametrize(
'config',

View File

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2019-2023 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2019-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -125,10 +125,17 @@ esp_err_t adc_oneshot_new_unit(const adc_oneshot_unit_init_cfg_t *init_config, a
_lock_release(&s_ctx.mutex);
#endif
//TODO: refactor clock enable/reset functions, add adc_digi_clk_enable/reset and adc_rtc_clk_enable/reset
#if CONFIG_IDF_TARGET_ESP32P4
adc_ll_rtc_reset();
#endif
if (init_config->ulp_mode == ADC_ULP_MODE_DISABLE) {
sar_periph_ctrl_adc_oneshot_power_acquire();
} else {
#if !CONFIG_IDF_TARGET_ESP32P4 // # TODO: IDF-7528, IDF-7529
esp_sleep_enable_adc_tsens_monitor(true);
#endif
}
ESP_LOGD(TAG, "new adc unit%"PRId32" is created", unit->unit_id);
@ -229,7 +236,9 @@ esp_err_t adc_oneshot_del_unit(adc_oneshot_unit_handle_t handle)
if (ulp_mode == ADC_ULP_MODE_DISABLE) {
sar_periph_ctrl_adc_oneshot_power_release();
} else {
#if !CONFIG_IDF_TARGET_ESP32P4 // # TODO: IDF-7528, IDF-7529
esp_sleep_enable_adc_tsens_monitor(false);
#endif
}
#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
@ -262,7 +271,7 @@ static esp_err_t s_adc_io_init(adc_unit_t unit, adc_channel_t channel)
{
ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(unit), ESP_ERR_INVALID_ARG, TAG, "invalid channel");
#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
#if !ADC_LL_RTC_GPIO_SUPPORTED
uint32_t io_num = ADC_GET_IO_NUM(unit, channel);
gpio_config_t cfg = {

View File

@ -1,2 +1,2 @@
| Supported Targets | ESP32 | ESP32-C2 | ESP32-C3 | ESP32-C6 | ESP32-H2 | ESP32-S2 | ESP32-S3 |
| ----------------- | ----- | -------- | -------- | -------- | -------- | -------- | -------- |
| Supported Targets | ESP32 | ESP32-C2 | ESP32-C3 | ESP32-C6 | ESP32-H2 | ESP32-P4 | ESP32-S2 | ESP32-S3 |
| ----------------- | ----- | -------- | -------- | -------- | -------- | -------- | -------- | -------- |

View File

@ -13,6 +13,7 @@
#include "driver/rtc_io.h"
#include "soc/adc_periph.h"
#include "test_common_adc.h"
#include "hal/adc_ll.h"
__attribute__((unused)) static const char *TAG = "TEST_ADC";
@ -98,7 +99,7 @@ void test_adc_set_io_level(adc_unit_t unit, adc_channel_t channel, bool level)
{
TEST_ASSERT(channel < SOC_ADC_CHANNEL_NUM(unit) && "invalid channel");
#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
#if !ADC_LL_RTC_GPIO_SUPPORTED
uint32_t io_num = ADC_GET_IO_NUM(unit, channel);
TEST_ESP_OK(gpio_set_pull_mode(io_num, (level ? GPIO_PULLUP_ONLY : GPIO_PULLDOWN_ONLY)));
#else

View File

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -86,6 +86,14 @@ extern "C" {
#define ADC_TEST_HIGH_VAL 3390
#define ADC_TEST_HIGH_VAL_DMA 4081
#define ADC_TEST_HIGH_THRESH 200
#elif CONFIG_IDF_TARGET_ESP32P4
#define ADC_TEST_LOW_VAL 3100
#define ADC_TEST_LOW_THRESH 200
#define ADC_TEST_HIGH_VAL 4095
#define ADC_TEST_HIGH_VAL_DMA 4095
#define ADC_TEST_HIGH_THRESH 200
#endif
/*---------------------------------------------------------------

View File

@ -10,7 +10,8 @@ set(srcs "rtc_clk_init.c"
)
if(NOT BOOTLOADER_BUILD)
list(APPEND srcs "esp_crypto_lock.c")
list(APPEND srcs "sar_periph_ctrl.c"
"esp_crypto_lock.c")
if(NOT CONFIG_APP_BUILD_TYPE_PURE_RAM_APP)
list(APPEND srcs "mspi_timing_config.c")

View File

@ -0,0 +1,116 @@
/*
* SPDX-FileCopyrightText: 2023-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* SAR related peripherals are interdependent. This file
* provides a united control to these registers, as multiple
* components require these controls.
*
* Related peripherals are:
* - ADC
* - PWDET
*/
#include "sdkconfig.h"
#include "esp_log.h"
#include "freertos/FreeRTOS.h"
#include "esp_private/sar_periph_ctrl.h"
#include "esp_private/esp_modem_clock.h"
#include "hal/sar_ctrl_ll.h"
static const char *TAG = "sar_periph_ctrl";
extern portMUX_TYPE rtc_spinlock;
void sar_periph_ctrl_init(void)
{
//Put SAR control mux to FSM state
sar_ctrl_ll_set_power_mode(SAR_CTRL_LL_POWER_FSM);
}
void sar_periph_ctrl_power_enable(void)
{
portENTER_CRITICAL_SAFE(&rtc_spinlock);
sar_ctrl_ll_set_power_mode(SAR_CTRL_LL_POWER_FSM);
portEXIT_CRITICAL_SAFE(&rtc_spinlock);
}
void sar_periph_ctrl_power_disable(void)
{
portENTER_CRITICAL_SAFE(&rtc_spinlock);
sar_ctrl_ll_set_power_mode(SAR_CTRL_LL_POWER_OFF);
portEXIT_CRITICAL_SAFE(&rtc_spinlock);
}
/**
* This gets incremented when s_sar_power_acquire() is called,
* and decremented when s_sar_power_release() is called.
* PWDET is powered down when the value reaches zero.
* Should be modified within critical section.
*/
static int s_sar_power_on_cnt;
static void s_sar_power_acquire(void)
{
portENTER_CRITICAL_SAFE(&rtc_spinlock);
s_sar_power_on_cnt++;
if (s_sar_power_on_cnt == 1) {
sar_ctrl_ll_set_power_mode(SAR_CTRL_LL_POWER_ON);
}
portEXIT_CRITICAL_SAFE(&rtc_spinlock);
}
static void s_sar_power_release(void)
{
portENTER_CRITICAL_SAFE(&rtc_spinlock);
s_sar_power_on_cnt--;
if (s_sar_power_on_cnt < 0) {
portEXIT_CRITICAL(&rtc_spinlock);
ESP_LOGE(TAG, "%s called, but s_sar_power_on_cnt == 0", __func__);
abort();
} else if (s_sar_power_on_cnt == 0) {
sar_ctrl_ll_set_power_mode(SAR_CTRL_LL_POWER_FSM);
}
portEXIT_CRITICAL_SAFE(&rtc_spinlock);
}
/*------------------------------------------------------------------------------
* PWDET Power
*----------------------------------------------------------------------------*/
void sar_periph_ctrl_pwdet_power_acquire(void)
{
s_sar_power_acquire();
}
void sar_periph_ctrl_pwdet_power_release(void)
{
s_sar_power_release();
}
/*------------------------------------------------------------------------------
* ADC Power
*----------------------------------------------------------------------------*/
void sar_periph_ctrl_adc_oneshot_power_acquire(void)
{
s_sar_power_acquire();
}
void sar_periph_ctrl_adc_oneshot_power_release(void)
{
s_sar_power_release();
}
void sar_periph_ctrl_adc_continuous_power_acquire(void)
{
s_sar_power_acquire();
}
void sar_periph_ctrl_adc_continuous_power_release(void)
{
s_sar_power_release();
}

