mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
initial support for generation of ULP coprocessor code
This commit is contained in:
parent
bd20288b81
commit
ab3677d64c
121
components/ulp/README.rst
Normal file
121
components/ulp/README.rst
Normal file
@ -0,0 +1,121 @@
|
||||
ULP coprocessor programming
|
||||
===========================
|
||||
|
||||
.. warning:: ULP coprocessor programming approach described here is experimental. It is probable that once binutils support for ULP is done, this preprocessor-based approach may be deprecated. We welcome discussion about and contributions to ULP programming tools.
|
||||
|
||||
ULP coprocessor is a simple FSM which is designed to perform measurements using ADC, temperature sensor, and external I2C sensors, while main processors are in deep sleep mode. ULP coprocessor can access RTC_SLOW_MEM memory region, and registers in RTC_CNTL, RTC_IO, and SARADC peripherals. ULP coprocessor uses fixed-width 32-bit instructions, 32-bit memory addressing, and has 4 general purpose 16-bit registers.
|
||||
|
||||
ULP coprocessor doesn't have a dedicated binutils port yet. Programming ULP coprocessor is possible by embedding assembly-like macros into an ESP32 application.
|
||||
Here is an example how this can be done::
|
||||
|
||||
const ulp_insn_t program[] = {
|
||||
I_MOVI(R3, 16), // R3 <- 16
|
||||
I_LD(R0, R3, 0), // R0 <- RTC_SLOW_MEM[R3 + 0]
|
||||
I_LD(R1, R3, 1), // R1 <- RTC_SLOW_MEM[R3 + 1]
|
||||
I_ADDR(R2, R0, R1), // R2 <- R0 + R1
|
||||
I_ST(R2, R3, 2), // R2 -> RTC_SLOW_MEM[R2 + 2]
|
||||
I_HALT()
|
||||
};
|
||||
size_t load_addr = 0;
|
||||
size_t size = sizeof(program)/sizeof(ulp_insn_t);
|
||||
ulp_process_macros_and_load(load_addr, program, &size);
|
||||
ulp_run(load_addr);
|
||||
|
||||
The ``program`` array is an array of ``ulp_insn_t``, i.e. ULP coprocessor instructions. Each ``I_XXX`` preprocessor define translates into a single 32-bit instruction. Arguments of these preprocessor defines can be register numbers (``R0 — R3``) and literal constants. See `ULP coprocessor instruction defines`_ section for descriptions of instructions and arguments they take.
|
||||
|
||||
Load and store instructions use addresses expressed in 32-bit words. Address 0 corresponds to the first word of ``RTC_SLOW_MEM`` (which is address 0x50000000 as seen by the main CPUs).
|
||||
|
||||
To generate branch instructions, special ``M_`` preprocessor defines are used. ``M_LABEL`` define can be used to define a branch target. Label identifier is a 16-bit integer. ``M_Bxxx`` defines can be used to generate branch instructions with target set to a particular label.
|
||||
|
||||
Implementation note: these ``M_`` preprocessor defines will be translated into two ``ulp_insn_t`` values: one is a token value which contains label number, and the other is the actual instruction. ``ulp_process_macros_and_load`` function resolves the label number to the address, modifies the branch instruction to use the correct address, and removes the the extra ``ulp_insn_t`` token which contains the label numer.
|
||||
|
||||
Here is an example of using labels and branches::
|
||||
|
||||
const ulp_insn_t program[] = {
|
||||
I_MOVI(R0, 34), // R0 <- 34
|
||||
M_LABEL(1), // label_1
|
||||
I_MOVI(R1, 32), // R1 <- 32
|
||||
I_LD(R1, R1, 0), // R1 <- RTC_SLOW_MEM[R1]
|
||||
I_MOVI(R2, 33), // R2 <- 33
|
||||
I_LD(R2, R2, 0), // R2 <- RTC_SLOW_MEM[R2]
|
||||
I_SUBR(R3, R1, R2), // R3 <- R1 - R2
|
||||
I_ST(R3, R0, 0), // R3 -> RTC_SLOW_MEM[R0 + 0]
|
||||
I_ADDI(R0, R0, 1), // R0++
|
||||
M_BL(1, 64), // if (R0 < 64) goto label_1
|
||||
I_HALT(),
|
||||
};
|
||||
RTC_SLOW_MEM[32] = 42;
|
||||
RTC_SLOW_MEM[33] = 18;
|
||||
size_t load_addr = 0;
|
||||
size_t size = sizeof(program)/sizeof(ulp_insn_t);
|
||||
ulp_process_macros_and_load(load_addr, program, &size);
|
||||
ulp_run(load_addr);
|
||||
|
||||
|
||||
Functions
|
||||
^^^^^^^^^
|
||||
|
||||
.. doxygenfunction:: ulp_process_macros_and_load
|
||||
.. doxygenfunction:: ulp_run
|
||||
|
||||
Error codes
|
||||
^^^^^^^^^^^
|
||||
|
||||
.. doxygendefine:: ESP_ERR_ULP_BASE
|
||||
.. doxygendefine:: ESP_ERR_ULP_SIZE_TOO_BIG
|
||||
.. doxygendefine:: ESP_ERR_ULP_INVALID_LOAD_ADDR
|
||||
.. doxygendefine:: ESP_ERR_ULP_DUPLICATE_LABEL
|
||||
.. doxygendefine:: ESP_ERR_ULP_UNDEFINED_LABEL
|
||||
.. doxygendefine:: ESP_ERR_ULP_BRANCH_OUT_OF_RANGE
|
||||
|
||||
ULP coprocessor registers
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
ULP co-processor has 4 16-bit general purpose registers. All registers have same functionality, with one exception. R0 register is used by some of the compare-and-branch instructions as a source register.
|
||||
|
||||
These definitions can be used for all instructions which require a register.
|
||||
|
||||
.. doxygengroup:: ulp_registers
|
||||
:content-only:
|
||||
|
||||
ULP coprocessor instruction defines
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
.. doxygendefine:: I_DELAY
|
||||
.. doxygendefine:: I_HALT
|
||||
.. doxygendefine:: I_ST
|
||||
.. doxygendefine:: I_LD
|
||||
.. doxygendefine:: I_BL
|
||||
.. doxygendefine:: I_BGE
|
||||
.. doxygendefine:: I_BXR
|
||||
.. doxygendefine:: I_BXI
|
||||
.. doxygendefine:: I_BXZR
|
||||
.. doxygendefine:: I_BXZI
|
||||
.. doxygendefine:: I_BXFR
|
||||
.. doxygendefine:: I_BXFI
|
||||
.. doxygendefine:: I_ADDR
|
||||
.. doxygendefine:: I_SUBR
|
||||
.. doxygendefine:: I_ANDR
|
||||
.. doxygendefine:: I_ORR
|
||||
.. doxygendefine:: I_MOVR
|
||||
.. doxygendefine:: I_LSHR
|
||||
.. doxygendefine:: I_RSHR
|
||||
.. doxygendefine:: I_ADDI
|
||||
.. doxygendefine:: I_SUBI
|
||||
.. doxygendefine:: I_ANDI
|
||||
.. doxygendefine:: I_ORI
|
||||
.. doxygendefine:: I_MOVI
|
||||
.. doxygendefine:: I_LSHI
|
||||
.. doxygendefine:: I_RSHI
|
||||
.. doxygendefine:: M_LABEL
|
||||
.. doxygendefine:: M_BL
|
||||
.. doxygendefine:: M_BGE
|
||||
.. doxygendefine:: M_BX
|
||||
.. doxygendefine:: M_BXZ
|
||||
.. doxygendefine:: M_BXF
|
||||
|
||||
Defines
|
||||
^^^^^^^
|
||||
|
||||
.. doxygendefine:: RTC_SLOW_MEM
|
||||
|
0
components/ulp/component.mk
Executable file
0
components/ulp/component.mk
Executable file
708
components/ulp/include/esp32/ulp.h
Normal file
708
components/ulp/include/esp32/ulp.h
Normal file
@ -0,0 +1,708 @@
|
||||
// Copyright 2016 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
#include <stdint.h>
|
||||
#include <stddef.h>
|
||||
#include <stdlib.h>
|
||||
#include "esp_err.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
|
||||
/**
|
||||
* @defgroup ulp_registers ULP coprocessor registers
|
||||
* @{
|
||||
*/
|
||||
|
||||
|
||||
#define R0 0 /*!< general purpose register 0 */
|
||||
#define R1 1 /*!< general purpose register 1 */
|
||||
#define R2 2 /*!< general purpose register 2 */
|
||||
#define R3 3 /*!< general purpose register 3 */
|
||||
/**@}*/
|
||||
|
||||
/** @defgroup ulp_opcodes ULP coprocessor opcodes, sub opcodes, and various modifiers/flags
|
||||
*
|
||||
* These definitions are not intended to be used directly.
