Merge branch 'fix/adc_xpd_calibration' into 'master'

adc: fixed the issue that ADC power is left on after the calibration is done

See merge request espressif/esp-idf!12207
This commit is contained in:
Michael (XIAO Xufeng) 2021-02-05 16:28:53 +08:00
commit 822a40a6cf
8 changed files with 163 additions and 146 deletions

View File

@ -66,6 +66,7 @@ endif()
if(IDF_TARGET STREQUAL "esp32c3")
list(APPEND srcs "gdma.c"
"spi_slave_hd.c"
"adc_common.c"
"esp32c3/adc.c"
"esp32c3/adc2_init_cal.c"
"esp32c3/rtc_tempsensor.c")

View File

@ -22,7 +22,6 @@
#include "esp_pm.h"
#include "soc/rtc.h"
#include "driver/rtc_io.h"
#include "driver/dac.h"
#include "sys/lock.h"
#include "driver/gpio.h"
#include "driver/adc.h"
@ -31,7 +30,11 @@
#include "hal/adc_types.h"
#include "hal/adc_hal.h"
#if SOC_DAC_PERIPH_NUM > 0
#include "driver/dac.h"
#include "hal/dac_hal.h"
#endif
#include "hal/adc_hal_conf.h"
#define ADC_CHECK_RET(fun_ret) ({ \
@ -54,9 +57,39 @@ static const char *ADC_TAG = "ADC";
#define ADC_CHANNEL_CHECK(periph, channel) ADC_CHECK(channel < SOC_ADC_CHANNEL_NUM(periph), "ADC"#periph" channel error", ESP_ERR_INVALID_ARG)
//////////////////////// Locks ///////////////////////////////////////////
extern portMUX_TYPE rtc_spinlock; //TODO: Will be placed in the appropriate position after the rtc module is finished.
#define ADC_ENTER_CRITICAL() portENTER_CRITICAL(&rtc_spinlock)
#define ADC_EXIT_CRITICAL() portEXIT_CRITICAL(&rtc_spinlock)
#define RTC_ENTER_CRITICAL() portENTER_CRITICAL(&rtc_spinlock)
#define RTC_EXIT_CRITICAL() portEXIT_CRITICAL(&rtc_spinlock)
#define DIGI_ENTER_CRITICAL()
#define DIGI_EXIT_CRITICAL()
#define ADC_POWER_ENTER() RTC_ENTER_CRITICAL()
#define ADC_POWER_EXIT() RTC_EXIT_CRITICAL()
#define DIGI_CONTROLLER_ENTER() DIGI_ENTER_CRITICAL()
#define DIGI_CONTROLLER_EXIT() DIGI_EXIT_CRITICAL()
#define SARADC1_ENTER() RTC_ENTER_CRITICAL()
#define SARADC1_EXIT() RTC_EXIT_CRITICAL()
#define SARADC2_ENTER() RTC_ENTER_CRITICAL()
#define SARADC2_EXIT() RTC_EXIT_CRITICAL()
//n stands for ADC unit: 1 for ADC1 and 2 for ADC2. Currently both unit touches the same registers
#define VREF_ENTER(n) RTC_ENTER_CRITICAL()
#define VREF_EXIT(n) RTC_EXIT_CRITICAL()
#define FSM_ENTER() RTC_ENTER_CRITICAL()
#define FSM_EXIT() RTC_EXIT_CRITICAL()
#if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
//prevent ADC1 being used by I2S dma and other tasks at the same time.
static _lock_t adc1_dma_lock;
#define SARADC1_ACQUIRE() _lock_acquire( &adc1_dma_lock )
#define SARADC1_RELEASE() _lock_release( &adc1_dma_lock )
#endif
/*
In ADC2, there're two locks used for different cases:
@ -74,43 +107,25 @@ In ADC2, there're two locks used for different cases:
adc2_spinlock should be acquired first, then adc2_wifi_lock or rtc_spinlock.
*/
// This gets incremented when adc_power_acquire() is called, and decremented when
