feat(hal/testapps): Added AES and SHA testcases with DMA support

This commit is contained in:
nilesh.kale 2023-10-16 17:30:36 +05:30
parent 91630fab36
commit aab3f604ec
23 changed files with 1568 additions and 233 deletions

View File

@ -1,3 +1,11 @@
components/hal/test_apps/crypto:
disable_test:
- if: IDF_TARGET == "esp32p4"
temporary: true
reason: test not pass, should be re-enable # TODO: IDF-8982
depends_components:
- efuse
components/hal/test_apps/hal_i2c:
disable:
- if: SOC_I2C_SUPPORTED != 1

View File

@ -0,0 +1,14 @@
#
# The mbedtls component gets pulled in during the build(due to a dependency of component bootloader_support),
# but we needed to avoid inclusion of mbedtls in this hal layer test app, thus creating a "dummy" mbedtls component.
# This dummy mbedtls component will get the priority during the build stage and thus the "real" mbedtls component
# does not get pulled.
#
idf_build_get_property(idf_target IDF_TARGET)
idf_build_get_property(python PYTHON)
set(mbedtls_srcs ".")
set(mbedtls_include_dirs include)
idf_component_register(SRCS "${mbedtls_srcs}"
INCLUDE_DIRS "${mbedtls_include_dirs}")

View File

@ -0,0 +1,11 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Unlicense OR CC0-1.0
*/
#define MBEDTLS_ERR_AES_INVALID_KEY_LENGTH -1
#define MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH -2
#define MBEDTLS_ERR_AES_BAD_INPUT_DATA -3
#define MBEDTLS_AES_ENCRYPT ESP_AES_ENCRYPT
#define MBEDTLS_AES_DECRYPT ESP_AES_DECRYPT

View File

@ -0,0 +1,6 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Unlicense OR CC0-1.0
*/
typedef int mbedtls_cipher_id_t;

View File

@ -0,0 +1,6 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Unlicense OR CC0-1.0
*/
#define MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED -1

View File

@ -0,0 +1,11 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Unlicense OR CC0-1.0
*/
#include <stddef.h>
static inline void mbedtls_platform_zeroize( void *buf, size_t len )
{
bzero(buf, len);
}

View File

@ -0,0 +1,29 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Unlicense OR CC0-1.0
*/
#include <stddef.h>
#include <stdint.h>
typedef void *bootloader_sha256_handle_t;
bootloader_sha256_handle_t bootloader_sha256_start(void);
void bootloader_sha256_data(bootloader_sha256_handle_t handle, const void *data, size_t data_len);
void bootloader_sha256_finish(bootloader_sha256_handle_t handle, uint8_t *digest);
typedef void mbedtls_sha256_context;
void mbedtls_sha256_init(mbedtls_sha256_context *ctx);
void mbedtls_sha256_free(mbedtls_sha256_context *ctx);
int mbedtls_sha256_starts(mbedtls_sha256_context *ctx, int is224);
int mbedtls_sha256_update(mbedtls_sha256_context *ctx,
const unsigned char *input,
size_t ilen);
int mbedtls_sha256_finish(mbedtls_sha256_context *ctx,
unsigned char *output);

View File

@ -1,4 +1,5 @@
set(srcs "app_main.c")
set(priv_include_dirs ".")
if(CONFIG_SOC_MPI_SUPPORTED)
list(APPEND srcs "mpi/test_mpi.c")
@ -21,19 +22,41 @@ if(CONFIG_SOC_ECDSA_SUPPORTED)
endif()
if(CONFIG_SOC_AES_SUPPORTED)
list(APPEND srcs "aes/aes_block.c")
list(APPEND srcs "aes/test_aes_block.c")
list(APPEND srcs "aes/test_aes.c"
"$ENV{IDF_PATH}/components/mbedtls/port/aes/esp_aes_common.c"
"aes/aes_block.c")
list(APPEND priv_include_dirs "$ENV{IDF_PATH}/components/mbedtls/port/include")
if(CONFIG_SOC_AES_SUPPORT_DMA)
list(APPEND priv_include_dirs "$ENV{IDF_PATH}/components/mbedtls/port/aes/dma/include")
list(APPEND srcs "$ENV{IDF_PATH}/components/mbedtls/port/aes/dma/esp_aes.c")
if(NOT CONFIG_SOC_AES_GDMA)
list(APPEND srcs "$ENV{IDF_PATH}/components/mbedtls/port/aes/dma/esp_aes_crypto_dma_impl.c")
else()
list(APPEND srcs "$ENV{IDF_PATH}/components/mbedtls/port/aes/dma/esp_aes_gdma_impl.c"
"$ENV{IDF_PATH}/components/mbedtls/port/crypto_shared_gdma/esp_crypto_shared_gdma.c")
endif()
if(CONFIG_SOC_AES_SUPPORT_GCM)
list(APPEND srcs "$ENV{IDF_PATH}/components/mbedtls/port/aes/esp_aes_gcm.c")
endif()
endif()
endif()
if(CONFIG_SOC_SHA_SUPPORTED)
if(NOT CONFIG_SOC_SHA_SUPPORT_PARALLEL_ENG)
list(APPEND srcs "sha/sha_block.c")
list(APPEND srcs "sha/test_sha_block.c")
list(APPEND srcs "sha/test_sha.c"
"sha/sha_block.c")
if(CONFIG_SOC_SHA_SUPPORT_DMA)
list(APPEND srcs "sha/sha_dma.c")
endif()
endif()
endif()
idf_component_register(SRCS ${srcs}
PRIV_REQUIRES efuse
PRIV_REQUIRES efuse mbedtls
REQUIRES test_utils unity
WHOLE_ARCHIVE
PRIV_INCLUDE_DIRS ".")
PRIV_INCLUDE_DIRS "${priv_include_dirs}"
)

View File

@ -1,3 +1,4 @@
menu "Test App Configuration"
config CRYPTO_TEST_APP_ENABLE_DS_TESTS
@ -19,4 +20,11 @@ menu "Test App Configuration"
help
Enabling this option includes ECDSA Peripheral related test cases in the build for supported targets.
config CRYPTO_TESTAPP_USE_AES_INTERRUPT
bool "Use interrupt for long AES operations"
depends on SOC_AES_SUPPORTED
default n
help
Use an interrupt to coordinate long AES operations.
endmenu