|
||||
* They are used in definitions of instructions later on.
|
||||
*
|
||||
* @{
|
||||
*/
|
||||
|
||||
#define OPCODE_WR_REG 1 /*!< Instruction: write peripheral register (RTC_CNTL/RTC_IO/SARADC) (not implemented yet) */
|
||||
|
||||
#define OPCODE_RD_REG 2 /*!< Instruction: read peripheral register (RTC_CNTL/RTC_IO/SARADC) (not implemented yet) */
|
||||
|
||||
#define OPCODE_I2C 3 /*!< Instruction: read/write I2C (not implemented yet) */
|
||||
|
||||
#define OPCODE_DELAY 4 /*!< Instruction: delay (nop) for a given number of cycles */
|
||||
|
||||
#define OPCODE_ADC 5 /*!< Instruction: SAR ADC measurement (not implemented yet) */
|
||||
|
||||
#define OPCODE_ST 6 /*!< Instruction: store indirect to RTC memory */
|
||||
#define SUB_OPCODE_ST 4 /*!< Store 32 bits, 16 MSBs contain PC, 16 LSBs contain value from source register */
|
||||
|
||||
#define OPCODE_ALU 7 /*!< Arithmetic instructions */
|
||||
#define SUB_OPCODE_ALU_REG 0 /*!< Arithmetic instruction, both source values are in register */
|
||||
#define SUB_OPCODE_ALU_IMM 1 /*!< Arithmetic instruction, one source value is an immediate */
|
||||
#define SUB_OPCODE_ALU_CNT 2 /*!< Arithmetic instruction between counter register and an immediate (not implemented yet)*/
|
||||
#define ALU_SEL_ADD 0 /*!< Addition */
|
||||
#define ALU_SEL_SUB 1 /*!< Subtraction */
|
||||
#define ALU_SEL_AND 2 /*!< Logical AND */
|
||||
#define ALU_SEL_OR 3 /*!< Logical OR */
|
||||
#define ALU_SEL_MOV 4 /*!< Copy value (immediate to destination register or source register to destination register */
|
||||
#define ALU_SEL_LSH 5 /*!< Shift left by given number of bits */
|
||||
#define ALU_SEL_RSH 6 /*!< Shift right by given number of bits */
|
||||
|
||||
#define OPCODE_BRANCH 8 /*!< Branch instructions */
|
||||
#define SUB_OPCODE_BX 0 /*!< Branch to absolute PC (immediate or in register) */
|
||||
#define BX_JUMP_TYPE_DIRECT 0 /*!< Unconditional jump */
|
||||
#define BX_JUMP_TYPE_ZERO 1 /*!< Branch if last ALU result is zero */
|
||||
#define BX_JUMP_TYPE_OVF 2 /*!< Branch if last ALU operation caused and overflow */
|
||||
#define SUB_OPCODE_B 1 /*!< Branch to a relative offset */
|
||||
#define B_CMP_L 0 /*!< Branch if R0 is less than an immediate */
|
||||
#define B_CMP_GE 1 /*!< Branch if R0 is greater than or equal to an immediate */
|
||||
|
||||
#define OPCODE_END 9 /*!< Stop executing the program (not implemented yet) */
|
||||
#define SUB_OPCODE_END 0 /*!< Stop executing the program and optionally wake up the chip */
|
||||
#define SUB_OPCODE_SLEEP 1 /*!< Stop executing the program and run it again after selected interval */
|
||||
|
||||
#define OPCODE_TSENS 10 /*!< Instruction: temperature sensor measurement (not implemented yet) */
|
||||
|
||||
#define OPCODE_HALT 11 /*!< Halt the coprocessor */
|
||||
|
||||
#define OPCODE_LD 13 /*!< Indirect load lower 16 bits from RTC memory */
|
||||
|
||||
#define OPCODE_MACRO 15 /*!< Not a real opcode. Used to identify labels and branches in the program */
|
||||
#define SUB_OPCODE_MACRO_LABEL 0 /*!< Label macro */
|
||||
#define SUB_OPCODE_MACRO_BRANCH 1 /*!< Branch macro */
|
||||
/**@}*/
|
||||
|
||||
/**@{*/
|
||||
#define ESP_ERR_ULP_BASE 0x1200 /*!< Offset for ULP-related error codes */
|
||||
#define ESP_ERR_ULP_SIZE_TOO_BIG (ESP_ERR_ULP_BASE + 1) /*!< Program doesn't fit into RTC memory reserved for the ULP */
|
||||
#define ESP_ERR_ULP_INVALID_LOAD_ADDR (ESP_ERR_ULP_BASE + 2) /*!< Load address is outside of RTC memory reserved for the ULP */
|
||||
#define ESP_ERR_ULP_DUPLICATE_LABEL (ESP_ERR_ULP_BASE + 3) /*!< More than one label with the same number was defined */
|
||||
#define ESP_ERR_ULP_UNDEFINED_LABEL (ESP_ERR_ULP_BASE + 4) /*!< Branch instructions references an undefined label */
|
||||
#define ESP_ERR_ULP_BRANCH_OUT_OF_RANGE (ESP_ERR_ULP_BASE + 5) /*!< Branch target is out of range of B instruction (try replacing with BX) */
|
||||
/**@}*/
|
||||
|
||||
|
||||
/**
|
||||
* @brief Instruction format structure
|
||||
*
|
||||
* All ULP instructions are 32 bit long.
|
||||
* This union contains field layouts used by all of the supported instructions.
|
||||
* This union also includes a special "macro" instruction layout.
|
||||
* This is not a real instruction which can be executed by the CPU. It acts
|
||||
* as a token which is removed from the program by the
|
||||
* ulp_process_macros_and_load function.
|
||||
*
|
||||
* These structures are not intended to be used directly.
|
||||
* Preprocessor definitions provided below fill the fields of these structure with
|
||||
* the right arguments.
