Merge branch 'feature/esp_ds_s3' into 'master'

[esp_hw_support]: Digital Signature support for S3

Closes IDF-1791

See merge request espressif/esp-idf!14955
This commit is contained in:
Sachin Billore 2021-09-03 07:57:26 +00:00
commit 81391fb18c
14 changed files with 728 additions and 101 deletions

View File

@ -684,7 +684,7 @@ UT_C3_FLASH_SUSPEND:
UT_S3:
extends: .unit_test_esp32s3_template
parallel: 27
parallel: 29
tags:
- ESP32S3_IDF
- UT_T1_1

View File

@ -18,6 +18,20 @@ extern "C" {
* Other unrelated components must not use it.
*/
/**
* @brief Acquire lock for Digital Signature(DS) cryptography peripheral
*
* Internally also takes the HMAC lock, as the DS depends on the HMAC peripheral
*/
void esp_crypto_ds_lock_acquire(void);
/**
* @brief Release lock for Digital Signature(DS) cryptography peripheral
*
* Internally also releases the HMAC lock, as the DS depends on the HMAC peripheral
*/
void esp_crypto_ds_lock_release(void);
/**
* @brief Acquire lock for HMAC cryptography peripheral
*

View File

@ -0,0 +1,192 @@
/*
* SPDX-FileCopyrightText: 2020-2021 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <stdbool.h>
#include "esp_hmac.h"
#include "esp_err.h"
#include "soc/soc_caps.h"
#ifdef __cplusplus
extern "C" {
#endif
#define ESP32S3_ERR_HW_CRYPTO_DS_HMAC_FAIL ESP_ERR_HW_CRYPTO_BASE + 0x1 /*!< HMAC peripheral problem */
#define ESP32S3_ERR_HW_CRYPTO_DS_INVALID_KEY ESP_ERR_HW_CRYPTO_BASE + 0x2 /*!< given HMAC key isn't correct,
HMAC peripheral problem */
#define ESP32S3_ERR_HW_CRYPTO_DS_INVALID_DIGEST ESP_ERR_HW_CRYPTO_BASE + 0x4 /*!< message digest check failed,
result is invalid */
#define ESP32S3_ERR_HW_CRYPTO_DS_INVALID_PADDING ESP_ERR_HW_CRYPTO_BASE + 0x5 /*!< padding check failed, but result
is produced anyway and can be read*/
#define ESP_DS_IV_LEN 16
/* Length of parameter 'C' stored in flash */
#define ESP_DS_C_LEN (12672 / 8)
typedef struct esp_ds_context esp_ds_context_t;
typedef enum {
ESP_DS_RSA_1024 = (1024 / 32) - 1,
ESP_DS_RSA_2048 = (2048 / 32) - 1,
ESP_DS_RSA_3072 = (3072 / 32) - 1,
ESP_DS_RSA_4096 = (4096 / 32) - 1
} esp_digital_signature_length_t;
/**
* Encrypted private key data. Recommended to store in flash in this format.
*
* @note This struct has to match to one from the ROM code! This documentation is mostly taken from there.
*/
typedef struct esp_digital_signature_data {
/**
* RSA LENGTH register parameters
* (number of words in RSA key & operands, minus one).
*
* Max value 127 (for RSA 4096).
*
* This value must match the length field encrypted and stored in 'c',
* or invalid results will be returned. (The DS peripheral will
* always use the value in 'c', not this value, so an attacker can't
* alter the DS peripheral results this way, it will just truncate or
* extend the message and the resulting signature in software.)
*
* @note In IDF, the enum type length is the same as of type unsigned, so they can be used interchangably.
* See the ROM code for the original declaration of struct \c ets_ds_data_t.
*/
esp_digital_signature_length_t rsa_length;
/**
* IV value used to encrypt 'c'
*/
uint8_t iv[ESP_DS_IV_LEN];
/**
* Encrypted Digital Signature parameters. Result of AES-CBC encryption
* of plaintext values. Includes an encrypted message digest.
*/
uint8_t c[ESP_DS_C_LEN];
} esp_ds_data_t;
/** Plaintext parameters used by Digital Signature.
*
* Not used for signing with DS peripheral, but can be encrypted
* in-device by calling esp_ds_encrypt_params()
*
* @note This documentation is mostly taken from the ROM code.
*/
typedef struct {
uint32_t Y[SOC_RSA_MAX_BIT_LEN / 32]; //!< RSA exponent
uint32_t M[SOC_RSA_MAX_BIT_LEN / 32]; //!< RSA modulus
uint32_t Rb[SOC_RSA_MAX_BIT_LEN / 32]; //!< RSA r inverse operand
uint32_t M_prime; //!< RSA M prime operand
esp_digital_signature_length_t length; //!< RSA length
} esp_ds_p_data_t;
/**
* Sign the message.
*
* This function is a wrapper around \c esp_ds_finish_sign() and \c esp_ds_start_sign(), so do not use them
* in parallel.
* It blocks until the signing is finished and then returns the signature.
*
* @note This function locks the HMAC, SHA, AES and RSA components during its entire execution time.
*
* @param message the message to be signed; its length is determined by data->rsa_length
* @param data the encrypted signing key data (AES encrypted RSA key + IV)