View File

@ -0,0 +1,521 @@
/*
* SPDX-FileCopyrightText: 2023-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: CC0-1.0
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/param.h>
#include "soc/soc_caps.h"
#include "esp_heap_caps.h"
#include "unity.h"
#include "test_params.h"
#include "memory_checks.h"
#include "unity_fixture.h"
#include "esp_log.h"
#include "aes/esp_aes.h"
#include "aes/esp_aes_gcm.h"
#if SOC_AES_SUPPORTED
#include "aes_block.h"
#define AES_BUFFER_SIZE 1600
#define AES_LONG_BUFFER_SIZE 8000
TEST_GROUP(aes);
TEST_SETUP(aes)
{
test_utils_record_free_mem();
TEST_ESP_OK(test_utils_set_leak_level(400, ESP_LEAK_TYPE_CRITICAL, ESP_COMP_LEAK_GENERAL));
}
TEST_TEAR_DOWN(aes)
{
test_utils_finish_and_evaluate_leaks(test_utils_get_leak_level(ESP_LEAK_TYPE_WARNING, ESP_COMP_LEAK_ALL),
test_utils_get_leak_level(ESP_LEAK_TYPE_CRITICAL, ESP_COMP_LEAK_ALL));
}
static void test_cbc_aes(bool is_dma, size_t buffer_size, const uint8_t expected_cipher_end[32])
{
esp_aes_context ctx;
unsigned int key_bits = 256;
uint8_t nonce[16];
esp_aes_init(&ctx);
esp_aes_setkey(&ctx, key_256, key_bits);
uint8_t *chipertext = heap_caps_calloc(buffer_size, sizeof(uint8_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
TEST_ASSERT_NOT_NULL(chipertext);
uint8_t *plaintext = heap_caps_calloc(buffer_size, sizeof(uint8_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
TEST_ASSERT_NOT_NULL(plaintext);
uint8_t *decryptedtext = heap_caps_calloc(buffer_size, sizeof(uint8_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
TEST_ASSERT_NOT_NULL(decryptedtext);
memset(plaintext, 0x3A, buffer_size);
memset(decryptedtext, 0x0, buffer_size);
// Encrypt
memcpy(nonce, iv, 16);
#ifdef SOC_AES_SUPPORT_DMA
if (is_dma) {
esp_aes_crypt_cbc(&ctx, ESP_AES_ENCRYPT, buffer_size, nonce, plaintext, chipertext);
}
else
#endif
{
aes_crypt_cbc_block(ESP_AES_ENCRYPT, key_bits / 8, key_256, buffer_size, nonce, plaintext, chipertext);
}
TEST_ASSERT_EQUAL_HEX8_ARRAY(expected_cipher_end, chipertext + buffer_size - 32, 32);
// Decrypt
memcpy(nonce, iv, 16);
#ifdef SOC_AES_SUPPORT_DMA
if (is_dma) {
esp_aes_crypt_cbc(&ctx, ESP_AES_DECRYPT, buffer_size, nonce, chipertext, decryptedtext);
}
else
#endif
{
aes_crypt_cbc_block(ESP_AES_DECRYPT, key_bits / 8, key_256, buffer_size, nonce, chipertext, decryptedtext);
}
TEST_ASSERT_EQUAL_HEX8_ARRAY(plaintext, decryptedtext, buffer_size);
esp_aes_free(&ctx);
// Free dynamically allocated memory
heap_caps_free(chipertext);
heap_caps_free(plaintext);
heap_caps_free(decryptedtext);
}
static void test_ctr_aes(bool is_dma, size_t buffer_size, const uint8_t expected_cipher_end[32])
{
esp_aes_context ctx;
unsigned int key_bits = 256;
uint8_t nonce[16];
uint8_t stream_block[16];
size_t nc_off = 0;
esp_aes_init(&ctx);
esp_aes_setkey(&ctx, key_256, key_bits);
uint8_t *chipertext = heap_caps_calloc(buffer_size, sizeof(uint8_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
TEST_ASSERT_NOT_NULL(chipertext);
uint8_t *plaintext = heap_caps_calloc(buffer_size, sizeof(uint8_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
TEST_ASSERT_NOT_NULL(plaintext);
uint8_t *decryptedtext = heap_caps_calloc(buffer_size, sizeof(uint8_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
TEST_ASSERT_NOT_NULL(decryptedtext);
memset(plaintext, 0x3A, buffer_size);
memset(decryptedtext, 0x0, buffer_size);
// Encrypt
memcpy(nonce, iv, 16);
#ifdef SOC_AES_SUPPORT_DMA
if (is_dma) {
esp_aes_crypt_ctr(&ctx, buffer_size, &nc_off, nonce, stream_block, plaintext, chipertext);
}
else
#endif
{
aes_crypt_ctr_block(key_bits / 8, key_256, buffer_size, &nc_off, nonce, stream_block, plaintext, chipertext);
}
TEST_ASSERT_EQUAL_HEX8_ARRAY(expected_cipher_end, chipertext + buffer_size - 32, 32);
// Decrypt
memcpy(nonce, iv, 16);
nc_off = 0;
#ifdef SOC_AES_SUPPORT_DMA
if (is_dma) {
esp_aes_crypt_ctr(&ctx, buffer_size, &nc_off, nonce, stream_block, chipertext, decryptedtext);
}
else
#endif
{
aes_crypt_ctr_block(key_bits / 8, key_256, buffer_size, &nc_off, nonce, stream_block, chipertext, decryptedtext);
}
TEST_ASSERT_EQUAL_HEX8_ARRAY(plaintext, decryptedtext, buffer_size);
esp_aes_free(&ctx);
// Free dynamically allocated memory
heap_caps_free(chipertext);
heap_caps_free(plaintext);
heap_caps_free(decryptedtext);
}
#ifdef SOC_AES_SUPPORT_DMA
static void test_ofb_aes(size_t buffer_size, const uint8_t expected_cipher_end[32])
{
esp_aes_context ctx;
unsigned int key_bits = 256;
uint8_t nonce[16];
size_t nc_off = 0;
esp_aes_init(&ctx);
esp_aes_setkey(&ctx, key_256, key_bits);
uint8_t *chipertext = heap_caps_calloc(buffer_size, sizeof(uint8_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
TEST_ASSERT_NOT_NULL(chipertext);
uint8_t *plaintext = heap_caps_calloc(buffer_size, sizeof(uint8_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
TEST_ASSERT_NOT_NULL(plaintext);
uint8_t *decryptedtext = heap_caps_calloc(buffer_size, sizeof(uint8_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
TEST_ASSERT_NOT_NULL(decryptedtext);
memset(plaintext, 0x3A, buffer_size);
memset(decryptedtext, 0x0, buffer_size);
// Encrypt
memcpy(nonce, iv, 16);
esp_aes_crypt_ofb(&ctx, buffer_size, &nc_off, nonce, plaintext, chipertext);
TEST_ASSERT_EQUAL_HEX8_ARRAY(expected_cipher_end, chipertext + buffer_size - 32, 32);
// Decrypt
memcpy(nonce, iv, 16);
nc_off = 0;
esp_aes_crypt_ofb(&ctx, buffer_size, &nc_off, nonce, chipertext, decryptedtext);
TEST_ASSERT_EQUAL_HEX8_ARRAY(plaintext, decryptedtext, buffer_size);
esp_aes_free(&ctx);
// Free dynamically allocated memory
heap_caps_free(chipertext);
heap_caps_free(plaintext);
heap_caps_free(decryptedtext);
}
static void test_cfb8_aes(size_t buffer_size, const uint8_t expected_cipher_end[32])
{
esp_aes_context ctx;
unsigned int key_bits = 256;
uint8_t nonce[16];
esp_aes_init(&ctx);
esp_aes_setkey(&ctx, key_256, key_bits);
uint8_t *chipertext = heap_caps_calloc(buffer_size, sizeof(uint8_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
TEST_ASSERT_NOT_NULL(chipertext);
uint8_t *plaintext = heap_caps_calloc(buffer_size, sizeof(uint8_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
TEST_ASSERT_NOT_NULL(plaintext);
uint8_t *decryptedtext = heap_caps_calloc(buffer_size, sizeof(uint8_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
TEST_ASSERT_NOT_NULL(decryptedtext);
memset(plaintext, 0x3A, buffer_size);
memset(decryptedtext, 0x0, buffer_size);
// Encrypt
memcpy(nonce, iv, 16);
esp_aes_crypt_cfb8(&ctx, ESP_AES_ENCRYPT, buffer_size, nonce, plaintext, chipertext);
TEST_ASSERT_EQUAL_HEX8_ARRAY(expected_cipher_end, chipertext + buffer_size - 32, 32);
// Decrypt
memcpy(nonce, iv, 16);
esp_aes_crypt_cfb8(&ctx, ESP_AES_DECRYPT, buffer_size, nonce, chipertext, decryptedtext);
TEST_ASSERT_EQUAL_HEX8_ARRAY(plaintext, decryptedtext, buffer_size);
esp_aes_free(&ctx);
// Free dynamically allocated memory
heap_caps_free(chipertext);
heap_caps_free(plaintext);
heap_caps_free(decryptedtext);
}
static void test_cfb128_aes(size_t buffer_size, const uint8_t expected_cipher_end[32])
{
esp_aes_context ctx;
unsigned int key_bits = 256;
uint8_t nonce[16];
size_t nc_off = 0;
esp_aes_init(&ctx);
esp_aes_setkey(&ctx, key_256, key_bits);
uint8_t *chipertext = heap_caps_calloc(buffer_size, sizeof(uint8_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
TEST_ASSERT_NOT_NULL(chipertext);
uint8_t *plaintext = heap_caps_calloc(buffer_size, sizeof(uint8_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
TEST_ASSERT_NOT_NULL(plaintext);
uint8_t *decryptedtext = heap_caps_calloc(buffer_size, sizeof(uint8_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
TEST_ASSERT_NOT_NULL(decryptedtext);
memset(plaintext, 0x3A, buffer_size);
memset(decryptedtext, 0x0, buffer_size);
// Encrypt
memcpy(nonce, iv, 16);
esp_aes_crypt_cfb128(&ctx, ESP_AES_ENCRYPT, buffer_size, &nc_off, nonce, plaintext, chipertext);
TEST_ASSERT_EQUAL_HEX8_ARRAY(expected_cipher_end, chipertext + buffer_size - 32, 32);
// Decrypt
nc_off = 0;
memcpy(nonce, iv, 16);
esp_aes_crypt_cfb128(&ctx, ESP_AES_DECRYPT, buffer_size, &nc_off, nonce, chipertext, decryptedtext);
TEST_ASSERT_EQUAL_HEX8_ARRAY(plaintext, decryptedtext, buffer_size);
esp_aes_free(&ctx);
