debug ring buffer error.

This commit is contained in:
Wangjialin 2016-11-03 18:28:36 +08:00
parent ce9e73cd19
commit 8282c73ac2
3 changed files with 177 additions and 59 deletions

View File

@ -530,7 +530,7 @@ int uart_read_char(uart_port_t uart_num, TickType_t ticks_to_wait);
* @param uart_no UART_NUM_0, UART_NUM_1 or UART_NUM_2 * @param uart_no UART_NUM_0, UART_NUM_1 or UART_NUM_2
* @param buf pointer to the buffer. * @param buf pointer to the buffer.
* @param length data length * @param length data length
* @param ticks_to_wait: Timeout, count in RTOS ticks * @param ticks_to_wait sTimeout, count in RTOS ticks
* *
* @return * @return
* - (-1) Error * - (-1) Error

View File

@ -37,8 +37,6 @@ const char* UART_TAG = "UART";
#define UART_EMPTY_THRESH_DEFAULT (10) #define UART_EMPTY_THRESH_DEFAULT (10)
#define UART_FULL_THRESH_DEFAULT (120) #define UART_FULL_THRESH_DEFAULT (120)
#define UART_TOUT_THRESH_DEFAULT (10) #define UART_TOUT_THRESH_DEFAULT (10)
#define UART_TX_TASK_DEPTH_DEFAULT (256*2+64)
#define UART_TX_TASK_PRIO_DEFAULT (10)
#define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux) #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
#define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux) #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
#define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux) #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
@ -60,7 +58,6 @@ typedef struct {
RingbufHandle_t rx_ring_buf; RingbufHandle_t rx_ring_buf;
int tx_buf_size; int tx_buf_size;
RingbufHandle_t tx_ring_buf; RingbufHandle_t tx_ring_buf;
TaskHandle_t tx_task_handle;
bool buffer_full_flg; bool buffer_full_flg;
bool tx_waiting; bool tx_waiting;
int cur_remain; int cur_remain;
@ -439,8 +436,17 @@ static void IRAM_ATTR uart_rx_intr_handler_default(void *param)
uart_dev_t* uart_reg = UART[uart_num]; uart_dev_t* uart_reg = UART[uart_num];
uint8_t buf_idx = 0; uint8_t buf_idx = 0;
uint32_t uart_intr_status = UART[uart_num]->int_st.val; uint32_t uart_intr_status = UART[uart_num]->int_st.val;
static int rx_fifo_len = 0; int rx_fifo_len = 0;
uart_event_t uart_event; uart_event_t uart_event;
static uint8_t * tx_ptr;
static uart_event_t* tx_head;
static int tx_len_tot = 0;
static int brk_flg = 0;
static int tx_brk_len = 0;
static int wait_brk = 0;
portBASE_TYPE HPTaskAwoken = 0; portBASE_TYPE HPTaskAwoken = 0;
while(uart_intr_status != 0x0) { while(uart_intr_status != 0x0) {
buf_idx = 0; buf_idx = 0;
@ -450,14 +456,99 @@ static void IRAM_ATTR uart_rx_intr_handler_default(void *param)
uart_reg->int_ena.txfifo_empty = 0; uart_reg->int_ena.txfifo_empty = 0;
uart_reg->int_clr.txfifo_empty = 1; uart_reg->int_clr.txfifo_empty = 1;
UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]); UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
if(wait_brk) {
return;
}
if(p_uart->tx_waiting == true) { if(p_uart->tx_waiting == true) {
p_uart->tx_waiting = false; p_uart->tx_waiting = false;
xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, NULL); xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, NULL);
} }
else {
int tx_fifo_rem = UART_FIFO_LEN - UART[uart_num]->status.txfifo_cnt;
bool en_tx_flg = false;
if(tx_len_tot == 0) {
size_t size;
// ets_printf("dbg1,tot=0,get 1st head\n");
// xRingbufferPrintInfo(p_uart->tx_ring_buf);
tx_head = (uart_event_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
// xRingbufferPrintInfo(p_uart->tx_ring_buf);
if(tx_head) { //enable empty intr
// tx_ptr = (uint8_t*)tx_head + sizeof(uart_event_t);