* @param key_id the HMAC key ID determining the HMAC key of the HMAC which will be used to decrypt the
* signing key data
* @param signature the destination of the signature, should be (data->rsa_length + 1)*4 bytes long
*
* @return
* - ESP_OK if successful, the signature was written to the parameter \c signature.
* - ESP_ERR_INVALID_ARG if one of the parameters is NULL or data->rsa_length is too long or 0
* - ESP_ERR_HW_CRYPTO_DS_HMAC_FAIL if there was an HMAC failure during retrieval of the decryption key
* - ESP_ERR_NO_MEM if there hasn't been enough memory to allocate the context object
* - ESP_ERR_HW_CRYPTO_DS_INVALID_KEY if there's a problem with passing the HMAC key to the DS component
* - ESP_ERR_HW_CRYPTO_DS_INVALID_DIGEST if the message digest didn't match; the signature is invalid.
* - ESP_ERR_HW_CRYPTO_DS_INVALID_PADDING if the message padding is incorrect, the signature can be read though
* since the message digest matches.
*/
esp_err_t esp_ds_sign(const void *message,
const esp_ds_data_t *data,
hmac_key_id_t key_id,
void *signature);
/**
* Start the signing process.
*
* This function yields a context object which needs to be passed to \c esp_ds_finish_sign() to finish the signing
* process.
*
* @note This function locks the HMAC, SHA, AES and RSA components, so the user has to ensure to call
* \c esp_ds_finish_sign() in a timely manner.
*
* @param message the message to be signed; its length is determined by data->rsa_length
* @param data the encrypted signing key data (AES encrypted RSA key + IV)
* @param key_id the HMAC key ID determining the HMAC key of the HMAC which will be used to decrypt the
* signing key data
* @param esp_ds_ctx the context object which is needed for finishing the signing process later
*
* @return
* - ESP_OK if successful, the ds operation was started now and has to be finished with \c esp_ds_finish_sign()
* - ESP_ERR_INVALID_ARG if one of the parameters is NULL or data->rsa_length is too long or 0
* - ESP_ERR_HW_CRYPTO_DS_HMAC_FAIL if there was an HMAC failure during retrieval of the decryption key
* - ESP_ERR_NO_MEM if there hasn't been enough memory to allocate the context object
* - ESP_ERR_HW_CRYPTO_DS_INVALID_KEY if there's a problem with passing the HMAC key to the DS component
*/
esp_err_t esp_ds_start_sign(const void *message,
const esp_ds_data_t *data,
hmac_key_id_t key_id,
esp_ds_context_t **esp_ds_ctx);
/**
* Return true if the DS peripheral is busy, otherwise false.
*
* @note Only valid if \c esp_ds_start_sign() was called before.
*/
bool esp_ds_is_busy(void);
/**
* Finish the signing process.
*
* @param signature the destination of the signature, should be (data->rsa_length + 1)*4 bytes long
* @param esp_ds_ctx the context object retreived by \c esp_ds_start_sign()
*
* @return
* - ESP_OK if successful, the ds operation has been finished and the result is written to signature.
* - ESP_ERR_INVALID_ARG if one of the parameters is NULL
* - ESP_ERR_HW_CRYPTO_DS_INVALID_DIGEST if the message digest didn't match; the signature is invalid.
* - ESP_ERR_HW_CRYPTO_DS_INVALID_PADDING if the message padding is incorrect, the signature can be read though
* since the message digest matches.
*/
esp_err_t esp_ds_finish_sign(void *signature, esp_ds_context_t *esp_ds_ctx);
/**
* Encrypt the private key parameters.
*
* @param data Output buffer to store encrypted data, suitable for later use generating signatures.
* The allocated memory must be in internal memory and word aligned since it's filled by DMA. Both is asserted
* at run time.
* @param iv Pointer to 16 byte IV buffer, will be copied into 'data'. Should be randomly generated bytes each time.
* @param p_data Pointer to input plaintext key data. The expectation is this data will be deleted after this process
* is done and 'data' is stored.
* @param key Pointer to 32 bytes of key data. Type determined by key_type parameter. The expectation is the
* corresponding HMAC key will be stored to efuse and then permanently erased.
*
* @return
* - ESP_OK if successful, the ds operation has been finished and the result is written to signature.
* - ESP_ERR_INVALID_ARG if one of the parameters is NULL or p_data->rsa_length is too long
*/
esp_err_t esp_ds_encrypt_params(esp_ds_data_t *data,
const void *iv,
const esp_ds_p_data_t *p_data,
const void *key);
#ifdef __cplusplus
}
#endif

