Merge branch 'support/add_srp_salt_ver_gen_api_v5.2' into 'release/v5.2'

Generate Salt and verifier pair for given username and password (v5.2)

See merge request espressif/esp-idf!27360
This commit is contained in:
Jiang Jiang Jian 2023-12-04 11:00:50 +08:00
commit 821d82f04e
9 changed files with 389 additions and 155 deletions

View File

@ -6,8 +6,9 @@ endif()
set(include_dirs include/common set(include_dirs include/common
include/security include/security
include/transports) include/transports
set(priv_include_dirs proto-c src/common src/crypto/srp6a/include) include/crypto/srp6a)
set(priv_include_dirs proto-c src/common)
set(srcs set(srcs
"src/common/protocomm.c" "src/common/protocomm.c"
"proto-c/constants.pb-c.c" "proto-c/constants.pb-c.c"

View File

@ -0,0 +1,228 @@
/*
* SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <stdint.h>
#include <esp_err.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief SRP-6a protocol implementation
*
* More information on protocol can be found: https://datatracker.ietf.org/doc/html/rfc5054
*
* This implementation is used by security2 of wifi_provisioning and local control features.
* Details on how these protocols use this feature can be found here: https://docs.espressif.com/projects/esp-idf/en/latest/esp32c3/api-reference/provisioning/provisioning.html#security-2-scheme
*
* Below is the example usage of the srp6a protocol in protocomm component,
* which can help understand the APIs better.
*
* Variables used:
*
* N, g: group parameters (prime and generator)
* s: salt
* B, b: server's public and private values
* A, a: client's public and private values
* I: user name (aka "identity")
* P: password
* v: verifier
* k: SRP-6 multiplier
*
* salt (s) is random of given length, 16 in our case, which along with username and password
* is used to generate verifier.
*
* x = SHA1(s | SHA1(I | ":" | P))
* v = g^x % N
*
* Steps involved (From protocomm component usage):
* Step1. Client Hello (PhoneApp):
* a. Generate Key pair:
* a (cli_privkey) = 256 bit random value,
* A (cli_pubkey) = g^a.
* g - generator, N - large safe prime, All arithmetic operations are performed in ring of integers modulo N,
* thus all occurrences like y^z should be read as y^z modulo N.
* b. SessionCmd0 (cli_pubkey, username I)
*
* Step2. Device(ESP):
* a. Obtain Salt and verifier stored on ESP
* Salt s = 256 bit random value,
* Verifier v = g^× where x = H(s | I | P)
* b. Generate Key Pair
* b (dev_privkey) = 256 bit random value
* B(dev_pubkey) = k*v + g^b where k = H(N, g)
* c. Shared Key K = H(S) where,
* S = (A * v^u) ^ b
* u = H(A, B)
* d. SessionResp0(dev_pubkey B, dev_random)
*
* Step3. Client (PhoneApp)
* a. shared_key(K) = H(S) where,
* S = (B - k*v) ^ (a + ux),
* u = H(A, B),
* k = H(N, g),
* V = g^x,
* x = H(s | I | P).
* b. Verification token
* client proof M = H[H(N) XOR H(g) | H(I) | S | A | B | K]
* c. SessionCmd1(Client proof M1)
*
* Step4. Device (ESP):
* a. Verify client:
* device generates M1 = H[H(N) XOR H(g) | H(I) | S | A | B | K]
* device verifies this M1 with the M1 obtained from Client
* b. Verification token: Device generate device proof M2 = H(A, M, K)
* c. Initialization Vector(IV):
* dev_rand = gen_16byte_random) This random number is to be used for AES-GCM operation
* for encryption and decryption of the data using the shared secret
* d. SessionResp1 (DeviceProofM2, dev_rand)
*
* Step5. Client (PhoneApp)
* a. Verify Device
* Client calculates device proof M2 as M2 = H(A, M, K)
* verifies this M2 with M2 obtained from device
*/
/**
* @brief Large prime+generator to be used for the algorithm
*/
typedef enum {
/* SRP specific:
* N = 3072 bit large safe prime,
* g = generator */
ESP_NG_3072 = 0,
} esp_ng_type_t;
typedef struct esp_srp_handle esp_srp_handle_t;
/**
* @brief Initialize srp context for given NG type
*
* @param ng NG type given by `esp_ng_type_t`
* @return esp_srp_handle_t* srp handle
*
* @note the handle gets freed with `esp_srp_free`
*/
esp_srp_handle_t *esp_srp_init(esp_ng_type_t ng);
/**
* @brief free esp_srp_context
*
* @param hd handle to be free
*/
void esp_srp_free(esp_srp_handle_t *hd);
/**
* @brief Returns B (pub key) and salt. [Step2.b]
*
* @param hd esp_srp handle
* @param username Username not expected NULL terminated
* @param username_len Username length
