newlib: separate low-level code in time.c implementation

This commit is contained in:
Renz Bagaporo 2020-06-23 11:53:58 +08:00
parent cda9c595d7
commit a395a00d2c
8 changed files with 331 additions and 255 deletions

View File

@ -20,6 +20,7 @@ list(APPEND ldfragments newlib.lf)
idf_component_register(SRCS "${srcs}" idf_component_register(SRCS "${srcs}"
INCLUDE_DIRS "${include_dirs}" INCLUDE_DIRS "${include_dirs}"
PRIV_INCLUDE_DIRS priv_include
PRIV_REQUIRES soc esp_timer PRIV_REQUIRES soc esp_timer
LDFRAGMENTS "${ldfragments}") LDFRAGMENTS "${ldfragments}")
@ -40,3 +41,5 @@ target_link_libraries(${COMPONENT_LIB} INTERFACE "${EXTRA_LINK_FLAGS}")
if(CONFIG_NEWLIB_NANO_FORMAT) if(CONFIG_NEWLIB_NANO_FORMAT)
target_link_libraries(${COMPONENT_LIB} INTERFACE "--specs=nano.specs") target_link_libraries(${COMPONENT_LIB} INTERFACE "--specs=nano.specs")
endif() endif()
add_subdirectory(port)

View File

@ -12,6 +12,9 @@ ifdef CONFIG_SPIRAM_CACHE_WORKAROUND
COMPONENT_ADD_LDFRAGMENTS := esp32-spiram-rom-functions-c.lf COMPONENT_ADD_LDFRAGMENTS := esp32-spiram-rom-functions-c.lf
endif endif
COMPONENT_PRIV_INCLUDEDIRS := priv_include
COMPONENT_SRCDIRS := . port
# Forces the linker to include locks, heap, and syscalls from this component, # Forces the linker to include locks, heap, and syscalls from this component,
# instead of the implementations provided by newlib. # instead of the implementations provided by newlib.
COMPONENT_ADD_LDFLAGS += -u newlib_include_locks_impl COMPONENT_ADD_LDFLAGS += -u newlib_include_locks_impl

View File

@ -17,6 +17,11 @@
#include <sys/reent.h> #include <sys/reent.h>
/*
* Initialize newlib time functions
*/
void esp_newlib_time_init(void);
/** /**
* Replacement for newlib's _REENT_INIT_PTR and __sinit. * Replacement for newlib's _REENT_INIT_PTR and __sinit.
* *

View File

@ -0,0 +1 @@
target_sources(${COMPONENT_LIB} PRIVATE "${CMAKE_CURRENT_LIST_DIR}/esp_time_impl.c")