View File

@ -10,15 +10,16 @@ set(srcs
"rtc_time.c"
"rtc_wdt.c"
"chip_info.c"
)
)
if(NOT BOOTLOADER_BUILD)
list(APPEND srcs "../async_memcpy_impl_gdma.c"
"dport_access.c"
"esp_hmac.c"
"esp_crypto_lock.c"
"memprot.c"
"spiram.c")
"dport_access.c"
"esp_hmac.c"
"esp_ds.c"
"esp_crypto_lock.c"
"memprot.c"
"spiram.c")
if(CONFIG_SPIRAM_MODE_QUAD)
list(APPEND srcs "spiram_psram.c")

View File

@ -26,6 +26,16 @@ static _lock_t s_crypto_sha_aes_hmac_ds_lock;
/* Lock for the MPI/RSA peripheral, also used by the DS peripheral */
static _lock_t s_crypto_mpi_lock;
void esp_crypto_ds_lock_acquire(void)
{
_lock_acquire_recursive(&s_crypto_sha_aes_hmac_ds_lock);
}
void esp_crypto_ds_lock_release(void)
{
_lock_release_recursive(&s_crypto_sha_aes_hmac_ds_lock);
}
void esp_crypto_hmac_lock_acquire(void)
{
_lock_acquire_recursive(&s_crypto_sha_aes_hmac_ds_lock);