* @param pass Password not expected to be NULL terminated
* @param pass_len Pasword length
* @param salt_len Salt length
* @param bytes_B Public Key returned
* @param len_B Length of the public key
* @param bytes_salt Salt bytes generated
* @return esp_err_t ESP_OK on success, appropriate error otherwise
*
* @note *bytes_B MUST NOT BE FREED BY THE CALLER
* @note *bytes_salt MUST NOT BE FREE BY THE CALLER
*/
esp_err_t esp_srp_srv_pubkey(esp_srp_handle_t *hd, const char *username, int username_len,
const char *pass, int pass_len, int salt_len,
char **bytes_B, int *len_B, char **bytes_salt);
/**
* @brief Generate salt-verifier pair, given username, password and salt length
*
* @param[in] username username
* @param[in] username_len length of the username
* @param[in] pass password
* @param[in] pass_len length of the password
* @param[out] bytes_salt generated salt on successful generation, or NULL
* @param[in] salt_len salt length
* @param[out] verifier generated verifier on successful generation, or NULL
* @param[out] verifier_len length of the generated verifier
* @return esp_err_t ESP_OK on success, appropriate error otherwise
*
* @note if API has returned ESP_OK, salt and verifier generated need to be freed by caller
* @note Usually, username and password are not saved on the device. Rather salt and verifier are
* generated outside the device and are embedded.
* this covenience API can be used to generate salt and verifier on the fly for development use case.
* OR for devices which intentionally want to generate different password each time and can send it
* to the client securely. e.g., a device has a display and it shows the pin
*/
esp_err_t esp_srp_gen_salt_verifier(const char *username, int username_len,
const char *pass, int pass_len,
char **bytes_salt, int salt_len,
char **verifier, int *verifier_len);
/**
* @brief Set the Salt and Verifier pre-generated for a given password.
* This should be used only if the actual password is not available.
* The public key can then be generated using esp_srp_srv_pubkey_from_salt_verifier()
* and not esp_srp_srv_pubkey()
*
* @param hd esp_srp_handle
* @param salt pre-generated salt bytes
* @param salt_len length of the salt bytes
* @param verifier pre-generated verifier
* @param verifier_len length of the verifier bytes
* @return esp_err_t ESP_OK on success, appropriate error otherwise
*/
esp_err_t esp_srp_set_salt_verifier(esp_srp_handle_t *hd, const char *salt, int salt_len,
const char *verifier, int verifier_len);
/**
* @brief Returns B (pub key)[Step2.b] when the salt and verifier are set using esp_srp_set_salt_verifier()
*
* @param hd esp_srp handle
* @param bytes_B Key returned to the called
* @param len_B Length of the key returned
* @return esp_err_t ESP_OK on success, appropriate error otherwise
*
* @note *bytes_B MUST NOT BE FREED BY THE CALLER
*/
esp_err_t esp_srp_srv_pubkey_from_salt_verifier(esp_srp_handle_t *hd, char **bytes_B, int *len_B);
/**
* @brief Get session key in `*bytes_key` given by len in `*len_key`. [Step2.c].
*
* This calculated session key is used for further communication given the proofs are
* exchanged/authenticated with `esp_srp_exchange_proofs`
*
* @param hd esp_srp handle
* @param bytes_A Private Key
* @param len_A Private Key length
* @param bytes_key Key returned to the caller
* @param len_key length of the key in *bytes_key
* @return esp_err_t ESP_OK on success, appropriate error otherwise
*
* @note *bytes_key MUST NOT BE FREED BY THE CALLER
*/
esp_err_t esp_srp_get_session_key(esp_srp_handle_t *hd, char *bytes_A, int len_A, char **bytes_key, uint16_t *len_key);
/**
* @brief Complete the authentication. If this step fails, the session_key exchanged should not be used
*
* This is the final authentication step in SRP algorithm [Step4.1, Step4.b, Step4.c]
*
* @param hd esp_srp handle
* @param username Username not expected NULL terminated
* @param username_len Username length
* @param bytes_user_proof param in
* @param bytes_host_proof parameter out (should be SHA512_DIGEST_LENGTH) bytes in size
* @return esp_err_t ESP_OK if user's proof is ok and subsequently bytes_host_proof is populated with our own proof.
*/
esp_err_t esp_srp_exchange_proofs(esp_srp_handle_t *hd, char *username, uint16_t username_len,
char *bytes_user_proof, char *bytes_host_proof);
#ifdef __cplusplus
}
#endif