View File

@ -0,0 +1,207 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include <time.h>
#include <sys/time.h>
#include "esp_timer.h"
#include "esp_system.h"
#include "soc/spinlock.h"
#include "soc/rtc.h"
#include "esp_rom_sys.h"
#include "esp_time_impl.h"
#include "sdkconfig.h"
#if CONFIG_IDF_TARGET_ESP32
#include "esp32/rom/rtc.h"
#include "esp32/clk.h"
#elif CONFIG_IDF_TARGET_ESP32S2
#include "esp32s2/rom/rtc.h"
#include "esp32s2/clk.h"
#endif
#if defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC ) \
|| defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC_FRC1 ) \
|| defined( CONFIG_ESP32S2_TIME_SYSCALL_USE_RTC ) \
|| defined( CONFIG_ESP32S2_TIME_SYSCALL_USE_RTC_FRC1 )
#define WITH_RTC 1
#endif
#if defined( CONFIG_ESP32_TIME_SYSCALL_USE_FRC1 ) \
|| defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC_FRC1 ) \
|| defined( CONFIG_ESP32S2_TIME_SYSCALL_USE_FRC1 ) \
|| defined( CONFIG_ESP32S2_TIME_SYSCALL_USE_RTC_FRC1 )
#define WITH_FRC 1
#endif
// Offset between FRC timer and the RTC.
// Initialized after reset or light sleep.
#if defined(WITH_RTC) && defined(WITH_FRC)
uint64_t s_microseconds_offset;
#endif
#ifndef WITH_RTC
static uint64_t s_boot_time; // when RTC is used to persist time, two RTC_STORE registers are used to store boot time instead
#endif
static spinlock_t s_time_lock = SPINLOCK_INITIALIZER;
#ifdef WITH_RTC
static uint64_t get_rtc_time_us(void)
{
const uint64_t ticks = rtc_time_get();
const uint32_t cal = esp_clk_slowclk_cal_get();
/* RTC counter result is up to 2^48, calibration factor is up to 2^24,
* for a 32kHz clock. We need to calculate (assuming no overflow):
* (ticks * cal) >> RTC_CLK_CAL_FRACT
*
* An overflow in the (ticks * cal) multiplication would cause time to
* wrap around after approximately 13 days, which is probably not enough
* for some applications.
* Therefore multiplication is split into two terms, for the lower 32-bit
* and the upper 16-bit parts of "ticks", i.e.:
* ((ticks_low + 2^32 * ticks_high) * cal) >> RTC_CLK_CAL_FRACT
*/
const uint64_t ticks_low = ticks & UINT32_MAX;
const uint64_t ticks_high = ticks >> 32;
return ((ticks_low * cal) >> RTC_CLK_CAL_FRACT) +
((ticks_high * cal) << (32 - RTC_CLK_CAL_FRACT));
}
#endif // WITH_RTC
#if defined( WITH_FRC ) || defined( WITH_RTC )
uint64_t esp_time_impl_get_time_since_boot(void)
{
uint64_t microseconds = 0;
#ifdef WITH_FRC
#ifdef WITH_RTC
microseconds = s_microseconds_offset + esp_timer_get_time();
#else
microseconds = esp_timer_get_time();
#endif // WITH_RTC
#elif defined(WITH_RTC)
microseconds = get_rtc_time_us();
#endif // WITH_FRC
return microseconds;
}
uint64_t esp_time_impl_get_time(void)
{
#if defined( WITH_FRC )
return esp_timer_get_time();
#elif defined( WITH_RTC )
return get_rtc_time_us();
#endif // WITH_FRC
}
#endif // defined( WITH_FRC ) || defined( WITH_RTC )
void esp_time_impl_set_boot_time(uint64_t time_us)
{
spinlock_acquire(&s_time_lock, SPINLOCK_WAIT_FOREVER);
#ifdef WITH_RTC
REG_WRITE(RTC_BOOT_TIME_LOW_REG, (uint32_t) (time_us & 0xffffffff));
REG_WRITE(RTC_BOOT_TIME_HIGH_REG, (uint32_t) (time_us >> 32));
#else
s_boot_time = time_us;
#endif
spinlock_release(&s_time_lock);
}
uint64_t esp_clk_rtc_time(void)
{
#ifdef WITH_RTC
return esp_rtc_get_time_us();
#else
return 0;
#endif
}
uint64_t esp_time_impl_get_boot_time(void)
{
uint64_t result;
spinlock_acquire(&s_time_lock, SPINLOCK_WAIT_FOREVER);
#ifdef WITH_RTC
result = ((uint64_t) REG_READ(RTC_BOOT_TIME_LOW_REG)) + (((uint64_t) REG_READ(RTC_BOOT_TIME_HIGH_REG)) << 32);
#else
result = s_boot_time;
#endif
spinlock_release(&s_time_lock);
return result;
}
uint32_t esp_clk_slowclk_cal_get(void)
{
return REG_READ(RTC_SLOW_CLK_CAL_REG);
}
void esp_clk_slowclk_cal_set(uint32_t new_cal)
{
#if defined(WITH_RTC)
/* To force monotonic time values even when clock calibration value changes,
* we adjust boot time, given current time and the new calibration value:
* T = boot_time_old + cur_cal * ticks / 2^19
* T = boot_time_adj + new_cal * ticks / 2^19
* which results in:
* boot_time_adj = boot_time_old + ticks * (cur_cal - new_cal) / 2^19
*/
const int64_t ticks = (int64_t) rtc_time_get();
const uint32_t cur_cal = REG_READ(RTC_SLOW_CLK_CAL_REG);
int32_t cal_diff = (int32_t) (cur_cal - new_cal);
int64_t boot_time_diff = ticks * cal_diff / (1LL << RTC_CLK_CAL_FRACT);
uint64_t boot_time_adj = esp_time_impl_get_boot_time() + boot_time_diff;
esp_time_impl_set_boot_time(boot_time_adj);
#endif // WITH_RTC
REG_WRITE(RTC_SLOW_CLK_CAL_REG, new_cal);
}
void esp_set_time_from_rtc(void)
{
#if defined( WITH_FRC ) && defined( WITH_RTC )
// initialize time from RTC clock
s_microseconds_offset = get_rtc_time_us() - esp_timer_get_time();
#endif // WITH_FRC && WITH_RTC
}
void esp_sync_counters_rtc_and_frc(void)
{
#if defined( WITH_FRC ) && defined( WITH_RTC )
struct timeval tv;
gettimeofday(&tv, NULL);
settimeofday(&tv, NULL);
int64_t s_microseconds_offset_cur = get_rtc_time_us() - esp_timer_get_time();
esp_time_impl_set_boot_time(esp_time_impl_get_boot_time() + ((int64_t)s_microseconds_offset - s_microseconds_offset_cur));
#endif
}
void esp_time_impl_init(void)
{
esp_set_time_from_rtc();
}
uint32_t esp_time_impl_get_time_resolution(void)
{
#if defined( WITH_FRC )
return 1L;
#elif defined( WITH_RTC )
uint32_t rtc_freq = rtc_clk_slow_freq_get_hz();
assert(rtc_freq != 0);
return 1000000L / rtc_freq;
#endif // WITH_FRC
}