View File

@ -0,0 +1,228 @@
/*
* SPDX-FileCopyrightText: 2020-2021 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "driver/periph_ctrl.h"
#include "esp_crypto_lock.h"
#include "hal/ds_hal.h"
#include "hal/ds_ll.h"
#include "hal/hmac_hal.h"
#include "esp32s3/rom/digital_signature.h"
#include "esp_timer.h"
#include "esp_ds.h"
struct esp_ds_context {
const esp_ds_data_t *data;
};
/**
* The vtask delay \c esp_ds_sign() is using while waiting for completion of the signing operation.
*/
#define ESP_DS_SIGN_TASK_DELAY_MS 10
#define RSA_LEN_MAX 127
/*
* esp_digital_signature_length_t is used in esp_ds_data_t in contrast to ets_ds_data_t, where unsigned is used.
* Check esp_digital_signature_length_t's width here because it's converted to unsigned using raw casts.
*/
_Static_assert(sizeof(esp_digital_signature_length_t) == sizeof(unsigned),
"The size of esp_digital_signature_length_t and unsigned has to be the same");
/*
* esp_ds_data_t is used in the encryption function but casted to ets_ds_data_t.
* Check esp_ds_data_t's width here because it's converted using raw casts.
*/
_Static_assert(sizeof(esp_ds_data_t) == sizeof(ets_ds_data_t),
"The size of esp_ds_data_t and ets_ds_data_t has to be the same");
static void ds_acquire_enable(void)
{
esp_crypto_ds_lock_acquire();
esp_crypto_mpi_lock_acquire();
// We also enable SHA and HMAC here. SHA is used by HMAC, HMAC is used by DS.
periph_module_enable(PERIPH_HMAC_MODULE);
periph_module_enable(PERIPH_SHA_MODULE);
periph_module_enable(PERIPH_DS_MODULE);
hmac_hal_start();
}
static void ds_disable_release(void)
{
ds_hal_finish();
periph_module_disable(PERIPH_DS_MODULE);
periph_module_disable(PERIPH_SHA_MODULE);
periph_module_disable(PERIPH_HMAC_MODULE);
esp_crypto_mpi_lock_release();
esp_crypto_ds_lock_release();
}
esp_err_t esp_ds_sign(const void *message,
const esp_ds_data_t *data,
hmac_key_id_t key_id,
void *signature)
{
// Need to check signature here, otherwise the signature is only checked when the signing has finished and fails
// but the signing isn't uninitialized and the mutex is still locked.
if (!signature) {
return ESP_ERR_INVALID_ARG;
}
esp_ds_context_t *context;
esp_err_t result = esp_ds_start_sign(message, data, key_id, &context);
if (result != ESP_OK) {
return result;
}
while (esp_ds_is_busy()) {
vTaskDelay(ESP_DS_SIGN_TASK_DELAY_MS / portTICK_PERIOD_MS);
}
return esp_ds_finish_sign(signature, context);
}
esp_err_t esp_ds_start_sign(const void *message,
const esp_ds_data_t *data,
hmac_key_id_t key_id,
esp_ds_context_t **esp_ds_ctx)
{
if (!message || !data || !esp_ds_ctx) {
return ESP_ERR_INVALID_ARG;
}
if (key_id >= HMAC_KEY_MAX) {
return ESP_ERR_INVALID_ARG;
}
if (!(data->rsa_length == ESP_DS_RSA_1024
|| data->rsa_length == ESP_DS_RSA_2048
