mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
lcd: simplify lcd example
Move the lcd example files out of the folder spi_master, and refactor the codes with esp_lcd driver. Add image rotation function to the example.
This commit is contained in:
parent
f9e37ea4d6
commit
ac069bfca1
@ -555,7 +555,7 @@ Please note that the ISR is disabled during flash operation by default. To keep
|
||||
Application Example
|
||||
-------------------
|
||||
|
||||
The code example for displaying graphics on an ESP32-WROVER-KIT's 320x240 LCD screen can be found in the :example:`peripherals/spi_master` directory of ESP-IDF examples.
|
||||
The code example for using the SPI master half duplex mode to read/write a AT93C46D EEPROM (8-bit mode) can be found in the :example:`peripherals/spi_master/hd_eeprom` directory of ESP-IDF examples.
|
||||
|
||||
|
||||
API Reference - SPI Common
|
||||
|
@ -3,4 +3,4 @@
|
||||
cmake_minimum_required(VERSION 3.5)
|
||||
|
||||
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
|
||||
project(spi_master)
|
||||
project(lcd_tjpgd)
|
@ -3,6 +3,6 @@
|
||||
# project subdirectory.
|
||||
#
|
||||
|
||||
PROJECT_NAME := spi_master
|
||||
PROJECT_NAME := lcd_tjpgd
|
||||
|
||||
include $(IDF_PATH)/make/project.mk
|
69
examples/peripherals/lcd/tjpgd/README.md
Normal file
69
examples/peripherals/lcd/tjpgd/README.md
Normal file
@ -0,0 +1,69 @@
|
||||
## LCD tjpgd example
|
||||
|
||||
(See the README.md file in the upper level 'examples' directory for more information about examples.)
|
||||
|
||||
## Overview
|
||||
|
||||
This example shows how to decode a jpeg image and display it on an SPI-interfaced LCD, and rotates the image periodically.
|
||||
|
||||
Due to the fact that ESP32S2 and ESP32C3 don't have enough memory to hold the decoded image, the graphic shown on the LCD is calculated randomly and has nothing to do with the picture in the example project.
|
||||
|
||||
If you want to adapt this example to another type of display or pinout, check [lcd_tjpgd_example_main.c](main/lcd_tjpgd_example_main.c) for comments with some implementation details.
|
||||
|
||||
## How to Use Example
|
||||
|
||||
### Hardware Required
|
||||
|
||||
* An ESP development board
|
||||
* An SPI-interfaced LCD
|
||||
* An USB cable for power supply and programming
|
||||
|
||||
### Hardware Connection
|
||||
|
||||
If using default settings, the hardware connection can be as below:
|
||||
|
||||
```
|
||||
Board LCD Screen
|
||||
+--------+ +---------------------------------+
|
||||
| | | |
|
||||
| 3V3 +--------------+ VCC +----------------------+ |
|
||||
| | | | | |
|
||||
| GND +--------------+ GND | | |
|
||||
| | | | | |
|
||||
| 23 +--------------+ MOSI | | |
|
||||
| | | | | |
|
||||
| 19 +--------------+ SCK | | |
|
||||
| | | | | |
|
||||
| 22 +--------------+ CS | | |
|
||||
| | | | | |
|
||||
| 21 +--------------+ DC | | |
|
||||
| | | | | |
|
||||
| 18 +--------------+ RST | | |
|
||||
| | | | | |
|
||||
| 5 +--------------+ BCKL +----------------------+ |
|
||||
| | | |
|
||||
+--------+ +---------------------------------+
|
||||
```
|
||||
|
||||
If not using default settings, the interface GPIOs should be set by macros in [lcd_tjpgd_example_main.c](main/lcd_tjpgd_example_main.c), where:
|
||||
|
||||
PIN_NUM_MOSI stands for the GPIO number connected to 'MOSI' pin at LCD screen;
|
||||
PIN_NUM_CLK stands for the GPIO number connected to 'SCK' pin at LCD screen;
|
||||
PIN_NUM_MOSI stands for the GPIO number connected to 'MOSI' pin at LCD screen;
|
||||
PIN_NUM_CS stands for the GPIO number connected to 'CS' pin at LCD screen;
|
||||
PIN_NUM_DC stands for the GPIO number connected to 'DC' pin at LCD screen;
|
||||
PIN_NUM_RST stands for the GPIO number connected to 'RST' pin at LCD screen;
|
||||
PIN_NUM_BCKL stands for the GPIO number connected to 'LED' pin at LCD screen;
|
||||
|
||||
|
||||
### Build and Flash
|
||||
|
||||
Run `idf.py -p PORT flash monitor` to build, flash and monitor the project. A flowing picture will be shown on the LCD screen.
|
||||
|
||||
(To exit the serial monitor, type ``Ctrl-]``.)
|
||||
|
||||
See the [Getting Started Guide](https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html) for full steps to configure and use ESP-IDF to build projects.