|
||||
*/
|
||||
typedef union {
|
||||
|
||||
struct {
|
||||
uint32_t cycles : 16; /*!< Number of cycles to sleep */
|
||||
uint32_t unused : 12; /*!< Unused */
|
||||
uint32_t opcode : 4; /*!< Opcode (OPCODE_DELAY) */
|
||||
} delay; /*!< Format of DELAY instruction */
|
||||
|
||||
struct {
|
||||
uint32_t dreg : 2; /*!< Register which contains data to store */
|
||||
uint32_t sreg : 2; /*!< Register which contains address in RTC memory (expressed in words) */
|
||||
uint32_t unused1 : 6; /*!< Unused */
|
||||
uint32_t offset : 11; /*!< Offset to add to sreg */
|
||||
uint32_t unused2 : 4; /*!< Unused */
|
||||
uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_ST) */
|
||||
uint32_t opcode : 4; /*!< Opcode (OPCODE_ST) */
|
||||
} st; /*!< Format of ST instruction */
|
||||
|
||||
struct {
|
||||
uint32_t dreg : 2; /*!< Register where the data should be loaded to */
|
||||
uint32_t sreg : 2; /*!< Register which contains address in RTC memory (expressed in words) */
|
||||
uint32_t unused1 : 6; /*!< Unused */
|
||||
uint32_t offset : 11; /*!< Offset to add to sreg */
|
||||
uint32_t unused2 : 7; /*!< Unused */
|
||||
uint32_t opcode : 4; /*!< Opcode (OPCODE_LD) */
|
||||
} ld; /*!< Format of LD instruction */
|
||||
|
||||
struct {
|
||||
uint32_t unused : 28; /*!< Unused */
|
||||
uint32_t opcode : 4; /*!< Opcode (OPCODE_HALT) */
|
||||
} halt; /*!< Format of HALT instruction */
|
||||
|
||||
struct {
|
||||
uint32_t dreg : 2; /*!< Register which contains target PC, expressed in words (used if .reg == 1) */
|
||||
uint32_t addr : 11; /*!< Target PC, expressed in words (used if .reg == 0) */
|
||||
uint32_t unused : 8; /*!< Unused */
|
||||
uint32_t reg : 1; /*!< Target PC in register (1) or immediate (0) */
|
||||
uint32_t type : 3; /*!< Jump condition (BX_JUMP_TYPE_xxx) */
|
||||
uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_BX) */
|
||||
uint32_t opcode : 4; /*!< Opcode (OPCODE_BRANCH) */
|
||||
} bx; /*!< Format of BRANCH instruction (absolute address) */
|
||||
|
||||
struct {
|
||||
uint32_t imm : 16; /*!< Immediate value to compare against */
|
||||
uint32_t cmp : 1; /*!< Comparison to perform: B_CMP_L or B_CMP_GE */
|
||||
uint32_t offset : 7; /*!< Absolute value of target PC offset w.r.t. current PC, expressed in words */
|
||||
uint32_t sign : 1; /*!< Sign of target PC offset: 0: positive, 1: negative */
|
||||
uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_B) */
|
||||
uint32_t opcode : 4; /*!< Opcode (OPCODE_BRANCH) */
|
||||
} b; /*!< Format of BRANCH instruction (relative address) */
|
||||
|
||||
struct {
|
||||
uint32_t dreg : 2; /*!< Destination register */
|
||||
uint32_t sreg : 2; /*!< Register with operand A */
|
||||
uint32_t treg : 2; /*!< Register with operand B */
|
||||
uint32_t unused : 15; /*!< Unused */
|
||||
uint32_t sel : 4; /*!< Operation to perform, one of ALU_SEL_xxx */
|
||||
uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_ALU_REG) */
|
||||
uint32_t opcode : 4; /*!< Opcode (OPCODE_ALU) */
|
||||
} alu_reg; /*!< Format of ALU instruction (both sources are registers) */
|
||||
|
||||
struct {
|
||||
uint32_t dreg : 2; /*!< Destination register */
|
||||
uint32_t sreg : 2; /*!< Register with operand A */
|
||||
uint32_t imm : 16; /*!< Immediate value of operand B */
|
||||
uint32_t unused : 1; /*!< Unused */
|
||||
uint32_t sel : 4; /*!< Operation to perform, one of ALU_SEL_xxx */
|
||||
uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_ALU_IMM) */
|
||||
uint32_t opcode : 4; /*!< Opcode (OPCODE_ALU) */
|
||||
} alu_imm; /*!< Format of ALU instruction (one source is an immediate) */
|
||||
|
||||
struct {
|
||||
uint32_t addr : 8; /*!< Address within either RTC_CNTL, RTC_IO, or SARADC */
|
||||
uint32_t periph_sel : 2; /*!< Select peripheral: RTC_CNTL (0), RTC_IO(1), SARADC(2) */
|
||||
uint32_t data : 8; /*!< 8 bits of data to write */
|
||||
uint32_t high : 5; /*!< High bit */
|
||||
uint32_t low : 5; /*!< Low bit */
|
||||
uint32_t opcode : 4; /*!< Opcode (OPCODE_WR_REG) */
|
||||
} wr_reg; /*!< Format of WR_REG instruction */
|
||||
|
||||
struct {
|
||||
uint32_t addr : 8; /*!< Address within either RTC_CNTL, RTC_IO, or SARADC */
|
||||
uint32_t periph_sel : 2; /*!< Select peripheral: RTC_CNTL (0), RTC_IO(1), SARADC(2) */
|
||||
uint32_t unused : 8; /*!< Unused */
|
||||
uint32_t high : 5; /*!< High bit */
|
||||
uint32_t low : 5; /*!< Low bit */
|
||||
uint32_t opcode : 4; /*!< Opcode (OPCODE_WR_REG) */
|
||||
} rd_reg; /*!< Format of WR_REG instruction */
|
||||
|
||||
struct {
|
||||
uint32_t dreg : 2; /*!< Register where to store ADC result */
|
||||
uint32_t mux : 4; /*!< Select SARADC pad (mux + 1) */
|
||||
uint32_t sar_sel : 1; /*!< Select SARADC0 (0) or SARADC1 (1) */
|
||||
uint32_t unused1 : 1; /*!< Unused */
|
||||
uint32_t cycles : 16; /*!< TBD, cycles used for measurement */
|
||||
uint32_t unused2 : 4; /*!< Unused */
|
||||
uint32_t opcode: 4; /*!< Opcode (OPCODE_ADC) */
|
||||
} adc; /*!< Format of ADC instruction */
|
||||
|
||||
struct {
|
||||
uint32_t dreg : 2; /*!< Register where to store temperature measurement result */
|
||||
uint32_t wait_delay: 14; /*!< Cycles to wait after measurement is done */
|
||||
uint32_t cycles: 12; /*!< Cycles used to perform measurement */
|
||||
uint32_t opcode: 4; /*!< Opcode (OPCODE_TSENS) */
|
||||
} tsens; /*!< Format of TSENS instruction */
|
||||
|
||||
struct {
|
||||
uint32_t i2c_addr : 8; /*!< I2C slave address */
|
||||
uint32_t data : 8; /*!< Data to read or write */
|
||||
uint32_t low_bits : 3; /*!< TBD */
|
||||
uint32_t high_bits : 3; /*!< TBD */
|
||||
uint32_t i2c_sel : 4; /*!< TBD, select reg_i2c_slave_address[7:0] */
|
||||
uint32_t unused : 1; /*!< Unused */
|
||||
uint32_t rw : 1; /*!< Write (1) or read (0) */
|
||||
uint32_t opcode : 4; /*!< Opcode (OPCODE_I2C) */
|
||||
} i2c; /*!< Format of I2C instruction */
|
||||
|
||||
struct {
|
||||
uint32_t wakeup : 1; /*!< Set to 1 to wake up chip */
|
||||
uint32_t unused : 24; /*!< Unused */
|
||||
uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_WAKEUP) */
|
||||
uint32_t opcode : 4; /*!< Opcode (OPCODE_END) */
|
||||
} end; /*!< Format of END instruction with wakeup */
|
||||
|
||||
struct {
|
||||
uint32_t cycle_sel : 4; /*!< Select which one of SARADC_ULP_CP_SLEEP_CYCx_REG to get the sleep duration from */
|
||||
uint32_t unused : 21; /*!< Unused */
|
||||
uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_SLEEP) */
|
||||
uint32_t opcode : 4; /*!< Opcode (OPCODE_END) */
|
||||
} sleep; /*!< Format of END instruction with sleep */
|
||||
|
||||
struct {
|
||||
uint32_t label : 16; /*!< Label number */
|
||||
uint32_t unused : 8; /*!< Unused */
|
||||
uint32_t sub_opcode : 4; /*!< SUB_OPCODE_MACRO_LABEL or SUB_OPCODE_MACRO_BRANCH */
|
||||
uint32_t opcode: 4; /*!< Opcode (OPCODE_MACRO) */
|
||||
} macro; /*!< Format of tokens used by LABEL and BRANCH macros */
|
||||
|
||||
} ulp_insn_t;
|
||||
|
||||
/**
|
||||
* Delay (nop) for a given number of cycles
|
||||
*/
|
||||
#define I_DELAY(cycles_) { .delay = {\
|
||||
.opcode = OPCODE_DELAY, \
|
||||
.unused = 0, \
|
||||
.cycles = cycles_ } }
|
||||
|
||||
/**
|
||||
* Halt the coprocessor
|
||||
*/
|
||||
#define I_HALT() { .halt = {\
|
||||
.unused = 0, \
|
||||
.opcode = OPCODE_HALT } }
|
||||
|
||||
|
||||
/**
|
||||
* Store value from register reg_val into RTC memory.