View File

@ -673,7 +673,7 @@ FORCE_INLINE_ATTR void misc_modules_sleep_prepare(bool deep_sleep)
#endif
}
#if !CONFIG_IDF_TARGET_ESP32P4 // TODO: IDF-6496
#if !CONFIG_IDF_TARGET_ESP32P4
// TODO: IDF-7370
if (!(deep_sleep && s_adc_tsen_enabled)){
sar_periph_ctrl_power_disable();
@ -689,11 +689,7 @@ FORCE_INLINE_ATTR void misc_modules_wake_prepare(void)
#if SOC_USB_SERIAL_JTAG_SUPPORTED && !SOC_USB_SERIAL_JTAG_SUPPORT_LIGHT_SLEEP
sleep_console_usj_pad_restore();
#endif
#if !CONFIG_IDF_TARGET_ESP32P4 // TODO: IDF-6496
sar_periph_ctrl_power_enable();
#endif
#if CONFIG_PM_POWER_DOWN_CPU_IN_LIGHT_SLEEP && SOC_PM_CPU_RETENTION_BY_RTCCNTL
sleep_disable_cpu_retention();
#endif

View File

@ -36,8 +36,6 @@ entries:
sleep_system_peripheral:peripheral_domain_pd_allowed (noflash)
sleep_modem:modem_domain_pd_allowed (noflash)
sleep_modem:periph_inform_out_light_sleep_overhead (noflash)
if IDF_TARGET_ESP32P4 = n: # TODO: IDF-6496
sar_periph_ctrl:sar_periph_ctrl_power_disable (noflash)
[mapping:esp_system_pm]
archive: libesp_system.a

View File

@ -31,6 +31,7 @@ extern "C" {
#define ADC_LL_DATA_INVERT_DEFAULT(PERIPH_NUM) (1)
#define ADC_LL_SAR_CLK_DIV_DEFAULT(PERIPH_NUM) (1)
#define ADC_LL_DELAY_CYCLE_AFTER_DONE_SIGNAL (0)
#define ADC_LL_RTC_GPIO_SUPPORTED (1)
/*---------------------------------------------------------------
DMA
@ -229,7 +230,7 @@ static inline void adc_ll_digi_set_pattern_table_len(adc_unit_t adc_n, uint32_t
}
/**
* Set pattern table lenth for digital controller.
* Set pattern table length for digital controller.
* The pattern table that defines the conversion rules for each SAR ADC. Each table has 16 items, in which channel selection,
* resolution and attenuation are stored. When the conversion is started, the controller reads conversion rules from the
* pattern table one by one. For each controller the scan sequence has at most 16 different rules before repeating itself.