// adc_power_release() is called. ADC is powered down when the value reaches zero.
// Should be modified within critical section (ADC_ENTER/EXIT_CRITICAL).
static int s_adc_power_on_cnt;
static void adc_power_on_internal(void);
static void adc_power_off_internal(void);
#ifdef CONFIG_IDF_TARGET_ESP32
//prevent ADC2 being used by wifi and other tasks at the same time.
static _lock_t adc2_wifi_lock;
/** For ESP32S2 the ADC2 The right to use ADC2 is controlled by the arbiter, and there is no need to set a lock. */
#define ADC2_WIFI_LOCK_ACQUIRE() _lock_acquire( &adc2_wifi_lock )
#define ADC2_WIFI_LOCK_RELEASE() _lock_release( &adc2_wifi_lock )
#define ADC2_WIFI_LOCK_TRY_ACQUIRE() _lock_try_acquire( &adc2_wifi_lock )
#define ADC2_WIFI_LOCK_CHECK() ((uint32_t *)adc2_wifi_lock != NULL)
#define SARADC2_ACQUIRE() _lock_acquire( &adc2_wifi_lock )
#define SARADC2_RELEASE() _lock_release( &adc2_wifi_lock )
#define SARADC2_TRY_ACQUIRE() _lock_try_acquire( &adc2_wifi_lock )
#define SARADC2_LOCK_CHECK() ((uint32_t *)adc2_wifi_lock != NULL)
#else // !CONFIG_IDF_TARGET_ESP32
#elif CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
#define SARADC2_ACQUIRE()
#define SARADC2_RELEASE()
#define SARADC2_TRY_ACQUIRE() (0) //WIFI controller and rtc controller have independent parameter configuration.
#define SARADC2_LOCK_CHECK() (true)
#define ADC2_WIFI_LOCK_ACQUIRE()
#define ADC2_WIFI_LOCK_RELEASE()
#define ADC2_WIFI_LOCK_TRY_ACQUIRE() (0) //WIFI controller and rtc controller have independent parameter configuration.
#define ADC2_WIFI_LOCK_CHECK() (true)
#endif // CONFIG_IDF_TARGET_*
#endif // CONFIG_IDF_TARGET_ESP32
//prevent ADC2 being used by tasks (regardless of WIFI)
static portMUX_TYPE adc2_spinlock = portMUX_INITIALIZER_UNLOCKED;
#define ADC2_ENTER_CRITICAL() portENTER_CRITICAL( &adc2_spinlock )
#define ADC2_EXIT_CRITICAL() portEXIT_CRITICAL( &adc2_spinlock )
//prevent ADC1 being used by I2S dma and other tasks at the same time.
static _lock_t adc1_dma_lock;
#define ADC1_DMA_LOCK_ACQUIRE() _lock_acquire( &adc1_dma_lock )
#define ADC1_DMA_LOCK_RELEASE() _lock_release( &adc1_dma_lock )
#if !CONFIG_IDF_TARGET_ESP32
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
#ifdef CONFIG_PM_ENABLE
static esp_pm_lock_handle_t s_adc2_arbiter_lock;
#endif //CONFIG_PM_ENABLE
@ -130,65 +145,80 @@ static uint32_t get_calibration_offset(adc_ll_num_t adc_n, adc_channel_t chan)
}
#endif
// ADC Power
// This gets incremented when adc_power_acquire() is called, and decremented when
// adc_power_release() is called. ADC is powered down when the value reaches zero.
// Should be modified within critical section (ADC_ENTER/EXIT_CRITICAL).
static int s_adc_power_on_cnt;
static void adc_power_on_internal(void)
{
/* Set the power always on to increase precision. */
adc_hal_set_power_manage(ADC_POWER_SW_ON);
}
void adc_power_acquire(void)
{
bool powered_on = false;