View File

@ -1,5 +1,5 @@
/* /*
* SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD * SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD
* *
* SPDX-License-Identifier: Apache-2.0 * SPDX-License-Identifier: Apache-2.0
*/ */
@ -17,6 +17,44 @@
static const char *TAG = "srp6a"; static const char *TAG = "srp6a";
typedef struct esp_srp_handle {
esp_ng_type_t type;
esp_mpi_ctx_t *ctx;
/* N
* the bytes_n simply points to the static array
*/
esp_mpi_t *n;
const char *bytes_n;
int len_n;
/* g
* the bytes_g simply points to the static array
*/
esp_mpi_t *g;
const char *bytes_g;
int len_g;
/* Salt */
esp_mpi_t *s;
char *bytes_s;
int len_s;
/* Verifier */
esp_mpi_t *v;
/* B */
esp_mpi_t *B;
char *bytes_B;
int len_B;
/* b */
esp_mpi_t *b;
/* A */
esp_mpi_t *A;
char *bytes_A;
int len_A;
/* K - session key*/
char *session_key;
} esp_srp_handle;
static void hexdump_mpi(const char *name, esp_mpi_t *bn) static void hexdump_mpi(const char *name, esp_mpi_t *bn)
{ {
int len = 0; int len = 0;
@ -59,15 +97,13 @@ static const char N_3072[] = {
static const char g_3072[] = { 5 }; static const char g_3072[] = { 5 };
esp_err_t esp_srp_init(esp_srp_handle_t *hd, esp_ng_type_t ng) esp_srp_handle_t *esp_srp_init(esp_ng_type_t ng)
{ {
if (hd->allocated) { esp_srp_handle_t *hd = calloc(1, sizeof(esp_srp_handle));
esp_srp_free(hd); if (!hd) {
return NULL;
} }
memset(hd, 0, sizeof(*hd));
hd->allocated = 1;
hd->ctx = esp_mpi_ctx_new(); hd->ctx = esp_mpi_ctx_new();
if (! hd->ctx) { if (! hd->ctx) {
goto error; goto error;
@ -90,18 +126,17 @@ esp_err_t esp_srp_init(esp_srp_handle_t *hd, esp_ng_type_t ng)
goto error; goto error;
} }
hd->type = ng; hd->type = ng;
return ESP_OK; return hd;
error: error:
esp_srp_free(hd); esp_srp_free(hd);
return ESP_FAIL; return NULL;
} }
void esp_srp_free(esp_srp_handle_t *hd) void esp_srp_free(esp_srp_handle_t *hd)
{ {
if (hd->allocated != 1) { if (!hd) {
return; return;
} }
if (hd->ctx) { if (hd->ctx) {
esp_mpi_ctx_free(hd->ctx); esp_mpi_ctx_free(hd->ctx);
} }
@ -138,7 +173,7 @@ void esp_srp_free(esp_srp_handle_t *hd)
if (hd->session_key) { if (hd->session_key) {
free(hd->session_key); free(hd->session_key);
} }
memset(hd, 0, sizeof(*hd)); free(hd);
} }
static esp_mpi_t *calculate_x(char *bytes_salt, int salt_len, const char *username, int username_len, const char *pass, int pass_len) static esp_mpi_t *calculate_x(char *bytes_salt, int salt_len, const char *username, int username_len, const char *pass, int pass_len)
@ -223,7 +258,7 @@ static esp_mpi_t *calculate_u(esp_srp_handle_t *hd, char *A, int len_A)
return calculate_padded_hash(hd, A, len_A, hd->bytes_B, hd->len_B); return calculate_padded_hash(hd, A, len_A, hd->bytes_B, hd->len_B);
} }
esp_err_t __esp_srp_srv_pubkey(esp_srp_handle_t *hd, char **bytes_B, int *len_B) static esp_err_t __esp_srp_srv_pubkey(esp_srp_handle_t *hd, char **bytes_B, int *len_B)
{ {
esp_mpi_t *k = calculate_k(hd); esp_mpi_t *k = calculate_k(hd);
esp_mpi_t *kv = NULL; esp_mpi_t *kv = NULL;
@ -279,47 +314,46 @@ error:
return ESP_FAIL; return ESP_FAIL;
} }
esp_err_t esp_srp_srv_pubkey(esp_srp_handle_t *hd, const char *username, int username_len, const char *pass, int pass_len, int salt_len, static esp_err_t _esp_srp_gen_salt_verifier(esp_srp_handle_t *hd, const char *username, int username_len,
char **bytes_B, int *len_B, char **bytes_salt) const char *pass, int pass_len, int salt_len)
{ {
/* Get Salt */ /* Get Salt */
int str_salt_len; int str_salt_len;
esp_mpi_t *x = NULL; esp_mpi_t *x = NULL;
hd->s = esp_mpi_new(); hd->s = esp_mpi_new();
if (! hd->s) { if (!hd->s) {
ESP_LOGE(TAG, "Failed to allocate bignum s");
goto error; goto error;
} }
esp_mpi_get_rand(hd->s, 8 * salt_len, -1, 0); esp_mpi_get_rand(hd->s, 8 * salt_len, -1, 0);
*bytes_salt = esp_mpi_to_bin(hd->s, &str_salt_len); hd->bytes_s = esp_mpi_to_bin(hd->s, &str_salt_len);
if (! *bytes_salt) { if (!hd->bytes_s) {