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
For any technical queries, please open an [issue] (https://github.com/espressif/esp-idf/issues) on GitHub. We will get back to you soon.
|
@ -1,5 +1,5 @@
|
||||
set(srcs "pretty_effect.c"
|
||||
"spi_master_example_main.c"
|
||||
"lcd_tjpgd_example_main.c"
|
||||
)
|
||||
|
||||
# Only ESP32 has enough memory to do jpeg decoding
|
Before Width: | Height: | Size: 66 KiB After Width: | Height: | Size: 66 KiB |
152
examples/peripherals/lcd/tjpgd/main/lcd_tjpgd_example_main.c
Normal file
152
examples/peripherals/lcd/tjpgd/main/lcd_tjpgd_example_main.c
Normal file
@ -0,0 +1,152 @@
|
||||
/* LCD tjpgd example
|
||||
|
||||
This example code is in the Public Domain (or CC0 licensed, at your option.)
|
||||
|
||||
Unless required by applicable law or agreed to in writing, this
|
||||
software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
|
||||
CONDITIONS OF ANY KIND, either express or implied.
|
||||
*/
|
||||
#include <stdio.h>
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#include "freertos/task.h"
|
||||
#include "esp_lcd_panel_io.h"
|
||||
#include "esp_lcd_panel_vendor.h"
|
||||
#include "esp_lcd_panel_ops.h"
|
||||
#include "driver/spi_master.h"
|
||||
#include "driver/gpio.h"
|
||||
|
||||
#include "pretty_effect.h"
|
||||
|
||||
/**
|
||||
* If not using the default settings, the SPI peripheral on LCD and the GPIO numbers can be
|
||||
* changed below.
|
||||
*/
|
||||
#define LCD_HOST SPI2_HOST /*!< spi peripheral for LCD */
|
||||
|
||||
#define PIN_NUM_MOSI 23 /*!< gpio number for LCD MOSI */
|
||||
#define PIN_NUM_CLK 19 /*!< gpio number for LCD clock */
|
||||
#define PIN_NUM_CS 22 /*!< gpio number for LCD CS */
|
||||
#define PIN_NUM_DC 21 /*!< gpio number for LCD DC */
|
||||
#define PIN_NUM_RST 18 /*!< gpio number for LCD RST */
|
||||
#define PIN_NUM_BCKL 5 /*!< gpio number for LCD Back Light */
|
||||
|
||||
// The pixel number in horizontal and vertical
|
||||
#define EXAMPLE_LCD_H_RES (320)
|
||||
#define EXAMPLE_LCD_V_RES (240)
|
||||
|
||||
// To speed up transfers, every SPI transfer sends a bunch of lines. This define specifies how many.
|
||||
// More means more memory use, but less overhead for setting up / finishing transfers. Make sure 240
|
||||
// is dividable by this.
|
||||
#define PARALLEL_LINES 16
|
||||
|
||||
// The number of frames to show before rotate the graph
|
||||
#define ROTATE_FRAME 30
|
||||
|
||||
|
||||
// Simple routine to generate some patterns and send them to the LCD. Because the
|
||||
// SPI driver handles transactions in the background, we can calculate the next line
|
||||
// while the previous one is being sent.
|
||||
static uint16_t *s_lines[2];
|
||||
static void display_pretty_colors(esp_lcd_panel_handle_t panel_handle)
|
||||
{
|
||||
int frame = 0;
|
||||
// Indexes of the line currently being sent to the LCD and the line we're calculating
|
||||
int sending_line = 0;
|
||||
int calc_line = 0;
|
||||
|
||||
// After ROTATE_FRAME frames, the image will be rotated
|
||||
while (frame <= ROTATE_FRAME) {
|
||||
frame++;
|
||||
for (int y = 0; y < EXAMPLE_LCD_V_RES; y += PARALLEL_LINES) {
|
||||
// Calculate a line
|
||||
pretty_effect_calc_lines(s_lines[calc_line], y, frame, PARALLEL_LINES);
|
||||
sending_line = calc_line;
|
||||
calc_line = !calc_line;
|
||||
// Send the calculated data
|
||||
esp_lcd_panel_draw_bitmap(panel_handle, 0, y, 0 + EXAMPLE_LCD_H_RES, y + PARALLEL_LINES, s_lines[sending_line]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void app_main(void)
|
||||
{
|
||||
gpio_config_t bk_gpio_config = {
|
||||
.mode = GPIO_MODE_OUTPUT,
