Merge branch 'bugfix/fix_potential_cache_msync_issue_on_psram_stack' into 'master'

cache: improve esp_cache_msync() test cases, added psram stack test

Closes IDF-7833

See merge request espressif/esp-idf!24837
This commit is contained in:
Armando (Dou Yiwen) 2023-08-02 10:27:59 +08:00
commit aedc9f06fe
6 changed files with 146 additions and 84 deletions

View File

@ -0,0 +1,4 @@
set(srcs "test_cache_utils.c")
idf_component_register(SRCS ${srcs}
INCLUDE_DIRS include)

View File

@ -0,0 +1,32 @@
/*
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <esp_types.h>
#include "esp_err.h"
#include "esp_log.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* Set addr space dirty
*
* @param[in] vaddr_start start addr of the space
* @param[in] size size of the space
*
* @return
* - ESP_OK
* - ESP_ERR_INVALID_ARG: Currently no support for non-4B-aligned space
*/
esp_err_t test_set_buffer_dirty(intptr_t vaddr_start, size_t size);
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,28 @@
/*
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <string.h>
#include <inttypes.h>
#include "test_mm_utils.h"
const static char *TAG = "cache_utils";
esp_err_t test_set_buffer_dirty(intptr_t vaddr_start, size_t size)
{
if (((vaddr_start % 32) != 0) || ((size % 32) != 0)) {
ESP_LOGE(TAG, "addr not 4B aligned");
return ESP_ERR_INVALID_ARG;
}
uint32_t *vaddr = (uint32_t *)vaddr_start;
printf("vaddr: %p, size: 0x%zx\n", vaddr, size);
for (int i = 0; i < size / sizeof(uint32_t); i++) {
vaddr[i] = 0xcc;
}
return ESP_OK;
}

View File

@ -1,7 +1,7 @@
# This is the project CMakeLists.txt file for the test subproject
cmake_minimum_required(VERSION 3.16)
set(EXTRA_COMPONENT_DIRS "$ENV{IDF_PATH}/tools/unit-test-app/components")
set(EXTRA_COMPONENT_DIRS "$ENV{IDF_PATH}/components/esp_mm/test_apps/components")
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
project(mm_test)

View File

@ -10,5 +10,5 @@ endif()
# In order for the cases defined by `TEST_CASE` to be linked into the final elf,
# the component can be registered as WHOLE_ARCHIVE
idf_component_register(SRCS ${srcs}
PRIV_REQUIRES test_utils spi_flash esp_mm driver esp_timer
PRIV_REQUIRES unity esp_partition spi_flash esp_mm driver esp_timer test_mm_utils
WHOLE_ARCHIVE)