ESP_LOGE(TAG, "Failed to generate salt of len %d", salt_len);
goto error; goto error;
} }
hd->bytes_s = *bytes_salt;
hd->len_s = salt_len; hd->len_s = salt_len;
ESP_LOGD(TAG, "Salt ->"); ESP_LOGD(TAG, "Salt ->");
ESP_LOG_BUFFER_HEX_LEVEL(TAG, *bytes_salt, str_salt_len, ESP_LOG_DEBUG); ESP_LOG_BUFFER_HEX_LEVEL(TAG, hd->bytes_s, str_salt_len, ESP_LOG_DEBUG);
/* Calculate X which is simply a hash for all these things */ /* Calculate X which is simply a hash for all these things */
x = calculate_x(*bytes_salt, str_salt_len, username, username_len, pass, pass_len); x = calculate_x(hd->bytes_s, str_salt_len, username, username_len, pass, pass_len);
if (! x) { if (!x) {
ESP_LOGE(TAG, "Failed to calculate x");
goto error; goto error;
} }
hexdump_mpi("x", x); hexdump_mpi("x", x);
/* v = g^x % N */ /* v = g^x % N */
hd->v = esp_mpi_new(); hd->v = esp_mpi_new();
if (! hd->v) { if (!hd->v) {
ESP_LOGE(TAG, "Failed to allocate bignum v");
goto error; goto error;
} }
esp_mpi_a_exp_b_mod_c(hd->v, hd->g, x, hd->n, hd->ctx); esp_mpi_a_exp_b_mod_c(hd->v, hd->g, x, hd->n, hd->ctx);
hexdump_mpi("Verifier", hd->v); hexdump_mpi("Verifier", hd->v);
if (__esp_srp_srv_pubkey(hd, bytes_B, len_B) < 0 ) {
goto error;
}
esp_mpi_free(x); esp_mpi_free(x);
return ESP_OK; return ESP_OK;
@ -328,9 +362,8 @@ error:
esp_mpi_free(hd->s); esp_mpi_free(hd->s);
hd->s = NULL; hd->s = NULL;
} }
if (*bytes_salt) { if (hd->bytes_s) {
free(*bytes_salt); free(hd->bytes_s);
*bytes_salt = NULL;
hd->bytes_s = NULL; hd->bytes_s = NULL;
hd->len_s = 0; hd->len_s = 0;
} }
@ -345,11 +378,86 @@ error:
return ESP_FAIL; return ESP_FAIL;
} }
esp_err_t esp_srp_srv_pubkey(esp_srp_handle_t *hd, const char *username, int username_len,
const char *pass, int pass_len, int salt_len,
char **bytes_B, int *len_B, char **bytes_salt)
{
if (!hd || !username || !pass) {
return ESP_ERR_INVALID_ARG;
}
if (ESP_OK != _esp_srp_gen_salt_verifier(hd, username, username_len, pass, pass_len, salt_len)) {
goto error;
}
*bytes_salt = hd->bytes_s;
if (__esp_srp_srv_pubkey(hd, bytes_B, len_B) < 0 ) {
goto error;
}
return ESP_OK;
error:
if (hd->s) {
esp_mpi_free(hd->s);
hd->s = NULL;
}
if (*bytes_salt) {
free(*bytes_salt);
*bytes_salt = NULL;
hd->bytes_s = NULL;
hd->len_s = 0;
}
if (hd->v) {
esp_mpi_free(hd->v);
hd->v = NULL;
}
return ESP_FAIL;
}
esp_err_t esp_srp_srv_pubkey_from_salt_verifier(esp_srp_handle_t *hd, char **bytes_B, int *len_B) esp_err_t esp_srp_srv_pubkey_from_salt_verifier(esp_srp_handle_t *hd, char **bytes_B, int *len_B)
{ {
if (!hd || !bytes_B || !len_B) {
return ESP_ERR_INVALID_ARG;
}
return __esp_srp_srv_pubkey(hd, bytes_B, len_B); return __esp_srp_srv_pubkey(hd, bytes_B, len_B);
} }
/* Generate salt-verifier pair for given username and password */
esp_err_t esp_srp_gen_salt_verifier(const char *username, int username_len,
const char *pass, int pass_len,
char **bytes_salt, int salt_len,
char **verifier, int *verifier_len)
{
esp_err_t ret = ESP_FAIL;
/* allocate and init temporary SRP handle */
esp_srp_handle_t *srp_hd = esp_srp_init(ESP_NG_3072);
if (!srp_hd) {
ESP_LOGE(TAG, "Failed to initialise security context!");
return ESP_ERR_NO_MEM;
}
// get salt and verifier
if (ESP_OK != _esp_srp_gen_salt_verifier(srp_hd, username, username_len, pass, pass_len, salt_len)) {
goto cleanup;
}
// convert to verifier bytes
*verifier = esp_mpi_to_bin(srp_hd->v, verifier_len);
if (!*verifier) {
ESP_LOGE(TAG, "Failed to allocate verifier bytes!");
ret = ESP_ERR_NO_MEM;
goto cleanup;
}
*bytes_salt = srp_hd->bytes_s;
srp_hd->bytes_s = NULL; // so that it won't be freed in `esp_srp_free` step
ret = ESP_OK;
cleanup:
esp_srp_free(srp_hd);
return ret;
}
esp_err_t esp_srp_set_salt_verifier(esp_srp_handle_t *hd, const char *salt, int salt_len, esp_err_t esp_srp_set_salt_verifier(esp_srp_handle_t *hd, const char *salt, int salt_len,
const char *verifier, int verifier_len) const char *verifier, int verifier_len)
{ {