|| data->rsa_length == ESP_DS_RSA_3072
|| data->rsa_length == ESP_DS_RSA_4096)) {
return ESP_ERR_INVALID_ARG;
}
ds_acquire_enable();
// initiate hmac
uint32_t conf_error = hmac_hal_configure(HMAC_OUTPUT_DS, key_id);
if (conf_error) {
ds_disable_release();
return ESP32S3_ERR_HW_CRYPTO_DS_HMAC_FAIL;
}
ds_hal_start();
// check encryption key from HMAC
int64_t start_time = esp_timer_get_time();
while (ds_ll_busy() != 0) {
if ((esp_timer_get_time() - start_time) > SOC_DS_KEY_CHECK_MAX_WAIT_US) {
ds_disable_release();
return ESP32S3_ERR_HW_CRYPTO_DS_INVALID_KEY;
}
}
esp_ds_context_t *context = malloc(sizeof(esp_ds_context_t));
if (!context) {
ds_disable_release();
return ESP_ERR_NO_MEM;
}
size_t rsa_len = (data->rsa_length + 1) * 4;
ds_hal_write_private_key_params(data->c);
ds_hal_configure_iv((uint32_t *)data->iv);
ds_hal_write_message(message, rsa_len);
// initiate signing
ds_hal_start_sign();
context->data = data;
*esp_ds_ctx = context;
return ESP_OK;
}
bool esp_ds_is_busy(void)
{
return ds_hal_busy();
}
esp_err_t esp_ds_finish_sign(void *signature, esp_ds_context_t *esp_ds_ctx)
{
if (!signature || !esp_ds_ctx) {
return ESP_ERR_INVALID_ARG;
}
const esp_ds_data_t *data = esp_ds_ctx->data;
unsigned rsa_len = (data->rsa_length + 1) * 4;
while (ds_hal_busy()) { }
ds_signature_check_t sig_check_result = ds_hal_read_result((uint8_t *) signature, (size_t) rsa_len);
esp_err_t return_value = ESP_OK;
if (sig_check_result == DS_SIGNATURE_MD_FAIL || sig_check_result == DS_SIGNATURE_PADDING_AND_MD_FAIL) {
return_value = ESP32S3_ERR_HW_CRYPTO_DS_INVALID_DIGEST;
}
if (sig_check_result == DS_SIGNATURE_PADDING_FAIL) {
return_value = ESP32S3_ERR_HW_CRYPTO_DS_INVALID_PADDING;
}
free(esp_ds_ctx);
hmac_hal_clean();
ds_disable_release();
return return_value;
}
esp_err_t esp_ds_encrypt_params(esp_ds_data_t *data,
const void *iv,
const esp_ds_p_data_t *p_data,
const void *key)
{
if (!p_data) {
return ESP_ERR_INVALID_ARG;
}
esp_err_t result = ESP_OK;
esp_crypto_ds_lock_acquire();
periph_module_enable(PERIPH_AES_MODULE);
periph_module_enable(PERIPH_DS_MODULE);
periph_module_enable(PERIPH_SHA_MODULE);
periph_module_enable(PERIPH_HMAC_MODULE);
periph_module_enable(PERIPH_RSA_MODULE);
ets_ds_data_t *ds_data = (ets_ds_data_t *) data;
const ets_ds_p_data_t *ds_plain_data = (const ets_ds_p_data_t *) p_data;
ets_ds_result_t ets_result = ets_ds_encrypt_params(ds_data, iv, ds_plain_data, key, ETS_DS_KEY_HMAC);
if (ets_result == ETS_DS_INVALID_PARAM) {
result = ESP_ERR_INVALID_ARG;
}
periph_module_disable(PERIPH_RSA_MODULE);
periph_module_disable(PERIPH_HMAC_MODULE);
periph_module_disable(PERIPH_SHA_MODULE);
periph_module_disable(PERIPH_DS_MODULE);
periph_module_disable(PERIPH_AES_MODULE);
esp_crypto_ds_lock_release();
return result;
}