View File

@ -0,0 +1,26 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
void esp_time_impl_init(void);
uint64_t esp_time_impl_get_time(void);
uint64_t esp_time_impl_get_time_since_boot(void);
uint32_t esp_time_impl_get_time_resolution(void);
void esp_time_impl_set_boot_time(uint64_t t);
uint64_t esp_time_impl_get_boot_time(void);

View File

@ -13,6 +13,13 @@
#include "test_utils.h" #include "test_utils.h"
#include "esp_log.h" #include "esp_log.h"
#include "esp_rom_sys.h" #include "esp_rom_sys.h"
#include "esp_system.h"
#if CONFIG_IDF_TARGET_ESP32
#include "esp32/clk.h"
#elif CONFIG_IDF_TARGET_ESP32S2
#include "esp32s2/clk.h"
#endif
#if portNUM_PROCESSORS == 2 #if portNUM_PROCESSORS == 2
@ -379,8 +386,8 @@ void test_posix_timers_clock (void)
ts.tv_nsec = 100000000L; ts.tv_nsec = 100000000L;
TEST_ASSERT(clock_settime(CLOCK_REALTIME, &ts) == 0); TEST_ASSERT(clock_settime(CLOCK_REALTIME, &ts) == 0);
TEST_ASSERT(gettimeofday(&now, NULL) == 0); TEST_ASSERT(gettimeofday(&now, NULL) == 0);
TEST_ASSERT(now.tv_sec == ts.tv_sec); TEST_ASSERT_EQUAL(ts.tv_sec, now.tv_sec);
TEST_ASSERT_INT_WITHIN(5000L, now.tv_usec, ts.tv_nsec / 1000L); TEST_ASSERT_INT_WITHIN(5000L, ts.tv_nsec / 1000L, now.tv_usec);
TEST_ASSERT(clock_settime(CLOCK_MONOTONIC, &ts) == -1); TEST_ASSERT(clock_settime(CLOCK_MONOTONIC, &ts) == -1);