|
||||
*
|
||||
* The value is written to an offset calculated by adding value of
|
||||
* reg_addr register and offset_ field (this offset is expressed in 32-bit words).
|
||||
* 32 bits written to RTC memory are built as follows:
|
||||
* - 5 MSBs are zero
|
||||
* - next 11 bits hold the PC of current instruction, expressed in 32-bit words
|
||||
* - next 16 bits hold the actual value to be written
|
||||
*
|
||||
* RTC_SLOW_MEM[addr + offset_] = { 5'b0, insn_PC[10:0], val[15:0] }
|
||||
*/
|
||||
#define I_ST(reg_val, reg_addr, offset_) { .st = { \
|
||||
.dreg = reg_val, \
|
||||
.sreg = reg_addr, \
|
||||
.unused1 = 0, \
|
||||
.offset = offset_, \
|
||||
.unused2 = 0, \
|
||||
.sub_opcode = SUB_OPCODE_ST, \
|
||||
.opcode = OPCODE_ST } }
|
||||
|
||||
|
||||
/**
|
||||
* Load value from RTC memory into reg_dest register.
|
||||
*
|
||||
* Loads 16 LSBs from RTC memory word given by the sum of value in reg_addr and
|
||||
* value of offset_.
|
||||
*/
|
||||
#define I_LD(reg_dest, reg_addr, offset_) { .ld = { \
|
||||
.dreg = reg_dest, \
|
||||
.sreg = reg_addr, \
|
||||
.unused1 = 0, \
|
||||
.offset = offset_, \
|
||||
.unused2 = 0, \
|
||||
.opcode = OPCODE_LD } }
|
||||
|
||||
|
||||
/**
|
||||
* Branch relative if R0 less than immediate value.
|
||||
*
|
||||
* pc_offset is expressed in words, and can be from -127 to 127
|
||||
* imm_value is a 16-bit value to compare R0 against
|
||||
*/
|
||||
#define I_BL(pc_offset, imm_value) { .b = { \
|
||||
.imm = imm_value, \
|
||||
.cmp = B_CMP_L, \
|
||||
.offset = abs(pc_offset), \
|
||||
.sign = (pc_offset >= 0) ? 0 : 1, \
|
||||
.sub_opcode = SUB_OPCODE_B, \
|
||||
.opcode = OPCODE_BRANCH } }
|
||||
|
||||
/**
|
||||
* Branch relative if R0 greater or equal than immediate value.
|
||||
*
|
||||
* pc_offset is expressed in words, and can be from -127 to 127
|
||||
* imm_value is a 16-bit value to compare R0 against
|
||||
*/
|
||||
#define I_BGE(pc_offset, imm_value) { .b = { \
|
||||
.imm = imm_value, \
|
||||
.cmp = B_CMP_GE, \
|
||||
.offset = abs(pc_offset), \
|
||||
.sign = (pc_offset >= 0) ? 0 : 1, \
|
||||
.sub_opcode = SUB_OPCODE_B, \
|
||||
.opcode = OPCODE_BRANCH } }
|
||||
|
||||
/**
|
||||
* Unconditional branch to absolute PC, address in register.
|
||||
*
|
||||
* reg_pc is the register which contains address to jump to.
|
||||
* Address is expressed in 32-bit words.
|
||||
*/
|
||||
#define I_BXR(reg_pc) { .bx = { \
|
||||
.dreg = reg_pc, \
|
||||
.addr = 0, \
|
||||
.unused = 0, \
|
||||
.reg = 1, \
|
||||
.type = BX_JUMP_TYPE_DIRECT, \
|
||||
.sub_opcode = SUB_OPCODE_BX, \
|
||||
.opcode = OPCODE_BRANCH } }
|
||||
|
||||
/**
|
||||
* Unconditional branch to absolute PC, immediate address.
|
||||
*
|
||||
* Address imm_pc is expressed in 32-bit words.
|
||||
*/
|
||||
#define I_BXI(imm_pc) { .bx = { \
|
||||
.dreg = 0, \
|
||||
.addr = imm_pc, \
|
||||
.unused = 0, \
|
||||
.reg = 0, \
|
||||
.type = BX_JUMP_TYPE_DIRECT, \
|
||||
.sub_opcode = SUB_OPCODE_BX, \
|
||||
.opcode = OPCODE_BRANCH } }
|
||||
|
||||
/**
|
||||
* Branch to absolute PC if ALU result is zero, address in register.
|
||||
*
|
||||
* reg_pc is the register which contains address to jump to.
|
||||
* Address is expressed in 32-bit words.
|
||||
*/
|
||||
#define I_BXZR(reg_pc) { .bx = { \
|
||||
.dreg = reg_pc, \
|
||||
.addr = 0, \
|
||||
.unused = 0, \
|
||||
.reg = 1, \
|
||||
.type = BX_JUMP_TYPE_ZERO, \
|
||||
.sub_opcode = SUB_OPCODE_BX, \
|
||||
.opcode = OPCODE_BRANCH } }
|
||||
|
||||
/**
|
||||
* Branch to absolute PC if ALU result is zero, immediate address.
|
||||
*
|
||||
* Address imm_pc is expressed in 32-bit words.
|
||||
*/
|
||||
#define I_BXZI(imm_pc) { .bx = { \
|
||||
.dreg = 0, \
|
||||
.addr = imm_pc, \
|
||||
.unused = 0, \
|
||||
.reg = 0, \
|
||||
.type = BX_JUMP_TYPE_ZERO, \
|
||||
.sub_opcode = SUB_OPCODE_BX, \
|
||||
.opcode = OPCODE_BRANCH } }
|
||||
|
||||
/**
|
||||
* Branch to absolute PC if ALU overflow, address in register
|
||||
*
|
||||
* reg_pc is the register which contains address to jump to.
|
||||
* Address is expressed in 32-bit words.
|
||||
*/
|
||||
#define I_BXFR(reg_pc) { .bx = { \
|
||||
.dreg = reg_pc, \
|
||||
.addr = 0, \
|
||||
.unused = 0, \
|
||||
.reg = 1, \
|
||||
.type = BX_JUMP_TYPE_OVF, \
|
||||
.sub_opcode = SUB_OPCODE_BX, \
|
||||
.opcode = OPCODE_BRANCH } }
|
||||
|
||||
/**
|
||||
* Branch to absolute PC if ALU overflow, immediate address
|
||||
*
|
||||
* Address imm_pc is expressed in 32-bit words.