ADC_ENTER_CRITICAL();
ADC_POWER_ENTER();
s_adc_power_on_cnt++;
if (s_adc_power_on_cnt == 1) {
adc_power_on_internal();
powered_on = true;
}
ADC_EXIT_CRITICAL();
ADC_POWER_EXIT();
if (powered_on) {
ESP_LOGV(ADC_TAG, "%s: ADC powered on", __func__);
}
}
void adc_power_on(void)
{
ADC_POWER_ENTER();
adc_power_on_internal();
ADC_POWER_EXIT();
}
static void adc_power_off_internal(void)
{
adc_hal_set_power_manage(ADC_POWER_SW_OFF);
}
void adc_power_release(void)
{
bool powered_off = false;
ADC_ENTER_CRITICAL();
ADC_POWER_ENTER();
s_adc_power_on_cnt--;
/* Sanity check */
if (s_adc_power_on_cnt < 0) {
ADC_EXIT_CRITICAL();
ADC_POWER_EXIT();
ESP_LOGE(ADC_TAG, "%s called, but s_adc_power_on_cnt == 0", __func__);
abort();
} else if (s_adc_power_on_cnt == 0) {
adc_power_off_internal();
powered_off = true;
}
ADC_EXIT_CRITICAL();
ADC_POWER_EXIT();
if (powered_off) {
ESP_LOGV(ADC_TAG, "%s: ADC powered off", __func__);
}
}
static void adc_power_on_internal(void)
void adc_power_off(void)
{
ADC_ENTER_CRITICAL();
/* Set the power always on to increase precision. */
adc_hal_set_power_manage(ADC_POWER_SW_ON);
ADC_EXIT_CRITICAL();
ADC_POWER_ENTER();
adc_power_off_internal();
ADC_POWER_EXIT();
}
void adc_power_on(void) __attribute__((alias("adc_power_on_internal")));
static void adc_power_off_internal(void)
{
ADC_ENTER_CRITICAL();
adc_hal_set_power_manage(ADC_POWER_SW_OFF);
ADC_EXIT_CRITICAL();
}
void adc_power_off(void) __attribute__((alias("adc_power_off_internal")));
#if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
esp_err_t adc_set_clk_div(uint8_t clk_div)
{
ADC_ENTER_CRITICAL();
DIGI_CONTROLLER_ENTER();
adc_hal_digi_set_clk_div(clk_div);
ADC_EXIT_CRITICAL();
DIGI_CONTROLLER_EXIT();
return ESP_OK;
}
@ -238,14 +268,16 @@ esp_err_t adc_gpio_init(adc_unit_t adc_unit, adc_channel_t channel)
esp_err_t adc_set_data_inv(adc_unit_t adc_unit, bool inv_en)
{
ADC_ENTER_CRITICAL();
if (adc_unit & ADC_UNIT_1) {
SARADC1_ENTER();
adc_hal_rtc_output_invert(ADC_NUM_1, inv_en);
SARADC1_EXIT();
}
if (adc_unit & ADC_UNIT_2) {
adc_hal_rtc_output_invert(ADC_NUM_1, inv_en);
SARADC2_ENTER();
adc_hal_rtc_output_invert(ADC_NUM_2, inv_en);
SARADC2_EXIT();
}
ADC_EXIT_CRITICAL();
return ESP_OK;
}
@ -258,14 +290,16 @@ esp_err_t adc_set_data_width(adc_unit_t adc_unit, adc_bits_width_t bits)
ADC_CHECK(bits == ADC_WIDTH_BIT_13, "WIDTH ERR: " CONFIG_IDF_TARGET " support 13 bit width", ESP_ERR_INVALID_ARG);
#endif
ADC_ENTER_CRITICAL();
if (adc_unit & ADC_UNIT_1) {
SARADC1_ENTER();
adc_hal_rtc_set_output_format(ADC_NUM_1, bits);
SARADC1_EXIT();
}
if (adc_unit & ADC_UNIT_2) {
SARADC2_ENTER();
adc_hal_rtc_set_output_format(ADC_NUM_2, bits);
SARADC2_EXIT();
}
ADC_EXIT_CRITICAL();
return ESP_OK;
}
@ -279,9 +313,9 @@ esp_err_t adc_set_data_width(adc_unit_t adc_unit, adc_bits_width_t bits)
#if !CONFIG_IDF_TARGET_ESP32
esp_err_t adc_rtc_reset(void)
{