View File

@ -0,0 +1,588 @@
/*
* SPDX-FileCopyrightText: 2023-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <stdbool.h>
#include <stdlib.h>
#include "esp_attr.h"
#include "soc/adc_periph.h"
// #include "soc/ADC_struct.h"
// #include "soc/ADC_reg.h"
#include "soc/pmu_reg.h"
#include "soc/clk_tree_defs.h"
// #include "soc/pcr_struct.h"
#include "hal/misc.h"
#include "hal/assert.h"
#include "hal/adc_types.h"
#include "hal/adc_types_private.h"
#include "hal/regi2c_ctrl.h"
#include "hal/sar_ctrl_ll.h"
#include "soc/regi2c_saradc.h"
#include "soc/hp_sys_clkrst_struct.h"
#include "soc/adc_struct.h"
#include "soc/lp_adc_struct.h"
#include "soc/lpperi_struct.h"
#ifdef __cplusplus
extern "C" {
#endif
#define ADC_LL_EVENT_ADC1_ONESHOT_DONE BIT(31)
#define ADC_LL_EVENT_ADC2_ONESHOT_DONE BIT(30)
/*---------------------------------------------------------------
Oneshot
---------------------------------------------------------------*/
#define ADC_LL_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
#define ADC_LL_SAR_CLK_DIV_DEFAULT(PERIPH_NUM) (1)
#define ADC_LL_DELAY_CYCLE_AFTER_DONE_SIGNAL (0)
/*---------------------------------------------------------------
DMA
---------------------------------------------------------------*/
/*---------------------------------------------------------------
PWDET (Power Detect)
---------------------------------------------------------------*/
#define ADC_LL_PWDET_CCT_DEFAULT (4)
typedef enum {
ADC_LL_CTRL_RTC = 0, ///< For ADC1 and ADC2. Select RTC controller.
ADC_LL_CTRL_ULP = 1, ///< For ADC1 and ADC2. Select ULP controller.
ADC_LL_CTRL_DIG = 2, ///< For ADC1 and ADC2. Select DIG controller.
ADC_LL_CTRL_PWDET = 3, ///< ???
ADC_LL_CTRL_ARB = 4, ///< ???
} adc_ll_controller_t;
typedef enum {
ADC_LL_POWER_BY_FSM = SAR_CTRL_LL_POWER_FSM, /*!< ADC XPD controlled by FSM. Used for polling mode */
ADC_LL_POWER_SW_ON = SAR_CTRL_LL_POWER_ON, /*!< ADC XPD controlled by SW. power on. Used for DMA mode */
ADC_LL_POWER_SW_OFF = SAR_CTRL_LL_POWER_OFF, /*!< ADC XPD controlled by SW. power off. */
} adc_ll_power_t;
/**
* @brief ADC digital controller (DMA mode) work mode.
*
* @note The conversion mode affects the sampling frequency:
* SINGLE_UNIT_1: When the measurement is triggered, only ADC1 is sampled once.
* SINGLE_UNIT_2: When the measurement is triggered, only ADC2 is sampled once.
* BOTH_UNIT : When the measurement is triggered, ADC1 and ADC2 are sampled at the same time.
* ALTER_UNIT : When the measurement is triggered, ADC1 or ADC2 samples alternately.
*/
typedef enum {
ADC_LL_DIGI_CONV_ONLY_ADC1 = 0, // Only use ADC1 for conversion
ADC_LL_DIGI_CONV_ONLY_ADC2 = 1, // Only use ADC2 for conversion
ADC_LL_DIGI_CONV_BOTH_UNIT = 2, // Use Both ADC1 and ADC2 for conversion simultaneously
ADC_LL_DIGI_CONV_ALTER_UNIT = 3 // Use both ADC1 and ADC2 for conversion by turn. e.g. ADC1 -> ADC2 -> ADC1 -> ADC2 .....
} adc_ll_digi_convert_mode_t;
typedef struct {
union {
struct {
uint8_t atten: 2;
uint8_t channel: 3;
uint8_t unit: 1;
uint8_t reserved: 2;
};
uint8_t val;
};
} __attribute__((packed)) adc_ll_digi_pattern_table_t;
/**
* @brief Analyze whether the obtained raw data is correct.
* ADC2 use arbiter by default. The arbitration result can be judged by the flag bit in the original data.
*
*/
typedef struct {
union {
struct {
uint16_t data: 13; /*!<ADC real output data info. Resolution: 13 bit. */
uint16_t reserved: 1; /*!<reserved */
uint16_t flag: 2; /*!<ADC data flag info.
If (flag == 0), The data is valid.
If (flag > 0), The data is invalid. */
};
uint16_t val;
};
} adc_ll_rtc_output_data_t;
/*---------------------------------------------------------------
Digital controller setting
---------------------------------------------------------------*/
/**
* Set SAR ADC module clock division factor.
* SAR ADC clock divided from digital controller clock.
*
* @param div Division factor.
*/
static inline void adc_ll_digi_set_clk_div(uint32_t div)
{
/* ADC clock divided from digital controller clock clk */
HAL_FORCE_MODIFY_U32_REG_FIELD(ADC.ctrl_reg, sar_clk_div, div);
}
/**
* Set ADC digital controller clock division factor. The clock divided from `APLL` or `APB` clock.
* Expression: controller_clk = (APLL or APB) / (div_num + div_a / div_b + 1).
*
* @param div_num Division factor. Range: 0 ~ 255.
* @param div_b Division factor. Range: 1 ~ 63.
* @param div_a Division factor. Range: 0 ~ 63.
*/
static inline void adc_ll_digi_controller_clk_div(uint32_t div_num, uint32_t div_b, uint32_t div_a)
{
HAL_FORCE_MODIFY_U32_REG_FIELD(HP_SYS_CLKRST.peri_clk_ctrl23, reg_adc_clk_div_num, div_num);
HP_SYS_CLKRST.root_clk_ctrl0.reg_cpu_clk_div_numerator = div_b;
HP_SYS_CLKRST.root_clk_ctrl0.reg_cpu_clk_div_denominator = div_a;
}
/**
* Enable clock and select clock source for ADC digital controller.
*
* @param clk_src clock source for ADC digital controller.
*/
static inline void adc_ll_digi_clk_sel(adc_continuous_clk_src_t clk_src)
{
switch (clk_src) {
case ADC_DIGI_CLK_SRC_XTAL:
HP_SYS_CLKRST.peri_clk_ctrl22.reg_adc_clk_src_sel = 0;
break;
case ADC_DIGI_CLK_SRC_RC_FAST:
HP_SYS_CLKRST.peri_clk_ctrl22.reg_adc_clk_src_sel = 1;
break;
case ADC_DIGI_CLK_SRC_PLL_F80M:
HP_SYS_CLKRST.peri_clk_ctrl22.reg_adc_clk_src_sel = 2;
break;
default:
HAL_ASSERT(false && "unsupported clock");
}
// Enable ADC_CTRL_CLK (i.e. digital domain clock)
ADC.ctrl_reg.sar_clk_gated = 1;
}
/*---------------------------------------------------------------
PWDET(Power detect) controller setting
---------------------------------------------------------------*/
/**
* Set adc cct for PWDET controller.
*
* @note Capacitor tuning of the PA power monitor. cct set to the same value with PHY.
* @param cct Range: 0 ~ 7.
*/
static inline void adc_ll_pwdet_set_cct(uint32_t cct)
{
/* Capacitor tuning of the PA power monitor. cct set to the same value with PHY. */
LP_ADC.meas2_mux.sar2_pwdet_cct = cct;
}
/**
* Get adc cct for PWDET controller.
*
* @note Capacitor tuning of the PA power monitor. cct set to the same value with PHY.
* @return cct Range: 0 ~ 7.
*/
static inline uint32_t adc_ll_pwdet_get_cct(void)
{
/* Capacitor tuning of the PA power monitor. cct set to the same value with PHY. */
return LP_ADC.meas2_mux.sar2_pwdet_cct;
}
/*---------------------------------------------------------------
Common setting
---------------------------------------------------------------*/