View File

@ -21,26 +21,18 @@
#include <sys/reent.h> #include <sys/reent.h>
#include <sys/time.h> #include <sys/time.h>
#include <sys/times.h> #include <sys/times.h>
#include <sys/lock.h>
#include "esp_attr.h" #include "esp_attr.h"
#include "esp_intr_alloc.h"
#include "esp_timer.h"
#include "soc/soc.h"
#include "soc/rtc.h"
#include "soc/frc_timer_reg.h"
#include "freertos/FreeRTOS.h" #include "freertos/FreeRTOS.h"
#include "freertos/xtensa_api.h"
#include "freertos/task.h" #include "freertos/task.h"
#include "limits.h"
#include "soc/spinlock.h"
#include "soc/rtc.h"
#include "esp_time_impl.h"
#include "sdkconfig.h" #include "sdkconfig.h"
#include "esp_rom_sys.h"
#if CONFIG_IDF_TARGET_ESP32
#include "esp32/clk.h"
#include "esp32/rom/rtc.h"
#elif CONFIG_IDF_TARGET_ESP32S2
#include "esp32s2/clk.h"
#include "esp32s2/rom/rtc.h"
#endif
#ifdef CONFIG_SDK_TOOLCHAIN_SUPPORTS_TIME_WIDE_64_BITS #ifdef CONFIG_SDK_TOOLCHAIN_SUPPORTS_TIME_WIDE_64_BITS
_Static_assert(sizeof(time_t) == 8, "The toolchain does not support time_t wide 64-bits"); _Static_assert(sizeof(time_t) == 8, "The toolchain does not support time_t wide 64-bits");
@ -48,161 +40,95 @@ _Static_assert(sizeof(time_t) == 8, "The toolchain does not support time_t wide
_Static_assert(sizeof(time_t) == 4, "The toolchain supports time_t wide 64-bits. Please enable CONFIG_SDK_TOOLCHAIN_SUPPORTS_TIME_WIDE_64_BITS."); _Static_assert(sizeof(time_t) == 4, "The toolchain supports time_t wide 64-bits. Please enable CONFIG_SDK_TOOLCHAIN_SUPPORTS_TIME_WIDE_64_BITS.");
#endif #endif
#if defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC ) || defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC_FRC1 ) || defined( CONFIG_ESP32S2_TIME_SYSCALL_USE_RTC ) || defined( CONFIG_ESP32S2_TIME_SYSCALL_USE_RTC_FRC1 ) #if !CONFIG_ESP32_TIME_SYSCALL_USE_NONE && !CONFIG_ESP32S2_TIME_SYSCALL_USE_NONE
#define WITH_RTC 1 #define IMPL_NEWLIB_TIME_FUNCS 1
#endif #endif
#if defined( CONFIG_ESP32_TIME_SYSCALL_USE_FRC1 ) || defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC_FRC1 ) || defined( CONFIG_ESP32S2_TIME_SYSCALL_USE_FRC1 ) || defined( CONFIG_ESP32S2_TIME_SYSCALL_USE_RTC_FRC1 ) #if IMPL_NEWLIB_TIME_FUNCS
#define WITH_FRC 1
#endif
#ifdef WITH_RTC
static uint64_t get_rtc_time_us(void)
{
const uint64_t ticks = rtc_time_get();
const uint32_t cal = esp_clk_slowclk_cal_get();
/* RTC counter result is up to 2^48, calibration factor is up to 2^24,
* for a 32kHz clock. We need to calculate (assuming no overflow):
* (ticks * cal) >> RTC_CLK_CAL_FRACT
*
* An overflow in the (ticks * cal) multiplication would cause time to
* wrap around after approximately 13 days, which is probably not enough
* for some applications.
* Therefore multiplication is split into two terms, for the lower 32-bit
* and the upper 16-bit parts of "ticks", i.e.:
* ((ticks_low + 2^32 * ticks_high) * cal) >> RTC_CLK_CAL_FRACT
*/
const uint64_t ticks_low = ticks & UINT32_MAX;
const uint64_t ticks_high = ticks >> 32;
return ((ticks_low * cal) >> RTC_CLK_CAL_FRACT) +
((ticks_high * cal) << (32 - RTC_CLK_CAL_FRACT));
}
#endif // WITH_RTC
// s_boot_time: time from Epoch to the first boot time
#ifdef WITH_RTC
// when RTC is used to persist time, two RTC_STORE registers are used to store boot time
#elif defined(WITH_FRC)
static uint64_t s_boot_time;
#endif // WITH_RTC
#if defined(WITH_RTC) || defined(WITH_FRC)
static _lock_t s_boot_time_lock;