|
||||
*/
|
||||
#define I_BXFI(imm_pc) { .bx = { \
|
||||
.dreg = 0, \
|
||||
.addr = imm_pc, \
|
||||
.unused = 0, \
|
||||
.reg = 0, \
|
||||
.type = BX_JUMP_TYPE_OVF, \
|
||||
.sub_opcode = SUB_OPCODE_BX, \
|
||||
.opcode = OPCODE_BRANCH } }
|
||||
|
||||
|
||||
/**
|
||||
* Addition: dest = src1 + src2
|
||||
*/
|
||||
#define I_ADDR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \
|
||||
.dreg = reg_dest, \
|
||||
.sreg = reg_src1, \
|
||||
.treg = reg_src2, \
|
||||
.unused = 0, \
|
||||
.sel = ALU_SEL_ADD, \
|
||||
.sub_opcode = SUB_OPCODE_ALU_REG, \
|
||||
.opcode = OPCODE_ALU } }
|
||||
|
||||
/**
|
||||
* Subtraction: dest = src1 - src2
|
||||
*/
|
||||
#define I_SUBR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \
|
||||
.dreg = reg_dest, \
|
||||
.sreg = reg_src1, \
|
||||
.treg = reg_src2, \
|
||||
.unused = 0, \
|
||||
.sel = ALU_SEL_SUB, \
|
||||
.sub_opcode = SUB_OPCODE_ALU_REG, \
|
||||
.opcode = OPCODE_ALU } }
|
||||
|
||||
/**
|
||||
* Logical AND: dest = src1 & src2
|
||||
*/
|
||||
#define I_ANDR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \
|
||||
.dreg = reg_dest, \
|
||||
.sreg = reg_src1, \
|
||||
.treg = reg_src2, \
|
||||
.unused = 0, \
|
||||
.sel = ALU_SEL_AND, \
|
||||
.sub_opcode = SUB_OPCODE_ALU_REG, \
|
||||
.opcode = OPCODE_ALU } }
|
||||
|
||||
/**
|
||||
* Logical OR: dest = src1 | src2
|
||||
*/
|
||||
#define I_ORR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \
|
||||
.dreg = reg_dest, \
|
||||
.sreg = reg_src1, \
|
||||
.treg = reg_src2, \
|
||||
.unused = 0, \
|
||||
.sel = ALU_SEL_OR, \
|
||||
.sub_opcode = SUB_OPCODE_ALU_REG, \
|
||||
.opcode = OPCODE_ALU } }
|
||||
|
||||
/**
|
||||
* Copy: dest = src
|
||||
*/
|
||||
#define I_MOVR(reg_dest, reg_src) { .alu_reg = { \
|
||||
.dreg = reg_dest, \
|
||||
.sreg = reg_src, \
|
||||
.treg = 0, \
|
||||
.unused = 0, \
|
||||
.sel = ALU_SEL_MOV, \
|
||||
.sub_opcode = SUB_OPCODE_ALU_REG, \
|
||||
.opcode = OPCODE_ALU } }
|
||||
|
||||
/**
|
||||
* Logical shift left: dest = src << shift
|
||||
*/
|
||||
#define I_LSHR(reg_dest, reg_src, reg_shift) { .alu_reg = { \
|
||||
.dreg = reg_dest, \
|
||||
.sreg = reg_src, \
|
||||
.treg = reg_shift, \
|
||||
.unused = 0, \
|
||||
.sel = ALU_SEL_LSH, \
|
||||
.sub_opcode = SUB_OPCODE_ALU_REG, \
|
||||
.opcode = OPCODE_ALU } }
|
||||
|
||||
|
||||
/**
|
||||
* Logical shift right: dest = src >> shift
|
||||
*/
|
||||
#define I_RSHR(reg_dest, reg_src, reg_shift) { .alu_reg = { \
|
||||
.dreg = reg_dest, \
|
||||
.sreg = reg_src, \
|
||||
.treg = reg_shift, \
|
||||
.unused = 0, \
|
||||
.sel = ALU_SEL_RSH, \
|
||||
.sub_opcode = SUB_OPCODE_ALU_REG, \
|
||||
.opcode = OPCODE_ALU } }
|
||||
|
||||
/**
|
||||
* Add register and an immediate value: dest = src1 + imm
|
||||
*/
|
||||
#define I_ADDI(reg_dest, reg_src, imm_) { .alu_imm = { \
|
||||
.dreg = reg_dest, \
|
||||
.sreg = reg_src, \
|
||||
.imm = imm_, \
|
||||
.unused = 0, \
|
||||
.sel = ALU_SEL_ADD, \
|
||||
.sub_opcode = SUB_OPCODE_ALU_IMM, \
|
||||
.opcode = OPCODE_ALU } }
|
||||
|
||||
|
||||
/**
|
||||
* Subtract register and an immediate value: dest = src - imm
|
||||
*/
|
||||
#define I_SUBI(reg_dest, reg_src, imm_) { .alu_imm = { \
|
||||
.dreg = reg_dest, \
|
||||
.sreg = reg_src, \
|
||||
.imm = imm_, \
|
||||
.unused = 0, \
|
||||
.sel = ALU_SEL_SUB, \
|
||||
.sub_opcode = SUB_OPCODE_ALU_IMM, \
|
||||
.opcode = OPCODE_ALU } }
|
||||
|
||||
/**
|
||||
* Logical AND register and an immediate value: dest = src & imm
|
||||
*/
|
||||
#define I_ANDI(reg_dest, reg_src, imm_) { .alu_imm = { \
|
||||
.dreg = reg_dest, \
|
||||
.sreg = reg_src, \
|
||||
.imm = reg_imm_, \
|
||||
.unused = 0, \
|
||||
.sel = ALU_SEL_AND, \
|
||||
.sub_opcode = SUB_OPCODE_ALU_IMM, \
|
||||
.opcode = OPCODE_ALU } }
|
||||
|
||||
/**
|
||||
* Logical OR register and an immediate value: dest = src | imm
|
||||
*/
|
||||
#define I_ORI(reg_dest, reg_src, imm_) { .alu_imm = { \
|
||||
.dreg = reg_dest, \
|
||||
.sreg = reg_src, \
|
||||
.imm = imm_, \
|
||||
.unused = 0, \
|
||||
.sel = ALU_SEL_OR, \
|
||||
.sub_opcode = SUB_OPCODE_ALU_IMM, \
|
||||
.opcode = OPCODE_ALU } }
|
||||
|
||||
/**
|
||||
* Copy an immediate value into register: dest = imm
|
||||
*/
|
||||
#define I_MOVI(reg_dest, imm_) { .alu_imm = { \
|
||||
.dreg = reg_dest, \
|
||||
.sreg = 0, \
|
||||
.imm = imm_, \
|
||||
.unused = 0, \
|
||||
.sel = ALU_SEL_MOV, \
|
||||
.sub_opcode = SUB_OPCODE_ALU_IMM, \
|
||||
.opcode = OPCODE_ALU } }
|
||||
|
||||
/**
|
||||
* Logical shift left register value by an immediate: dest = src << imm
|
||||
*/
|
||||
#define I_LSHI(reg_dest, reg_src, imm_) { .alu_imm = { \
|
||||
.dreg = reg_dest, \
|
||||
.sreg = reg_src, \
|
||||
.imm = imm_, \
|
||||
.unused = 0, \
|
||||
.sel = ALU_SEL_LSH, \
|
||||
.sub_opcode = SUB_OPCODE_ALU_IMM, \
|
||||
.opcode = OPCODE_ALU } }
|
||||
|
||||
|
||||
/**
|
||||
* Logical shift right register value by an immediate: dest = val >> imm
|
||||
*/
|
||||
#define I_RSHI(reg_dest, reg_src, imm_) { .alu_imm = { \
|
||||
.dreg = reg_dest, \
|
||||
.sreg = reg_src, \
|
||||
.imm = imm_, \
|
||||
.unused = 0, \
|
||||
.sel = ALU_SEL_RSH, \
|
||||
.sub_opcode = SUB_OPCODE_ALU_IMM, \
|
||||
.opcode = OPCODE_ALU } }
|
||||
|
||||
/**
|
||||
* Define a label with number label_num.