// Free dynamically allocated memory
heap_caps_free(chipertext);
heap_caps_free(plaintext);
heap_caps_free(decryptedtext);
}
#if SOC_AES_SUPPORT_GCM
static void test_gcm_aes(size_t length, const uint8_t expected_last_block[16], const uint8_t expected_tag[16])
{
uint8_t iv[16];
uint8_t key[16];
uint8_t add[30];
size_t tag_len = 16;
esp_gcm_context ctx;
uint8_t iv_buf[16] = {};
size_t iv_length = sizeof(iv);
size_t add_length = sizeof(add);
uint8_t tag_buf_encrypt[16] = {};
uint8_t *plaintext = heap_caps_malloc(length, MALLOC_CAP_DMA | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL);
TEST_ASSERT_NOT_NULL(plaintext);
uint8_t *ciphertext = heap_caps_malloc(length, MALLOC_CAP_DMA | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL);
TEST_ASSERT_NOT_NULL(ciphertext);
uint8_t *decryptedtext = heap_caps_malloc(length, MALLOC_CAP_DMA | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL);
TEST_ASSERT_NOT_NULL(decryptedtext);
memset(iv, 0xB1, iv_length);
memset(key, 0x27, sizeof(key));
memset(add, 0x90, add_length);
memset(plaintext, 0x36, length);
memset(ciphertext, 0, length);
memset(decryptedtext, 0, length);
memcpy(iv_buf, iv, iv_length);
esp_aes_gcm_init(&ctx);
esp_aes_gcm_setkey(&ctx, 0, key, 8 * sizeof(key));
/* Encrypt and authenticate */
esp_aes_gcm_crypt_and_tag(&ctx, ESP_AES_ENCRYPT, length, iv_buf, iv_length, add, add_length, plaintext, ciphertext, tag_len, tag_buf_encrypt);
size_t offset = length > 16 ? length - 16 : 0;
/* Sanity check: make sure the last ciphertext block matches what we expect to see. */
TEST_ASSERT_EQUAL_HEX8_ARRAY(expected_last_block, ciphertext + offset, MIN(16, length));
TEST_ASSERT_EQUAL_HEX8_ARRAY(expected_tag, tag_buf_encrypt, tag_len);
/* Decrypt and authenticate */
TEST_ASSERT(esp_aes_gcm_auth_decrypt(&ctx, length, iv_buf, iv_length, add, add_length, expected_tag, tag_len, ciphertext, decryptedtext) == 0);
TEST_ASSERT_EQUAL_HEX8_ARRAY(plaintext, decryptedtext, length);
esp_aes_gcm_free(&ctx);
heap_caps_free(plaintext);
heap_caps_free(ciphertext);
heap_caps_free(decryptedtext);
}
#endif /* SOC_AES_SUPPORT_GCM */
#endif /* SOC_AES_SUPPORT_DMA */
TEST(aes, cbc_aes_256_block_test)
{
const uint8_t expected_cipher_end[32] = {
0x3e, 0x68, 0x8a, 0x02, 0xe6, 0xf2, 0x6a, 0x9e,
0x9b, 0xb2, 0xc0, 0xc4, 0x63, 0x63, 0xd9, 0x25,
0x51, 0xdc, 0xc2, 0x71, 0x96, 0xb3, 0xe5, 0xcd,
0xbd, 0x0e, 0xf2, 0xef, 0xa9, 0xab, 0xab, 0x2d,
};
test_cbc_aes(0,AES_BUFFER_SIZE, expected_cipher_end);
}
TEST(aes, ctr_aes_256_block_test)
{
const uint8_t expected_cipher_end[32] = {
0xed, 0xa4, 0xa4, 0xe0, 0xee, 0x1d, 0x73, 0x96,
0xd3, 0xde, 0xaa, 0xe0, 0xb7, 0x76, 0x7f, 0xcb,
0x0f, 0xe8, 0x64, 0xf0, 0xd3, 0xf1, 0xab, 0x14,
0x5a, 0x89, 0x47, 0xb4, 0x32, 0xed, 0x41, 0x9c,
};
test_ctr_aes(0, AES_BUFFER_SIZE, expected_cipher_end);
}
#if SOC_AES_SUPPORT_DMA
TEST(aes, cbc_aes_256_dma_test)
{
const uint8_t expected_cipher_end[32] = {
0x3e, 0x68, 0x8a, 0x02, 0xe6, 0xf2, 0x6a, 0x9e,
0x9b, 0xb2, 0xc0, 0xc4, 0x63, 0x63, 0xd9, 0x25,
0x51, 0xdc, 0xc2, 0x71, 0x96, 0xb3, 0xe5, 0xcd,
0xbd, 0x0e, 0xf2, 0xef, 0xa9, 0xab, 0xab, 0x2d,
};
test_cbc_aes(1, AES_BUFFER_SIZE, expected_cipher_end);
}
TEST(aes, ctr_aes_256_dma_test)
{
const uint8_t expected_cipher_end[32] = {
0xed, 0xa4, 0xa4, 0xe0, 0xee, 0x1d, 0x73, 0x96,
0xd3, 0xde, 0xaa, 0xe0, 0xb7, 0x76, 0x7f, 0xcb,
0x0f, 0xe8, 0x64, 0xf0, 0xd3, 0xf1, 0xab, 0x14,
0x5a, 0x89, 0x47, 0xb4, 0x32, 0xed, 0x41, 0x9c,
};
test_ctr_aes(1, AES_BUFFER_SIZE, expected_cipher_end);
}
TEST(aes, ofb_aes_256_dma_test)
{
const uint8_t expected_cipher_end[] = {
0x9e, 0x12, 0x10, 0xf0, 0x3f, 0xbf, 0xf8, 0x34,
0x08, 0x86, 0x7c, 0x02, 0x6b, 0x8a, 0x76, 0xa6,
0x25, 0x9f, 0x34, 0x61, 0x8b, 0x89, 0x60, 0x16,
0xe6, 0xa0, 0xa5, 0xb6, 0x5b, 0x0a, 0xeb, 0x1f,
};
test_ofb_aes(AES_BUFFER_SIZE, expected_cipher_end);
}
TEST(aes, cfb8_aes_256_dma_test)
{
const uint8_t expected_cipher_end[] = {
0x76, 0x95, 0x22, 0x72, 0x3f, 0x44, 0x2d, 0x32,
0x3e, 0x85, 0xb8, 0xe8, 0xf7, 0x38, 0x04, 0xd6,
0x4a, 0xc5, 0xdb, 0x2c, 0x46, 0x5f, 0x5b, 0xa2,
0x24, 0x4a, 0x35, 0xcb, 0xe5, 0x94, 0x71, 0x21,
};
test_cfb8_aes(AES_BUFFER_SIZE, expected_cipher_end);
}
TEST(aes, cfb128_aes_256_dma_test)
{
const uint8_t expected_cipher_end[] = {
0xd0, 0x9b, 0x2e, 0x25, 0xd5, 0xeb, 0x08, 0xbd,
0xd8, 0x7e, 0x64, 0xde, 0x35, 0x2b, 0xb1, 0x53,
0xf8, 0x3a, 0xf7, 0xa8, 0x1e, 0x96, 0xaa, 0xce,
0xa4, 0xf2, 0x8a, 0x2d, 0x01, 0xd5, 0x62, 0xa0,
};
test_cfb128_aes(AES_BUFFER_SIZE, expected_cipher_end);
}
#if CONFIG_CRYPTO_TESTAPP_USE_AES_INTERRUPT
TEST(aes, cbc_aes_256_long_dma_test)
{
const uint8_t expected_cipher_end[32] = {
0xd1, 0x32, 0x62, 0x9d, 0x2f, 0x0e, 0x1d, 0x27,
0x0e, 0x2b, 0x53, 0x0b, 0x81, 0x53, 0x92, 0x69,
0x8a, 0x9c, 0x25, 0xb1, 0x77, 0x2b, 0xe4, 0x80,
0x3a, 0xee, 0xdc, 0xbb, 0x80, 0xd6, 0x1a, 0x42,
};
test_cbc_aes(1, AES_LONG_BUFFER_SIZE, expected_cipher_end);
}
TEST(aes, ctr_aes_256_long_dma_test)
{
const uint8_t expected_cipher_end[32] = {
0x30, 0x8e, 0x3b, 0x27, 0x54, 0x85, 0x58, 0x20,
0x1a, 0xa6, 0xca, 0x81, 0x12, 0x23, 0x7f, 0x01,
0xba, 0x27, 0x72, 0x44, 0xa9, 0x00, 0x42, 0x8a,
0x4e, 0xda, 0x26, 0xf9, 0xd9, 0x0b, 0xb1, 0xa5,
};
test_ctr_aes(1, AES_LONG_BUFFER_SIZE, expected_cipher_end);
}
TEST(aes, ofb_aes_256_long_dma_test)
{
const uint8_t expected_cipher_end[] = {
0xdc, 0xd1, 0x8a, 0x5c, 0x38, 0xb4, 0xce, 0xdf,
0x21, 0xa0, 0xa4, 0x0b, 0x87, 0xbb, 0xdf, 0xf5,
0x42, 0xc6, 0xe2, 0x1f, 0x9f, 0x93, 0x3b, 0xa4,
0xdd, 0xb0, 0xce, 0xf0, 0x98, 0x47, 0x23, 0x20,
};
test_ofb_aes(AES_LONG_BUFFER_SIZE, expected_cipher_end);
}
TEST(aes, cfb8_aes_256_long_dma_test)
{
const uint8_t expected_cipher_end[] = {
0x9a, 0x2a, 0xaf, 0xec, 0xd1, 0xf3, 0xd2, 0xe2,
0xf5, 0x62, 0x16, 0x5c, 0x42, 0x8f, 0xc1, 0xa3,
0x34, 0x05, 0x9b, 0xa5, 0x44, 0x02, 0xff, 0xf4,
0x6b, 0xca, 0x3c, 0xac, 0xff, 0x6e, 0xb6, 0x7a,
};
test_cfb8_aes(AES_LONG_BUFFER_SIZE, expected_cipher_end);
}
TEST(aes, cfb128_aes_256_long_dma_test)
{
const uint8_t expected_cipher_end[] = {
0x6c, 0x63, 0xa9, 0x19, 0x12, 0x89, 0x57, 0xeb,
0xbe, 0x73, 0x17, 0x62, 0xc6, 0xfc, 0xf0, 0x43,
0x6d, 0x49, 0x6b, 0xc6, 0x35, 0xf8, 0xc1, 0x48,
0xe2, 0xb7, 0xb1, 0x6f, 0x26, 0x9f, 0x04, 0x8b,
};
test_cfb128_aes(AES_LONG_BUFFER_SIZE, expected_cipher_end);
}
#endif
#if SOC_AES_SUPPORT_GCM
TEST(aes, gcm_aes_dma_test)
{
size_t length = 16;
const uint8_t expected_last_block[16] = {
0x37, 0x99, 0x4b, 0x16, 0x5f, 0x8d, 0x27, 0xb1,
0x60, 0x72, 0x9a, 0x81, 0x8d, 0x3c, 0x69, 0x66};
const uint8_t expected_tag[16] = {
0x45, 0xc2, 0xa8, 0xfe, 0xff, 0x49, 0x1f, 0x45,
0x8e, 0x29, 0x74, 0x41, 0xed, 0x9b, 0x54, 0x28};
test_gcm_aes(length, expected_last_block, expected_tag);
}
#if CONFIG_CRYPTO_TESTAPP_USE_AES_INTERRUPT
TEST(aes, gcm_aes_long_dma_test)
{
size_t length = 5000;
const uint8_t expected_last_block[16] = {
0xee, 0xfd, 0xab, 0x2a, 0x09, 0x44, 0x41, 0x6a,
0x91, 0xb0, 0x74, 0x24, 0xee, 0x35, 0xb1, 0x39};
const uint8_t expected_tag[16] = {
0x22, 0xe1, 0x22, 0x34, 0x0c, 0x91, 0x0b, 0xcf,
0xa3, 0x42, 0xe0, 0x48, 0xe6, 0xfe, 0x2e, 0x28};
test_gcm_aes(length, expected_last_block, expected_tag);
}
#endif /* CONFIG_CRYPTO_TESTAPP_USE_AES_INTERRUPT */
#endif /* SOC_AES_SUPPORT_GCM */
#endif /* SOC_AES_SUPPORT_DMA */
TEST_GROUP_RUNNER(aes)
{
RUN_TEST_CASE(aes, cbc_aes_256_block_test);
RUN_TEST_CASE(aes, ctr_aes_256_block_test);
#if SOC_AES_SUPPORT_DMA
RUN_TEST_CASE(aes, cbc_aes_256_dma_test);
RUN_TEST_CASE(aes, ctr_aes_256_dma_test);
RUN_TEST_CASE(aes, ofb_aes_256_dma_test);
RUN_TEST_CASE(aes, cfb8_aes_256_dma_test);
RUN_TEST_CASE(aes, cfb128_aes_256_dma_test);
#if CONFIG_CRYPTO_TESTAPP_USE_AES_INTERRUPT
RUN_TEST_CASE(aes, cbc_aes_256_long_dma_test);
RUN_TEST_CASE(aes, ctr_aes_256_long_dma_test);
RUN_TEST_CASE(aes, ofb_aes_256_long_dma_test);
RUN_TEST_CASE(aes, cfb8_aes_256_long_dma_test);
RUN_TEST_CASE(aes, cfb128_aes_256_long_dma_test);
#endif /* CONFIG_CRYPTO_TESTAPP_USE_AES_INTERRUPT */
#if SOC_AES_SUPPORT_GCM
RUN_TEST_CASE(aes, gcm_aes_dma_test);
#if CONFIG_CRYPTO_TESTAPP_USE_AES_INTERRUPT
RUN_TEST_CASE(aes, gcm_aes_long_dma_test);
#endif /* CONFIG_CRYPTO_TESTAPP_USE_AES_INTERRUPT */
#endif /* SOC_AES_SUPPORT_GCM */
#endif /* SOC_AES_SUPPORT_DMA */
}
#endif // SOC_AES_SUPPORTED