/**
* Set ADC module controller.
* There are five SAR ADC controllers:
* Two digital controller: Continuous conversion mode (DMA). High performance with multiple channel scan modes;
* Two RTC controller: Single conversion modes (Polling). For low power purpose working during deep sleep;
* the other is dedicated for Power detect (PWDET / PKDET), Only support ADC2.
*
* @param adc_n ADC unit.
* @param ctrl ADC controller.
*/
__attribute__((always_inline))
static inline void adc_ll_set_controller(adc_unit_t adc_n, adc_ll_controller_t ctrl)
{
if (adc_n == ADC_UNIT_1) {
switch (ctrl) {
case ADC_LL_CTRL_RTC:
LP_ADC.meas1_mux.sar1_dig_force = 0; // 1: Select digital control; 0: Select RTC control.
LP_ADC.meas1_ctrl2.meas1_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
LP_ADC.meas1_ctrl2.sar1_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
break;
case ADC_LL_CTRL_ULP:
LP_ADC.meas1_mux.sar1_dig_force = 0; // 1: Select digital control; 0: Select RTC control.
LP_ADC.meas1_ctrl2.meas1_start_force = 0; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
LP_ADC.meas1_ctrl2.sar1_en_pad_force = 0; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
break;
case ADC_LL_CTRL_DIG:
LP_ADC.meas1_mux.sar1_dig_force = 1; // 1: Select digital control; 0: Select RTC control.
LP_ADC.meas1_ctrl2.meas1_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
LP_ADC.meas1_ctrl2.sar1_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
break;
default:
break;
}
} else { // adc_n == ADC_UNIT_2
switch (ctrl) {
case ADC_LL_CTRL_RTC:
LP_ADC.meas2_mux.sar2_rtc_force = 1; // 1: Select digital control; 0: Select RTC control.
LP_ADC.meas2_ctrl2.meas2_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
LP_ADC.meas2_ctrl2.sar2_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
break;
case ADC_LL_CTRL_ULP:
LP_ADC.meas2_mux.sar2_rtc_force = 0; // 1: Select digital control; 0: Select RTC control.
LP_ADC.meas2_ctrl2.meas2_start_force = 0; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
LP_ADC.meas2_ctrl2.sar2_en_pad_force = 0; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
break;
case ADC_LL_CTRL_DIG:
LP_ADC.meas2_mux.sar2_rtc_force = 0; // 1: Select digital control; 0: Select RTC control.
LP_ADC.meas2_ctrl2.meas2_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
LP_ADC.meas2_ctrl2.sar2_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
break;
default:
break;
}
}
}
// /**
// * Set ADC2 module arbiter work mode.
// * The arbiter is to improve the use efficiency of ADC2. After the control right is robbed by the high priority,
// * the low priority controller will read the invalid ADC data, and the validity of the data can be judged by the flag bit in the data.
// *
// * @note Only ADC2 support arbiter.
// * @note The arbiter's working clock is APB_CLK. When the APB_CLK clock drops below 8 MHz, the arbiter must be in shield mode.
// *
// * @param mode Refer to ``adc_arbiter_mode_t``.
// */
// __attribute__((always_inline))
// static inline void adc_ll_set_arbiter_work_mode(adc_arbiter_mode_t mode)
// {
// LP_ADC.meas2_mux.sar2_rtc_force = 0; // Enable arbiter in wakeup mode
// if (mode == ADC_ARB_MODE_FIX) {
// ADC.arb_ctrl.arb_grant_force = 0;
// ADC.arb_ctrl.arb_fix_priority = 1;
// } else if (mode == ADC_ARB_MODE_LOOP) {
// ADC.arb_ctrl.arb_grant_force = 0;
// ADC.arb_ctrl.arb_fix_priority = 0;
// } else {
// ADC.arb_ctrl.arb_grant_force = 1; // Shield arbiter.
// }
// }
/**
* Set ADC2 module controller priority in arbiter.
* The arbiter is to improve the use efficiency of ADC2. After the control right is robbed by the high priority,
* the low priority controller will read the invalid ADC data, and the validity of the data can be judged by the flag bit in the data.
*
* @note Only ADC2 support arbiter.
* @note The arbiter's working clock is APB_CLK. When the APB_CLK clock drops below 8 MHz, the arbiter must be in shield mode.
* @note Default priority: Wi-Fi(2) > RTC(1) > Digital(0);
*
* @param pri_rtc RTC controller priority. Range: 0 ~ 2.
* @param pri_dig Digital controller priority. Range: 0 ~ 2.
* @param pri_pwdet Wi-Fi controller priority. Range: 0 ~ 2.
*/
__attribute__((always_inline))
static inline void adc_ll_set_arbiter_priority(uint8_t pri_rtc, uint8_t pri_dig, uint8_t pri_pwdet)
{
if (pri_rtc != pri_dig && pri_rtc != pri_pwdet && pri_dig != pri_pwdet) {
ADC.arb_ctrl.arb_rtc_priority = pri_rtc;
ADC.arb_ctrl.arb_apb_priority = pri_dig;
ADC.arb_ctrl.arb_wifi_priority = pri_pwdet;
}
/* Should select highest priority controller. */
if (pri_rtc > pri_dig) {
ADC.arb_ctrl.arb_apb_force = 0;
ADC.arb_ctrl.arb_rtc_force = 1;
ADC.arb_ctrl.arb_wifi_force = 0;
} else {
ADC.arb_ctrl.arb_apb_force = 1;
ADC.arb_ctrl.arb_rtc_force = 0;
ADC.arb_ctrl.arb_wifi_force = 0;
}
}
/*---------------------------------------------------------------
Oneshot Read
---------------------------------------------------------------*/
static inline void adc_ll_vref_output(adc_unit_t adc, adc_channel_t channel, bool en)
{
abort();
}
/**
* Set adc output data format for RTC controller.
*
* @note ESP32P4 RTC controller only support 12bit.
* @param adc_n ADC unit.
* @param bits Output data bits width option.
*/
static inline void adc_oneshot_ll_set_output_bits(adc_unit_t adc_n, adc_bitwidth_t bits)
{
//ESP32P4 only supports 12bit, leave here for compatibility
HAL_ASSERT(bits == ADC_BITWIDTH_12 || bits == ADC_BITWIDTH_DEFAULT);
}
/**
* Enable adc channel to start convert.
*
* @note Only one channel can be selected for once measurement.
*
* @param adc_n ADC unit.
* @param channel ADC channel number for each ADCn.
*/
static inline void adc_oneshot_ll_set_channel(adc_unit_t adc_n, adc_channel_t channel)
{
if (adc_n == ADC_UNIT_1) {
LP_ADC.meas1_ctrl2.sar1_en_pad = (1 << channel); //only one channel is selected.
} else { // adc_n == ADC_UNIT_2
LP_ADC.meas2_ctrl2.sar2_en_pad = (1 << ((channel + 2))); //only one channel is selected.
}
}
/**
* Disable adc channel to start convert.
*
* @note Only one channel can be selected in once measurement.
*
* @param adc_n ADC unit.
* @param channel ADC channel number for each ADCn.
*/
static inline void adc_oneshot_ll_disable_channel(adc_unit_t adc_n)
{
if (adc_n == ADC_UNIT_1) {
LP_ADC.meas1_ctrl2.sar1_en_pad = 0; //only one channel is selected.
} else { // adc_n == ADC_UNIT_2