tx_ptr = NULL;
// en_tx_flg = true;
tx_len_tot = tx_head->data.size;
if(tx_head->type == UART_DATA_BREAK) {
tx_len_tot = tx_head->data.size;
brk_flg = 1;
tx_brk_len = tx_head->data.brk_len;
}
// ets_printf("ret1,tot: %d\n", tx_len_tot);
vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, tx_head, &HPTaskAwoken);
// xRingbufferPrintInfo(p_uart->tx_ring_buf);
// xRingbufferPrintInfo(p_uart->tx_ring_buf);
}
else {
return;
}
}
if(tx_ptr == NULL) {
size_t size;
// ets_printf("dbg2, tx ptr null, get 2nd tx ptr\n");
// xRingbufferPrintInfo(p_uart->tx_ring_buf);
tx_ptr = (uint8_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
// xRingbufferPrintInfo(p_uart->tx_ring_buf);
if(tx_ptr) {
tx_head = (void*) tx_ptr;
// ets_printf("get size: %d ; h size: %d\n", size, tx_len_tot);
en_tx_flg = true;
} else {
return;
}
}
// else
if(tx_len_tot > 0 && tx_ptr) { //tx
int send_len = tx_len_tot > tx_fifo_rem ? tx_fifo_rem : tx_len_tot;
for(buf_idx = 0; buf_idx < send_len; buf_idx++) {
WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), *(tx_ptr++) & 0xff);
}
tx_len_tot -= send_len;
// ets_printf("tot: %d\n", tx_len_tot);
if(tx_len_tot == 0) {
if(brk_flg == 1) {
UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
uart_reg->int_ena.tx_brk_done = 0;
uart_reg->idle_conf.tx_brk_num = tx_brk_len;
uart_reg->conf0.txd_brk = 1;
uart_reg->int_clr.tx_brk_done = 1;
uart_reg->int_ena.tx_brk_done = 1;
UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
wait_brk = 1;
} else {
en_tx_flg = true;
}
// ets_printf("ret2\n");
vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, tx_head, &HPTaskAwoken);
// xRingbufferPrintInfo(p_uart->tx_ring_buf);
// xRingbufferPrintInfo(p_uart->tx_ring_buf);
tx_head = NULL;
tx_ptr = NULL;
} else {
en_tx_flg = true;
}
}
if(en_tx_flg) {
UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
uart_reg->int_clr.txfifo_empty = 1;
uart_reg->int_ena.txfifo_empty = 1;
UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
}
}
} }
else if((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M) || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)) { else if((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M) || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)) {
if(p_uart->buffer_full_flg == false) { if(p_uart->buffer_full_flg == false) {
//Get the buffer from the FIFO //Get the buffer from the FIFO
// ESP_LOGE(UART_TAG, "FULL\n");
rx_fifo_len = uart_reg->status.rxfifo_cnt; rx_fifo_len = uart_reg->status.rxfifo_cnt;
p_uart->data_len = rx_fifo_len; p_uart->data_len = rx_fifo_len;
memset(p_uart->data_buf, 0, sizeof(p_uart->data_buf)); memset(p_uart->data_buf, 0, sizeof(p_uart->data_buf));
@ -506,12 +597,22 @@ static void IRAM_ATTR uart_rx_intr_handler_default(void *param)
uart_reg->int_clr.frm_err = 1; uart_reg->int_clr.frm_err = 1;
uart_event.type = UART_PARITY_ERR; uart_event.type = UART_PARITY_ERR;
} else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) { } else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
// ESP_LOGE(UART_TAG, "UART TX BRK DONE\n");
ets_printf("tx brk done\n");
UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]); UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
uart_reg->conf0.txd_brk = 0; uart_reg->conf0.txd_brk = 0;
uart_reg->int_ena.tx_brk_done = 0; uart_reg->int_ena.tx_brk_done = 0;
uart_reg->int_clr.tx_brk_done = 1; uart_reg->int_clr.tx_brk_done = 1;
if(brk_flg == 1) {
uart_reg->int_ena.txfifo_empty = 1;
}
UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]); UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken); if(brk_flg == 1) {