View File

@ -1,128 +0,0 @@
/*
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: CC0-1.0
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "soc/soc_caps.h"
#include "esp_heap_caps.h"
#include "unity.h"
#include "test_params.h"
#include "memory_checks.h"
#include "unity_fixture.h"
#define CBC_AES_BUFFER_SIZE 1600
#define CTR_AES_BUFFER_SIZE 1000
#if SOC_AES_SUPPORTED
#include "aes_block.h"
TEST_GROUP(aes);
TEST_SETUP(aes)
{
test_utils_record_free_mem();
TEST_ESP_OK(test_utils_set_leak_level(0, ESP_LEAK_TYPE_CRITICAL, ESP_COMP_LEAK_GENERAL));
}
TEST_TEAR_DOWN(aes)
{
test_utils_finish_and_evaluate_leaks(test_utils_get_leak_level(ESP_LEAK_TYPE_WARNING, ESP_COMP_LEAK_ALL),
test_utils_get_leak_level(ESP_LEAK_TYPE_CRITICAL, ESP_COMP_LEAK_ALL));
}
TEST(aes, cbc_aes_256_test)
{
uint8_t key_bytes = 256 / 8;
uint8_t nonce[16];
const uint8_t expected_cipher_end[] = {
0x3e, 0x68, 0x8a, 0x02, 0xe6, 0xf2, 0x6a, 0x9e,
0x9b, 0xb2, 0xc0, 0xc4, 0x63, 0x63, 0xd9, 0x25,
0x51, 0xdc, 0xc2, 0x71, 0x96, 0xb3, 0xe5, 0xcd,
0xbd, 0x0e, 0xf2, 0xef, 0xa9, 0xab, 0xab, 0x2d,
};
uint8_t *chipertext = heap_caps_calloc(CBC_AES_BUFFER_SIZE, sizeof(uint8_t), MALLOC_CAP_INTERNAL);
TEST_ASSERT_NOT_NULL(chipertext);
uint8_t *plaintext = heap_caps_calloc(CBC_AES_BUFFER_SIZE, sizeof(uint8_t), MALLOC_CAP_INTERNAL);
TEST_ASSERT_NOT_NULL(plaintext);
uint8_t *decryptedtext = heap_caps_calloc(CBC_AES_BUFFER_SIZE, sizeof(uint8_t), MALLOC_CAP_INTERNAL);
TEST_ASSERT_NOT_NULL(decryptedtext);
memset(plaintext, 0x3A, CBC_AES_BUFFER_SIZE);
memset(decryptedtext, 0x0, CBC_AES_BUFFER_SIZE);
// Encrypt
memcpy(nonce, iv, 16);
aes_crypt_cbc_block(ESP_AES_ENCRYPT, key_bytes, key_256, CBC_AES_BUFFER_SIZE, nonce, plaintext, chipertext);
TEST_ASSERT_EQUAL_HEX8_ARRAY(expected_cipher_end, chipertext + CBC_AES_BUFFER_SIZE - 32, 32);
// Decrypt
memcpy(nonce, iv, 16);
aes_crypt_cbc_block(ESP_AES_DECRYPT, key_bytes, key_256, CBC_AES_BUFFER_SIZE, nonce, chipertext, decryptedtext);
TEST_ASSERT_EQUAL_HEX8_ARRAY(plaintext, decryptedtext, CBC_AES_BUFFER_SIZE);
// Free dynamically allocated memory
heap_caps_free(chipertext);
heap_caps_free(plaintext);
heap_caps_free(decryptedtext);
}
TEST(aes, ctr_aes_256_test)
{
uint8_t key_bytes = 256 / 8;
uint8_t nonce[16];
uint8_t stream_block[16];
size_t nc_off = 0;
const uint8_t expected_cipher_end[] = {
0xd4, 0xdc, 0x4f, 0x8f, 0xfe, 0x86, 0xee, 0xb5,
0x14, 0x7f, 0xba, 0x30, 0x25, 0xa6, 0x7f, 0x6c,
0xb5, 0x73, 0xaf, 0x90, 0xd7, 0xff, 0x36, 0xba,
0x2b, 0x1d, 0xec, 0xb9, 0x38, 0xfa, 0x0d, 0xeb,
};
uint8_t *chipertext = heap_caps_calloc(CTR_AES_BUFFER_SIZE, sizeof(uint8_t), MALLOC_CAP_INTERNAL);
TEST_ASSERT_NOT_NULL(chipertext);
uint8_t *plaintext = heap_caps_calloc(CTR_AES_BUFFER_SIZE, sizeof(uint8_t), MALLOC_CAP_INTERNAL);
TEST_ASSERT_NOT_NULL(plaintext);
uint8_t *decryptedtext = heap_caps_calloc(CTR_AES_BUFFER_SIZE, sizeof(uint8_t), MALLOC_CAP_INTERNAL);
TEST_ASSERT_NOT_NULL(decryptedtext);
memset(plaintext, 0x3A, CTR_AES_BUFFER_SIZE);
memset(decryptedtext, 0x0, CTR_AES_BUFFER_SIZE);
// Encrypt
memcpy(nonce, iv, 16);
aes_crypt_ctr_block(key_bytes, key_256, CTR_AES_BUFFER_SIZE, &nc_off, nonce, stream_block, plaintext, chipertext);
TEST_ASSERT_EQUAL_HEX8_ARRAY(expected_cipher_end, chipertext + CTR_AES_BUFFER_SIZE - 32, 32);
// Decrypt
nc_off = 0;
memcpy(nonce, iv, 16);
aes_crypt_ctr_block(key_bytes, key_256, CTR_AES_BUFFER_SIZE, &nc_off, nonce, stream_block, chipertext, decryptedtext);
TEST_ASSERT_EQUAL_HEX8_ARRAY(plaintext, decryptedtext, CTR_AES_BUFFER_SIZE);
// Free dynamically allocated memory
heap_caps_free(chipertext);
heap_caps_free(plaintext);
heap_caps_free(decryptedtext);
}
#endif // SOC_AES_SUPPORTED
TEST_GROUP_RUNNER(aes)
{
#if SOC_AES_SUPPORTED
RUN_TEST_CASE(aes, cbc_aes_256_test);
RUN_TEST_CASE(aes, ctr_aes_256_test);
#endif // SOC_AES_SUPPORTED
}

View File

@ -12,6 +12,8 @@
#define ESP_AES_ENCRYPT 1 /**< AES encryption. */
#define ESP_AES_DECRYPT 0 /**< AES decryption. */
#define TEST_AES_MALLOC_CAPS (MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA)
static const uint8_t key_256[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,