static _lock_t s_adjust_time_lock;
// stores the start time of the slew // stores the start time of the slew
static uint64_t adjtime_start = 0; static uint64_t s_adjtime_start_us;
// is how many microseconds total to slew // is how many microseconds total to slew
static int64_t adjtime_total_correction = 0; static int64_t s_adjtime_total_correction_us;
#define ADJTIME_CORRECTION_FACTOR 6
static uint64_t get_time_since_boot(void);
#endif
// Offset between FRC timer and the RTC.
// Initialized after reset or light sleep.
#if defined(WITH_RTC) && defined(WITH_FRC)
uint64_t s_microseconds_offset;
#endif
#if defined(WITH_RTC) || defined(WITH_FRC) static spinlock_t s_time_lock = SPINLOCK_INITIALIZER;
static void set_boot_time(uint64_t time_us)
{
_lock_acquire(&s_boot_time_lock);
#ifdef WITH_RTC
REG_WRITE(RTC_BOOT_TIME_LOW_REG, (uint32_t) (time_us & 0xffffffff));
REG_WRITE(RTC_BOOT_TIME_HIGH_REG, (uint32_t) (time_us >> 32));
#else
s_boot_time = time_us;
#endif
_lock_release(&s_boot_time_lock);
}
static uint64_t get_boot_time(void)
{
uint64_t result;
_lock_acquire(&s_boot_time_lock);
#ifdef WITH_RTC
result = ((uint64_t) REG_READ(RTC_BOOT_TIME_LOW_REG)) + (((uint64_t) REG_READ(RTC_BOOT_TIME_HIGH_REG)) << 32);
#else
result = s_boot_time;
#endif
_lock_release(&s_boot_time_lock);
return result;
}
// This function gradually changes boot_time to the correction value and immediately updates it. // This function gradually changes boot_time to the correction value and immediately updates it.
static uint64_t adjust_boot_time(void) static uint64_t adjust_boot_time(void)
{ {
uint64_t boot_time = get_boot_time(); #define ADJTIME_CORRECTION_FACTOR 6
if ((boot_time == 0) || (get_time_since_boot() < adjtime_start)) {
adjtime_start = 0; uint64_t boot_time = esp_time_impl_get_boot_time();
if ((boot_time == 0) || (esp_time_impl_get_time_since_boot() < s_adjtime_start_us)) {
s_adjtime_start_us = 0;
} }
if (adjtime_start > 0) { if (s_adjtime_start_us > 0) {
uint64_t since_boot = get_time_since_boot(); uint64_t since_boot = esp_time_impl_get_time_since_boot();
// If to call this function once per second, then (since_boot - adjtime_start) will be 1_000_000 (1 second), // If to call this function once per second, then (since_boot - s_adjtime_start_us) will be 1_000_000 (1 second),
// and the correction will be equal to (1_000_000us >> 6) = 15_625 us. // and the correction will be equal to (1_000_000us >> 6) = 15_625 us.
// The minimum possible correction step can be (64us >> 6) = 1us. // The minimum possible correction step can be (64us >> 6) = 1us.
// Example: if the time error is 1 second, then it will be compensate for 1 sec / 0,015625 = 64 seconds. // Example: if the time error is 1 second, then it will be compensate for 1 sec / 0,015625 = 64 seconds.
int64_t correction = (since_boot >> ADJTIME_CORRECTION_FACTOR) - (adjtime_start >> ADJTIME_CORRECTION_FACTOR); int64_t correction = (since_boot >> ADJTIME_CORRECTION_FACTOR) - (s_adjtime_start_us >> ADJTIME_CORRECTION_FACTOR);
if (correction > 0) { if (correction > 0) {
adjtime_start = since_boot; s_adjtime_start_us = since_boot;
if (adjtime_total_correction < 0) { if (s_adjtime_total_correction_us < 0) {
if ((adjtime_total_correction + correction) >= 0) { if ((s_adjtime_total_correction_us + correction) >= 0) {
boot_time = boot_time + adjtime_total_correction; boot_time = boot_time + s_adjtime_total_correction_us;