LP_ADC.meas2_ctrl2.sar2_en_pad = 0; //only one channel is selected.
}
}
/**
* Start conversion once by software for RTC controller.
*
* @note It may be block to wait conversion idle for ADC1.
*
* @param adc_n ADC unit.
*/
static inline void adc_oneshot_ll_start(adc_unit_t adc_n)
{
if (adc_n == ADC_UNIT_1) {
LP_ADC.meas1_ctrl2.meas1_start_sar = 0;
LP_ADC.meas1_ctrl2.meas1_start_sar = 1;
} else { // adc_n == ADC_UNIT_2
LP_ADC.meas2_ctrl2.meas2_start_sar = 0;
LP_ADC.meas2_ctrl2.meas2_start_sar = 1;
}
}
/**
* Clear the event for each ADCn for Oneshot mode
*
* @param event ADC event
*/
static inline void adc_oneshot_ll_clear_event(uint32_t event_mask)
{
// ADC.int_clr.val |= event_mask;
}
/**
* Check the event for each ADCn for Oneshot mode
*
* @param event ADC event
*
* @return
* -true : The conversion process is finish.
* -false : The conversion process is not finish.
*/
static inline bool adc_oneshot_ll_get_event(uint32_t event)
{
bool ret = true;
if (event == ADC_LL_EVENT_ADC1_ONESHOT_DONE) {
ret = (bool)LP_ADC.meas1_ctrl2.meas1_done_sar;
} else if (event == ADC_LL_EVENT_ADC2_ONESHOT_DONE) {
ret = (bool)LP_ADC.meas2_ctrl2.meas2_done_sar;
} else {
HAL_ASSERT(false);
}
return ret;
}
/**
* Get the converted value for each ADCn for RTC controller.
*
* @param adc_n ADC unit.
* @return
* - Converted value.
*/
static inline uint32_t adc_oneshot_ll_get_raw_result(adc_unit_t adc_n)
{
uint32_t ret_val = 0;
if (adc_n == ADC_UNIT_1) {
ret_val = HAL_FORCE_READ_U32_REG_FIELD(LP_ADC.meas1_ctrl2, meas1_data_sar);
} else { // adc_n == ADC_UNIT_2
ret_val = HAL_FORCE_READ_U32_REG_FIELD(LP_ADC.meas2_ctrl2, meas2_data_sar);
}
return ret_val;
}
/**
* Analyze whether the obtained raw data is correct.
* ADC2 can use arbiter. The arbitration result can be judged by the flag bit in the original data.
*
* @param adc_n ADC unit.
* @param raw ADC raw data input (convert value).
* @return
* - true: raw data is valid
* - false: raw data is invalid
*/
static inline bool adc_oneshot_ll_raw_check_valid(adc_unit_t adc_n, uint32_t raw)
{
if (adc_n == ADC_UNIT_1) {
return true;
}
adc_ll_rtc_output_data_t *temp = (adc_ll_rtc_output_data_t *)&raw;
if (temp->flag == 0) {
return true;
} else {
//Could be ADC_LL_RTC_CTRL_UNSELECTED, ADC_LL_RTC_CTRL_BREAK or ADC_LL_RTC_DATA_FAIL
return false;
}
}
/**
* ADC module RTC output data invert or not.
*
* @param adc_n ADC unit.
* @param inv_en data invert or not.
*/
static inline void adc_oneshot_ll_output_invert(adc_unit_t adc_n, bool inv_en)
{
if (adc_n == ADC_UNIT_1) {
LP_ADC.reader1_ctrl.sar1_data_inv = inv_en; // Enable / Disable ADC data invert
} else { // adc_n == ADC_UNIT_2
LP_ADC.reader2_ctrl.sar2_data_inv = inv_en; // Enable / Disable ADC data invert
}
}
/**
* Enable oneshot conversion trigger
*
* @param adc_n ADC unit
*/
static inline void adc_oneshot_ll_enable(adc_unit_t adc_n)
{
(void)adc_n;
HP_SYS_CLKRST.soc_clk_ctrl2.reg_adc_apb_clk_en = 1;
HP_SYS_CLKRST.peri_clk_ctrl23.reg_adc_clk_en = 1;
}
/**
* Disable oneshot conversion trigger for all the ADC units
*/
static inline void adc_oneshot_ll_disable_all_unit(void)
{
HP_SYS_CLKRST.soc_clk_ctrl2.reg_adc_apb_clk_en = 0;
HP_SYS_CLKRST.peri_clk_ctrl23.reg_adc_clk_en = 0;
}
/*---------------------------------------------------------------
RTC controller setting
---------------------------------------------------------------*/
/**
* ADC SAR clock division factor setting. ADC SAR clock divided from `RTC_FAST_CLK`.
*
* @param div Division factor.
*/
static inline void adc_ll_set_sar_clk_div(adc_unit_t adc_n, uint32_t div)
{
if (adc_n == ADC_UNIT_1) {
HAL_FORCE_MODIFY_U32_REG_FIELD(LP_ADC.reader1_ctrl, sar1_clk_div, div);
} else { // adc_n == ADC_UNIT_2
HAL_FORCE_MODIFY_U32_REG_FIELD(LP_ADC.reader2_ctrl, sar2_clk_div, div);
}
}
/**
* Reset RTC controller FSM.
*/
static inline void adc_ll_rtc_reset(void)
{
LPPERI.reset_en.rst_en_lp_adc = 1;
LPPERI.reset_en.rst_en_lp_adc = 0;
}
/**
* Set the attenuation of a particular channel on ADCn.
*
* @note For any given channel, this function must be called before the first time conversion.
*
* The default ADC full-scale voltage is 1.1V. To read higher voltages (up to the pin maximum voltage,
* usually 3.3V) requires setting >0dB signal attenuation for that ADC channel.
*
* When VDD_A is 3.3V:
*
* - 0dB attenuation (ADC_ATTEN_DB_0) gives full-scale voltage 1.1V
* - 2.5dB attenuation (ADC_ATTEN_DB_2_5) gives full-scale voltage 1.5V
* - 6dB attenuation (ADC_ATTEN_DB_6) gives full-scale voltage 2.2V
* - 11dB attenuation (ADC_ATTEN_DB_12) gives full-scale voltage 3.9V (see note below)
*
* @note The full-scale voltage is the voltage corresponding to a maximum reading (depending on ADC1 configured
* bit width, this value is: 4095 for 12-bits, 2047 for 11-bits, 1023 for 10-bits, 511 for 9 bits.)
*
* @note At 11dB attenuation the maximum voltage is limited by VDD_A, not the full scale voltage.
*
* Due to ADC characteristics, most accurate results are obtained within the following approximate voltage ranges:
*
* - 0dB attenuation (ADC_ATTEN_DB_0) between 100 and 950mV
* - 2.5dB attenuation (ADC_ATTEN_DB_2_5) between 100 and 1250mV
* - 6dB attenuation (ADC_ATTEN_DB_6) between 150 to 1750mV
* - 11dB attenuation (ADC_ATTEN_DB_12) between 150 to 2450mV
*
* For maximum accuracy, use the ADC calibration APIs and measure voltages within these recommended ranges.
*
* @param adc_n ADC unit.
* @param channel ADCn channel number.
* @param atten The attenuation option.
*/
static inline void adc_oneshot_ll_set_atten(adc_unit_t adc_n, adc_channel_t channel, adc_atten_t atten)
{
if (adc_n == ADC_UNIT_1) {
LP_ADC.atten1.sar1_atten = ( LP_ADC.atten1.sar1_atten & ~(0x3 << (channel * 2)) ) | ((atten & 0x3) << (channel * 2));
} else { // adc_n == ADC_UNIT_2
LP_ADC.atten2.sar2_atten = ( LP_ADC.atten2.sar2_atten & ~(0x3 << ((channel + 2) * 2)) ) | ((atten & 0x3) << ((channel + 2) * 2));
}
}
/**
* Get the attenuation of a particular channel on ADCn.
*
* @param adc_n ADC unit.
* @param channel ADCn channel number.
* @return atten The attenuation option.
*/
__attribute__((always_inline))
static inline adc_atten_t adc_ll_get_atten(adc_unit_t adc_n, adc_channel_t channel)
{
if (adc_n == ADC_UNIT_1) {
return (adc_atten_t)((LP_ADC.atten1.sar1_atten >> (channel * 2)) & 0x3);
} else {
return (adc_atten_t)((LP_ADC.atten2.sar2_atten >> ((channel + 2) * 2)) & 0x3);
}
}
#ifdef __cplusplus
}
#endif