View File

@ -19,13 +19,18 @@
#include "esp32c3/rom/efuse.h"
#include "esp32c3/rom/digital_signature.h"
#include "esp32c3/rom/hmac.h"
#elif CONFIG_IDF_TARGET_ESP32S3
#include "esp32s3/rom/efuse.h"
#include "esp32s3/rom/digital_signature.h"
#include "esp32s3/rom/aes.h"
#include "esp32s3/rom/sha.h"
#endif
#include "esp_ds.h"
#define NUM_RESULTS 10
#if CONFIG_IDF_TARGET_ESP32S2
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
#define DS_MAX_BITS (4096)
#elif CONFIG_IDF_TARGET_ESP32C3
#define DS_MAX_BITS (ETS_DS_MAX_BITS)
@ -36,17 +41,17 @@ typedef struct {
ets_ds_p_data_t p_data;
uint8_t expected_c[ETS_DS_C_LEN];
uint8_t hmac_key_idx;
uint32_t expected_results[NUM_RESULTS][DS_MAX_BITS/32];
uint32_t expected_results[NUM_RESULTS][DS_MAX_BITS / 32];
} encrypt_testcase_t;
// Generated header digital_signature_test_cases_<bits>.h (by gen_digital_signature_tests.py) defines
// NUM_HMAC_KEYS, test_hmac_keys, NUM_MESSAGES, NUM_CASES, test_messages[], test_cases[]
// Some adaptations were made: removed the 512 bit case and changed RSA lengths to the enums from esp_ds.h
#if DS_MAX_BITS == 4096
#define RSA_LEN (ESP_DS_RSA_4096)
#define RSA_LEN (ESP_DS_RSA_4096)
#include "digital_signature_test_cases_4096.h"
#elif DS_MAX_BITS == 3072
#define RSA_LEN (ESP_DS_RSA_3072)
#define RSA_LEN (ESP_DS_RSA_3072)
#include "digital_signature_test_cases_3072.h"
#endif
@ -96,14 +101,14 @@ TEST_CASE("Digital Signature Parameter Encryption", "[hw_crypto] [ds]")
esp_ds_data_t result = { };
esp_ds_p_data_t p_data;
memcpy(p_data.Y, t->p_data.Y, DS_MAX_BITS/8);
memcpy(p_data.M, t->p_data.M, DS_MAX_BITS/8);
memcpy(p_data.Rb, t->p_data.Rb, DS_MAX_BITS/8);
memcpy(p_data.Y, t->p_data.Y, DS_MAX_BITS / 8);
memcpy(p_data.M, t->p_data.M, DS_MAX_BITS / 8);
memcpy(p_data.Rb, t->p_data.Rb, DS_MAX_BITS / 8);
p_data.M_prime = t->p_data.M_prime;
p_data.length = t->p_data.length;
esp_err_t r = esp_ds_encrypt_params(&result, t->iv, &p_data,
test_hmac_keys[t->hmac_key_idx]);
test_hmac_keys[t->hmac_key_idx]);
printf("Encrypting test case %d done\n", i);
TEST_ASSERT_EQUAL(ESP_OK, r);
TEST_ASSERT_EQUAL(t->p_data.length, result.rsa_length);
@ -249,9 +254,10 @@ static void burn_hmac_keys(void)
// starting from block 1, block 0 occupied with HMAC upstream test key
int __attribute__((unused)) ets_status = ets_efuse_write_key(ETS_EFUSE_BLOCK_KEY1 + i,
purpose,
test_hmac_keys[i], 32);
#if CONFIG_IDF_TARGET_ESP32S2
purpose,
test_hmac_keys[i], 32);
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
if (ets_status == ESP_OK) {
printf("written DS test key to block [%d]!\n", ETS_EFUSE_BLOCK_KEY1 + i);
} else {
@ -280,7 +286,7 @@ TEST_CASE("Digital Signature wrong HMAC key purpose (FPGA only)", "[hw_crypto] [
const char *message = "test";
// HMAC fails in that case because it checks for the correct purpose
#if CONFIG_IDF_TARGET_ESP32S2
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
TEST_ASSERT_EQUAL(ESP_ERR_HW_CRYPTO_DS_HMAC_FAIL, esp_ds_start_sign(message, &ds_data, HMAC_KEY0, &ctx));
#elif CONFIG_IDF_TARGET_ESP32C3
TEST_ASSERT_EQUAL(ESP32C3_ERR_HW_CRYPTO_DS_HMAC_FAIL, esp_ds_start_sign(message, &ds_data, HMAC_KEY0, &ctx));
@ -297,7 +303,7 @@ TEST_CASE("Digital Signature Blocking wrong HMAC key purpose (FPGA only)", "[hw_
uint8_t signature_data [128 * 4];
// HMAC fails in that case because it checks for the correct purpose
#if CONFIG_IDF_TARGET_ESP32S2