View File

@ -1,103 +0,0 @@
/*
* SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <stdbool.h>
#include "esp_srp_mpi.h"
#ifdef __cplusplus
extern "C" {
#endif
typedef enum {
/* SRP specific:
* N = 3072 bit large safe prime,
* g = generator */
ESP_NG_3072 = 0,
} esp_ng_type_t;
typedef struct esp_srp_handle {
int allocated;
esp_ng_type_t type;
esp_mpi_ctx_t *ctx;
/* N
* the bytes_n simply points to the static array
*/
esp_mpi_t *n;
const char *bytes_n;
int len_n;
/* g
* the bytes_g simply points to the static array
*/
esp_mpi_t *g;
const char *bytes_g;
int len_g;
/* Salt */
esp_mpi_t *s;
char *bytes_s;
int len_s;
/* Verifier */
esp_mpi_t *v;
/* B */
esp_mpi_t *B;
char *bytes_B;
int len_B;
/* b */
esp_mpi_t *b;
/* A */
esp_mpi_t *A;
char *bytes_A;
int len_A;
/* K - session key*/
char *session_key;
} esp_srp_handle_t;
int esp_srp_init(esp_srp_handle_t *hd, esp_ng_type_t ng);
void esp_srp_free(esp_srp_handle_t *hd);
/* Returns B (pub key) and salt
*
* *bytes_B MUST NOT BE FREED BY THE CALLER
* *bytes_salt MUST NOT BE FREE BY THE CALLER
*
*/
esp_err_t esp_srp_srv_pubkey(esp_srp_handle_t *hd, const char *username, int username_len, const char *pass, int pass_len, int salt_len,
char **bytes_B, int *len_B, char **bytes_salt);
/* Set the Salt and Verifier pre-generated for a given password.
* This should be used only if the actual password is not available.
* The public key can then be generated using esp_srp_srv_pubkey_from_salt_verifier()
* and not esp_srp_srv_pubkey()
*/
esp_err_t esp_srp_set_salt_verifier(esp_srp_handle_t *hd, const char *salt, int salt_len,
const char *verifier, int verifier_len);
/* Returns B (pub key) when the salt and verifier are set using esp_srp_set_salt_verifier()
*
* *bytes_B MUST NOT BE FREED BY THE CALLER
*/
esp_err_t esp_srp_srv_pubkey_from_salt_verifier(esp_srp_handle_t *hd, char **bytes_B, int *len_B);
/* Returns bytes_key
* *bytes_key MUST NOT BE FREED BY THE CALLER
*/
esp_err_t esp_srp_get_session_key(esp_srp_handle_t *hd, char *bytes_A, int len_A, char **bytes_key, uint16_t *len_key);
/* Exchange proofs
* Returns 1 if user's proof is ok. Also 1 when is returned, bytes_host_proof contains our proof.
*
* bytes_user_proof is parameter in
* bytes_host_proof is parameter out (should be SHA512_DIGEST_LENGTH) bytes in size
*/
esp_err_t esp_srp_exchange_proofs(esp_srp_handle_t *hd, char *username, uint16_t username_len, char *bytes_user_proof, char *bytes_host_proof);
#ifdef __cplusplus
}
#endif