brk_flg = 0;
wait_brk = 0;
} else {
xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
}
} else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) { } else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]); UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
uart_reg->int_ena.tx_brk_idle_done = 0; uart_reg->int_ena.tx_brk_idle_done = 0;
@ -638,26 +739,26 @@ static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool
return original_size; return original_size;
} }
static void uart_tx_task(void* arg) //static void uart_tx_task(void* arg)
{ //{
uart_obj_t* p_uart = (uart_obj_t*) arg; // uart_obj_t* p_uart = (uart_obj_t*) arg;
size_t size; // size_t size;
uart_event_t evt; // uart_event_t evt;
for(;;) { // for(;;) {
char* data = (char*) xRingbufferReceive(p_uart->tx_ring_buf, &size, portMAX_DELAY); // char* data = (char*) xRingbufferReceive(p_uart->tx_ring_buf, &size, portMAX_DELAY);
if(data == NULL) { // if(data == NULL) {
continue; // continue;
} // }
memcpy(&evt, data, sizeof(evt)); // memcpy(&evt, data, sizeof(evt));
if(evt.type == UART_DATA) { // if(evt.type == UART_DATA) {
uart_tx_all(p_uart->uart_num, (const char*) data + sizeof(uart_event_t), evt.data.size, 0, 0); // uart_tx_all(p_uart->uart_num, (const char*) data + sizeof(uart_event_t), evt.data.size, 0, 0);
} else if(evt.type == UART_DATA_BREAK) { // } else if(evt.type == UART_DATA_BREAK) {
uart_tx_all(p_uart->uart_num, (const char*) data + sizeof(uart_event_t), evt.data.size, 1, evt.data.brk_len); // uart_tx_all(p_uart->uart_num, (const char*) data + sizeof(uart_event_t), evt.data.size, 1, evt.data.brk_len);
} // }
vRingbufferReturnItem(p_uart->tx_ring_buf, data); // vRingbufferReturnItem(p_uart->tx_ring_buf, data);
} // }
vTaskDelete(NULL); // vTaskDelete(NULL);
} //}
int uart_tx_all_chars(uart_port_t uart_num, const char* src, size_t size) int uart_tx_all_chars(uart_port_t uart_num, const char* src, size_t size)
{ {
@ -666,19 +767,18 @@ int uart_tx_all_chars(uart_port_t uart_num, const char* src, size_t size)
UART_CHECK(src, "buffer null"); UART_CHECK(src, "buffer null");
if(p_uart_obj[uart_num]->tx_buf_size > 0) { if(p_uart_obj[uart_num]->tx_buf_size > 0) {
if(xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf) > (size + sizeof(uart_event_t))) { if(xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf) > (size + sizeof(uart_event_t))) {
uart_event_t *evt = (uart_event_t*) malloc(sizeof(uart_event_t) + size); uart_event_t evt;
if(evt == NULL) {
ESP_LOGE(UART_TAG, "UART EVT MALLOC ERROR\n");
return -1;
}
xSemaphoreTake(p_uart_obj[uart_num]->tx_buffer_mutex, (portTickType)portMAX_DELAY); xSemaphoreTake(p_uart_obj[uart_num]->tx_buffer_mutex, (portTickType)portMAX_DELAY);
evt->type = UART_DATA; evt.type = UART_DATA;
evt->data.size = size; evt.data.size = size;
memcpy(evt->data.data, src, size); ets_printf("-----1st send-----\n");
xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) evt, sizeof(uart_event_t) + size, portMAX_DELAY); xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_event_t), portMAX_DELAY);
free(evt); xRingbufferPrintInfo(p_uart_obj[uart_num]->tx_ring_buf);
evt = NULL; ets_printf("====2nd send====\n");
xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) src, size, portMAX_DELAY);
xRingbufferPrintInfo(p_uart_obj[uart_num]->tx_ring_buf);
xSemaphoreGive(p_uart_obj[uart_num]->tx_buffer_mutex); xSemaphoreGive(p_uart_obj[uart_num]->tx_buffer_mutex);
uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
return size; return size;