View File

@ -0,0 +1,610 @@
/*
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: CC0-1.0
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "soc/soc_caps.h"
#include "esp_log.h"
#include "esp_memory_utils.h"
#include "esp_heap_caps.h"
#include "sys/param.h"
#include "soc/lldesc.h"
#if SOC_SHA_SUPPORTED
#if SOC_SHA_SUPPORT_DMA
#include "soc/periph_defs.h"
#include "esp_private/periph_ctrl.h"
#include "hal/sha_hal.h"
#include "hal/clk_gate_ll.h"
#include "sha_dma.h"
#if CONFIG_SOC_SHA_GDMA
#include "esp_crypto_shared_gdma.h"
#else
#include "soc/crypto_dma_reg.h"
#include "hal/crypto_dma_ll.h"
#endif /* CONFIG_SOC_SHA_GDMA */
#ifndef SOC_SHA_DMA_MAX_BUFFER_SIZE
#define SOC_SHA_DMA_MAX_BUFFER_SIZE (3968)
#endif
const static char* TAG = "sha_dma";
static bool s_check_dma_capable(const void *p);
/* These are static due to:
* * Must be in DMA capable memory, so stack is not a safe place to put them
* * To avoid having to malloc/free them for every DMA operation
*/
static DRAM_ATTR lldesc_t s_dma_descr_input;
static DRAM_ATTR lldesc_t s_dma_descr_buf;
#if CONFIG_SOC_SHA_GDMA
static esp_err_t esp_sha_dma_start(const lldesc_t *input)
{
return esp_crypto_shared_gdma_start(input, NULL, GDMA_TRIG_PERIPH_SHA);
}
#else
static esp_err_t esp_sha_dma_start(const lldesc_t *input)
{
crypto_dma_ll_set_mode(CRYPTO_DMA_SHA);
crypto_dma_ll_reset();
crypto_dma_ll_outlink_set((intptr_t)input);
crypto_dma_ll_outlink_start();
return ESP_OK;
}
#endif
static void acquire_hardware(void)
{
#if SOC_AES_CRYPTO_DMA
periph_ll_enable_clk_clear_rst(PERIPH_SHA_DMA_MODULE);
#elif SOC_AES_GDMA
periph_ll_enable_clk_clear_rst(PERIPH_SHA_MODULE);
#endif
}
static void release_hardware(void)
{
#if SOC_AES_CRYPTO_DMA
periph_ll_disable_clk_set_rst(PERIPH_SHA_DMA_MODULE);
#elif SOC_AES_GDMA
periph_ll_disable_clk_set_rst(PERIPH_SHA_MODULE);
#endif
}
static int esp_sha_dma_process(esp_sha_type sha_type, const void *input, uint32_t ilen,
const void *buf, uint32_t buf_len, bool is_first_block);
/* Performs SHA on multiple blocks at a time using DMA
splits up into smaller operations for inputs that exceed a single DMA list
*/
static int esp_sha_dma(esp_sha_type sha_type, const void *input, uint32_t ilen,
const void *buf, uint32_t buf_len, bool is_first_block)
{
int ret = 0;
unsigned char *dma_cap_buf = NULL;
if (buf_len > block_length(sha_type)) {
ESP_LOGE(TAG, "SHA DMA buf_len cannot exceed max size for a single block");
return -1;
}
/* DMA cannot access memory in flash, hash block by block instead of using DMA */
if (!s_check_dma_capable(input) && (ilen != 0)) {
return 0;
}
#if (CONFIG_SPIRAM && SOC_PSRAM_DMA_CAPABLE)
if (esp_ptr_external_ram(input)) {
Cache_WriteBack_Addr((uint32_t)input, ilen);
}
if (esp_ptr_external_ram(buf)) {
Cache_WriteBack_Addr((uint32_t)buf, buf_len);
}
#endif
/* Copy to internal buf if buf is in non DMA capable memory */
if (!s_check_dma_capable(buf) && (buf_len != 0)) {
dma_cap_buf = heap_caps_malloc(sizeof(unsigned char) * buf_len, MALLOC_CAP_8BIT|MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL);
if (dma_cap_buf == NULL) {
ESP_LOGE(TAG, "Failed to allocate buf memory");
ret = -1;
goto cleanup;
}
memcpy(dma_cap_buf, buf, buf_len);
buf = dma_cap_buf;
}
uint32_t dma_op_num;
if (ilen > 0) {
/* Number of DMA operations based on maximum chunk size in single operation */
dma_op_num = (ilen + SOC_SHA_DMA_MAX_BUFFER_SIZE - 1) / SOC_SHA_DMA_MAX_BUFFER_SIZE;
} else {
/* For zero input length, we must allow at-least 1 DMA operation to see
* if there is any pending data that is yet to be copied out */
dma_op_num = 1;
}
/* The max amount of blocks in a single hardware operation is 2^6 - 1 = 63
Thus we only do a single DMA input list + dma buf list,
which is max 3968/64 + 64/64 = 63 blocks */
for (int i = 0; i < dma_op_num; i++) {
int dma_chunk_len = MIN(ilen, SOC_SHA_DMA_MAX_BUFFER_SIZE);
ret = esp_sha_dma_process(sha_type, input, dma_chunk_len, buf, buf_len, is_first_block);
if (ret != 0) {
goto cleanup;
}
ilen -= dma_chunk_len;
input = (uint8_t *)input + dma_chunk_len;
// Only append buf to the first operation
buf_len = 0;
is_first_block = false;
}
cleanup:
free(dma_cap_buf);
return ret;
}
/* Performs SHA on multiple blocks at a time */
static esp_err_t esp_sha_dma_process(esp_sha_type sha_type, const void *input, uint32_t ilen,
const void *buf, uint32_t buf_len, bool is_first_block)
{
int ret = 0;
lldesc_t *dma_descr_head = NULL;
size_t num_blks = (ilen + buf_len) / block_length(sha_type);
memset(&s_dma_descr_input, 0, sizeof(lldesc_t));
memset(&s_dma_descr_buf, 0, sizeof(lldesc_t));
/* DMA descriptor for Memory to DMA-SHA transfer */
if (ilen) {
s_dma_descr_input.length = ilen;
s_dma_descr_input.size = ilen;
s_dma_descr_input.owner = 1;
s_dma_descr_input.eof = 1;
s_dma_descr_input.buf = (uint8_t *)input;
dma_descr_head = &s_dma_descr_input;
}
/* Check after input to overide head if there is any buf*/
if (buf_len) {
s_dma_descr_buf.length = buf_len;
s_dma_descr_buf.size = buf_len;
s_dma_descr_buf.owner = 1;
s_dma_descr_buf.eof = 1;
s_dma_descr_buf.buf = (uint8_t *)buf;
dma_descr_head = &s_dma_descr_buf;
}
/* Link DMA lists */
if (buf_len && ilen) {
s_dma_descr_buf.eof = 0;
s_dma_descr_buf.empty = (uint32_t)(&s_dma_descr_input);
}
if (esp_sha_dma_start(dma_descr_head) != ESP_OK) {
ESP_LOGE(TAG, "esp_sha_dma_start failed, no DMA channel available");
return -1;
}
sha_hal_hash_dma(sha_type, num_blks, is_first_block);
sha_hal_wait_idle();
return ret;
}
static bool s_check_dma_capable(const void *p)
{
bool is_capable = false;
#if CONFIG_SPIRAM
is_capable |= esp_ptr_dma_ext_capable(p);
#endif
is_capable |= esp_ptr_dma_capable(p);
return is_capable;
}
#if defined(SOC_SHA_SUPPORT_SHA1)
static void esp_internal_sha1_update_state(sha1_ctx *ctx, esp_sha_type sha_type)
{
if (ctx->sha_state == ESP_SHA_STATE_INIT) {
ctx->first_block = true;
ctx->sha_state = ESP_SHA_STATE_IN_PROCESS;
} else if (ctx->sha_state == ESP_SHA_STATE_IN_PROCESS) {
ctx->first_block = false;
sha_hal_write_digest(sha_type, ctx->state);
}
}
static void sha1_update_dma(sha1_ctx* ctx, esp_sha_type sha_type, const unsigned char *input, size_t ilen)
{
size_t fill;
uint32_t left, len, local_len = 0;
left = ctx->total[0] & 0x3F;
fill = 64 - left;
ctx->total[0] += (uint32_t) ilen;
ctx->total[0] &= 0xFFFFFFFF;
if ( ctx->total[0] < (uint32_t) ilen ) {
ctx->total[1]++;
}
if ( left && ilen >= fill ) {
memcpy( (void *) (ctx->buffer + left), input, fill );
input += fill;
ilen -= fill;
left = 0;
local_len = 64;
}
len = (ilen / 64) * 64;
if ( len || local_len) {
/* Enable peripheral module */
acquire_hardware();
esp_internal_sha1_update_state(ctx, sha_type);
int ret = esp_sha_dma(sha_type, input, len, ctx->buffer, local_len, ctx->first_block);
if (ret != 0) {
release_hardware();
return ;
}
/* Reads the current message digest from the SHA engine */
sha_hal_read_digest(sha_type, ctx->state);
/* Disable peripheral module */
release_hardware();
}
if ( ilen > 0 ) {
memcpy( (void *) (ctx->buffer + left), input + len, ilen - len );
}
}
void sha1_dma(esp_sha_type sha_type, const unsigned char *input, size_t ilen, unsigned char *output)
{
sha1_ctx ctx;
ctx.total[0] = 0;
ctx.total[1] = 0;
memset(&ctx, 0, sizeof( sha1_ctx ) );
ctx.mode = SHA1;
sha1_update_dma(&ctx, sha_type, input, ilen);
uint32_t last, padn;
uint32_t high, low;
unsigned char msglen[8];
high = ( ctx.total[0] >> 29 )
| ( ctx.total[1] << 3 );
low = ( ctx.total[0] << 3 );
PUT_UINT32_BE( high, msglen, 0 );
PUT_UINT32_BE( low, msglen, 4 );
last = ctx.total[0] & 0x3F;
padn = ( last < 56 ) ? ( 56 - last ) : ( 120 - last );
sha1_update_dma(&ctx, sha_type, sha1_padding, padn);
sha1_update_dma(&ctx, sha_type, msglen, 8);
memcpy(output, ctx.state, 20);
}
#endif /* defined(SOC_SHA_SUPPORT_SHA1) */
#if defined(SOC_SHA_SUPPORT_SHA224) || defined(SOC_SHA_SUPPORT_SHA256)
static void esp_internal_sha256_update_state(sha256_ctx *ctx)
{
if (ctx->sha_state == ESP_SHA_STATE_INIT) {
ctx->first_block = true;
ctx->sha_state = ESP_SHA_STATE_IN_PROCESS;
} else if (ctx->sha_state == ESP_SHA_STATE_IN_PROCESS) {
ctx->first_block = false;
sha_hal_write_digest(ctx->mode, ctx->state);
}
}
static void sha256_update_dma(sha256_ctx* ctx, esp_sha_type sha_type, const unsigned char *input, size_t ilen)
{
size_t fill;
uint32_t left, len, local_len = 0;
left = ctx->total[0] & 0x3F;
fill = 64 - left;
ctx->total[0] += (uint32_t) ilen;
ctx->total[0] &= 0xFFFFFFFF;
if ( ctx->total[0] < (uint32_t) ilen ) {
ctx->total[1]++;
}
if ( left && ilen >= fill ) {
memcpy( (void *) (ctx->buffer + left), input, fill );
input += fill;
ilen -= fill;
left = 0;
local_len = 64;
}
len = (ilen / 64) * 64;
if ( len || local_len) {
/* Enable peripheral module */
acquire_hardware();
esp_internal_sha256_update_state(ctx);
int ret = esp_sha_dma(ctx->mode, input, len, ctx->buffer, local_len, ctx->first_block);
if (ret != 0) {
/* Disable peripheral module */
release_hardware();
return;
}
/* Reads the current message digest from the SHA engine */
sha_hal_read_digest(sha_type, ctx->state);
/* Disable peripheral module */
release_hardware();
}
if ( ilen > 0 ) {
memcpy( (void *) (ctx->buffer + left), input + len, ilen - len );
}
}
void sha256_dma(esp_sha_type sha_type, const unsigned char *input, size_t ilen, unsigned char *output)
{
sha256_ctx ctx;
memset(&ctx, 0, sizeof(sha256_ctx));
ctx.mode = sha_type;
sha256_update_dma(&ctx, sha_type, input, ilen);
uint32_t last, padn;
uint32_t high, low;
unsigned char msglen[8];
high = ( ctx.total[0] >> 29 )
| ( ctx.total[1] << 3 );
low = ( ctx.total[0] << 3 );
PUT_UINT32_BE( high, msglen, 0 );
PUT_UINT32_BE( low, msglen, 4 );
last = ctx.total[0] & 0x3F;
padn = ( last < 56 ) ? ( 56 - last ) : ( 120 - last );
sha256_update_dma(&ctx, sha_type, sha256_padding, padn);
sha256_update_dma(&ctx, sha_type, msglen, 8);
if (sha_type == SHA2_256) {
memcpy(output, ctx.state, 32);
} else if (sha_type == SHA2_224) {
memcpy(output, ctx.state, 28);
}
}
#endif /* defined(SOC_SHA_SUPPORT_SHA224) || defined(SOC_SHA_SUPPORT_SHA256) */
#if defined(SOC_SHA_SUPPORT_SHA384) || defined(SOC_SHA_SUPPORT_SHA512)
#if SOC_SHA_SUPPORT_SHA512_T
int sha_512_t_init_hash_dma(uint16_t t)
{
uint32_t t_string = 0;
uint8_t t0, t1, t2, t_len;
if (t == 384) {
return -1;
}
if (t <= 9) {
t_string = (uint32_t)((1 << 23) | ((0x30 + t) << 24));
t_len = 0x48;
} else if (t <= 99) {
t0 = t % 10;
t1 = (t / 10) % 10;
t_string = (uint32_t)((1 << 15) | ((0x30 + t0) << 16) |
(((0x30 + t1) << 24)));
t_len = 0x50;
} else if (t <= 512) {
t0 = t % 10;
t1 = (t / 10) % 10;
t2 = t / 100;
t_string = (uint32_t)((1 << 7) | ((0x30 + t0) << 8) |
(((0x30 + t1) << 16) + ((0x30 + t2) << 24)));
t_len = 0x58;
} else {
return -1;
}
/* Calculates and sets the initial digiest for SHA512_t */
sha_hal_sha512_init_hash(t_string, t_len);
return 0;
}
#endif //SOC_SHA_SUPPORT_SHA512_T
static void esp_internal_sha512_update_state(sha512_ctx *ctx)
{
if (ctx->sha_state == ESP_SHA_STATE_INIT) {
if (ctx->mode == SHA2_512T) {
int ret = -1;
if ((ret = sha_512_t_init_hash_dma(ctx->t_val)) != 0) {
release_hardware();
return;
}
ctx->first_block = false;
} else {
ctx->first_block = true;
}
ctx->sha_state = ESP_SHA_STATE_IN_PROCESS;
} else if (ctx->sha_state == ESP_SHA_STATE_IN_PROCESS) {
ctx->first_block = false;
sha_hal_write_digest(ctx->mode, ctx->state);
}
}
static void sha512_update_dma(sha512_ctx* ctx, esp_sha_type sha_type, const unsigned char *input, size_t ilen)
{
size_t fill;
unsigned int left, len, local_len = 0;
left = (unsigned int) (ctx->total[0] & 0x7F);
fill = 128 - left;
ctx->total[0] += (uint64_t) ilen;
if ( ctx->total[0] < (uint64_t) ilen ) {
ctx->total[1]++;
}
if ( left && ilen >= fill ) {
memcpy( (void *) (ctx->buffer + left), input, fill );
input += fill;
ilen -= fill;
left = 0;
local_len = 128;
}
len = (ilen / 128) * 128;
if ( len || local_len) {
/* Enable peripheral module */
acquire_hardware();
esp_internal_sha512_update_state(ctx);
int ret = esp_sha_dma(ctx->mode, input, len, ctx->buffer, local_len, ctx->first_block);
if (ret != 0) {
release_hardware();
return;
}
/* Reads the current message digest from the SHA engine */
sha_hal_read_digest(sha_type, ctx->state);
/* Disable peripheral module */
release_hardware();
}
if ( ilen > 0 ) {
memcpy( (void *) (ctx->buffer + left), input + len, ilen - len );
}
}
void sha512_dma(esp_sha_type sha_type, const unsigned char *input, size_t ilen, unsigned char *output)
{
sha512_ctx ctx;
memset(&ctx, 0, sizeof(sha512_ctx));
ctx.mode = sha_type;
sha512_update_dma(&ctx, sha_type, input, ilen);
size_t last, padn;
uint64_t high, low;
unsigned char msglen[16];
high = ( ctx.total[0] >> 61 )
| ( ctx.total[1] << 3 );
low = ( ctx.total[0] << 3 );
PUT_UINT64_BE( high, msglen, 0 );
PUT_UINT64_BE( low, msglen, 8 );
last = (size_t)( ctx.total[0] & 0x7F );
padn = ( last < 112 ) ? ( 112 - last ) : ( 240 - last );
sha512_update_dma( &ctx, sha_type, sha512_padding, padn );
sha512_update_dma( &ctx, sha_type, msglen, 16 );
if (sha_type == SHA2_384) {
memcpy(output, ctx.state, 48);
} else {
memcpy(output, ctx.state, 64);
}
}
#endif /* defined(SOC_SHA_SUPPORT_SHA384) || defined(SOC_SHA_SUPPORT_SHA512) */
#if SOC_SHA_SUPPORT_SHA512_T
void sha512t_dma(esp_sha_type sha_type, const unsigned char *input, size_t ilen, unsigned char *output, uint32_t t_val)
{
sha512_ctx ctx;
memset(&ctx, 0, sizeof(sha512_ctx));
ctx.t_val = t_val;
ctx.mode = sha_type;
sha512_update_dma(&ctx, sha_type, input, ilen);
size_t last, padn;
uint64_t high, low;
unsigned char msglen[16];
high = ( ctx.total[0] >> 61 )
| ( ctx.total[1] << 3 );
low = ( ctx.total[0] << 3 );
PUT_UINT64_BE( high, msglen, 0 );
PUT_UINT64_BE( low, msglen, 8 );
last = (size_t)( ctx.total[0] & 0x7F );
padn = ( last < 112 ) ? ( 112 - last ) : ( 240 - last );
sha512_update_dma( &ctx, sha_type, sha512_padding, padn );
sha512_update_dma( &ctx, sha_type, msglen, 16 );
if (sha_type == SHA2_384) {
memcpy(output, ctx.state, 48);
} else {
memcpy(output, ctx.state, 64);
}
}
#endif /*SOC_SHA_SUPPORT_SHA512_T*/
#endif /* SOC_SHA_SUPPORT_DMA*/
#endif /*SOC_SHA_SUPPORTED*/