View File

@ -13,6 +13,7 @@
#include "unity.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "esp_rom_sys.h"
#include "esp_memory_utils.h"
#include "esp_heap_caps.h"
@ -21,6 +22,7 @@
#include "esp_timer.h"
#include "esp_partition.h"
#include "esp_flash.h"
#include "test_mm_utils.h"
const static char *TAG = "CACHE_TEST";
@ -28,13 +30,13 @@ const static char *TAG = "CACHE_TEST";
#define TEST_BUF {0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9}
#define TEST_OFFSET 0x100000
#if CONFIG_IDF_TARGET_ESP32S2
#define TEST_SYNC_START 0x3F500000
#define TEST_SYNC_SIZE 0xA80000
#define TEST_SYNC_START (0x3F500000 + TEST_OFFSET)
#elif CONFIG_IDF_TARGET_ESP32S3
#define TEST_SYNC_START 0x3C000000
#define TEST_SYNC_SIZE 0x2000000
#define TEST_SYNC_START (0x3C000000 + TEST_OFFSET)
#endif
#define TEST_SYNC_SIZE 0x8000
#define RECORD_TIME_PREPARE() uint32_t __t1, __t2
@ -42,82 +44,6 @@ const static char *TAG = "CACHE_TEST";
#define RECORD_TIME_END(p_time) do{__t2 = esp_cpu_get_cycle_count(); p_time = (__t2 - __t1);} while(0)
#define GET_US_BY_CCOUNT(t) ((double)(t)/CONFIG_ESP_DEFAULT_CPU_FREQ_MHZ)
static const uint8_t s_test_buf[TEST_NUM] = TEST_BUF;
static DRAM_ATTR bool diff_res;
static DRAM_ATTR uint32_t s_check_times = 0;
static void NOINLINE_ATTR IRAM_ATTR s_test_rodata_cb(void *arg)
{
bool sync_flag = *(bool *)arg;
if (sync_flag) {
uint8_t cmp_buf[TEST_NUM] = TEST_BUF;
for (int i = 0; i < TEST_NUM; i++) {
if (cmp_buf[i] != s_test_buf[i]) {
diff_res |= true;
}
}
s_check_times++;
}
}
/**
* This test tests if the esp_cache_msync() suspending CPU->Cache access is short enough
* 1. Register an IRAM callback, but access rodata inside the callback
* 2. esp_cache_msync() will suspend the CPU access to the cache
* 3. Therefore the rodata access in `s_test_rodata_cb()` should be blocked, most of the times
* 4. Note if the callback frequency is less, there might be few successful rodata access, as code execution needs time
*/
TEST_CASE("test cache msync short enough when suspending an ISR", "[cache]")
{
uint32_t sync_time = 0;
uint32_t sync_time_us = 20;
RECORD_TIME_PREPARE();
//Do msync first, as the first writeback / invalidate takes long time, next msyncs will be shorter and they keep unchanged almost
RECORD_TIME_START();
TEST_ESP_OK(esp_cache_msync((void *)TEST_SYNC_START, TEST_SYNC_SIZE, ESP_CACHE_MSYNC_FLAG_DIR_C2M | ESP_CACHE_MSYNC_FLAG_INVALIDATE));
RECORD_TIME_END(sync_time);
sync_time_us = GET_US_BY_CCOUNT(sync_time);
printf("first sync_time_us: %"PRId32"\n", sync_time_us);
RECORD_TIME_START();
TEST_ESP_OK(esp_cache_msync((void *)TEST_SYNC_START, TEST_SYNC_SIZE, ESP_CACHE_MSYNC_FLAG_DIR_C2M | ESP_CACHE_MSYNC_FLAG_INVALIDATE));
RECORD_TIME_END(sync_time);
sync_time_us = GET_US_BY_CCOUNT(sync_time);
printf("sync_time_us: %"PRId32"\n", sync_time_us);
bool sync_flag = false;
esp_timer_handle_t timer;
const esp_timer_create_args_t oneshot_timer_args = {
.callback = &s_test_rodata_cb,
.arg = &sync_flag,
.dispatch_method = ESP_TIMER_ISR,
.name = "test_ro_suspend"
};
TEST_ESP_OK(esp_timer_create(&oneshot_timer_args, &timer));
uint32_t period = sync_time_us / 2;
TEST_ESP_OK(esp_timer_start_periodic(timer, period));
RECORD_TIME_START();
sync_flag = true;
TEST_ESP_OK(esp_cache_msync((void *)TEST_SYNC_START, TEST_SYNC_SIZE, ESP_CACHE_MSYNC_FLAG_DIR_C2M | ESP_CACHE_MSYNC_FLAG_INVALIDATE | ESP_CACHE_MSYNC_FLAG_UNALIGNED));
sync_flag = false;
RECORD_TIME_END(sync_time);
TEST_ESP_OK(esp_timer_stop(timer));
printf("s_check_times: %"PRId32"\n", s_check_times);
sync_time_us = GET_US_BY_CCOUNT(sync_time);
printf("sync time: %"PRId32" us\n", sync_time_us);
TEST_ASSERT((s_check_times < (sync_time_us / period)));
TEST_ASSERT(diff_res == false);
ESP_LOGI(TAG, "Finish");
TEST_ESP_OK(esp_timer_delete(timer));
}
static void s_test_with_msync_cb(void *arg)
{
@ -131,6 +57,12 @@ TEST_CASE("test cache msync short enough to be in an ISR", "[cache]")