} else { } else {
ESP_LOGW(UART_TAG, "UART TX BUFFER TOO SMALL[0], SEND DIRECTLY\n"); ESP_LOGW(UART_TAG, "UART TX BUFFER TOO SMALL[0], SEND DIRECTLY\n");
@ -698,19 +798,15 @@ int uart_tx_all_chars_with_break(uart_port_t uart_num, const char* src, size_t s
UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error"); UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error");
if(p_uart_obj[uart_num]->tx_buf_size > 0) { if(p_uart_obj[uart_num]->tx_buf_size > 0) {
if(xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf) > (size)) { if(xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf) > (size)) {
uart_event_t *evt = (uart_event_t*) malloc(sizeof(uart_event_t) + size); uart_event_t evt;
if(evt == NULL) {
return -1;
}
xSemaphoreTake(p_uart_obj[uart_num]->tx_buffer_mutex, (portTickType)portMAX_DELAY); xSemaphoreTake(p_uart_obj[uart_num]->tx_buffer_mutex, (portTickType)portMAX_DELAY);
evt->type = UART_DATA_BREAK; evt.type = UART_DATA_BREAK;
evt->data.size = size; evt.data.size = size;
evt->data.brk_len = brk_len; evt.data.brk_len = brk_len;
memcpy(evt->data.data, src, size); xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_event_t), portMAX_DELAY);
xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) evt, sizeof(uart_event_t) + size, portMAX_DELAY); xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) src, size, portMAX_DELAY);
free(evt);
evt = NULL;
xSemaphoreGive(p_uart_obj[uart_num]->tx_buffer_mutex); xSemaphoreGive(p_uart_obj[uart_num]->tx_buffer_mutex);
uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
return size; return size;
} else { } else {
ESP_LOGW(UART_TAG, "UART TX BUFFER TOO SMALL[1], SEND DIRECTLY\n"); ESP_LOGW(UART_TAG, "UART TX BUFFER TOO SMALL[1], SEND DIRECTLY\n");
@ -782,8 +878,10 @@ int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickTyp
p_uart_obj[uart_num]->head_ptr = data; p_uart_obj[uart_num]->head_ptr = data;
p_uart_obj[uart_num]->rd_ptr = data; p_uart_obj[uart_num]->rd_ptr = data;
p_uart_obj[uart_num]->cur_remain = size; p_uart_obj[uart_num]->cur_remain = size;
// ets_printf("dbg0\n");
} else { } else {
xSemaphoreGive(p_uart_obj[uart_num]->rx_mux); xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
// ets_printf("dbg1\n");
return copy_len; return copy_len;
} }
} }
@ -792,17 +890,20 @@ int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickTyp
} else { } else {
len_tmp = p_uart_obj[uart_num]->cur_remain; len_tmp = p_uart_obj[uart_num]->cur_remain;
} }
// ets_printf("dbga\n");
memcpy(buf + copy_len, p_uart_obj[uart_num]->rd_ptr, len_tmp); memcpy(buf + copy_len, p_uart_obj[uart_num]->rd_ptr, len_tmp);
p_uart_obj[uart_num]->rd_ptr += len_tmp; p_uart_obj[uart_num]->rd_ptr += len_tmp;
p_uart_obj[uart_num]->cur_remain -= len_tmp; p_uart_obj[uart_num]->cur_remain -= len_tmp;
copy_len += len_tmp; copy_len += len_tmp;
length -= len_tmp; length -= len_tmp;
// ets_printf("dbgb\n");
if(p_uart_obj[uart_num]->cur_remain == 0) { if(p_uart_obj[uart_num]->cur_remain == 0) {
vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->head_ptr); vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->head_ptr);
p_uart_obj[uart_num]->head_ptr = NULL; p_uart_obj[uart_num]->head_ptr = NULL;
p_uart_obj[uart_num]->rd_ptr = NULL; p_uart_obj[uart_num]->rd_ptr = NULL;
if(p_uart_obj[uart_num]->buffer_full_flg) { if(p_uart_obj[uart_num]->buffer_full_flg) {
BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->data_buf, p_uart_obj[uart_num]->data_len, 1); BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->data_buf, p_uart_obj[uart_num]->data_len, 1);