View File

@ -109,15 +109,9 @@ static esp_err_t handle_session_command0(session_t *cur_session,
hexdump("Client Public Key", (char *) in->sc0->client_pubkey.data, PUBLIC_KEY_LEN); hexdump("Client Public Key", (char *) in->sc0->client_pubkey.data, PUBLIC_KEY_LEN);
/* Initialize mu srp context */ /* Initialize mu srp context */
cur_session->srp_hd = calloc(1, sizeof(esp_srp_handle_t)); cur_session->srp_hd = esp_srp_init(ESP_NG_3072);
if (!cur_session->srp_hd) { if (cur_session->srp_hd == NULL) {
ESP_LOGE(TAG, "Failed to allocate security context!");
return ESP_ERR_NO_MEM;
}
if (esp_srp_init(cur_session->srp_hd, ESP_NG_3072) != ESP_OK) {
ESP_LOGE(TAG, "Failed to initialise security context!"); ESP_LOGE(TAG, "Failed to initialise security context!");
free(cur_session->srp_hd);
return ESP_FAIL; return ESP_FAIL;
} }
@ -131,14 +125,15 @@ static esp_err_t handle_session_command0(session_t *cur_session,
ESP_LOGI(TAG, "Using salt and verifier to generate public key..."); ESP_LOGI(TAG, "Using salt and verifier to generate public key...");
if (sv->salt != NULL && sv->salt_len != 0 && sv->verifier != NULL && sv->verifier_len != 0) { if (sv->salt != NULL && sv->salt_len != 0 && sv->verifier != NULL && sv->verifier_len != 0) {
if (esp_srp_set_salt_verifier(cur_session->srp_hd, cur_session->salt, cur_session->salt_len, cur_session->verifier, cur_session->verifier_len) != ESP_OK) { if (esp_srp_set_salt_verifier(cur_session->srp_hd, cur_session->salt,
cur_session->salt_len, cur_session->verifier, cur_session->verifier_len) != ESP_OK) {
ESP_LOGE(TAG, "Failed to set salt and verifier!"); ESP_LOGE(TAG, "Failed to set salt and verifier!");
free(cur_session->srp_hd); esp_srp_free(cur_session->srp_hd);
return ESP_FAIL; return ESP_FAIL;
} }
if (esp_srp_srv_pubkey_from_salt_verifier(cur_session->srp_hd, &device_pubkey, &device_pubkey_len) != ESP_OK) { if (esp_srp_srv_pubkey_from_salt_verifier(cur_session->srp_hd, &device_pubkey, &device_pubkey_len) != ESP_OK) {
ESP_LOGE(TAG, "Failed to device public key!"); ESP_LOGE(TAG, "Failed to device public key!");
free(cur_session->srp_hd); esp_srp_free(cur_session->srp_hd);
return ESP_FAIL; return ESP_FAIL;
} }
} }
@ -147,7 +142,7 @@ static esp_err_t handle_session_command0(session_t *cur_session,
if (esp_srp_get_session_key(cur_session->srp_hd, (char *) in->sc0->client_pubkey.data, PUBLIC_KEY_LEN, if (esp_srp_get_session_key(cur_session->srp_hd, (char *) in->sc0->client_pubkey.data, PUBLIC_KEY_LEN,
&cur_session->session_key, &cur_session->session_key_len) != ESP_OK) { &cur_session->session_key, &cur_session->session_key_len) != ESP_OK) {
ESP_LOGE(TAG, "Failed to generate device session key!"); ESP_LOGE(TAG, "Failed to generate device session key!");
free(cur_session->srp_hd); esp_srp_free(cur_session->srp_hd);
return ESP_FAIL; return ESP_FAIL;
} }
hexdump("Session Key", cur_session->session_key, cur_session->session_key_len); hexdump("Session Key", cur_session->session_key, cur_session->session_key_len);
@ -156,7 +151,7 @@ static esp_err_t handle_session_command0(session_t *cur_session,
S2SessionResp0 *out_resp = (S2SessionResp0 *) malloc(sizeof(S2SessionResp0)); S2SessionResp0 *out_resp = (S2SessionResp0 *) malloc(sizeof(S2SessionResp0));
if (!out || !out_resp) { if (!out || !out_resp) {
ESP_LOGE(TAG, "Error allocating memory for response0"); ESP_LOGE(TAG, "Error allocating memory for response0");
free(cur_session->srp_hd); esp_srp_free(cur_session->srp_hd);
free(out); free(out);
free(out_resp); free(out_resp);
return ESP_ERR_NO_MEM; return ESP_ERR_NO_MEM;
@ -185,7 +180,7 @@ static esp_err_t handle_session_command0(session_t *cur_session,
cur_session->username = malloc(cur_session->username_len); cur_session->username = malloc(cur_session->username_len);
if (!cur_session->username) { if (!cur_session->username) {
ESP_LOGE(TAG, "Failed to allocate memory!"); ESP_LOGE(TAG, "Failed to allocate memory!");
free(cur_session->srp_hd); esp_srp_free(cur_session->srp_hd);
return ESP_ERR_NO_MEM; return ESP_ERR_NO_MEM;
} }
memcpy(cur_session->username, in->sc0->client_username.data, in->sc0->client_username.len); memcpy(cur_session->username, in->sc0->client_username.data, in->sc0->client_username.len);
@ -365,7 +360,6 @@ static esp_err_t sec2_close_session(protocomm_security_handle_t handle, uint32_t
if (cur_session->srp_hd) { if (cur_session->srp_hd) {
esp_srp_free(cur_session->srp_hd); esp_srp_free(cur_session->srp_hd);
free(cur_session->srp_hd);
} }
memset(cur_session, 0, sizeof(session_t)); memset(cur_session, 0, sizeof(session_t));