adjtime_start = 0; s_adjtime_start_us = 0;
} else { } else {
adjtime_total_correction += correction; s_adjtime_total_correction_us += correction;
boot_time -= correction; boot_time -= correction;
} }
} else { } else {
if ((adjtime_total_correction - correction) <= 0) { if ((s_adjtime_total_correction_us - correction) <= 0) {
boot_time = boot_time + adjtime_total_correction; boot_time = boot_time + s_adjtime_total_correction_us;
adjtime_start = 0; s_adjtime_start_us = 0;
} else { } else {
adjtime_total_correction -= correction; s_adjtime_total_correction_us -= correction;
boot_time += correction; boot_time += correction;
} }
} }
set_boot_time(boot_time); esp_time_impl_set_boot_time(boot_time);
} }
} }
return boot_time; return boot_time;
} }
// Get the adjusted boot time. // Get the adjusted boot time.
static uint64_t get_adjusted_boot_time (void) static uint64_t get_adjusted_boot_time(void)
{ {
_lock_acquire(&s_adjust_time_lock); spinlock_acquire(&s_time_lock, SPINLOCK_WAIT_FOREVER);
uint64_t adjust_time = adjust_boot_time(); uint64_t adjust_time = adjust_boot_time();
_lock_release(&s_adjust_time_lock); spinlock_release(&s_time_lock);
return adjust_time; return adjust_time;
} }
// Applying the accumulated correction to boot_time and stopping the smooth time adjustment. // Applying the accumulated correction to base_time and stopping the smooth time adjustment.
static void adjtime_corr_stop (void) static void adjtime_corr_stop (void)
{ {
_lock_acquire(&s_adjust_time_lock); spinlock_acquire(&s_time_lock, SPINLOCK_WAIT_FOREVER);
if (adjtime_start != 0){ if (s_adjtime_start_us != 0){
adjust_boot_time(); adjust_boot_time();
adjtime_start = 0; s_adjtime_start_us = 0;
} }
_lock_release(&s_adjust_time_lock); spinlock_release(&s_time_lock);
} }
#endif //defined(WITH_RTC) || defined(WITH_FRC) #endif
int adjtime(const struct timeval *delta, struct timeval *outdelta) int adjtime(const struct timeval *delta, struct timeval *outdelta)
{ {
#if defined( WITH_FRC ) || defined( WITH_RTC ) #if IMPL_NEWLIB_TIME_FUNCS
if(outdelta != NULL){ if(outdelta != NULL){
_lock_acquire(&s_adjust_time_lock); spinlock_acquire(&s_time_lock, SPINLOCK_WAIT_FOREVER);
adjust_boot_time(); adjust_boot_time();
if (adjtime_start != 0) { if (s_adjtime_start_us != 0) {
outdelta->tv_sec = adjtime_total_correction / 1000000L; outdelta->tv_sec = s_adjtime_total_correction_us / 1000000L;
outdelta->tv_usec = adjtime_total_correction % 1000000L; outdelta->tv_usec = s_adjtime_total_correction_us % 1000000L;
} else { } else {
outdelta->tv_sec = 0; outdelta->tv_sec = 0;
outdelta->tv_usec = 0; outdelta->tv_usec = 0;
} }
_lock_release(&s_adjust_time_lock); spinlock_release(&s_time_lock);
} }
if(delta != NULL){ if(delta != NULL){
int64_t sec = delta->tv_sec; int64_t sec = delta->tv_sec;
@ -215,59 +141,16 @@ int adjtime(const struct timeval *delta, struct timeval *outdelta)
* and the delta of the second call is not NULL, the earlier tuning is stopped, * and the delta of the second call is not NULL, the earlier tuning is stopped,
* but the already completed part of the adjustment is not canceled. * but the already completed part of the adjustment is not canceled.
*/ */
_lock_acquire(&s_adjust_time_lock); spinlock_acquire(&s_time_lock, SPINLOCK_WAIT_FOREVER);