View File

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2022-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -20,6 +20,7 @@
#include <stdlib.h>
#include <stdbool.h>
#include "soc/soc.h"
#include "soc/lp_adc_struct.h"
#ifdef __cplusplus
extern "C" {
@ -39,6 +40,30 @@ typedef enum {
/*---------------------------------------------------------------
SAR power control
---------------------------------------------------------------*/
/**
* Set SAR power mode
*
* @param mode See `sar_ctrl_ll_power_t`
*/
__attribute__((always_inline))
static inline void sar_ctrl_ll_set_power_mode(sar_ctrl_ll_power_t mode)
{
if (mode == SAR_CTRL_LL_POWER_FSM) {
// LP_ADC.sar_peri_clk_gate_conf.saradc_clk_en = 1;
LP_ADC.force_wpd_sar.force_xpd_sar1 = 0x0;
LP_ADC.force_wpd_sar.force_xpd_sar2 = 0x0;
} else if (mode == SAR_CTRL_LL_POWER_ON) {
// LP_ADC.sar_peri_clk_gate_conf.saradc_clk_en = 1;
LP_ADC.force_wpd_sar.force_xpd_sar1 = 0x3;
LP_ADC.force_wpd_sar.force_xpd_sar2 = 0x3;
} else {
// LP_ADC.sar_peri_clk_gate_conf.saradc_clk_en = 0;
LP_ADC.force_wpd_sar.force_xpd_sar1 = 0x2;
LP_ADC.force_wpd_sar.force_xpd_sar2 = 0x2;
}
}
/**
* @brief Set SAR power mode when controlled by PWDET
*

View File

@ -40,6 +40,7 @@ extern "C" {
#define ADC_LL_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
#define ADC_LL_SAR_CLK_DIV_DEFAULT(PERIPH_NUM) (1)
#define ADC_LL_DELAY_CYCLE_AFTER_DONE_SIGNAL (0)
#define ADC_LL_RTC_GPIO_SUPPORTED (1)
/*---------------------------------------------------------------
DMA

View File

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -43,6 +43,7 @@ extern "C" {
#define ADC_LL_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
#define ADC_LL_SAR_CLK_DIV_DEFAULT(PERIPH_NUM) (1)
#define ADC_LL_DELAY_CYCLE_AFTER_DONE_SIGNAL (0)
#define ADC_LL_RTC_GPIO_SUPPORTED (1)
/*---------------------------------------------------------------
DMA

View File

@ -191,7 +191,7 @@ typedef struct {
};
} adc_digi_output_data_t;
#elif CONFIG_IDF_TARGET_ESP32S3
#elif CONFIG_IDF_TARGET_ESP32S3 || CONFIG_IDF_TARGET_ESP32P4
/**
* @brief ADC digital controller (DMA mode) output data format.
* Used to analyze the acquired ADC (DMA) data.

View File

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2022-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -7,4 +7,15 @@
#include "soc/adc_periph.h"
/* Store IO number corresponding to the ADC channel number. */
const int adc_channel_io_map[SOC_ADC_PERIPH_NUM][SOC_ADC_MAX_CHANNEL_NUM] = {};
const int adc_channel_io_map[SOC_ADC_PERIPH_NUM][SOC_ADC_MAX_CHANNEL_NUM] = {
/* ADC1 */
{
ADC1_CHANNEL_0_GPIO_NUM, ADC1_CHANNEL_1_GPIO_NUM, ADC1_CHANNEL_2_GPIO_NUM, ADC1_CHANNEL_3_GPIO_NUM,
ADC1_CHANNEL_4_GPIO_NUM, ADC1_CHANNEL_5_GPIO_NUM, ADC1_CHANNEL_6_GPIO_NUM, ADC1_CHANNEL_7_GPIO_NUM
},
/* ADC2 */
{
ADC2_CHANNEL_0_GPIO_NUM, ADC2_CHANNEL_1_GPIO_NUM, ADC2_CHANNEL_2_GPIO_NUM,
ADC2_CHANNEL_3_GPIO_NUM, ADC2_CHANNEL_4_GPIO_NUM, ADC2_CHANNEL_5_GPIO_NUM
}
};

View File

@ -3,6 +3,10 @@
# using gen_soc_caps_kconfig.py, do not edit manually
#####################################################
config SOC_ADC_SUPPORTED
bool
default y
config SOC_ANA_CMPR_SUPPORTED
bool
default y
@ -303,13 +307,21 @@ config SOC_AES_SUPPORT_AES_256
bool
default y
config SOC_ADC_RTC_CTRL_SUPPORTED
bool
default y
config SOC_ADC_DIG_CTRL_SUPPORTED
bool
default y
config SOC_ADC_PERIPH_NUM
int
default 1
default 2
config SOC_ADC_MAX_CHANNEL_NUM
int
default 7
default 8
config SOC_ADC_ATTEN_NUM
int
@ -317,7 +329,7 @@ config SOC_ADC_ATTEN_NUM
config SOC_ADC_DIGI_CONTROLLER_NUM
int
default 1
default 2
config SOC_ADC_PATT_LEN_MAX
int

View File

@ -1,7 +1,49 @@
/*
* SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2022-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#define ADC1_GPIO16_CHANNEL 0
#define ADC1_CHANNEL_0_GPIO_NUM 16
#define ADC1_GPIO17_CHANNEL 1
#define ADC1_CHANNEL_1_GPIO_NUM 17
#define ADC1_GPIO18_CHANNEL 2
#define ADC1_CHANNEL_2_GPIO_NUM 18
#define ADC1_GPIO19_CHANNEL 3
#define ADC1_CHANNEL_3_GPIO_NUM 19
#define ADC1_GPIO20_CHANNEL 4
#define ADC1_CHANNEL_4_GPIO_NUM 20
#define ADC1_GPIO21_CHANNEL 5
#define ADC1_CHANNEL_5_GPIO_NUM 21
#define ADC1_GPIO22_CHANNEL 6
#define ADC1_CHANNEL_6_GPIO_NUM 22
#define ADC1_GPIO23_CHANNEL 7
#define ADC1_CHANNEL_7_GPIO_NUM 23
#define ADC2_GPIO49_CHANNEL 0
#define ADC2_CHANNEL_0_GPIO_NUM 49
#define ADC2_GPIO50_CHANNEL 1
#define ADC2_CHANNEL_1_GPIO_NUM 50
#define ADC2_GPIO51_CHANNEL 2
#define ADC2_CHANNEL_2_GPIO_NUM 51
#define ADC2_GPIO52_CHANNEL 3
#define ADC2_CHANNEL_3_GPIO_NUM 52
#define ADC2_GPIO53_CHANNEL 4
#define ADC2_CHANNEL_4_GPIO_NUM 53
#define ADC2_GPIO54_CHANNEL 5
#define ADC2_CHANNEL_5_GPIO_NUM 54