|
||||
.pin_bit_mask = 1ULL << PIN_NUM_BCKL
|
||||
};
|
||||
// Initialize the GPIO of backlight
|
||||
ESP_ERROR_CHECK(gpio_config(&bk_gpio_config));
|
||||
|
||||
spi_bus_config_t buscfg = {
|
||||
.miso_io_num = -1,
|
||||
.mosi_io_num = PIN_NUM_MOSI,
|
||||
.sclk_io_num = PIN_NUM_CLK,
|
||||
.quadwp_io_num = -1,
|
||||
.quadhd_io_num = -1,
|
||||
.max_transfer_sz = PARALLEL_LINES * EXAMPLE_LCD_H_RES * 2 + 8
|
||||
};
|
||||
esp_lcd_panel_io_handle_t io_handle = NULL;
|
||||
esp_lcd_panel_io_spi_config_t io_config = {
|
||||
.dc_gpio_num = PIN_NUM_DC,
|
||||
.cs_gpio_num = PIN_NUM_CS,
|
||||
#ifdef CONFIG_LCD_OVERCLOCK
|
||||
.pclk_hz = 26 * 1000 * 1000, // Clock out at 26 MHz
|
||||
#else
|
||||
.pclk_hz = 10 * 1000 * 1000, // Clock out at 10 MHz
|
||||
#endif
|
||||
.spi_mode = 0,
|
||||
.trans_queue_depth = 7,
|
||||
};
|
||||
// Initialize the SPI bus
|
||||
ESP_ERROR_CHECK(spi_bus_initialize(LCD_HOST, &buscfg, SPI_DMA_CH_AUTO));
|
||||
// Attach the LCD to the SPI bus
|
||||
ESP_ERROR_CHECK(esp_lcd_new_panel_io_spi((esp_lcd_spi_bus_handle_t)LCD_HOST, &io_config, &io_handle));
|
||||
|
||||
|
||||
esp_lcd_panel_handle_t panel_handle = NULL;
|
||||
esp_lcd_panel_dev_config_t panel_config = {
|
||||
.reset_gpio_num = PIN_NUM_RST,
|
||||
.color_space = ESP_LCD_COLOR_SPACE_BGR,
|
||||
.bits_per_pixel = 16,
|
||||
};
|
||||
// Initialize the LCD configuration
|
||||
ESP_ERROR_CHECK(esp_lcd_new_panel_st7789(io_handle, &panel_config, &panel_handle));
|
||||
|
||||
// Turn off backlight to avoid unpredictable display on the LCD screen while initializing
|
||||
// the LCD panel driver. (Different LCD screens may need different levels)
|
||||
ESP_ERROR_CHECK(gpio_set_level(PIN_NUM_BCKL, 1));
|
||||
|
||||
// Reset the display
|
||||
ESP_ERROR_CHECK(esp_lcd_panel_reset(panel_handle));
|
||||
|
||||
// Initialize LCD panel
|
||||
ESP_ERROR_CHECK(esp_lcd_panel_init(panel_handle));
|
||||
|
||||
// Swap x and y axis (Different LCD screens may need different options)
|
||||
ESP_ERROR_CHECK(esp_lcd_panel_swap_xy(panel_handle, true));
|
||||
|
||||
// Turn on backlight (Different LCD screens may need different levels)
|
||||
ESP_ERROR_CHECK(gpio_set_level(PIN_NUM_BCKL, 0));
|
||||
|
||||
// Initialize the effect displayed
|
||||
ESP_ERROR_CHECK(pretty_effect_init());
|
||||
|
||||
// "Rotate or not" flag
|
||||
bool is_rotated = false;
|
||||
|
||||
// Allocate memory for the pixel buffers
|
||||
for (int i = 0; i < 2; i++) {
|
||||
s_lines[i] = heap_caps_malloc(EXAMPLE_LCD_H_RES * PARALLEL_LINES * sizeof(uint16_t), MALLOC_CAP_DMA);
|
||||
assert(s_lines[i] != NULL);
|
||||
}
|
||||
|
||||
// Start and rotate
|
||||
while (1) {
|
||||
// Set driver configuration to rotate 180 degrees each time
|
||||
ESP_ERROR_CHECK(esp_lcd_panel_mirror(panel_handle, is_rotated, is_rotated));
|
||||
// Display
|
||||
display_pretty_colors(panel_handle);
|
||||
is_rotated = !is_rotated;
|
||||
}
|
||||
|
||||
}
|
@ -1,5 +0,0 @@
|
||||
## SPI master example
|
||||
|
||||
This code displays some simple graphics with varying pixel colors on the 320x240 LCD on an ESP-WROVER-KIT board.
|
||||
|
||||
If you want to adapt this example to another type of display or pinout, check [main/spi_master_example_main.c] for comments with some implementation details.
|
@ -1,452 +0,0 @@
|
||||
/* SPI Master example
|
||||
|
||||
This example code is in the Public Domain (or CC0 licensed, at your option.)
|
||||
|
||||
Unless required by applicable law or agreed to in writing, this
|
||||
software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
|
||||
CONDITIONS OF ANY KIND, either express or implied.