// ets_printf("dbg2\n");
if(res == pdTRUE) { if(res == pdTRUE) {
p_uart_obj[uart_num]->buffer_full_flg = false; p_uart_obj[uart_num]->buffer_full_flg = false;
uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num); uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
@ -810,6 +911,7 @@ int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickTyp
} }
} }
} }
// ets_printf("dbg3\n");
xSemaphoreGive(p_uart_obj[uart_num]->rx_mux); xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
return copy_len; return copy_len;
} }
@ -944,14 +1046,11 @@ esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_b
p_uart_obj[uart_num]->rx_buf_type = rx_buf_type; p_uart_obj[uart_num]->rx_buf_type = rx_buf_type;
p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, rx_buf_type); p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, rx_buf_type);
if(tx_buffer_size > 0) { if(tx_buffer_size > 0) {
p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT); p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);//RINGBUF_TYPE_BYTEBUF);//RINGBUF_TYPE_NOSPLIT);
p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size; p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
xTaskCreate(uart_tx_task, "uart_tx_task", UART_TX_TASK_DEPTH_DEFAULT, (void*)p_uart_obj[uart_num], UART_TX_TASK_PRIO_DEFAULT, &p_uart_obj[uart_num]->tx_task_handle);
} else { } else {
p_uart_obj[uart_num]->tx_ring_buf = NULL; p_uart_obj[uart_num]->tx_ring_buf = NULL;
p_uart_obj[uart_num]->tx_buf_size = 0; p_uart_obj[uart_num]->tx_buf_size = 0;
p_uart_obj[uart_num]->tx_task_handle = NULL;
} }
} else { } else {
ESP_LOGE(UART_TAG, "UART driver already installed\n"); ESP_LOGE(UART_TAG, "UART driver already installed\n");
@ -986,10 +1085,6 @@ esp_err_t uart_driver_delete(uart_port_t uart_num)
uart_disable_tx_intr(uart_num); uart_disable_tx_intr(uart_num);
uart_isr_register(uart_num, p_uart_obj[uart_num]->intr_num, NULL, NULL); uart_isr_register(uart_num, p_uart_obj[uart_num]->intr_num, NULL, NULL);
if(p_uart_obj[uart_num]->tx_task_handle) {
vTaskDelete(p_uart_obj[uart_num]->tx_task_handle);
p_uart_obj[uart_num]->tx_task_handle = NULL;
}
if(p_uart_obj[uart_num]->tx_fifo_sem) { if(p_uart_obj[uart_num]->tx_fifo_sem) {
vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem); vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
p_uart_obj[uart_num]->tx_fifo_sem = NULL; p_uart_obj[uart_num]->tx_fifo_sem = NULL;

View File

@ -77,9 +77,13 @@ static int ringbufferFreeMem(ringbuf_t *rb)
{ {
int free_size = rb->free_ptr-rb->write_ptr; int free_size = rb->free_ptr-rb->write_ptr;
if (free_size <= 0) free_size += rb->size; if (free_size <= 0) free_size += rb->size;
//If we free the last dummy item in the buffer, free_ptr will point to rb->data
//In this case, after we write the last some bytes, the buffer might wrap around if we don't have room for a header anymore.
// if (free_size == 0 && rb->read_ptr == rb->write_ptr) free_size += rb->size;
//Reserve one byte. If we do not do this and the entire buffer is filled, we get a situation //Reserve one byte. If we do not do this and the entire buffer is filled, we get a situation
//where read_ptr == free_ptr, messing up the next calculation. //where write_ptr == free_ptr, messing up the next calculation.
return free_size-1; // return free_size == 0 ? 0 : free_size - 1;
return free_size - 1;
} }
@ -334,6 +338,10 @@ static uint8_t *getItemFromRingbufByteBuf(ringbuf_t *rb, size_t *length, int wan
//can be increase. //can be increase.