View File

@ -274,9 +274,11 @@ INPUT = \
$(PROJECT_PATH)/components/protocomm/include/security/protocomm_security.h \ $(PROJECT_PATH)/components/protocomm/include/security/protocomm_security.h \
$(PROJECT_PATH)/components/protocomm/include/security/protocomm_security0.h \ $(PROJECT_PATH)/components/protocomm/include/security/protocomm_security0.h \
$(PROJECT_PATH)/components/protocomm/include/security/protocomm_security1.h \ $(PROJECT_PATH)/components/protocomm/include/security/protocomm_security1.h \
$(PROJECT_PATH)/components/protocomm/include/security/protocomm_security2.h \
$(PROJECT_PATH)/components/protocomm/include/transports/protocomm_ble.h \ $(PROJECT_PATH)/components/protocomm/include/transports/protocomm_ble.h \
$(PROJECT_PATH)/components/protocomm/include/transports/protocomm_console.h \ $(PROJECT_PATH)/components/protocomm/include/transports/protocomm_console.h \
$(PROJECT_PATH)/components/protocomm/include/transports/protocomm_httpd.h \ $(PROJECT_PATH)/components/protocomm/include/transports/protocomm_httpd.h \
$(PROJECT_PATH)/components/protocomm/include/crypto/srp6a/esp_srp.h \
$(PROJECT_PATH)/components/pthread/include/esp_pthread.h \ $(PROJECT_PATH)/components/pthread/include/esp_pthread.h \
$(PROJECT_PATH)/components/sdmmc/include/sdmmc_cmd.h \ $(PROJECT_PATH)/components/sdmmc/include/sdmmc_cmd.h \
$(PROJECT_PATH)/components/soc/$(IDF_TARGET)/include/soc/adc_channel.h \ $(PROJECT_PATH)/components/soc/$(IDF_TARGET)/include/soc/adc_channel.h \