|
||||
*/
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#include "freertos/task.h"
|
||||
#include "esp_system.h"
|
||||
#include "driver/spi_master.h"
|
||||
#include "driver/gpio.h"
|
||||
|
||||
#include "pretty_effect.h"
|
||||
|
||||
/*
|
||||
This code displays some fancy graphics on the 320x240 LCD on an ESP-WROVER_KIT board.
|
||||
This example demonstrates the use of both spi_device_transmit as well as
|
||||
spi_device_queue_trans/spi_device_get_trans_result and pre-transmit callbacks.
|
||||
|
||||
Some info about the ILI9341/ST7789V: It has an C/D line, which is connected to a GPIO here. It expects this
|
||||
line to be low for a command and high for data. We use a pre-transmit callback here to control that
|
||||
line: every transaction has as the user-definable argument the needed state of the D/C line and just
|
||||
before the transaction is sent, the callback will set this line to the correct state.
|
||||
*/
|
||||
|
||||
#ifdef CONFIG_IDF_TARGET_ESP32
|
||||
#define LCD_HOST HSPI_HOST
|
||||
|
||||
#define PIN_NUM_MISO 25
|
||||
#define PIN_NUM_MOSI 23
|
||||
#define PIN_NUM_CLK 19
|
||||
#define PIN_NUM_CS 22
|
||||
|
||||
#define PIN_NUM_DC 21
|
||||
#define PIN_NUM_RST 18
|
||||
#define PIN_NUM_BCKL 5
|
||||
#elif defined CONFIG_IDF_TARGET_ESP32S2
|
||||
#define LCD_HOST SPI2_HOST
|
||||
|
||||
#define PIN_NUM_MISO 37
|
||||
#define PIN_NUM_MOSI 35
|
||||
#define PIN_NUM_CLK 36
|
||||
#define PIN_NUM_CS 34
|
||||
|
||||
#define PIN_NUM_DC 4
|
||||
#define PIN_NUM_RST 5
|
||||
#define PIN_NUM_BCKL 6
|
||||
#elif defined CONFIG_IDF_TARGET_ESP32C3
|
||||
#define LCD_HOST SPI2_HOST
|
||||
|
||||
#define PIN_NUM_MISO 2
|
||||
#define PIN_NUM_MOSI 7
|
||||
#define PIN_NUM_CLK 6
|
||||
#define PIN_NUM_CS 10
|
||||
|
||||
#define PIN_NUM_DC 9
|
||||
#define PIN_NUM_RST 4
|
||||
#define PIN_NUM_BCKL 5
|
||||
#endif
|
||||
|
||||
//To speed up transfers, every SPI transfer sends a bunch of lines. This define specifies how many. More means more memory use,
|
||||
//but less overhead for setting up / finishing transfers. Make sure 240 is dividable by this.
|
||||
#define PARALLEL_LINES 16
|
||||
|
||||
/*
|
||||
The LCD needs a bunch of command/argument values to be initialized. They are stored in this struct.
|
||||
*/
|
||||
typedef struct {
|
||||
uint8_t cmd;
|
||||
uint8_t data[16];
|
||||
uint8_t databytes; //No of data in data; bit 7 = delay after set; 0xFF = end of cmds.
|
||||
} lcd_init_cmd_t;
|
||||
|
||||
typedef enum {
|
||||
LCD_TYPE_ILI = 1,
|
||||
LCD_TYPE_ST,
|
||||
LCD_TYPE_MAX,
|
||||
} type_lcd_t;
|
||||
|
||||
//Place data into DRAM. Constant data gets placed into DROM by default, which is not accessible by DMA.