ADC_ENTER_CRITICAL();
FSM_ENTER();
adc_hal_rtc_reset();
ADC_EXIT_CRITICAL();
FSM_EXIT();
return ESP_OK;
}
#endif
@ -309,10 +343,10 @@ esp_err_t adc1_config_channel_atten(adc1_channel_t channel, adc_atten_t atten)
ADC_CHECK(atten < ADC_ATTEN_MAX, "ADC Atten Err", ESP_ERR_INVALID_ARG);
adc_gpio_init(ADC_UNIT_1, channel);
ADC_ENTER_CRITICAL();
SARADC1_ENTER();
adc_rtc_chan_init(ADC_UNIT_1);
adc_hal_set_atten(ADC_NUM_1, channel, atten);
ADC_EXIT_CRITICAL();
SARADC1_EXIT();
#if SOC_ADC_HW_CALIBRATION_V1
adc_hal_calibration_init(ADC_NUM_1);
@ -329,9 +363,9 @@ esp_err_t adc1_config_width(adc_bits_width_t width_bit)
ADC_CHECK(width_bit == ADC_WIDTH_BIT_13, "WIDTH ERR: " CONFIG_IDF_TARGET " support 13 bit width", ESP_ERR_INVALID_ARG);
#endif
ADC_ENTER_CRITICAL();
SARADC1_ENTER();
adc_hal_rtc_set_output_format(ADC_NUM_1, width_bit);
ADC_EXIT_CRITICAL();
SARADC1_EXIT();
return ESP_OK;
}
@ -340,14 +374,15 @@ esp_err_t adc1_dma_mode_acquire(void)
{
/* Use locks to avoid digtal and RTC controller conflicts.
for adc1, block until acquire the lock. */
ADC1_DMA_LOCK_ACQUIRE();
SARADC1_ACQUIRE();
ESP_LOGD( ADC_TAG, "dma mode takes adc1 lock." );
ADC_ENTER_CRITICAL();
adc_hal_set_power_manage(ADC_POWER_SW_ON);
adc_power_acquire();
SARADC1_ENTER();
/* switch SARADC into DIG channel */
adc_hal_set_controller(ADC_NUM_1, ADC_CTRL_DIG);
ADC_EXIT_CRITICAL();
SARADC1_EXIT();
return ESP_OK;
}
@ -356,12 +391,13 @@ esp_err_t adc1_rtc_mode_acquire(void)
{
/* Use locks to avoid digtal and RTC controller conflicts.
for adc1, block until acquire the lock. */
ADC1_DMA_LOCK_ACQUIRE();
SARADC1_ACQUIRE();
adc_power_acquire();
ADC_ENTER_CRITICAL();
SARADC1_ENTER();
/* switch SARADC into RTC channel. */
adc_hal_set_controller(ADC_NUM_1, ADC_CTRL_RTC);
ADC_EXIT_CRITICAL();
SARADC1_EXIT();
return ESP_OK;
}
@ -370,7 +406,9 @@ esp_err_t adc1_lock_release(void)
{
ADC_CHECK((uint32_t *)adc1_dma_lock != NULL, "adc1 lock release called before acquire", ESP_ERR_INVALID_STATE );
/* Use locks to avoid digtal and RTC controller conflicts. for adc1, block until acquire the lock. */
ADC1_DMA_LOCK_RELEASE();
adc_power_release();
SARADC1_RELEASE();
return ESP_OK;
}
@ -379,29 +417,25 @@ int adc1_get_raw(adc1_channel_t channel)
int adc_value;
ADC_CHANNEL_CHECK(ADC_NUM_1, channel);
adc1_rtc_mode_acquire();
adc_power_acquire();
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
// Get calibration value before going into critical section
uint32_t cal_val = get_calibration_offset(ADC_NUM_1, channel);
adc_hal_set_calibration_param(ADC_NUM_1, cal_val);
#endif
ADC_ENTER_CRITICAL();
SARADC1_ENTER();
#ifdef CONFIG_IDF_TARGET_ESP32
adc_hal_hall_disable(); //Disable other peripherals.
adc_hal_amp_disable(); //Currently the LNA is not open, close it by default.
#endif
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
adc_hal_set_calibration_param(ADC_NUM_1, cal_val);
#endif