View File

@ -43,7 +43,7 @@ The protocomm component provides a project configuration menu to enable/disable
* Support ``protocomm_security2`` with SRP6a-based key exchange + AES-GCM encryption/decryption: :ref:`CONFIG_ESP_PROTOCOMM_SUPPORT_SECURITY_VERSION_2`. * Support ``protocomm_security2`` with SRP6a-based key exchange + AES-GCM encryption/decryption: :ref:`CONFIG_ESP_PROTOCOMM_SUPPORT_SECURITY_VERSION_2`.
.. note:: .. note::
Enabling multiple security versions at once offers the ability to control them dynamically but also increases the firmware size. Enabling multiple security versions at once offers the ability to control them dynamically but also increases the firmware size.
.. only:: SOC_WIFI_SUPPORTED .. only:: SOC_WIFI_SUPPORTED
@ -299,5 +299,7 @@ API Reference
.. include-build-file:: inc/protocomm_security.inc .. include-build-file:: inc/protocomm_security.inc
.. include-build-file:: inc/protocomm_security0.inc .. include-build-file:: inc/protocomm_security0.inc
.. include-build-file:: inc/protocomm_security1.inc .. include-build-file:: inc/protocomm_security1.inc
.. include-build-file:: inc/protocomm_security2.inc
.. include-build-file:: inc/esp_srp.inc
.. include-build-file:: inc/protocomm_httpd.inc .. include-build-file:: inc/protocomm_httpd.inc
.. include-build-file:: inc/protocomm_ble.inc .. include-build-file:: inc/protocomm_ble.inc

View File

@ -40,10 +40,10 @@ Protocomm 为以下各种传输提供框架:
* 支持 ``protocomm_security0``,该版本无安全功能::ref:`CONFIG_ESP_PROTOCOMM_SUPPORT_SECURITY_VERSION_0`,该选项默认启用。 * 支持 ``protocomm_security0``,该版本无安全功能::ref:`CONFIG_ESP_PROTOCOMM_SUPPORT_SECURITY_VERSION_0`,该选项默认启用。
* 支持 ``protocomm_security1``,使用 Curve25519 密钥交换和 AES-CTR 加密/解密::ref:`CONFIG_ESP_PROTOCOMM_SUPPORT_SECURITY_VERSION_1`,该选项默认启用。 * 支持 ``protocomm_security1``,使用 Curve25519 密钥交换和 AES-CTR 加密/解密::ref:`CONFIG_ESP_PROTOCOMM_SUPPORT_SECURITY_VERSION_1`,该选项默认启用。
* 支持 ``protocomm_security2``,使用基于 SRP6a 的密钥交换和 AES-GCM 加密/解密::ref:`CONFIG_ESP_PROTOCOMM_SUPPORT_SECURITY_VERSION_2` * 支持 ``protocomm_security2``,使用基于 SRP6a 的密钥交换和 AES-GCM 加密/解密::ref:`CONFIG_ESP_PROTOCOMM_SUPPORT_SECURITY_VERSION_2`
.. note::
.. note::
启用多个安全版本后可以动态控制安全版本,但也会增加固件大小。 启用多个安全版本后可以动态控制安全版本,但也会增加固件大小。
.. only:: SOC_WIFI_SUPPORTED .. only:: SOC_WIFI_SUPPORTED
@ -241,7 +241,7 @@ Protocomm 为以下各种传输提供框架:
使用 Security 0 的低功耗蓝牙传输方案示例 使用 Security 0 的低功耗蓝牙传输方案示例
------------------------------------------- -------------------------------------------
示例用法请参阅 :component_file:`wifi_provisioning/src/scheme_ble.c` 示例用法请参阅 :component_file:`wifi_provisioning/src/scheme_ble.c`
.. highlight:: c .. highlight:: c
@ -299,5 +299,7 @@ API 参考
.. include-build-file:: inc/protocomm_security.inc .. include-build-file:: inc/protocomm_security.inc
.. include-build-file:: inc/protocomm_security0.inc .. include-build-file:: inc/protocomm_security0.inc
.. include-build-file:: inc/protocomm_security1.inc .. include-build-file:: inc/protocomm_security1.inc
.. include-build-file:: inc/protocomm_security2.inc
.. include-build-file:: inc/esp_srp.inc
.. include-build-file:: inc/protocomm_httpd.inc .. include-build-file:: inc/protocomm_httpd.inc
.. include-build-file:: inc/protocomm_ble.inc .. include-build-file:: inc/protocomm_ble.inc