//This function by itself is not threadsafe, always call from within a muxed section. //This function by itself is not threadsafe, always call from within a muxed section.
static void returnItemToRingbufDefault(ringbuf_t *rb, void *item) { static void returnItemToRingbufDefault(ringbuf_t *rb, void *item) {
ets_printf("in returnItemToRingbufDefault\n");
xRingbufferPrintInfo(rb);
uint8_t *data=(uint8_t*)item; uint8_t *data=(uint8_t*)item;
configASSERT(((int)rb->free_ptr&3)==0); configASSERT(((int)rb->free_ptr&3)==0);
configASSERT(data >= rb->data); configASSERT(data >= rb->data);
@ -350,9 +358,16 @@ static void returnItemToRingbufDefault(ringbuf_t *rb, void *item) {
hdr=(buf_entry_hdr_t *)rb->free_ptr; hdr=(buf_entry_hdr_t *)rb->free_ptr;
//basically forward free_ptr until we run into either a block that is still in use or the write pointer. //basically forward free_ptr until we run into either a block that is still in use or the write pointer.
while (((hdr->flags & iflag_free) || (hdr->flags & iflag_dummydata)) && rb->free_ptr != rb->write_ptr) { while (((hdr->flags & iflag_free) || (hdr->flags & iflag_dummydata)) && rb->free_ptr != rb->write_ptr) {
if (hdr->flags & iflag_dummydata) { if (hdr->flags & iflag_dummydata) {
ets_printf("hrd len: %d; flg: 0x%02x\n",hdr->len,hdr->flags);
//Rest is dummy data. Reset to start of ringbuffer. //Rest is dummy data. Reset to start of ringbuffer.
rb->free_ptr=rb->data; rb->free_ptr=rb->data;
//If the read_ptr is pointing to this dummy item,
//we should also move the read pointer to data, in case we overwrite the read hdr.
// if(rb->read_ptr == (uint8_t*)hdr) {
// rb->read_ptr = rb->data;
// }
} else { } else {
//Skip past item //Skip past item
size_t len=(hdr->len+3)&~3; size_t len=(hdr->len+3)&~3;
@ -363,8 +378,10 @@ static void returnItemToRingbufDefault(ringbuf_t *rb, void *item) {
if ((rb->data+rb->size)-rb->free_ptr < sizeof(buf_entry_hdr_t)) { if ((rb->data+rb->size)-rb->free_ptr < sizeof(buf_entry_hdr_t)) {
rb->free_ptr=rb->data; rb->free_ptr=rb->data;
} }
if(rb->free_ptr == rb->read_ptr) break;
//Next header //Next header
hdr=(buf_entry_hdr_t *)rb->free_ptr; hdr=(buf_entry_hdr_t *)rb->free_ptr;
} }
} }
@ -386,6 +403,12 @@ void xRingbufferPrintInfo(RingbufHandle_t ringbuf)
configASSERT(rb); configASSERT(rb);
ets_printf("Rb size %d free %d rptr %d freeptr %d wptr %d\n", ets_printf("Rb size %d free %d rptr %d freeptr %d wptr %d\n",
rb->size, ringbufferFreeMem(rb), rb->read_ptr-rb->data, rb->free_ptr-rb->data, rb->write_ptr-rb->data); rb->size, ringbufferFreeMem(rb), rb->read_ptr-rb->data, rb->free_ptr-rb->data, rb->write_ptr-rb->data);
buf_entry_hdr_t *hdr=(buf_entry_hdr_t *)rb->read_ptr;
if(rb->write_ptr == rb->read_ptr) {
ets_printf("write que read\n");
} else {
ets_printf("hdr len: %d; flg: 0x%08x\n", hdr->len, hdr->flags);
}
} }