adc_hal_set_controller(ADC_NUM_1, ADC_CTRL_RTC); //Set controller
adc_hal_convert(ADC_NUM_1, channel, &adc_value); //Start conversion, For ADC1, the data always valid.
#if !CONFIG_IDF_TARGET_ESP32
adc_hal_rtc_reset(); //Reset FSM of rtc controller
#endif
ADC_EXIT_CRITICAL();
SARADC1_EXIT();
adc_power_release();
adc1_lock_release();
return adc_value;
}
@ -416,7 +450,7 @@ void adc1_ulp_enable(void)
{
adc_power_acquire();
ADC_ENTER_CRITICAL();
SARADC1_ENTER();
adc_hal_set_controller(ADC_NUM_1, ADC_CTRL_ULP);
/* since most users do not need LNA and HALL with uLP, we disable them here
open them in the uLP if needed. */
@ -425,7 +459,7 @@ void adc1_ulp_enable(void)
adc_hal_hall_disable();
adc_hal_amp_disable();
#endif
ADC_EXIT_CRITICAL();
SARADC1_EXIT();
}
#endif
@ -450,15 +484,15 @@ esp_err_t adc2_pad_get_io_num(adc2_channel_t channel, gpio_num_t *gpio_num)
esp_err_t adc2_wifi_acquire(void)
{
/* Wi-Fi module will use adc2. Use locks to avoid conflicts. */
ADC2_WIFI_LOCK_ACQUIRE();
SARADC2_ACQUIRE();
ESP_LOGD( ADC_TAG, "Wi-Fi takes adc2 lock." );
return ESP_OK;
}
esp_err_t adc2_wifi_release(void)
{
ADC_CHECK(ADC2_WIFI_LOCK_CHECK(), "wifi release called before acquire", ESP_ERR_INVALID_STATE );
ADC2_WIFI_LOCK_RELEASE();
ADC_CHECK(SARADC2_LOCK_CHECK(), "wifi release called before acquire", ESP_ERR_INVALID_STATE );
SARADC2_RELEASE();
ESP_LOGD( ADC_TAG, "Wi-Fi returns adc2 lock." );
return ESP_OK;
@ -470,17 +504,19 @@ esp_err_t adc2_config_channel_atten(adc2_channel_t channel, adc_atten_t atten)
ADC_CHECK(atten <= ADC_ATTEN_11db, "ADC2 Atten Err", ESP_ERR_INVALID_ARG);
adc_gpio_init(ADC_UNIT_2, channel);
ADC2_ENTER_CRITICAL();
//avoid collision with other tasks
if ( ADC2_WIFI_LOCK_TRY_ACQUIRE() == -1 ) {
if ( SARADC2_TRY_ACQUIRE() == -1 ) {
//try the lock, return if failed (wifi using).
ADC2_EXIT_CRITICAL();
return ESP_ERR_TIMEOUT;
}
//avoid collision with other tasks
SARADC2_ENTER();
adc_rtc_chan_init(ADC_UNIT_2);
adc_hal_set_atten(ADC_NUM_2, channel, atten);
ADC2_WIFI_LOCK_RELEASE();
ADC2_EXIT_CRITICAL();
SARADC2_EXIT();
SARADC2_RELEASE();
#if SOC_ADC_HW_CALIBRATION_V1
adc_hal_calibration_init(ADC_NUM_2);
@ -489,7 +525,7 @@ esp_err_t adc2_config_channel_atten(adc2_channel_t channel, adc_atten_t atten)
return ESP_OK;
}
static inline void adc2_config_width(adc_bits_width_t width_bit)
static inline void adc2_init(void)
{
#if !CONFIG_IDF_TARGET_ESP32
#ifdef CONFIG_PM_ENABLE
@ -499,9 +535,6 @@ static inline void adc2_config_width(adc_bits_width_t width_bit)
}
#endif //CONFIG_PM_ENABLE
#endif //CONFIG_IDF_TARGET_ESP32S2
ADC_ENTER_CRITICAL();
adc_hal_rtc_set_output_format(ADC_NUM_2, width_bit);
ADC_EXIT_CRITICAL();
}
static inline void adc2_dac_disable( adc2_channel_t channel)
@ -539,27 +572,25 @@ esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *
ADC_CHECK(width_bit == ADC_WIDTH_BIT_13, "WIDTH ERR: ESP32S2 support 13 bit width", ESP_ERR_INVALID_ARG);