|
||||
DRAM_ATTR static const lcd_init_cmd_t st_init_cmds[]={
|
||||
/* Memory Data Access Control, MX=MV=1, MY=ML=MH=0, RGB=0 */
|
||||
{0x36, {(1<<5)|(1<<6)}, 1},
|
||||
/* Interface Pixel Format, 16bits/pixel for RGB/MCU interface */
|
||||
{0x3A, {0x55}, 1},
|
||||
/* Porch Setting */
|
||||
{0xB2, {0x0c, 0x0c, 0x00, 0x33, 0x33}, 5},
|
||||
/* Gate Control, Vgh=13.65V, Vgl=-10.43V */
|
||||
{0xB7, {0x45}, 1},
|
||||
/* VCOM Setting, VCOM=1.175V */
|
||||
{0xBB, {0x2B}, 1},
|
||||
/* LCM Control, XOR: BGR, MX, MH */
|
||||
{0xC0, {0x2C}, 1},
|
||||
/* VDV and VRH Command Enable, enable=1 */
|
||||
{0xC2, {0x01, 0xff}, 2},
|
||||
/* VRH Set, Vap=4.4+... */
|
||||
{0xC3, {0x11}, 1},
|
||||
/* VDV Set, VDV=0 */
|
||||
{0xC4, {0x20}, 1},
|
||||
/* Frame Rate Control, 60Hz, inversion=0 */
|
||||
{0xC6, {0x0f}, 1},
|
||||
/* Power Control 1, AVDD=6.8V, AVCL=-4.8V, VDDS=2.3V */
|
||||
{0xD0, {0xA4, 0xA1}, 1},
|
||||
/* Positive Voltage Gamma Control */
|
||||
{0xE0, {0xD0, 0x00, 0x05, 0x0E, 0x15, 0x0D, 0x37, 0x43, 0x47, 0x09, 0x15, 0x12, 0x16, 0x19}, 14},
|
||||
/* Negative Voltage Gamma Control */
|
||||
{0xE1, {0xD0, 0x00, 0x05, 0x0D, 0x0C, 0x06, 0x2D, 0x44, 0x40, 0x0E, 0x1C, 0x18, 0x16, 0x19}, 14},
|
||||
/* Sleep Out */
|
||||
{0x11, {0}, 0x80},
|
||||
/* Display On */
|
||||
{0x29, {0}, 0x80},
|
||||
{0, {0}, 0xff}
|
||||
};
|
||||
|
||||
DRAM_ATTR static const lcd_init_cmd_t ili_init_cmds[]={
|
||||
/* Power contorl B, power control = 0, DC_ENA = 1 */
|
||||
{0xCF, {0x00, 0x83, 0X30}, 3},
|
||||
/* Power on sequence control,
|
||||
* cp1 keeps 1 frame, 1st frame enable
|
||||
* vcl = 0, ddvdh=3, vgh=1, vgl=2
|
||||
* DDVDH_ENH=1
|
||||
*/
|
||||
{0xED, {0x64, 0x03, 0X12, 0X81}, 4},
|
||||
/* Driver timing control A,
|
||||
* non-overlap=default +1
|
||||
* EQ=default - 1, CR=default
|
||||
* pre-charge=default - 1
|
||||
*/
|
||||
{0xE8, {0x85, 0x01, 0x79}, 3},
|
||||
/* Power control A, Vcore=1.6V, DDVDH=5.6V */
|
||||
{0xCB, {0x39, 0x2C, 0x00, 0x34, 0x02}, 5},
|
||||
/* Pump ratio control, DDVDH=2xVCl */
|
||||
{0xF7, {0x20}, 1},
|
||||
/* Driver timing control, all=0 unit */
|
||||
{0xEA, {0x00, 0x00}, 2},
|
||||
/* Power control 1, GVDD=4.75V */
|
||||
{0xC0, {0x26}, 1},
|
||||
/* Power control 2, DDVDH=VCl*2, VGH=VCl*7, VGL=-VCl*3 */
|
||||
{0xC1, {0x11}, 1},
|
||||
/* VCOM control 1, VCOMH=4.025V, VCOML=-0.950V */
|
||||
{0xC5, {0x35, 0x3E}, 2},
|
||||
/* VCOM control 2, VCOMH=VMH-2, VCOML=VML-2 */
|
||||
{0xC7, {0xBE}, 1},
|
||||
/* Memory access contorl, MX=MY=0, MV=1, ML=0, BGR=1, MH=0 */
|
||||
{0x36, {0x28}, 1},
|
||||
/* Pixel format, 16bits/pixel for RGB/MCU interface */
|
||||
{0x3A, {0x55}, 1},
|
||||
/* Frame rate control, f=fosc, 70Hz fps */
|
||||
{0xB1, {0x00, 0x1B}, 2},
|
||||
/* Enable 3G, disabled */
|
||||
{0xF2, {0x08}, 1},
|
||||
/* Gamma set, curve 1 */
|
||||
{0x26, {0x01}, 1},
|
||||
/* Positive gamma correction */
|
||||
{0xE0, {0x1F, 0x1A, 0x18, 0x0A, 0x0F, 0x06, 0x45, 0X87, 0x32, 0x0A, 0x07, 0x02, 0x07, 0x05, 0x00}, 15},
|
||||
/* Negative gamma correction */
|
||||
{0XE1, {0x00, 0x25, 0x27, 0x05, 0x10, 0x09, 0x3A, 0x78, 0x4D, 0x05, 0x18, 0x0D, 0x38, 0x3A, 0x1F}, 15},
|
||||
/* Column address set, SC=0, EC=0xEF */
|
||||
{0x2A, {0x00, 0x00, 0x00, 0xEF}, 4},
|
||||
/* Page address set, SP=0, EP=0x013F */
|
||||
{0x2B, {0x00, 0x00, 0x01, 0x3f}, 4},
|
||||
/* Memory write */
|
||||
{0x2C, {0}, 0},
|
||||
/* Entry mode set, Low vol detect disabled, normal display */
|
||||
{0xB7, {0x07}, 1},
|
||||
/* Display function control */
|
||||
{0xB6, {0x0A, 0x82, 0x27, 0x00}, 4},
|
||||
/* Sleep out */
|
||||
{0x11, {0}, 0x80},
|
||||
/* Display on */
|
||||
{0x29, {0}, 0x80},
|
||||
{0, {0}, 0xff},
|
||||
};
|
||||
|
||||
/* Send a command to the LCD. Uses spi_device_polling_transmit, which waits
|
||||
* until the transfer is complete.