View File

@ -0,0 +1,49 @@
/*
* SPDX-FileCopyrightText: 2019-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#if SOC_SHA_SUPPORTED
#include "soc/periph_defs.h"
#include "esp_private/periph_ctrl.h"
#include "hal/sha_hal.h"
#include "test_params.h"
#if defined(SOC_SHA_SUPPORT_SHA1)
void sha1_dma(esp_sha_type sha_type, const unsigned char *input, size_t ilen, unsigned char *output);
#endif /* defined(SOC_SHA_SUPPORT_SHA1) */
#if defined(SOC_SHA_SUPPORT_SHA224) || defined(SOC_SHA_SUPPORT_SHA256)
void sha256_dma(esp_sha_type sha_type, const unsigned char *input, size_t ilen, unsigned char *output);
#endif /* defined(SOC_SHA_SUPPORT_SHA224) || defined(SOC_SHA_SUPPORT_SHA256) */
#if defined(SOC_SHA_SUPPORT_SHA384) || defined(SOC_SHA_SUPPORT_SHA512)
#if SOC_SHA_SUPPORT_SHA512_T
int sha_512_t_init_hash_dma(uint16_t t);
#endif //SOC_SHA_SUPPORT_SHA512_T
void sha512_dma(esp_sha_type sha_type, const unsigned char *input, size_t ilen, unsigned char *output);
#endif /* defined(SOC_SHA_SUPPORT_SHA384) || defined(SOC_SHA_SUPPORT_SHA512) */
#if SOC_SHA_SUPPORT_SHA512_T
void sha512t_dma(esp_sha_type sha_type, const unsigned char *input, size_t ilen, unsigned char *output, uint32_t t_val);
#endif /*SOC_SHA_SUPPORT_SHA512_T*/
#endif /*SOC_SHA_SUPPORTED*/

View File

@ -4,7 +4,7 @@
* SPDX-License-Identifier: Apache-2.0
*
*/
#pragma once
#include "soc/soc_caps.h"
#include "hal/sha_types.h"
@ -65,11 +65,18 @@ static const unsigned char sha1_padding[64] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
typedef enum {
ESP_SHA_STATE_INIT,
ESP_SHA_STATE_IN_PROCESS
} esp_sha_state;
typedef struct {
uint32_t total[2]; /*!< number of bytes processed */
uint32_t state[5]; /*!< intermediate digest state */
unsigned char buffer[64]; /*!< data block being processed */
int first_block; /*!< if first then true else false */
esp_sha_type mode;
esp_sha_state sha_state;
} sha1_ctx;
#endif /* defined(SOC_SHA_SUPPORT_SHA1) */
@ -89,6 +96,8 @@ typedef struct {
uint32_t state[8]; /*!< intermediate digest state */
unsigned char buffer[64]; /*!< data block being processed */
int first_block; /*!< if first then true, else false */
esp_sha_type mode;
esp_sha_state sha_state;
} sha256_ctx;
#endif /* defined(SOC_SHA_SUPPORT_SHA224) || defined(SOC_SHA_SUPPORT_SHA256) */
@ -112,6 +121,8 @@ typedef struct {
unsigned char buffer[128]; /*!< data block being processed */
int first_block;
uint32_t t_val; /*!< t_val for 512/t mode */
esp_sha_type mode;
esp_sha_state sha_state;
} sha512_ctx;
#if SOC_SHA_SUPPORT_SHA512_T