#endif
adc_power_acquire(); //in critical section with whole rtc module
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
// Get calibration value before going into critical section
uint32_t cal_val = get_calibration_offset(ADC_NUM_2, channel);
adc_hal_set_calibration_param(ADC_NUM_2, cal_val);
#endif
ADC2_ENTER_CRITICAL(); //avoid collision with other tasks
if ( ADC2_WIFI_LOCK_TRY_ACQUIRE() == -1 ) { //try the lock, return if failed (wifi using).
ADC2_EXIT_CRITICAL();
adc_power_release();
if ( SARADC2_TRY_ACQUIRE() == -1 ) {
//try the lock, return if failed (wifi using).
return ESP_ERR_TIMEOUT;
}
adc_power_acquire(); //in critical section with whole rtc module
//avoid collision with other tasks
adc2_init(); // in critical section with whole rtc module. because the PWDET use the same registers, place it here.
SARADC2_ENTER();
#ifdef CONFIG_ADC_DISABLE_DAC
adc2_dac_disable(channel); //disable other peripherals
#endif
adc2_config_width(width_bit); // in critical section with whole rtc module. because the PWDET use the same registers, place it here.
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
adc_hal_set_calibration_param(ADC_NUM_2, cal_val);
#endif
adc_hal_rtc_set_output_format(ADC_NUM_2, width_bit);
adc_hal_set_controller(ADC_NUM_2, ADC_CTRL_RTC);// set controller
#if !CONFIG_IDF_TARGET_ESP32
@ -582,22 +613,16 @@ esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *
}
#endif //CONFIG_PM_ENABLE
#endif //CONFIG_IDF_TARGET_ESP32
SARADC2_EXIT();
#if !CONFIG_IDF_TARGET_ESP32
adc_rtc_reset();
#endif
ADC2_WIFI_LOCK_RELEASE();
ADC2_EXIT_CRITICAL();
adc_power_release();
SARADC2_RELEASE();
if (adc_value < 0) {
ESP_LOGD( ADC_TAG, "ADC2 ARB: Return data is invalid." );
adc_power_release();
return ESP_ERR_INVALID_STATE;
}
//in critical section with whole rtc module
adc_power_release();
*raw_out = adc_value;
return ESP_OK;
}
@ -610,9 +635,7 @@ esp_err_t adc2_vref_to_gpio(gpio_num_t gpio)
esp_err_t adc_vref_to_gpio(adc_unit_t adc_unit, gpio_num_t gpio)
{
#ifdef CONFIG_IDF_TARGET_ESP32
adc_power_acquire();
if (adc_unit & ADC_UNIT_1) {
adc_power_release();
return ESP_ERR_INVALID_ARG;
}
#endif
@ -625,20 +648,23 @@ esp_err_t adc_vref_to_gpio(adc_unit_t adc_unit, gpio_num_t gpio)
}
}
if (ch == ADC2_CHANNEL_MAX) {
adc_power_release();
return ESP_ERR_INVALID_ARG;
}
ADC_ENTER_CRITICAL();
adc_hal_set_power_manage(ADC_POWER_SW_ON);
adc_power_acquire();
if (adc_unit & ADC_UNIT_1) {
VREF_ENTER(1);
adc_hal_vref_output(ADC_NUM_1, ch, true);
VREF_EXIT(1);
} else if (adc_unit & ADC_UNIT_2) {
VREF_ENTER(2);
adc_hal_vref_output(ADC_NUM_2, ch, true);
VREF_EXIT(2);
}
ADC_EXIT_CRITICAL();
//Configure RTC gpio, Only ADC2's channels IO are supported to output reference voltage.
adc_gpio_init(ADC_UNIT_2, ch);
return ESP_OK;
}
#endif //CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3