View File

@ -684,6 +684,7 @@ typedef struct {
volatile adc_ctrl_date_reg_t ctrl_date;
} adc_dev_t;
extern adc_dev_t ADC;
#ifndef __cplusplus
_Static_assert(sizeof(adc_dev_t) == 0x400, "Invalid size of adc_dev_t structure");

View File

@ -589,6 +589,36 @@ typedef enum {
//////////////////////////////////////////////////ADC///////////////////////////////////////////////////////////////////
/**
* @brief Array initializer for all supported clock sources of ADC digital controller
*/
#define SOC_ADC_DIGI_CLKS {SOC_MOD_CLK_XTAL, SOC_MOD_CLK_PLL_F80M, SOC_MOD_CLK_RC_FAST}
/**
* @brief ADC digital controller clock source
*/
typedef enum {
ADC_DIGI_CLK_SRC_XTAL = SOC_MOD_CLK_XTAL, /*!< Select XTAL as the source clock */
ADC_DIGI_CLK_SRC_RC_FAST = SOC_MOD_CLK_RC_FAST, /*!< Select RC_FAST as the source clock */
ADC_DIGI_CLK_SRC_PLL_F80M = SOC_MOD_CLK_PLL_F80M, /*!< Select PLL_F80M as the source clock */
ADC_DIGI_CLK_SRC_DEFAULT = SOC_MOD_CLK_PLL_F80M, /*!< Select PLL_F80M as the default clock choice */
} soc_periph_adc_digi_clk_src_t;
/**
* @brief Array initializer for all supported clock sources of ADC RTC controller
*/
#define SOC_ADC_RTC_CLKS {SOC_MOD_CLK_RC_FAST}
/**
* @brief ADC RTC controller clock source
*/
typedef enum {
ADC_RTC_CLK_SRC_RC_FAST = SOC_MOD_CLK_RC_FAST, /*!< Select RC_FAST as the source clock */
ADC_RTC_CLK_SRC_DEFAULT = SOC_MOD_CLK_RC_FAST, /*!< Select RC_FAST as the default clock choice */
} soc_periph_adc_rtc_clk_src_t;
//////////////////////////////////////////////////MWDT/////////////////////////////////////////////////////////////////
/**

View File

@ -259,11 +259,11 @@ typedef union {
*/
uint32_t cocpu_saradc2_int_raw:1;
/** cocpu_saradc1_error_int_raw : R/WTC/SS; bitpos: [2]; default: 0;
* An errro occurs from ADC1, int raw.
* An error occurs from ADC1, int raw.
*/
uint32_t cocpu_saradc1_error_int_raw:1;
/** cocpu_saradc2_error_int_raw : R/WTC/SS; bitpos: [3]; default: 0;
* An errro occurs from ADC2, int raw.
* An error occurs from ADC2, int raw.
*/
uint32_t cocpu_saradc2_error_int_raw:1;
/** cocpu_saradc1_wake_int_raw : R/WTC/SS; bitpos: [4]; default: 0;
@ -293,11 +293,11 @@ typedef union {
*/
uint32_t cocpu_saradc2_int_ena:1;
/** cocpu_saradc1_error_int_ena : R/WTC; bitpos: [2]; default: 0;
* An errro occurs from ADC1, int enable.
* An error occurs from ADC1, int enable.
*/
uint32_t cocpu_saradc1_error_int_ena:1;
/** cocpu_saradc2_error_int_ena : R/WTC; bitpos: [3]; default: 0;
* An errro occurs from ADC2, int enable.
* An error occurs from ADC2, int enable.
*/
uint32_t cocpu_saradc2_error_int_ena:1;
/** cocpu_saradc1_wake_int_ena : R/WTC; bitpos: [4]; default: 0;
@ -327,11 +327,11 @@ typedef union {
*/
uint32_t cocpu_saradc2_int_st:1;
/** cocpu_saradc1_error_int_st : RO; bitpos: [2]; default: 0;
* An errro occurs from ADC1, int status.
* An error occurs from ADC1, int status.
*/
uint32_t cocpu_saradc1_error_int_st:1;
/** cocpu_saradc2_error_int_st : RO; bitpos: [3]; default: 0;
* An errro occurs from ADC2, int status.
* An error occurs from ADC2, int status.
*/
uint32_t cocpu_saradc2_error_int_st:1;
/** cocpu_saradc1_wake_int_st : RO; bitpos: [4]; default: 0;
@ -361,11 +361,11 @@ typedef union {
*/
uint32_t cocpu_saradc2_int_clr:1;
/** cocpu_saradc1_error_int_clr : WT; bitpos: [2]; default: 0;
* An errro occurs from ADC1, int clear.
* An error occurs from ADC1, int clear.
*/
uint32_t cocpu_saradc1_error_int_clr:1;
/** cocpu_saradc2_error_int_clr : WT; bitpos: [3]; default: 0;
* An errro occurs from ADC2, int clear.
* An error occurs from ADC2, int clear.
*/
uint32_t cocpu_saradc2_error_int_clr:1;
/** cocpu_saradc1_wake_int_clr : WT; bitpos: [4]; default: 0;
@ -395,11 +395,11 @@ typedef union {
*/
uint32_t cocpu_saradc2_int_ena_w1ts:1;
/** cocpu_saradc1_error_int_ena_w1ts : WT; bitpos: [2]; default: 0;
* An errro occurs from ADC1, write 1 to assert int enable.
* An error occurs from ADC1, write 1 to assert int enable.
*/
uint32_t cocpu_saradc1_error_int_ena_w1ts:1;
/** cocpu_saradc2_error_int_ena_w1ts : WT; bitpos: [3]; default: 0;
* An errro occurs from ADC2, write 1 to assert int enable.
* An error occurs from ADC2, write 1 to assert int enable.
*/
uint32_t cocpu_saradc2_error_int_ena_w1ts:1;
/** cocpu_saradc1_wake_int_ena_w1ts : WT; bitpos: [4]; default: 0;
@ -429,11 +429,11 @@ typedef union {
*/
uint32_t cocpu_saradc2_int_ena_w1tc:1;
/** cocpu_saradc1_error_int_ena_w1tc : WT; bitpos: [2]; default: 0;
* An errro occurs from ADC1, write 1 to deassert int enable.
* An error occurs from ADC1, write 1 to deassert int enable.
*/
uint32_t cocpu_saradc1_error_int_ena_w1tc:1;
/** cocpu_saradc2_error_int_ena_w1tc : WT; bitpos: [3]; default: 0;
* An errro occurs from ADC2, write 1 to deassert int enable.
* An error occurs from ADC2, write 1 to deassert int enable.
*/
uint32_t cocpu_saradc2_error_int_ena_w1tc:1;
/** cocpu_saradc1_wake_int_ena_w1tc : WT; bitpos: [4]; default: 0;
@ -592,6 +592,7 @@ typedef struct {
volatile rtcadc_sar2_hw_wakeup_reg_t sar2_hw_wakeup;
} rtcadc_dev_t;
extern rtcadc_dev_t LP_ADC;
#ifndef __cplusplus
_Static_assert(sizeof(rtcadc_dev_t) == 0x74, "Invalid size of rtcadc_dev_t structure");