|
||||
*
|
||||
* This is a macro which doesn't generate a real instruction.
|
||||
* The token generated by this macro is removed by ulp_process_macros_and_load
|
||||
* function. Label defined using this macro can be used in branch macros defined
|
||||
* below.
|
||||
*/
|
||||
#define M_LABEL(label_num) { .macro = { \
|
||||
.label = label_num, \
|
||||
.unused = 0, \
|
||||
.sub_opcode = SUB_OPCODE_MACRO_LABEL, \
|
||||
.opcode = OPCODE_MACRO } }
|
||||
|
||||
/**
|
||||
* Token macro used by M_B and M_BX macros. Not to be used directly.
|
||||
*/
|
||||
#define M_BRANCH(label_num) { .macro = { \
|
||||
.label = label_num, \
|
||||
.unused = 0, \
|
||||
.sub_opcode = SUB_OPCODE_MACRO_BRANCH, \
|
||||
.opcode = OPCODE_MACRO } }
|
||||
|
||||
/**
|
||||
* Macro: branch to label label_num if R0 is less than immediate value.
|
||||
*
|
||||
* This macro generates two ulp_insn_t values separated by a comma, and should
|
||||
* be used when defining contents of ulp_insn_t arrays. First value is not a
|
||||
* real instruction; it is a token which is removed by ulp_process_macros_and_load
|
||||
* function.
|
||||
*/
|
||||
#define M_BL(label_num, imm_value) \
|
||||
M_BRANCH(label_num), \
|
||||
I_BL(0, imm_value)
|
||||
|
||||
/**
|
||||
* Macro: branch to label label_num if R0 is greater or equal than immediate value
|
||||
*
|
||||
* This macro generates two ulp_insn_t values separated by a comma, and should
|
||||
* be used when defining contents of ulp_insn_t arrays. First value is not a
|
||||
* real instruction; it is a token which is removed by ulp_process_macros_and_load
|
||||
* function.
|
||||
*/
|
||||
#define M_BGE(label_num, imm_value) \
|
||||
M_BRANCH(label_num), \
|
||||
I_BGE(0, imm_value)
|
||||
|
||||
/**
|
||||
* Macro: unconditional branch to label
|
||||
*
|
||||
* This macro generates two ulp_insn_t values separated by a comma, and should
|
||||
* be used when defining contents of ulp_insn_t arrays. First value is not a
|
||||
* real instruction; it is a token which is removed by ulp_process_macros_and_load
|
||||
* function.
|
||||
*/
|
||||
#define M_BX(label_num) \
|
||||
M_BRANCH(label_num), \
|
||||
I_BXI(0)
|
||||
|
||||
/**
|
||||
* Macro: branch to label if ALU result is zero
|
||||
*
|
||||
* This macro generates two ulp_insn_t values separated by a comma, and should
|
||||
* be used when defining contents of ulp_insn_t arrays. First value is not a
|
||||
* real instruction; it is a token which is removed by ulp_process_macros_and_load
|
||||
* function.
|
||||
*/
|
||||
#define M_BXZ(label_num) \
|
||||
M_BRANCH(label_num), \
|
||||
I_BXZI(0)
|
||||
|
||||
/**
|
||||
* Macro: branch to label if ALU overflow
|
||||
*
|
||||
* This macro generates two ulp_insn_t values separated by a comma, and should
|
||||
* be used when defining contents of ulp_insn_t arrays. First value is not a
|
||||
* real instruction; it is a token which is removed by ulp_process_macros_and_load
|
||||
* function.
|
||||
*/
|
||||
#define M_BXF(label_num) \
|
||||
M_BRANCH(label_num), \
|
||||
I_BXFI(0)
|
||||
|
||||
|
||||
|
||||
#define RTC_SLOW_MEM ((uint32_t*) 0x50000000) /*!< RTC slow memory, 8k size */
|
||||
|
||||
/**
|
||||
* @brief Resolve all macro references in a program and load it into RTC memory
|
||||
* @param load_addr address where the program should be loaded, expressed in 32-bit words
|
||||
* @param program ulp_insn_t array with the program
|
||||
* @param psize size of the program, expressed in 32-bit words
|
||||
* @return
|
||||
* - ESP_OK on success
|
||||
* - ESP_ERR_NO_MEM if auxiliary temporary structure can not be allocated
|
||||
* - one of ESP_ERR_ULP_xxx if program is not valid or can not be loaded
|
||||
*/
|
||||
esp_err_t ulp_process_macros_and_load(uint32_t load_addr, const ulp_insn_t* program, size_t* psize);
|
||||
|
||||
/**
|
||||
* @brief Run the program loaded into RTC memory
|
||||
* @param entry_point entry point, expressed in 32-bit words
|
||||
* @return ESP_OK on success
|
||||
*/
|
||||
esp_err_t ulp_run(uint32_t entry_point);
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
94
components/ulp/test/test_ulp.c
Normal file
94
components/ulp/test/test_ulp.c
Normal file
@ -0,0 +1,94 @@
|
||||
// Copyright 2010-2016 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <freertos/FreeRTOS.h>
|
||||
#include <freertos/task.h>
|
||||
#include <freertos/semphr.h>
|
||||
|
||||
#include <unity.h>
|
||||
#include "esp_attr.h"
|
||||
#include "esp_err.h"
|
||||
#include "esp_log.h"
|
||||
|
||||
#include "esp32/ulp.h"
|
||||
|
||||
#include "soc/soc.h"
|
||||
#include "soc/rtc_cntl_reg.h"
|
||||
#include "soc/saradc_reg.h"
|
||||
|
||||
#include "sdkconfig.h"
|
||||
|
||||
static void hexdump(const uint32_t* src, size_t count) {
|
||||
for (size_t i = 0; i < count; ++i) {
|
||||
printf("%08x ", *src);
|
||||
++src;
|
||||
if ((i + 1) % 4 == 0) {
|
||||
printf("\n");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("ulp add test", "[ulp]")
|
||||
{
|
||||
memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
|
||||
const ulp_insn_t program[] = {
|
||||
I_MOVI(R3, 16),
|
||||
I_LD(R0, R3, 0),
|
||||
I_LD(R1, R3, 1),
|
||||
I_ADDR(R2, R0, R1),
|
||||
I_ST(R2, R3, 2),
|
||||
I_HALT()
|
||||
};
|
||||
RTC_SLOW_MEM[16] = 10;
|
||||
RTC_SLOW_MEM[17] = 11;
|
||||
size_t size = sizeof(program)/sizeof(ulp_insn_t);
|
||||
TEST_ASSERT_EQUAL(ESP_OK, ulp_process_macros_and_load(0, program, &size));
|
||||
TEST_ASSERT_EQUAL(ESP_OK, ulp_run(0));
|
||||
ets_delay_us(1000);
|
||||
hexdump(RTC_SLOW_MEM, CONFIG_ULP_COPROC_RESERVE_MEM / 4);
|
||||
TEST_ASSERT_EQUAL(10 + 11, RTC_SLOW_MEM[18] & 0xffff);
|
||||
}
|
||||
|
||||
TEST_CASE("ulp branch test", "[ulp]")
|
||||
{
|
||||
assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
|
||||
memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
|
||||
const ulp_insn_t program[] = {
|
||||
I_MOVI(R0, 34), // r0 = dst
|
||||
M_LABEL(1),
|
||||
I_MOVI(R1, 32),
|
||||
I_LD(R1, R1, 0), // r1 = mem[33]
|
||||
I_MOVI(R2, 33),
|
||||
I_LD(R2, R2, 0), // r2 = mem[34]
|
||||
I_SUBR(R3, R1, R2), // r3 = r1 - r2
|
||||
I_ST(R3, R0, 0), // dst[0] = r3
|
||||
I_ADDI(R0, R0, 1),
|
||||
M_BL(1, 64),
|
||||
I_HALT(),
|
||||
};
|
||||
RTC_SLOW_MEM[32] = 42;
|
||||
RTC_SLOW_MEM[33] = 18;
|
||||
hexdump(RTC_SLOW_MEM, CONFIG_ULP_COPROC_RESERVE_MEM / 4);
|
||||
size_t size = sizeof(program)/sizeof(ulp_insn_t);
|
||||
ulp_process_macros_and_load(0, program, &size);
|
||||
ulp_run(0);
|
||||
printf("\n\n");
|
||||
hexdump(RTC_SLOW_MEM, CONFIG_ULP_COPROC_RESERVE_MEM / 4);
|
||||
for (int i = 34; i < 64; ++i) {
|
||||
TEST_ASSERT_EQUAL(42 - 18, RTC_SLOW_MEM[i] & 0xffff);
|
||||
}
|
||||
TEST_ASSERT_EQUAL(0, RTC_SLOW_MEM[64]);
|
||||
}
|
270
components/ulp/ulp.c
Normal file
270
components/ulp/ulp.c
Normal file
@ -0,0 +1,270 @@
|
||||
// Copyright 2010-2016 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "esp_attr.h"
|
||||
#include "esp_err.h"
|
||||
#include "esp_log.h"
|
||||
#include "esp32/ulp.h"
|
||||
|
||||
#include "soc/soc.h"
|
||||
#include "soc/rtc_cntl_reg.h"
|
||||
#include "soc/saradc_reg.h"
|
||||
|
||||
#include "sdkconfig.h"
|
||||
|
||||
static const char* TAG = "ulp";
|
||||
|
||||
typedef struct {
|
||||
uint32_t label : 16;
|
||||
uint32_t addr : 11;
|
||||
uint32_t unused : 1;
|
||||
uint32_t type : 4;
|
||||
} reloc_info_t;
|
||||
|
||||
#define RELOC_TYPE_LABEL 0
|
||||
#define RELOC_TYPE_BRANCH 1
|
||||
|
||||
/* This record means: there is a label at address
|
||||
* insn_addr, with number label_num.