uint32_t sync_time_us = 200;
RECORD_TIME_PREPARE();
#if CONFIG_SPIRAM
//prepare the cache
TEST_ESP_OK(test_set_buffer_dirty(TEST_SYNC_START, TEST_SYNC_SIZE));
#endif
//do once to record time
RECORD_TIME_START();
TEST_ESP_OK(esp_cache_msync((void *)TEST_SYNC_START, TEST_SYNC_SIZE, ESP_CACHE_MSYNC_FLAG_DIR_C2M | ESP_CACHE_MSYNC_FLAG_INVALIDATE | ESP_CACHE_MSYNC_FLAG_UNALIGNED));
RECORD_TIME_END(sync_time);
@ -146,11 +78,17 @@ TEST_CASE("test cache msync short enough to be in an ISR", "[cache]")
};
TEST_ESP_OK(esp_timer_create(&oneshot_timer_args, &timer));
#if CONFIG_SPIRAM
//prepare the cache
TEST_ESP_OK(test_set_buffer_dirty(TEST_SYNC_START, TEST_SYNC_SIZE));
#endif
//start timer
uint32_t period = sync_time_us * 2;
TEST_ESP_OK(esp_timer_start_periodic(timer, period));
//1ms
esp_rom_delay_us(1000);
//10ms
esp_rom_delay_us(10 * 1000);
TEST_ESP_OK(esp_timer_stop(timer));
ESP_LOGI(TAG, "Finish");
@ -174,6 +112,10 @@ TEST_CASE("test cache msync work with Flash operation when XIP from PSRAM", "[ca
uint32_t sync_time = 0;
RECORD_TIME_PREPARE();
//prepare the cache
TEST_ESP_OK(test_set_buffer_dirty(TEST_SYNC_START, TEST_SYNC_SIZE));
//do once to record time
RECORD_TIME_START();
TEST_ESP_OK(esp_cache_msync((void *)TEST_SYNC_START, TEST_SYNC_SIZE, ESP_CACHE_MSYNC_FLAG_DIR_C2M | ESP_CACHE_MSYNC_FLAG_INVALIDATE));
RECORD_TIME_END(sync_time);
@ -195,9 +137,14 @@ TEST_CASE("test cache msync work with Flash operation when XIP from PSRAM", "[ca
};
TEST_ESP_OK(esp_timer_create(&oneshot_timer_args, &timer));
//prepare the cache
TEST_ESP_OK(test_set_buffer_dirty(TEST_SYNC_START, TEST_SYNC_SIZE));
//start timer
uint32_t period = sync_time_us * 2;
TEST_ESP_OK(esp_timer_start_periodic(timer, period));
//erase
ESP_ERROR_CHECK(esp_flash_erase_region(part->flash_chip, part->address, part->size));
TEST_ESP_OK(esp_timer_stop(timer));
@ -205,3 +152,54 @@ TEST_CASE("test cache msync work with Flash operation when XIP from PSRAM", "[ca
TEST_ESP_OK(esp_timer_delete(timer));
}
#endif //#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS && CONFIG_SPIRAM_RODATA
#if CONFIG_SPIRAM
/*---------------------------------------------------------------
Test esp_cache_msync with PSRAM stack
---------------------------------------------------------------*/
static void test_msync_on_psram(void *arg)
{
SemaphoreHandle_t test_semphr = *(SemaphoreHandle_t *)arg;
extern int _instruction_reserved_end;
extern int _rodata_reserved_end;
esp_rom_printf("_instruction_reserved_end: %p\n", &_instruction_reserved_end);
esp_rom_printf("_rodata_reserved_end: %p\n", &_rodata_reserved_end);
StackType_t *start_addr_stack = esp_cpu_get_sp();
TEST_ASSERT(esp_ptr_external_ram(start_addr_stack));
TEST_ESP_OK(test_set_buffer_dirty(TEST_SYNC_START, TEST_SYNC_SIZE));
uint32_t sync_time = 0;
RECORD_TIME_PREPARE();
printf("doing msync...\n");
RECORD_TIME_START();
TEST_ESP_OK(esp_cache_msync((void *)TEST_SYNC_START, 0x8000, ESP_CACHE_MSYNC_FLAG_INVALIDATE));
RECORD_TIME_END(sync_time);
printf("msync done\n");
uint32_t sync_time_us = GET_US_BY_CCOUNT(sync_time);
printf("sync_time_us: %"PRId32"\n", sync_time_us);
xSemaphoreGive(test_semphr);
vTaskDelete(NULL);
}
TEST_CASE("test cache msync work with PSRAM stack", "[cache]")
{
SemaphoreHandle_t test_semphr = xSemaphoreCreateBinary();
TEST_ASSERT(test_semphr);
int size_stack = 1024 * 4;
StackType_t *stack_for_task = (StackType_t *) heap_caps_calloc(1, size_stack, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
printf("init_task: current addr_stack = %p, stack_for_task = %p\n", esp_cpu_get_sp(), stack_for_task);
static StaticTask_t task_buf;
xTaskCreateStaticPinnedToCore(test_msync_on_psram, "test_msync_on_psram", size_stack, &test_semphr, 5, stack_for_task, &task_buf, 0);
xSemaphoreTake(test_semphr, portMAX_DELAY);
vSemaphoreDelete(test_semphr);
free(stack_for_task);
}
#endif //#if CONFIG_SPIRAM