View File

@ -37,3 +37,44 @@
#define I2C_SAR_ADC_DTEST_VDD_GRP1 9
#define I2C_SAR_ADC_DTEST_VDD_GRP1_MSB 3
#define I2C_SAR_ADC_DTEST_VDD_GRP1_LSB 0
#define ADC_SAR1_SAMPLE_CYCLE_ADDR 0x2
#define ADC_SAR1_SAMPLE_CYCLE_ADDR_MSB 0x2
#define ADC_SAR1_SAMPLE_CYCLE_ADDR_LSB 0x0
#define ADC_SAR1_DREF_ADDR 0x2
#define ADC_SAR1_DREF_ADDR_MSB 0x6
#define ADC_SAR1_DREF_ADDR_LSB 0x4
#define ADC_SAR2_INITIAL_CODE_LOW_ADDR 0x3
#define ADC_SAR2_INITIAL_CODE_LOW_ADDR_MSB 0x7
#define ADC_SAR2_INITIAL_CODE_LOW_ADDR_LSB 0x0
#define ADC_SAR2_INITIAL_CODE_HIGH_ADDR 0x4
#define ADC_SAR2_INITIAL_CODE_HIGH_ADDR_MSB 0x3
#define ADC_SAR2_INITIAL_CODE_HIGH_ADDR_LSB 0x0
#define ADC_SAR2_SAMPLE_CYCLE_ADDR 0x5
#define ADC_SAR2_SAMPLE_CYCLE_ADDR_MSB 0x2
#define ADC_SAR2_SAMPLE_CYCLE_ADDR_LSB 0x0
#define ADC_SAR2_DREF_ADDR 0x5
#define ADC_SAR2_DREF_ADDR_MSB 0x6
#define ADC_SAR2_DREF_ADDR_LSB 0x4
#define ADC_SAR1_ENCAL_REF_ADDR 0x7
#define ADC_SAR1_ENCAL_REF_ADDR_MSB 4
#define ADC_SAR1_ENCAL_REF_ADDR_LSB 4
#define ADC_SAR1_ENCAL_GND_ADDR 0x7
#define ADC_SAR1_ENCAL_GND_ADDR_MSB 5
#define ADC_SAR1_ENCAL_GND_ADDR_LSB 5
#define ADC_SAR2_ENCAL_REF_ADDR 0x7
#define ADC_SAR2_ENCAL_REF_ADDR_MSB 6
#define ADC_SAR2_ENCAL_REF_ADDR_LSB 6
#define ADC_SAR2_ENCAL_GND_ADDR 0x7
#define ADC_SAR2_ENCAL_GND_ADDR_MSB 7
#define ADC_SAR2_ENCAL_GND_ADDR_LSB 7

View File

@ -17,7 +17,7 @@
#pragma once
/*-------------------------- COMMON CAPS ---------------------------------------*/
// #define SOC_ADC_SUPPORTED 1 //TODO: IDF-6496
#define SOC_ADC_SUPPORTED 1
#define SOC_ANA_CMPR_SUPPORTED 1
#define SOC_DEDICATED_GPIO_SUPPORTED 1
#define SOC_UART_SUPPORTED 1
@ -108,18 +108,20 @@
/*-------------------------- ADC CAPS -------------------------------*/
/*!< SAR ADC Module*/
// #define SOC_ADC_DIG_CTRL_SUPPORTED 1 //TODO: IDF-6496, TODO: IDF-6497
#define SOC_ADC_RTC_CTRL_SUPPORTED 1
#define SOC_ADC_DIG_CTRL_SUPPORTED 1
// #define SOC_ADC_ARBITER_SUPPORTED 1
// #define SOC_ADC_DIG_IIR_FILTER_SUPPORTED 1
// #define SOC_ADC_MONITOR_SUPPORTED 1
#define SOC_ADC_DIG_SUPPORTED_UNIT(UNIT) 1 //Digital controller supported ADC unit
// #define SOC_ADC_DMA_SUPPORTED 1
#define SOC_ADC_PERIPH_NUM (1U)
#define SOC_ADC_CHANNEL_NUM(PERIPH_NUM) (7)
#define SOC_ADC_MAX_CHANNEL_NUM (7)
#define SOC_ADC_PERIPH_NUM (2)
#define SOC_ADC_CHANNEL_NUM(PERIPH_NUM) (14)
#define SOC_ADC_MAX_CHANNEL_NUM (8)
#define SOC_ADC_ATTEN_NUM (4)
/*!< Digital */
#define SOC_ADC_DIGI_CONTROLLER_NUM (1U)
#define SOC_ADC_DIGI_CONTROLLER_NUM (2)
#define SOC_ADC_PATT_LEN_MAX (8) /*!< Two pattern tables, each contains 4 items. Each item takes 1 byte */
#define SOC_ADC_DIGI_MAX_BITWIDTH (12)
#define SOC_ADC_DIGI_MIN_BITWIDTH (12)

View File

@ -82,6 +82,7 @@ PROVIDE ( LP_I2C = 0x50122000 );
PROVIDE ( LP_SPI = 0x50123000 );
PROVIDE ( LP_WDT = 0x50116000 );
PROVIDE ( LP_I2S = 0x50125000 );
PROVIDE ( LP_ADC = 0x50127000 );
PROVIDE ( LP_TOUCH = 0x50128000 );
PROVIDE ( LP_GPIO = 0x5012A000 );
PROVIDE ( LP_PERI_PMS = 0x5012E000 );

View File

@ -9,12 +9,13 @@
#include <stdint.h>
//include soc related (generated) definitions
#include "soc/soc_caps.h"
#include "sdkconfig.h"
#if SOC_RTCIO_PIN_COUNT > 0
#include "soc/rtc_io_channel.h"
#endif
#if SOC_ADC_RTC_CTRL_SUPPORTED
#if SOC_ADC_RTC_CTRL_SUPPORTED && !CONFIG_IDF_TARGET_ESP32P4
#include "soc/sens_struct.h"
#endif

View File

@ -1,5 +1,5 @@
| Supported Targets | ESP32 | ESP32-C2 | ESP32-C3 | ESP32-C6 | ESP32-H2 | ESP32-S2 | ESP32-S3 |
| ----------------- | ----- | -------- | -------- | -------- | -------- | -------- | -------- |
| Supported Targets | ESP32 | ESP32-C2 | ESP32-C3 | ESP32-C6 | ESP32-H2 | ESP32-P4 | ESP32-S2 | ESP32-S3 |
| ----------------- | ----- | -------- | -------- | -------- | -------- | -------- | -------- | -------- |
# ADC Single Read Example

View File

@ -1,6 +1,5 @@
# SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
# SPDX-License-Identifier: CC0-1.0
import pytest
from pytest_embedded.dut import Dut