gpio/driver: Sped the gpio_intr_service ISR up by 1.5 uSeconds (+-50% faster).

Removed as much branching (if statements) from the
gpio_intr_service ISR, as possible and split the while loop into
two. Also forced writing the two status*_w1tc variables only once,
instead of every time after calling the external function hooks.

The measurements below, was done using the following tools:

Toolchain version: crosstool-ng-1.22.0-80-g6c4433a
Compiler version: 5.2.0

Here follows a comparison of the gpio_intr_service ISR's
execution time, using a DS1054 oscilloscope. All the time spent
calling external functions, via the function pointers
gpio_isr_func[gpio_num].fn, were disregarded.

With OPTIMIZATION_FLAGS = -Og, 1.34 uSeconds faster:

3.22 uSec (with this patch)
4.56 uSec (with commit 71c90ac4)

100 - (100 * 4.56 / 3.22) = 42% faster

With OPTIMIZATION_FLAGS = -Os, 1.65 uSeconds faster:

2.89 uSec (with this patch)
4.54 uSec (with commit 71c90ac4)

100 - (100 * 4.54 / 2.89) = 57% faster

Signed-off-by: Konstantin Kondrashov <konstantin@espressif.com>

Merges https://github.com/espressif/esp-idf/pull/2861
This commit is contained in:
Pieter du Preez 2018-12-21 14:07:51 +00:00 committed by bot
parent d34ca0b897
commit b8dc48ab18

View File

@ -327,37 +327,37 @@ esp_err_t gpio_reset_pin(gpio_num_t gpio_num)
return ESP_OK;
}
void IRAM_ATTR gpio_intr_service(void* arg)
static inline void IRAM_ATTR gpio_isr_loop(uint32_t status, const uint32_t gpio_num_start) {
while (status) {
int nbit = __builtin_ffs(status) - 1;
status &= ~(1 << nbit);
int gpio_num = gpio_num_start + nbit;
if (gpio_isr_func[gpio_num].fn != NULL) {
gpio_isr_func[gpio_num].fn(gpio_isr_func[gpio_num].args);
}
}
}
static void IRAM_ATTR gpio_intr_service(void* arg)
{
//GPIO intr process
uint32_t gpio_num = 0;
//read status to get interrupt status for GPIO0-31
uint32_t gpio_intr_status;
gpio_intr_status = GPIO.status;
//read status1 to get interrupt status for GPIO32-39
uint32_t gpio_intr_status_h;
gpio_intr_status_h = GPIO.status1.intr_st;
if (gpio_isr_func == NULL) {
return;
}
do {
if (gpio_num < 32) {
if (gpio_intr_status & BIT(gpio_num)) { //gpio0-gpio31
if (gpio_isr_func[gpio_num].fn != NULL) {
gpio_isr_func[gpio_num].fn(gpio_isr_func[gpio_num].args);
}
GPIO.status_w1tc = BIT(gpio_num);
}
} else {
if (gpio_intr_status_h & BIT(gpio_num - 32)) {
if (gpio_isr_func[gpio_num].fn != NULL) {
gpio_isr_func[gpio_num].fn(gpio_isr_func[gpio_num].args);
}
GPIO.status1_w1tc.intr_st = BIT(gpio_num - 32);
}
}
} while (++gpio_num < GPIO_PIN_COUNT);
//read status to get interrupt status for GPIO0-31
const uint32_t gpio_intr_status = GPIO.status;
if (gpio_intr_status) {
gpio_isr_loop(gpio_intr_status, 0);
GPIO.status_w1tc = gpio_intr_status;
}
//read status1 to get interrupt status for GPIO32-39
const uint32_t gpio_intr_status_h = GPIO.status1.intr_st;
if (gpio_intr_status_h) {
gpio_isr_loop(gpio_intr_status_h, 32);
GPIO.status1_w1tc.intr_st = gpio_intr_status_h;
}
}
esp_err_t gpio_isr_handler_add(gpio_num_t gpio_num, gpio_isr_t isr_handler, void* args)