|
||||
*
|
||||
* Since command transactions are usually small, they are handled in polling
|
||||
* mode for higher speed. The overhead of interrupt transactions is more than
|
||||
* just waiting for the transaction to complete.
|
||||
*/
|
||||
void lcd_cmd(spi_device_handle_t spi, const uint8_t cmd)
|
||||
{
|
||||
esp_err_t ret;
|
||||
spi_transaction_t t;
|
||||
memset(&t, 0, sizeof(t)); //Zero out the transaction
|
||||
t.length=8; //Command is 8 bits
|
||||
t.tx_buffer=&cmd; //The data is the cmd itself
|
||||
t.user=(void*)0; //D/C needs to be set to 0
|
||||
ret=spi_device_polling_transmit(spi, &t); //Transmit!
|
||||
assert(ret==ESP_OK); //Should have had no issues.
|
||||
}
|
||||
|
||||
/* Send data to the LCD. Uses spi_device_polling_transmit, which waits until the
|
||||
* transfer is complete.
|
||||
*
|
||||
* Since data transactions are usually small, they are handled in polling
|
||||
* mode for higher speed. The overhead of interrupt transactions is more than
|
||||
* just waiting for the transaction to complete.
|
||||
*/
|
||||
void lcd_data(spi_device_handle_t spi, const uint8_t *data, int len)
|
||||
{
|
||||
esp_err_t ret;
|
||||
spi_transaction_t t;
|
||||
if (len==0) return; //no need to send anything
|
||||
memset(&t, 0, sizeof(t)); //Zero out the transaction
|
||||
t.length=len*8; //Len is in bytes, transaction length is in bits.
|
||||
t.tx_buffer=data; //Data
|
||||
t.user=(void*)1; //D/C needs to be set to 1
|
||||
ret=spi_device_polling_transmit(spi, &t); //Transmit!
|
||||
assert(ret==ESP_OK); //Should have had no issues.
|
||||
}
|
||||
|
||||
//This function is called (in irq context!) just before a transmission starts. It will
|
||||
//set the D/C line to the value indicated in the user field.
|
||||
void lcd_spi_pre_transfer_callback(spi_transaction_t *t)
|
||||
{
|
||||
int dc=(int)t->user;
|
||||
gpio_set_level(PIN_NUM_DC, dc);
|
||||
}
|
||||
|
||||
uint32_t lcd_get_id(spi_device_handle_t spi)
|
||||
{
|
||||
//get_id cmd
|
||||
lcd_cmd(spi, 0x04);
|
||||
|
||||
spi_transaction_t t;
|
||||
memset(&t, 0, sizeof(t));
|
||||
t.length=8*3;
|
||||
t.flags = SPI_TRANS_USE_RXDATA;
|
||||
t.user = (void*)1;
|
||||
|
||||
esp_err_t ret = spi_device_polling_transmit(spi, &t);
|
||||
assert( ret == ESP_OK );
|
||||
|
||||
return *(uint32_t*)t.rx_data;
|
||||
}
|
||||
|
||||
//Initialize the display
|
||||
void lcd_init(spi_device_handle_t spi)
|
||||
{
|
||||
int cmd=0;
|
||||
const lcd_init_cmd_t* lcd_init_cmds;
|
||||
|
||||
//Initialize non-SPI GPIOs
|
||||
gpio_set_direction(PIN_NUM_DC, GPIO_MODE_OUTPUT);
|
||||
gpio_set_direction(PIN_NUM_RST, GPIO_MODE_OUTPUT);
|
||||
gpio_set_direction(PIN_NUM_BCKL, GPIO_MODE_OUTPUT);
|
||||
|
||||
//Reset the display
|
||||
gpio_set_level(PIN_NUM_RST, 0);
|
||||
vTaskDelay(100 / portTICK_RATE_MS);
|
||||
gpio_set_level(PIN_NUM_RST, 1);
|
||||
vTaskDelay(100 / portTICK_RATE_MS);
|
||||
|
||||
//detect LCD type
|
||||
uint32_t lcd_id = lcd_get_id(spi);
|
||||
int lcd_detected_type = 0;
|
||||
int lcd_type;
|
||||
|
||||
printf("LCD ID: %08X\n", lcd_id);
|
||||
if ( lcd_id == 0 ) {
|
||||
//zero, ili
|
||||
lcd_detected_type = LCD_TYPE_ILI;
|
||||
printf("ILI9341 detected.\n");
|
||||
} else {
|
||||
// none-zero, ST
|
||||
lcd_detected_type = LCD_TYPE_ST;
|
||||
printf("ST7789V detected.\n");
|
||||
}
|
||||
|
||||
#ifdef CONFIG_LCD_TYPE_AUTO
|
||||