|
||||
*/
|
||||
#define RELOC_INFO_LABEL(label_num, insn_addr) (reloc_info_t) { \
|
||||
.label = label_num, \
|
||||
.addr = insn_addr, \
|
||||
.unused = 0, \
|
||||
.type = RELOC_TYPE_LABEL }
|
||||
|
||||
/* This record means: there is a branch instruction at
|
||||
* insn_addr, it needs to be changed to point to address
|
||||
* of label label_num.
|
||||
*/
|
||||
#define RELOC_INFO_BRANCH(label_num, insn_addr) (reloc_info_t) { \
|
||||
.label = label_num, \
|
||||
.addr = insn_addr, \
|
||||
.unused = 0, \
|
||||
.type = RELOC_TYPE_BRANCH }
|
||||
|
||||
|
||||
/* Processing branch and label macros involves four steps:
|
||||
*
|
||||
* 1. Iterate over program and count all instructions
|
||||
* with "macro" opcode. Allocate relocations array
|
||||
* with number of entries equal to number of macro
|
||||
* instructions.
|
||||
*
|
||||
* 2. Remove all fake instructions with "macro" opcode
|
||||
* and record their locations into relocations array.
|
||||
* Removal is done using two pointers. Instructions
|
||||
* are read from read_ptr, and written to write_ptr.
|
||||
* When a macro instruction is encountered,
|
||||
* its contents are recorded into the appropriate
|
||||
* table, and then read_ptr is advanced again.
|
||||
* When a real instruction is encountered, it is
|
||||
* read via read_ptr and written to write_ptr.
|
||||
* In the end, all macro instructions are removed,
|
||||
* size of the program (expressed in words) is
|
||||
* reduced by the total number of macro instructions
|
||||
* which were present.
|
||||
*
|
||||
* 3. Sort relocations array by label number, and then
|
||||
* by type ("label" or "branch") if label numbers
|
||||
* match. This is done to simplify lookup on the next
|
||||
* step.
|
||||
*
|
||||
* 4. Iterate over entries of relocations table.
|
||||
* For each label number, label entry comes first
|
||||
* because the array was sorted at the previous step.
|
||||
* Label address is recorded, and all subsequent
|
||||
* "branch" entries which point to the same label number
|
||||
* are processed. For each branch entry, correct offset
|
||||
* or absolute address is calculated, depending on branch
|
||||
* type, and written into the appropriate field of
|
||||
* the instruction.
|
||||
*
|
||||
*/
|
||||
|
||||
static esp_err_t do_single_reloc(ulp_insn_t* program, uint32_t load_addr,
|
||||
reloc_info_t label_info, reloc_info_t branch_info)
|
||||
{
|
||||
size_t insn_offset = branch_info.addr - load_addr;
|
||||
ulp_insn_t* insn = &program[insn_offset];
|
||||
// B and BX have the same layout of opcode/sub_opcode fields,
|
||||
// and share the same opcode
|
||||
assert(insn->b.opcode == OPCODE_BRANCH
|
||||
&& "branch macro was applied to a non-branch instruction");
|
||||
switch (insn->b.sub_opcode) {
|
||||
case SUB_OPCODE_B: {
|
||||
int32_t offset = ((int32_t) label_info.addr) - ((int32_t) branch_info.addr);
|
||||
uint32_t abs_offset = abs(offset);
|
||||
uint32_t sign = (offset >= 0) ? 0 : 1;
|
||||
if (abs_offset > 127) {
|
||||
ESP_LOGW(TAG, "target out of range: branch from %x to %x",
|
||||
branch_info.addr, label_info.addr);
|
||||
return ESP_ERR_ULP_BRANCH_OUT_OF_RANGE;
|
||||
}
|
||||
insn->b.offset = abs_offset;
|
||||
insn->b.sign = sign;
|
||||
break;
|
||||
}
|
||||
case SUB_OPCODE_BX: {
|
||||
assert(insn->bx.reg == 0 &&
|
||||
"relocation applied to a jump with offset in register");
|
||||
insn->bx.addr = label_info.addr;
|
||||
break;
|
||||
}
|
||||
default:
|
||||
assert(false && "unexpected sub-opcode");
|
||||
}
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t ulp_process_macros_and_load(uint32_t load_addr, const ulp_insn_t* program, size_t* psize)
|
||||
{
|
||||
const ulp_insn_t* read_ptr = program;
|
||||
const ulp_insn_t* end = program + *psize;
|
||||
size_t macro_count = 0;
|
||||
// step 1: calculate number of macros
|
||||
while (read_ptr < end) {
|
||||
ulp_insn_t r_insn = *read_ptr;
|
||||
if (r_insn.macro.opcode == OPCODE_MACRO) {
|
||||
++macro_count;
|
||||
}
|
||||
++read_ptr;
|
||||
}
|
||||
size_t real_program_size = *psize - macro_count;
|
||||
const size_t ulp_mem_end = CONFIG_ULP_COPROC_RESERVE_MEM / sizeof(ulp_insn_t);
|
||||
if (load_addr > ulp_mem_end) {
|
||||
ESP_LOGW(TAG, "invalid load address %x, max is %x",
|
||||
load_addr, ulp_mem_end);
|
||||
return ESP_ERR_ULP_INVALID_LOAD_ADDR;
|
||||
}
|
||||
if (real_program_size + load_addr > ulp_mem_end) {
|
||||
ESP_LOGE(TAG, "program too big: %d words, max is %d words",
|
||||
real_program_size, ulp_mem_end);
|
||||
return ESP_ERR_ULP_SIZE_TOO_BIG;
|
||||
}
|
||||
// If no macros found, copy the program and return.