// If correction is already in progress (adjtime_start != 0), then apply accumulated corrections. // If correction is already in progress (s_adjtime_start_time_us != 0), then apply accumulated corrections.
adjust_boot_time(); adjust_boot_time();
adjtime_start = get_time_since_boot(); s_adjtime_start_us = esp_time_impl_get_time_since_boot();
adjtime_total_correction = sec * 1000000L + usec; s_adjtime_total_correction_us = sec * 1000000L + usec;
_lock_release(&s_adjust_time_lock); spinlock_release(&s_time_lock);
} }
return 0;
#else
return -1;
#endif
}
void esp_clk_slowclk_cal_set(uint32_t new_cal)
{
#if defined(WITH_RTC)
/* To force monotonic time values even when clock calibration value changes,
* we adjust boot time, given current time and the new calibration value:
* T = boot_time_old + cur_cal * ticks / 2^19
* T = boot_time_adj + new_cal * ticks / 2^19
* which results in:
* boot_time_adj = boot_time_old + ticks * (cur_cal - new_cal) / 2^19
*/
const int64_t ticks = (int64_t) rtc_time_get();
const uint32_t cur_cal = REG_READ(RTC_SLOW_CLK_CAL_REG);
int32_t cal_diff = (int32_t) (cur_cal - new_cal);
int64_t boot_time_diff = ticks * cal_diff / (1LL << RTC_CLK_CAL_FRACT);
uint64_t boot_time_adj = get_boot_time() + boot_time_diff;
set_boot_time(boot_time_adj);
#endif // WITH_RTC
REG_WRITE(RTC_SLOW_CLK_CAL_REG, new_cal);
}
uint32_t esp_clk_slowclk_cal_get(void)
{
return REG_READ(RTC_SLOW_CLK_CAL_REG);
}
void esp_set_time_from_rtc(void)
{
#if defined( WITH_FRC ) && defined( WITH_RTC )
// initialize time from RTC clock
s_microseconds_offset = get_rtc_time_us() - esp_timer_get_time();
#endif // WITH_FRC && WITH_RTC
}
uint64_t esp_clk_rtc_time(void)
{
#ifdef WITH_RTC
return get_rtc_time_us();
#else
return 0; return 0;
#else
return -1;
#endif #endif
} }
@ -283,29 +166,13 @@ clock_t IRAM_ATTR _times_r(struct _reent *r, struct tms *ptms)
return (clock_t) tv.tv_sec; return (clock_t) tv.tv_sec;
} }
#if defined( WITH_FRC ) || defined( WITH_RTC )
static uint64_t get_time_since_boot(void)
{
uint64_t microseconds = 0;
#ifdef WITH_FRC
#ifdef WITH_RTC
microseconds = s_microseconds_offset + esp_timer_get_time();
#else
microseconds = esp_timer_get_time();
#endif // WITH_RTC
#elif defined(WITH_RTC)
microseconds = get_rtc_time_us();
#endif // WITH_FRC
return microseconds;
}
#endif // defined( WITH_FRC ) || defined( WITH_RTC )
int IRAM_ATTR _gettimeofday_r(struct _reent *r, struct timeval *tv, void *tz) int IRAM_ATTR _gettimeofday_r(struct _reent *r, struct timeval *tv, void *tz)
{ {
(void) tz; (void) tz;
#if defined( WITH_FRC ) || defined( WITH_RTC )
#if IMPL_NEWLIB_TIME_FUNCS
if (tv) { if (tv) {
uint64_t microseconds = get_adjusted_boot_time() + get_time_since_boot(); uint64_t microseconds = get_adjusted_boot_time() + esp_time_impl_get_time_since_boot();
tv->tv_sec = microseconds / 1000000; tv->tv_sec = microseconds / 1000000;
tv->tv_usec = microseconds % 1000000; tv->tv_usec = microseconds % 1000000;
} }
@ -313,18 +180,18 @@ int IRAM_ATTR _gettimeofday_r(struct _reent *r, struct timeval *tv, void *tz)
#else #else
__errno_r(r) = ENOSYS; __errno_r(r) = ENOSYS;
return -1; return -1;
#endif // defined( WITH_FRC ) || defined( WITH_RTC ) #endif
} }
int settimeofday(const struct timeval *tv, const struct timezone *tz) int settimeofday(const struct timeval *tv, const struct timezone *tz)
{ {
(void) tz; (void) tz;
#if defined( WITH_FRC ) || defined( WITH_RTC ) #if IMPL_NEWLIB_TIME_FUNCS
if (tv) { if (tv) {
adjtime_corr_stop(); adjtime_corr_stop();