View File

@ -10,16 +10,196 @@
#include <inttypes.h>
#include "esp_types.h"
#include "soc/soc_caps.h"
#include "esp_heap_caps.h"
#include "unity.h"
#include "esp_heap_caps.h"
#include "memory_checks.h"
#include "unity_fixture.h"
#include "sha_block.h"
#include "sha_dma.h"
#if SOC_SHA_SUPPORTED
#if SOC_SHA_SUPPORT_SHA1
static void test_sha1(bool is_dma)
{
uint8_t sha1_result[20] = { 0 };
uint8_t *buffer = heap_caps_calloc(BUFFER_SZ, sizeof(uint8_t), MALLOC_CAP_INTERNAL);
TEST_ASSERT_NOT_NULL(buffer);
memset(buffer, 0xEE, BUFFER_SZ);
const uint8_t sha1_expected[20] = { 0x09, 0x23, 0x02, 0xfb, 0x2d, 0x36, 0x42, 0xec,
0xc5, 0xfa, 0xd5, 0x8f, 0xdb, 0xc3, 0x8d, 0x5c,
0x97, 0xd6, 0x17, 0xee };
#if SOC_SHA_SUPPORT_DMA
if(is_dma) {
sha1_dma(SHA1, buffer, BUFFER_SZ, sha1_result);
}
else
#endif
{
sha1_block(SHA1, buffer, BUFFER_SZ, sha1_result);
}
TEST_ASSERT_EQUAL_HEX8_ARRAY(sha1_expected, sha1_result, sizeof(sha1_expected));
heap_caps_free(buffer);
}
#endif /* SOC_SHA_SUPPORT_SHA1 */
#if SOC_SHA_SUPPORT_SHA224
static void test_sha224(bool is_dma)
{
uint8_t sha224_result[28] = { 0 };
uint8_t *buffer = heap_caps_calloc(BUFFER_SZ, sizeof(uint8_t), MALLOC_CAP_INTERNAL);
TEST_ASSERT_NOT_NULL(buffer);
memset(buffer, 0xEE, BUFFER_SZ);
const uint8_t sha224_expected[28] = { 0x69, 0xfd, 0x84, 0x30, 0xd9, 0x4a, 0x44, 0x96,
0x41, 0xc4, 0xab, 0xab, 0x89, 0x53, 0xa9, 0x1f,
0x4b, 0xfa, 0x5f, 0x2c, 0xa0, 0x72, 0x5f, 0x6b,
0xec, 0xd1, 0x47, 0xf9};
#if SOC_SHA_SUPPORT_DMA
if(is_dma) {
sha256_dma(SHA2_224, buffer, BUFFER_SZ, sha224_result);
}
else
#endif
{
sha256_block(SHA2_224, buffer, BUFFER_SZ, sha224_result);
}
TEST_ASSERT_EQUAL_HEX8_ARRAY(sha224_expected, sha224_result, sizeof(sha224_expected));
heap_caps_free(buffer);
}
#endif /* SOC_SHA_SUPPORT_SHA224 */
#if SOC_SHA_SUPPORT_SHA256
static void test_sha256(bool is_dma)
{
uint8_t sha256_result[32] = { 0 };
uint8_t *buffer = heap_caps_calloc(BUFFER_SZ, sizeof(uint8_t), MALLOC_CAP_INTERNAL);
TEST_ASSERT_NOT_NULL(buffer);
memset(buffer, 0xEE, BUFFER_SZ);
const uint8_t sha256_expected[32] = { 0x0c, 0x67, 0x8d, 0x7b, 0x8a, 0x3e, 0x9e, 0xc0,
0xb5, 0x61, 0xaa, 0x51, 0xd8, 0xfd, 0x42, 0x70,
0xd6, 0x11, 0x2a, 0xec, 0x4c, 0x72, 0x9b, 0x2c,
0xa4, 0xc6, 0x04, 0x80, 0x93, 0x4d, 0xc9, 0x99 };
#if SOC_SHA_SUPPORT_DMA
if(is_dma) {
sha256_dma(SHA2_256, buffer, BUFFER_SZ, sha256_result);
}
else
#endif
{
sha256_block(SHA2_256, buffer, BUFFER_SZ, sha256_result);
}
TEST_ASSERT_EQUAL_HEX8_ARRAY(sha256_expected, sha256_result, sizeof(sha256_expected));
heap_caps_free(buffer);
}
#endif /*SOC_SHA_SUPPORT_SHA256 */
#if SOC_SHA_SUPPORT_SHA384
static void test_sha384(bool is_dma)
{
uint8_t sha384_result[48] = { 0 };
uint8_t *buffer = heap_caps_calloc(BUFFER_SZ, sizeof(uint8_t), MALLOC_CAP_INTERNAL);
TEST_ASSERT_NOT_NULL(buffer);
memset(buffer, 0xEE, BUFFER_SZ);
const uint8_t sha384_expected[48] = { 0xf2, 0x7c, 0x75, 0x16, 0xa9, 0xe6, 0xe5, 0xe2,
0x4d, 0x8b, 0xe4, 0x6b, 0xc5, 0xb3, 0x25, 0xb1,
0x10, 0xc2, 0xb4, 0x7d, 0xb7, 0xe1, 0xee, 0x1c,
0xbd, 0xde, 0x52, 0x9d, 0xaa, 0x31, 0xda, 0x88,
0xfe, 0xec, 0xd5, 0x38, 0x59, 0x28, 0x93, 0xc7,
0x1c, 0x1a, 0x0b, 0x3b, 0x4e, 0x06, 0x48, 0xa7 };
#if SOC_SHA_SUPPORT_DMA
if(is_dma) {
sha512_dma(SHA2_384, buffer, BUFFER_SZ, sha384_result);
}
else
#endif
{
sha512_block(SHA2_384, buffer, BUFFER_SZ, sha384_result);
}
TEST_ASSERT_EQUAL_HEX8_ARRAY(sha384_expected, sha384_result, sizeof(sha384_expected));
heap_caps_free(buffer);
}
#endif /* SOC_SHA_SUPPORT_SHA384 */
#if SOC_SHA_SUPPORT_SHA512
static void test_sha512(bool is_dma)
{
uint8_t sha512_result[64] = { 0 };
uint8_t *buffer = heap_caps_calloc(BUFFER_SZ, sizeof(uint8_t), MALLOC_CAP_INTERNAL);
TEST_ASSERT_NOT_NULL(buffer);
memset(buffer, 0xEE, BUFFER_SZ);
const uint8_t sha512_expected[64] = { 0x7f, 0xca, 0x1c, 0x81, 0xc6, 0xc7, 0x1e, 0x49,
0x1f, 0x4a, 0x35, 0x50, 0xb0, 0x0c, 0xd9, 0xbf,
0x3e, 0xba, 0x90, 0x31, 0x08, 0xc7, 0xb3, 0xf0,
0x58, 0x11, 0xd3, 0x29, 0xee, 0xa0, 0x4f, 0x3b,
0xe4, 0x60, 0xd2, 0xc7, 0x2e, 0x50, 0x39, 0x68,
0xf7, 0x27, 0x2e, 0x71, 0xbc, 0x9f, 0x10, 0xfc,
0x9d, 0x75, 0xb5, 0x57, 0x74, 0x8d, 0xb9, 0x4b,
0x69, 0x1a, 0x9c, 0x5f, 0x30, 0x61, 0xca, 0x3b };
#if SOC_SHA_SUPPORT_DMA
if(is_dma) {
sha512_dma(SHA2_512, buffer, BUFFER_SZ, sha512_result);
}
else
#endif
{
sha512_block(SHA2_512, buffer, BUFFER_SZ, sha512_result);
}
TEST_ASSERT_EQUAL_HEX8_ARRAY(sha512_expected, sha512_result, sizeof(sha512_expected));
heap_caps_free(buffer);
}
#endif /* SOC_SHA_SUPPORT_SHA512 */
#if SOC_SHA_SUPPORT_SHA512_T
static void test_sha512t(bool is_dma)
{
unsigned char sha512[64], k;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 2; j++) {
k = i * 2 + j;
if (i > 1) {
k = (i - 2) * 2 + j;
}
#if SOC_SHA_SUPPORT_DMA
if(is_dma) {
sha512t_dma(sha512T_algo[i], sha512T_test_buf[j], sha512T_test_buflen[j], sha512, sha512T_t_len[i]);
}
else
#endif
{
sha512t_block(sha512T_algo[i], sha512T_test_buf[j], sha512T_test_buflen[j], sha512, sha512T_t_len[i]);
}
TEST_ASSERT_EQUAL_HEX8_ARRAY(sha512_test_sum[k], sha512, sha512T_t_len[i] / 8);
}
}
}
#endif /* SOC_SHA_SUPPORT_SHA512_T */
TEST_GROUP(sha);
TEST_SETUP(sha)
@ -36,20 +216,14 @@ TEST_TEAR_DOWN(sha)
#if SOC_SHA_SUPPORT_SHA1
TEST(sha, test_sha1)
TEST(sha, test_sha1_block)
{
uint8_t sha1_result[20] = { 0 };
uint8_t *buffer = heap_caps_calloc(BUFFER_SZ, sizeof(uint8_t), MALLOC_CAP_INTERNAL);
TEST_ASSERT_NOT_NULL(buffer);
memset(buffer, 0xEE, BUFFER_SZ);
test_sha1(0);
}
const uint8_t sha1_expected[20] = { 0x09, 0x23, 0x02, 0xfb, 0x2d, 0x36, 0x42, 0xec,
0xc5, 0xfa, 0xd5, 0x8f, 0xdb, 0xc3, 0x8d, 0x5c,
0x97, 0xd6, 0x17, 0xee };
sha1_block(SHA1, buffer, BUFFER_SZ, sha1_result);
TEST_ASSERT_EQUAL_HEX8_ARRAY(sha1_expected, sha1_result, sizeof(sha1_expected));
heap_caps_free(buffer);
TEST(sha, test_sha1_dma)
{
test_sha1(1);
}
#endif /* SOC_SHA_SUPPORT_SHA1 */
@ -57,21 +231,14 @@ TEST(sha, test_sha1)
#if SOC_SHA_SUPPORT_SHA224
TEST(sha, test_sha224)
TEST(sha, test_sha224_block)
{
uint8_t sha224_result[28] = { 0 };
uint8_t *buffer = heap_caps_calloc(BUFFER_SZ, sizeof(uint8_t), MALLOC_CAP_INTERNAL);
TEST_ASSERT_NOT_NULL(buffer);
memset(buffer, 0xEE, BUFFER_SZ);
test_sha224(0);
}
const uint8_t sha224_expected[28] = { 0x69, 0xfd, 0x84, 0x30, 0xd9, 0x4a, 0x44, 0x96,
0x41, 0xc4, 0xab, 0xab, 0x89, 0x53, 0xa9, 0x1f,
0x4b, 0xfa, 0x5f, 0x2c, 0xa0, 0x72, 0x5f, 0x6b,
0xec, 0xd1, 0x47, 0xf9};
sha256_block(SHA2_224, buffer, BUFFER_SZ, sha224_result);
TEST_ASSERT_EQUAL_HEX8_ARRAY(sha224_expected, sha224_result, sizeof(sha224_expected));
heap_caps_free(buffer);
TEST(sha, test_sha224_dma)
{
test_sha224(1);
}
#endif /* SOC_SHA_SUPPORT_SHA224 */
@ -79,21 +246,14 @@ TEST(sha, test_sha224)
#if SOC_SHA_SUPPORT_SHA256
TEST(sha, test_sha256)
TEST(sha, test_sha256_block)
{
uint8_t sha256_result[32] = { 0 };
uint8_t *buffer = heap_caps_calloc(BUFFER_SZ, sizeof(uint8_t), MALLOC_CAP_INTERNAL);
TEST_ASSERT_NOT_NULL(buffer);
memset(buffer, 0xEE, BUFFER_SZ);
test_sha256(0);
}
const uint8_t sha256_expected[32] = { 0x0c, 0x67, 0x8d, 0x7b, 0x8a, 0x3e, 0x9e, 0xc0,
0xb5, 0x61, 0xaa, 0x51, 0xd8, 0xfd, 0x42, 0x70,
0xd6, 0x11, 0x2a, 0xec, 0x4c, 0x72, 0x9b, 0x2c,
0xa4, 0xc6, 0x04, 0x80, 0x93, 0x4d, 0xc9, 0x99 };
sha256_block(SHA2_256, buffer, BUFFER_SZ, sha256_result);
TEST_ASSERT_EQUAL_HEX8_ARRAY(sha256_expected, sha256_result, sizeof(sha256_expected));
heap_caps_free(buffer);
TEST(sha, test_sha256_dma)
{
test_sha256(1);
}
#endif /* SOC_SHA_SUPPORT_SHA256 */
@ -101,70 +261,41 @@ TEST(sha, test_sha256)
#if SOC_SHA_SUPPORT_SHA384
TEST(sha, test_sha384)
TEST(sha, test_sha384_block)
{
uint8_t sha384_result[48] = { 0 };
uint8_t *buffer = heap_caps_calloc(BUFFER_SZ, sizeof(uint8_t), MALLOC_CAP_INTERNAL);
TEST_ASSERT_NOT_NULL(buffer);
memset(buffer, 0xEE, BUFFER_SZ);
test_sha384(0);
}
const uint8_t sha384_expected[48] = { 0xf2, 0x7c, 0x75, 0x16, 0xa9, 0xe6, 0xe5, 0xe2,
0x4d, 0x8b, 0xe4, 0x6b, 0xc5, 0xb3, 0x25, 0xb1,
0x10, 0xc2, 0xb4, 0x7d, 0xb7, 0xe1, 0xee, 0x1c,
0xbd, 0xde, 0x52, 0x9d, 0xaa, 0x31, 0xda, 0x88,
0xfe, 0xec, 0xd5, 0x38, 0x59, 0x28, 0x93, 0xc7,
0x1c, 0x1a, 0x0b, 0x3b, 0x4e, 0x06, 0x48, 0xa7 };
sha512_block(SHA2_384, buffer, BUFFER_SZ, sha384_result);
TEST_ASSERT_EQUAL_HEX8_ARRAY(sha384_expected, sha384_result, sizeof(sha384_expected));
heap_caps_free(buffer);
TEST(sha, test_sha384_dma)
{
test_sha384(1);
}
#endif /* SOC_SHA_SUPPORT_SHA384 */
#if SOC_SHA_SUPPORT_SHA512
TEST(sha, test_sha512)
TEST(sha, test_sha512_block)
{
uint8_t sha512_result[64] = { 0 };
uint8_t *buffer = heap_caps_calloc(BUFFER_SZ, sizeof(uint8_t), MALLOC_CAP_INTERNAL);
TEST_ASSERT_NOT_NULL(buffer);
memset(buffer, 0xEE, BUFFER_SZ);
test_sha512(0);
}
const uint8_t sha512_expected[64] = { 0x7f, 0xca, 0x1c, 0x81, 0xc6, 0xc7, 0x1e, 0x49,
0x1f, 0x4a, 0x35, 0x50, 0xb0, 0x0c, 0xd9, 0xbf,
0x3e, 0xba, 0x90, 0x31, 0x08, 0xc7, 0xb3, 0xf0,
0x58, 0x11, 0xd3, 0x29, 0xee, 0xa0, 0x4f, 0x3b,
0xe4, 0x60, 0xd2, 0xc7, 0x2e, 0x50, 0x39, 0x68,
0xf7, 0x27, 0x2e, 0x71, 0xbc, 0x9f, 0x10, 0xfc,
0x9d, 0x75, 0xb5, 0x57, 0x74, 0x8d, 0xb9, 0x4b,
0x69, 0x1a, 0x9c, 0x5f, 0x30, 0x61, 0xca, 0x3b };
sha512_block(SHA2_512, buffer, BUFFER_SZ, sha512_result);
TEST_ASSERT_EQUAL_HEX8_ARRAY(sha512_expected, sha512_result, sizeof(sha512_expected));
heap_caps_free(buffer);
TEST(sha, test_sha512_dma)
{
test_sha512(1);
}
#endif /* SOC_SHA_SUPPORT_SHA512 */
#if SOC_SHA_SUPPORT_SHA512_T
TEST(sha, test_sha512t)
TEST(sha, test_sha512t_block)
{
unsigned char sha512[64], k;
test_sha512t(0);
}
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 2; j++) {
k = i * 2 + j;
if (i > 1) {
k = (i - 2) * 2 + j;
}
sha512t_block(sha512T_algo[i], sha512T_test_buf[j], sha512T_test_buflen[j], sha512, sha512T_t_len[i]);
TEST_ASSERT_EQUAL_HEX8_ARRAY(sha512_test_sum[k], sha512, sha512T_t_len[i] / 8);
}
}
TEST(sha, test_sha512t_dma)
{
test_sha512t(1);
}
#endif // SOC_SHA_SUPPORT_SHA512_T
@ -176,27 +307,33 @@ TEST_GROUP_RUNNER(sha)
#if SOC_SHA_SUPPORTED
#if SOC_SHA_SUPPORT_SHA1
RUN_TEST_CASE(sha, test_sha1);
RUN_TEST_CASE(sha, test_sha1_block);
RUN_TEST_CASE(sha, test_sha1_dma);
#endif /* SOC_SHA_SUPPORT_SHA1 */
#if SOC_SHA_SUPPORT_SHA224
RUN_TEST_CASE(sha, test_sha224);
RUN_TEST_CASE(sha, test_sha224_block);
RUN_TEST_CASE(sha, test_sha224_dma);
#endif /* SOC_SHA_SUPPORT_SHA224 */
#if SOC_SHA_SUPPORT_SHA256
RUN_TEST_CASE(sha, test_sha256);
RUN_TEST_CASE(sha, test_sha256_block);
RUN_TEST_CASE(sha, test_sha256_dma);
#endif /* SOC_SHA_SUPPORT_SHA256 */
#if SOC_SHA_SUPPORT_SHA384
RUN_TEST_CASE(sha, test_sha384);
RUN_TEST_CASE(sha, test_sha384_block);
RUN_TEST_CASE(sha, test_sha384_dma);
#endif /* SOC_SHA_SUPPORT_SHA384 */
#if SOC_SHA_SUPPORT_SHA512
RUN_TEST_CASE(sha, test_sha512);
RUN_TEST_CASE(sha, test_sha512_block);
RUN_TEST_CASE(sha, test_sha512_dma);
#endif /* SOC_SHA_SUPPORT_SHA512 */
#if SOC_SHA_SUPPORT_SHA512_T
RUN_TEST_CASE(sha, test_sha512t);
RUN_TEST_CASE(sha, test_sha512t_block);
RUN_TEST_CASE(sha, test_sha512t_dma);
#endif // SOC_SHA_SUPPORT_SHA512_T
#endif /* SOC_SHA_SUPPORTED */