lcd_type = lcd_detected_type;
|
||||
#elif defined( CONFIG_LCD_TYPE_ST7789V )
|
||||
printf("kconfig: force CONFIG_LCD_TYPE_ST7789V.\n");
|
||||
lcd_type = LCD_TYPE_ST;
|
||||
#elif defined( CONFIG_LCD_TYPE_ILI9341 )
|
||||
printf("kconfig: force CONFIG_LCD_TYPE_ILI9341.\n");
|
||||
lcd_type = LCD_TYPE_ILI;
|
||||
#endif
|
||||
if ( lcd_type == LCD_TYPE_ST ) {
|
||||
printf("LCD ST7789V initialization.\n");
|
||||
lcd_init_cmds = st_init_cmds;
|
||||
} else {
|
||||
printf("LCD ILI9341 initialization.\n");
|
||||
lcd_init_cmds = ili_init_cmds;
|
||||
}
|
||||
|
||||
//Send all the commands
|
||||
while (lcd_init_cmds[cmd].databytes!=0xff) {
|
||||
lcd_cmd(spi, lcd_init_cmds[cmd].cmd);
|
||||
lcd_data(spi, lcd_init_cmds[cmd].data, lcd_init_cmds[cmd].databytes&0x1F);
|
||||
if (lcd_init_cmds[cmd].databytes&0x80) {
|
||||
vTaskDelay(100 / portTICK_RATE_MS);
|
||||
}
|
||||
cmd++;
|
||||
}
|
||||
|
||||
///Enable backlight
|
||||
gpio_set_level(PIN_NUM_BCKL, 0);
|
||||
}
|
||||
|
||||
|
||||
/* To send a set of lines we have to send a command, 2 data bytes, another command, 2 more data bytes and another command
|
||||
* before sending the line data itself; a total of 6 transactions. (We can't put all of this in just one transaction
|
||||
* because the D/C line needs to be toggled in the middle.)
|
||||
* This routine queues these commands up as interrupt transactions so they get
|
||||
* sent faster (compared to calling spi_device_transmit several times), and at
|
||||
* the mean while the lines for next transactions can get calculated.
|
||||
*/
|
||||
static void send_lines(spi_device_handle_t spi, int ypos, uint16_t *linedata)
|
||||
{
|
||||
esp_err_t ret;
|
||||
int x;
|
||||
//Transaction descriptors. Declared static so they're not allocated on the stack; we need this memory even when this
|
||||
//function is finished because the SPI driver needs access to it even while we're already calculating the next line.
|
||||
static spi_transaction_t trans[6];
|
||||
|
||||
//In theory, it's better to initialize trans and data only once and hang on to the initialized
|
||||
//variables. We allocate them on the stack, so we need to re-init them each call.
|
||||
for (x=0; x<6; x++) {
|
||||
memset(&trans[x], 0, sizeof(spi_transaction_t));
|
||||
if ((x&1)==0) {
|
||||
//Even transfers are commands
|
||||
trans[x].length=8;
|
||||
trans[x].user=(void*)0;
|
||||
} else {
|
||||
//Odd transfers are data
|
||||
trans[x].length=8*4;
|
||||
trans[x].user=(void*)1;
|
||||
}
|
||||
trans[x].flags=SPI_TRANS_USE_TXDATA;
|
||||
}
|
||||
trans[0].tx_data[0]=0x2A; //Column Address Set
|
||||
trans[1].tx_data[0]=0; //Start Col High
|
||||
trans[1].tx_data[1]=0; //Start Col Low
|
||||
trans[1].tx_data[2]=(320)>>8; //End Col High
|
||||
trans[1].tx_data[3]=(320)&0xff; //End Col Low
|
||||
trans[2].tx_data[0]=0x2B; //Page address set
|
||||
trans[3].tx_data[0]=ypos>>8; //Start page high
|
||||
trans[3].tx_data[1]=ypos&0xff; //start page low
|
||||
trans[3].tx_data[2]=(ypos+PARALLEL_LINES)>>8; //end page high
|
||||
trans[3].tx_data[3]=(ypos+PARALLEL_LINES)&0xff; //end page low
|
||||
trans[4].tx_data[0]=0x2C; //memory write
|
||||
trans[5].tx_buffer=linedata; //finally send the line data
|
||||
trans[5].length=320*2*8*PARALLEL_LINES; //Data length, in bits
|
||||
trans[5].flags=0; //undo SPI_TRANS_USE_TXDATA flag
|
||||
|
||||
//Queue all transactions.