|
||||
if (macro_count == 0) {
|
||||
memcpy(((ulp_insn_t*) RTC_SLOW_MEM) + load_addr, program, *psize * sizeof(ulp_insn_t));
|
||||
return ESP_OK;
|
||||
}
|
||||
reloc_info_t* reloc_info =
|
||||
(reloc_info_t*) malloc(sizeof(reloc_info_t) * macro_count);
|
||||
if (reloc_info == NULL) {
|
||||
return ESP_ERR_NO_MEM;
|
||||
}
|
||||
|
||||
// step 2: record macros into reloc_info array
|
||||
// and remove them from then program
|
||||
read_ptr = program;
|
||||
ulp_insn_t* output_program = ((ulp_insn_t*) RTC_SLOW_MEM) + load_addr;
|
||||
ulp_insn_t* write_ptr = output_program;
|
||||
uint32_t cur_insn_addr = load_addr;
|
||||
reloc_info_t* cur_reloc = reloc_info;
|
||||
while (read_ptr < end) {
|
||||
ulp_insn_t r_insn = *read_ptr;
|
||||
if (r_insn.macro.opcode == OPCODE_MACRO) {
|
||||
switch(r_insn.macro.sub_opcode) {
|
||||
case SUB_OPCODE_MACRO_LABEL:
|
||||
*cur_reloc = RELOC_INFO_LABEL(r_insn.macro.label,
|
||||
cur_insn_addr);
|
||||
break;
|
||||
case SUB_OPCODE_MACRO_BRANCH:
|
||||
*cur_reloc = RELOC_INFO_BRANCH(r_insn.macro.label,
|
||||
cur_insn_addr);
|
||||
break;
|
||||
default:
|
||||
assert(0 && "invalid sub_opcode for macro insn");
|
||||
}
|
||||
++read_ptr;
|
||||
assert(read_ptr != end && "program can not end with macro insn");
|
||||
++cur_reloc;
|
||||
} else {
|
||||
// normal instruction (not a macro)
|
||||
*write_ptr = *read_ptr;
|
||||
++read_ptr;
|
||||
++write_ptr;
|
||||
++cur_insn_addr;
|
||||
}
|
||||
}
|
||||
|
||||
// step 3: sort relocations array
|
||||
int reloc_sort_func(const void* p_lhs, const void* p_rhs) {
|
||||
const reloc_info_t lhs = *(const reloc_info_t*) p_lhs;
|
||||
const reloc_info_t rhs = *(const reloc_info_t*) p_rhs;
|
||||
if (lhs.label < rhs.label) {
|
||||
return -1;
|
||||
} else if (lhs.label > rhs.label) {
|
||||
return 1;
|
||||
}
|
||||
// label numbers are equal
|
||||
if (lhs.type < rhs.type) {
|
||||
return -1;
|
||||
} else if (lhs.type > rhs.type) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
// both label number and type are equal
|
||||
return 0;
|
||||
}
|
||||
qsort(reloc_info, macro_count, sizeof(reloc_info_t),
|
||||
reloc_sort_func);
|
||||
|
||||
// step 4: walk relocations array and fix instructions
|
||||
reloc_info_t* reloc_end = reloc_info + macro_count;
|
||||
cur_reloc = reloc_info;
|
||||
while(cur_reloc < reloc_end) {
|
||||
reloc_info_t label_info = *cur_reloc;
|
||||
assert(label_info.type == RELOC_TYPE_LABEL);
|
||||
++cur_reloc;
|
||||
while (cur_reloc < reloc_end) {
|
||||
if (cur_reloc->type == RELOC_TYPE_LABEL) {
|
||||
if(cur_reloc->label == label_info.label) {
|
||||
ESP_LOGE(TAG, "duplicate label definition: %d",
|
||||
label_info.label);
|
||||
free(reloc_info);
|
||||
return ESP_ERR_ULP_DUPLICATE_LABEL;
|
||||
}
|
||||
break;
|
||||
}
|
||||
if (cur_reloc->label != label_info.label) {
|
||||
ESP_LOGE(TAG, "branch to an inexistent label: %d",
|
||||
cur_reloc->label);
|
||||
free(reloc_info);
|
||||
return ESP_ERR_ULP_UNDEFINED_LABEL;
|
||||
}
|
||||
esp_err_t rc = do_single_reloc(output_program, load_addr,
|
||||
label_info, *cur_reloc);
|
||||
if (rc != ESP_OK) {
|
||||
free(reloc_info);
|
||||
return rc;
|
||||
}
|
||||
++cur_reloc;
|
||||
}
|
||||
}
|
||||
free(reloc_info);
|
||||
*psize = real_program_size;
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t ulp_run(uint32_t entry_point)
|
||||
{
|
||||
SET_PERI_REG_MASK(SARADC_SAR_START_FORCE_REG, SARADC_ULP_CP_FORCE_START_TOP_M);
|
||||
SET_PERI_REG_BITS(SARADC_SAR_START_FORCE_REG, SARADC_PC_INIT_V, entry_point, SARADC_PC_INIT_S);
|
||||
SET_PERI_REG_MASK(SARADC_SAR_START_FORCE_REG, SARADC_ULP_CP_START_TOP_M);
|
||||
return ESP_OK;
|
||||
}
|
@ -26,7 +26,8 @@ INPUT = ../components/esp32/include/esp_wifi.h \
|
||||
../components/esp32/include/esp_int_wdt.h \
|
||||
../components/esp32/include/esp_task_wdt.h \
|
||||
../components/app_update/include/esp_ota_ops.h \
|
||||
../components/ethernet/include/esp_eth.h
|
||||
../components/ethernet/include/esp_eth.h \
|
||||
../components/ulp/include/esp32/ulp.h
|
||||
|
||||
## Get warnings for functions that have no documentation for their parameters or return value
|
||||
##
|
||||
|
1
docs/api/ulp.rst
Normal file
1
docs/api/ulp.rst
Normal file
@ -0,0 +1 @@
|
||||
.. include:: ../../components/ulp/README.rst
|
@ -36,6 +36,7 @@ Contents:
|
||||
build_system
|
||||
openocd
|
||||
Secure Boot <security/secure-boot>
|
||||
ULP coprocessor <api/ulp.rst>
|
||||
|
||||
.. API Reference
|
||||
..
|
||||
|
@ -93,8 +93,8 @@ CONFIG_SYSTEM_EVENT_QUEUE_SIZE=32
|
||||
CONFIG_SYSTEM_EVENT_TASK_STACK_SIZE=2048
|
||||
CONFIG_MAIN_TASK_STACK_SIZE=4096
|
||||
CONFIG_NEWLIB_STDOUT_ADDCR=y
|
||||
# CONFIG_ULP_COPROC_ENABLED is not set
|
||||
CONFIG_ULP_COPROC_RESERVE_MEM=0
|
||||
CONFIG_ULP_COPROC_ENABLED=y
|
||||
CONFIG_ULP_COPROC_RESERVE_MEM=512
|
||||
# CONFIG_ESP32_PANIC_PRINT_HALT is not set
|
||||
CONFIG_ESP32_PANIC_PRINT_REBOOT=y
|
||||
# CONFIG_ESP32_PANIC_SILENT_REBOOT is not set
|
||||
@ -112,6 +112,7 @@ CONFIG_ESP32_RTC_CLOCK_SOURCE_INTERNAL_RC=y
|
||||
CONFIG_ESP32_PHY_AUTO_INIT=y
|
||||
# CONFIG_ESP32_PHY_INIT_DATA_IN_PARTITION is not set
|
||||
CONFIG_ESP32_PHY_MAX_TX_POWER=20
|
||||
# CONFIG_ETHERNET is not set
|
||||
|
||||
#
|
||||
# FreeRTOS
|
||||
|
Loading…
x
Reference in New Issue
Block a user