uint64_t now = ((uint64_t) tv->tv_sec) * 1000000LL + tv->tv_usec; uint64_t now = ((uint64_t) tv->tv_sec) * 1000000LL + tv->tv_usec;
uint64_t since_boot = get_time_since_boot(); uint64_t since_boot = esp_time_impl_get_time_since_boot();
set_boot_time(now - since_boot); esp_time_impl_set_boot_time(now - since_boot);
} }
return 0; return 0;
#else #else
@ -353,48 +220,9 @@ unsigned int sleep(unsigned int seconds)
return 0; return 0;
} }
uint32_t system_get_time(void) int clock_settime(clockid_t clock_id, const struct timespec *tp)
{ {
#if defined( WITH_FRC ) || defined( WITH_RTC ) #if IMPL_NEWLIB_TIME_FUNCS
return get_time_since_boot();
#else
return 0;
#endif
}
uint32_t system_get_current_time(void) __attribute__((alias("system_get_time")));
uint32_t system_relative_time(uint32_t current_time)
{
#if defined( WITH_FRC ) || defined( WITH_RTC )
return get_time_since_boot() - current_time;
#else
return 0;
#endif
}
uint64_t system_get_rtc_time(void)
{
#ifdef WITH_RTC
return get_rtc_time_us();
#else
return 0;
#endif
}
void esp_sync_counters_rtc_and_frc(void)
{
#if defined( WITH_FRC ) && defined( WITH_RTC )
adjtime_corr_stop();
int64_t s_microseconds_offset_cur = get_rtc_time_us() - esp_timer_get_time();
set_boot_time(get_adjusted_boot_time() + ((int64_t)s_microseconds_offset - s_microseconds_offset_cur));
#endif
}
int clock_settime (clockid_t clock_id, const struct timespec *tp)
{
#if defined( WITH_FRC ) || defined( WITH_RTC )
if (tp == NULL) { if (tp == NULL) {
errno = EINVAL; errno = EINVAL;
return -1; return -1;
@ -419,7 +247,7 @@ int clock_settime (clockid_t clock_id, const struct timespec *tp)
int clock_gettime (clockid_t clock_id, struct timespec *tp) int clock_gettime (clockid_t clock_id, struct timespec *tp)
{ {
#if defined( WITH_FRC ) || defined( WITH_RTC ) #if IMPL_NEWLIB_TIME_FUNCS
if (tp == NULL) { if (tp == NULL) {
errno = EINVAL; errno = EINVAL;
return -1; return -1;
@ -433,11 +261,7 @@ int clock_gettime (clockid_t clock_id, struct timespec *tp)
tp->tv_nsec = tv.tv_usec * 1000L; tp->tv_nsec = tv.tv_usec * 1000L;
break; break;
case CLOCK_MONOTONIC: case CLOCK_MONOTONIC:
#if defined( WITH_FRC ) monotonic_time_us = esp_time_impl_get_time();
monotonic_time_us = (uint64_t) esp_timer_get_time();
#elif defined( WITH_RTC )
monotonic_time_us = get_rtc_time_us();
#endif // WITH_FRC
tp->tv_sec = monotonic_time_us / 1000000LL; tp->tv_sec = monotonic_time_us / 1000000LL;
tp->tv_nsec = (monotonic_time_us % 1000000LL) * 1000L; tp->tv_nsec = (monotonic_time_us % 1000000LL) * 1000L;
break; break;
@ -454,23 +278,23 @@ int clock_gettime (clockid_t clock_id, struct timespec *tp)
int clock_getres (clockid_t clock_id, struct timespec *res) int clock_getres (clockid_t clock_id, struct timespec *res)
{ {
#if defined( WITH_FRC ) || defined( WITH_RTC ) #if IMPL_NEWLIB_TIME_FUNCS
if (res == NULL) { if (res == NULL) {
errno = EINVAL; errno = EINVAL;
return -1; return -1;
} }
#if defined( WITH_FRC )
res->tv_sec = 0; res->tv_sec = 0;
res->tv_nsec = 1000L; res->tv_nsec = esp_time_impl_get_time_resolution() * 1000;
#elif defined( WITH_RTC )
res->tv_sec = 0;
uint32_t rtc_freq = rtc_clk_slow_freq_get_hz();
assert(rtc_freq != 0);
res->tv_nsec = 1000000000L / rtc_freq;
#endif // WITH_FRC
return 0; return 0;
#else #else
errno = ENOSYS; errno = ENOSYS;
return -1; return -1;
#endif #endif
} }
void esp_newlib_time_init(void)
{
esp_time_impl_init();
}