|
||||
for (x=0; x<6; x++) {
|
||||
ret=spi_device_queue_trans(spi, &trans[x], portMAX_DELAY);
|
||||
assert(ret==ESP_OK);
|
||||
}
|
||||
|
||||
//When we are here, the SPI driver is busy (in the background) getting the transactions sent. That happens
|
||||
//mostly using DMA, so the CPU doesn't have much to do here. We're not going to wait for the transaction to
|
||||
//finish because we may as well spend the time calculating the next line. When that is done, we can call
|
||||
//send_line_finish, which will wait for the transfers to be done and check their status.
|
||||
}
|
||||
|
||||
|
||||
static void send_line_finish(spi_device_handle_t spi)
|
||||
{
|
||||
spi_transaction_t *rtrans;
|
||||
esp_err_t ret;
|
||||
//Wait for all 6 transactions to be done and get back the results.
|
||||
for (int x=0; x<6; x++) {
|
||||
ret=spi_device_get_trans_result(spi, &rtrans, portMAX_DELAY);
|
||||
assert(ret==ESP_OK);
|
||||
//We could inspect rtrans now if we received any info back. The LCD is treated as write-only, though.
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//Simple routine to generate some patterns and send them to the LCD. Don't expect anything too
|
||||
//impressive. Because the SPI driver handles transactions in the background, we can calculate the next line
|
||||
//while the previous one is being sent.
|
||||
static void display_pretty_colors(spi_device_handle_t spi)
|
||||
{
|
||||
uint16_t *lines[2];
|
||||
//Allocate memory for the pixel buffers
|
||||
for (int i=0; i<2; i++) {
|
||||
lines[i]=heap_caps_malloc(320*PARALLEL_LINES*sizeof(uint16_t), MALLOC_CAP_DMA);
|
||||
assert(lines[i]!=NULL);
|
||||
}
|
||||
int frame=0;
|
||||
//Indexes of the line currently being sent to the LCD and the line we're calculating.
|
||||
int sending_line=-1;
|
||||
int calc_line=0;
|
||||
|
||||
while(1) {
|
||||
frame++;
|
||||
for (int y=0; y<240; y+=PARALLEL_LINES) {
|
||||
//Calculate a line.
|
||||
pretty_effect_calc_lines(lines[calc_line], y, frame, PARALLEL_LINES);
|
||||
//Finish up the sending process of the previous line, if any
|
||||
if (sending_line!=-1) send_line_finish(spi);
|
||||
//Swap sending_line and calc_line
|
||||
sending_line=calc_line;
|
||||
calc_line=(calc_line==1)?0:1;
|
||||
//Send the line we currently calculated.
|
||||
send_lines(spi, y, lines[sending_line]);
|
||||
//The line set is queued up for sending now; the actual sending happens in the
|
||||
//background. We can go on to calculate the next line set as long as we do not
|
||||
//touch line[sending_line]; the SPI sending process is still reading from that.
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void app_main(void)
|
||||
{
|
||||
esp_err_t ret;
|
||||
spi_device_handle_t spi;
|
||||
spi_bus_config_t buscfg={
|
||||
.miso_io_num=PIN_NUM_MISO,
|
||||
.mosi_io_num=PIN_NUM_MOSI,
|
||||
.sclk_io_num=PIN_NUM_CLK,
|
||||
.quadwp_io_num=-1,
|
||||
.quadhd_io_num=-1,
|
||||
.max_transfer_sz=PARALLEL_LINES*320*2+8
|
||||
};
|
||||
spi_device_interface_config_t devcfg={
|
||||
#ifdef CONFIG_LCD_OVERCLOCK
|
||||
.clock_speed_hz=26*1000*1000, //Clock out at 26 MHz
|
||||
#else
|
||||
.clock_speed_hz=10*1000*1000, //Clock out at 10 MHz
|
||||
#endif
|
||||
.mode=0, //SPI mode 0
|
||||
.spics_io_num=PIN_NUM_CS, //CS pin
|
||||
.queue_size=7, //We want to be able to queue 7 transactions at a time
|
||||
.pre_cb=lcd_spi_pre_transfer_callback, //Specify pre-transfer callback to handle D/C line
|
||||
};
|
||||
//Initialize the SPI bus
|
||||
ret=spi_bus_initialize(LCD_HOST, &buscfg, SPI_DMA_CH_AUTO);
|
||||
ESP_ERROR_CHECK(ret);
|
||||
//Attach the LCD to the SPI bus
|
||||
ret=spi_bus_add_device(LCD_HOST, &devcfg, &spi);
|
||||
ESP_ERROR_CHECK(ret);
|
||||
//Initialize the LCD
|
||||
lcd_init(spi);
|
||||
//Initialize the effect displayed
|
||||
ret=pretty_effect_init();
|
||||
ESP_ERROR_CHECK(ret);
|
||||
|
||||
//Go do nice stuff.
|
||||
display_pretty_colors(spi);
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user