View File

@ -828,10 +828,13 @@ static uint32_t adc_get_calibration_offset(adc_ll_num_t adc_n, adc_channel_t cha
s_adc_cali_param[0][atten] = init_code;
s_adc_cali_param[1][atten] = init_code;
} else {
const bool internal_gnd = true;
adc_power_acquire();
ADC_ENTER_CRITICAL();
const bool internal_gnd = true;
init_code = adc_hal_self_calibration(adc_n, channel, atten, internal_gnd);
ADC_EXIT_CRITICAL();
adc_power_release();
ESP_LOGD(ADC_TAG, "Calib(V%d) ADC%d atten=%d: %04X", version, adc_n, atten, init_code);
s_adc_cali_param[adc_n][atten] = init_code;
}

View File

@ -464,10 +464,12 @@ uint32_t adc_get_calibration_offset(adc_ll_num_t adc_n, adc_channel_t channel, a
int tag = esp_efuse_rtc_table_get_tag(version, adc_n + 1, atten, RTCCALIB_V2_PARAM_VINIT);
dout = esp_efuse_rtc_table_get_parsed_efuse_value(tag, false);
} else {
const bool internal_gnd = true;
adc_power_acquire();
ADC_ENTER_CRITICAL();
const bool internal_gnd = true;
dout = adc_hal_self_calibration(adc_n, channel, atten, internal_gnd);
ADC_EXIT_CRITICAL();
adc_power_release();
}
ESP_LOGD(ADC_TAG, "Calib(V%d) ADC%d atten=%d: %04X", version, adc_n, atten, dout);
s_adc_cali_param[adc_n][atten] = (uint16_t)dout;

View File

@ -312,6 +312,8 @@ void wifi_apb80m_release(void)
#endif //CONFIG_PM_ENABLE
/* Coordinate ADC power with other modules. This overrides the function from PHY lib. */
// It seems that it is only required on ESP32, but we still compile it for all chips, in case it is
// called by PHY unexpectedly.
void set_xpd_sar(bool en)
{
if (s_wifi_adc_xpd_flag == en) {

View File

@ -147,8 +147,6 @@ static uint32_t read_cal_channel(adc_ll_num_t adc_n, int channel)
uint32_t adc_hal_self_calibration(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd)
{
adc_hal_set_power_manage(ADC_POWER_SW_ON);
if (adc_n == ADC_NUM_2) {
adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
adc_hal_arbiter_config(&config);

View File

@ -1,20 +0,0 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _SOC_RTC_DAC_CAPS_H_
#define _SOC_RTC_DAC_CAPS_H_
#define SOC_DAC_PERIPH_NUM 0
#endif

View File

@ -24,7 +24,12 @@
#define SOC_GDMA_ADC_INTR_SOURCE ETS_DMA_CH0_INTR_SOURCE
#include "rmt_caps.h"
#include "dac_caps.h"
/*-------------------------- DAC CAPS ----------------------------------------*/
#define SOC_DAC_PERIPH_NUM 0
#include "i2c_caps.h"
#include "mpu_caps.h"
#include "sigmadelta_caps.h"