View File

@ -1,12 +1,12 @@
# SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
# SPDX-License-Identifier: CC0-1.0
import os
import pytest
from pytest_embedded import Dut
@pytest.mark.temp_skip_ci(targets=['esp32p4'], reason='esp32p4 support TBD') # TODO: IDF-8982
@pytest.mark.supported_targets
@pytest.mark.generic
def test_crypto(dut: Dut) -> None:
@ -14,4 +14,16 @@ def test_crypto(dut: Dut) -> None:
# as tests for efuses burning security peripherals would be run
timeout = 600 if os.environ.get('IDF_ENV_FPGA') else 60
dut.expect('main_task: Returned from app_main()', timeout=timeout)
dut.expect('Tests finished', timeout=timeout)
@pytest.mark.temp_skip_ci(targets=['esp32p4'], reason='esp32p4 support TBD') # TODO: IDF-8982
@pytest.mark.supported_targets
@pytest.mark.generic
@pytest.mark.parametrize('config', ['long_aes_operations'], indirect=True)
def test_crypto_long_aes_operations(dut: Dut) -> None:
# if the env variable IDF_FPGA_ENV is set, we would need a longer timeout
# as tests for efuses burning security peripherals would be run
timeout = 600 if os.environ.get('IDF_ENV_FPGA') else 60
dut.expect('Tests finished', timeout=timeout)

View File

@ -0,0 +1,5 @@
#
# Example Configuration
#
CONFIG_CRYPTO_TESTAPP_USE_AES_INTERRUPT=y
# end of Example Configuration

View File

@ -28,6 +28,7 @@
#include <string.h>
#include "mbedtls/aes.h"
#include "mbedtls/platform_util.h"
#include "esp_intr_alloc.h"
#include "esp_private/periph_ctrl.h"
#include "esp_log.h"

View File

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2020-2023 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2020-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/

View File

@ -23,7 +23,6 @@
#include "mbedtls/error.h"
#include <string.h>
#include "mbedtls/platform.h"
#if SOC_AES_SUPPORT_DMA
#include "esp_aes_dma_priv.h"

View File

@ -6,7 +6,7 @@
*
* SPDX-License-Identifier: Apache-2.0
*
* SPDX-FileContributor: 2016-2023 Espressif Systems (Shanghai) CO LTD
* SPDX-FileContributor: 2016-2024 Espressif Systems (Shanghai) CO LTD
*/
/*
* The AES block cipher was designed by Vincent Rijmen and Joan Daemen.

View File

@ -6,7 +6,7 @@
*
* SPDX-License-Identifier: Apache-2.0
*
* SPDX-FileContributor: 2016-2022 Espressif Systems (Shanghai) CO LTD
* SPDX-FileContributor: 2016-2024 Espressif Systems (Shanghai) CO LTD
*/
#pragma once