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
TEST_ASSERT_EQUAL(ESP_ERR_HW_CRYPTO_DS_HMAC_FAIL, esp_ds_sign(message, &ds_data, HMAC_KEY0, signature_data));
#elif CONFIG_IDF_TARGET_ESP32C3
TEST_ASSERT_EQUAL(ESP32C3_ERR_HW_CRYPTO_DS_HMAC_FAIL, esp_ds_sign(message, &ds_data, HMAC_KEY0, signature_data));
@ -319,15 +325,15 @@ TEST_CASE("Digital Signature Operation (FPGA only)", "[hw_crypto] [ds]")
ds_data.rsa_length = t->p_data.length;
for (int j = 0; j < NUM_MESSAGES; j++) {
uint8_t signature[DS_MAX_BITS/8] = { 0 };
uint8_t signature[DS_MAX_BITS / 8] = { 0 };
printf(" ... message %d\n", j);
esp_ds_context_t *esp_ds_ctx;
esp_err_t ds_r = esp_ds_start_sign(test_messages[j],
&ds_data,
t->hmac_key_idx + 1,
&esp_ds_ctx);
&ds_data,
t->hmac_key_idx + 1,
&esp_ds_ctx);
TEST_ASSERT_EQUAL(ESP_OK, ds_r);
ds_r = esp_ds_finish_sign(signature, esp_ds_ctx);
@ -355,23 +361,23 @@ TEST_CASE("Digital Signature Blocking Operation (FPGA only)", "[hw_crypto] [ds]"
memcpy(ds_data.c, t->expected_c, ETS_DS_C_LEN);
ds_data.rsa_length = t->p_data.length;
uint8_t signature[DS_MAX_BITS/8] = { 0 };
#if CONFIG_IDF_TARGET_ESP32S2
uint8_t signature[DS_MAX_BITS / 8] = { 0 };
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
esp_ds_context_t *esp_ds_ctx;
esp_err_t ds_r = esp_ds_start_sign(test_messages[0],
&ds_data,
t->hmac_key_idx + 1,
&esp_ds_ctx);
&ds_data,
t->hmac_key_idx + 1,
&esp_ds_ctx);
TEST_ASSERT_EQUAL(ESP_OK, ds_r);
ds_r = esp_ds_finish_sign(signature, esp_ds_ctx);
TEST_ASSERT_EQUAL(ESP_OK, ds_r);
#elif CONFIG_IDF_TARGET_ESP32C3
esp_err_t ds_r = esp_ds_sign(test_messages[0],
&ds_data,
t->hmac_key_idx + 1,
signature);
&ds_data,
t->hmac_key_idx + 1,
signature);
TEST_ASSERT_EQUAL(ESP_OK, ds_r);
#endif
@ -390,8 +396,8 @@ TEST_CASE("Digital Signature Invalid Data (FPGA only)", "[hw_crypto] [ds]")
memcpy(ds_data.c, t->expected_c, ETS_DS_C_LEN);
ds_data.rsa_length = t->p_data.length;
uint8_t signature[DS_MAX_BITS/8] = { 0 };
const uint8_t zero[DS_MAX_BITS/8] = { 0 };
uint8_t signature[DS_MAX_BITS / 8] = { 0 };
const uint8_t zero[DS_MAX_BITS / 8] = { 0 };
// Corrupt the IV one bit at a time, rerun and expect failure
for (int bit = 0; bit < 128; bit++) {
@ -402,12 +408,12 @@ TEST_CASE("Digital Signature Invalid Data (FPGA only)", "[hw_crypto] [ds]")
esp_err_t ds_r = esp_ds_start_sign(test_messages[0], &ds_data, t->hmac_key_idx + 1, &esp_ds_ctx);
TEST_ASSERT_EQUAL(ESP_OK, ds_r);
ds_r = esp_ds_finish_sign(signature, esp_ds_ctx);
#if CONFIG_IDF_TARGET_ESP32S2
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
TEST_ASSERT_EQUAL(ESP_ERR_HW_CRYPTO_DS_INVALID_DIGEST, ds_r);
#elif CONFIG_IDF_TARGET_ESP32C3
TEST_ASSERT_EQUAL(ESP32C3_ERR_HW_CRYPTO_DS_INVALID_DIGEST, ds_r);
#endif
TEST_ASSERT_EQUAL_HEX8_ARRAY(zero, signature, DS_MAX_BITS/8);
TEST_ASSERT_EQUAL_HEX8_ARRAY(zero, signature, DS_MAX_BITS / 8);
ds_data.iv[bit / 8] ^= 1 << (bit % 8);
}
@ -422,12 +428,12 @@ TEST_CASE("Digital Signature Invalid Data (FPGA only)", "[hw_crypto] [ds]")
esp_err_t ds_r = esp_ds_start_sign(test_messages[0], &ds_data, t->hmac_key_idx + 1, &esp_ds_ctx);
TEST_ASSERT_EQUAL(ESP_OK, ds_r);
ds_r = esp_ds_finish_sign(signature, esp_ds_ctx);
#if CONFIG_IDF_TARGET_ESP32S2
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
TEST_ASSERT_EQUAL(ESP_ERR_HW_CRYPTO_DS_INVALID_DIGEST, ds_r);
#elif CONFIG_IDF_TARGET_ESP32C3
TEST_ASSERT_EQUAL(ESP32C3_ERR_HW_CRYPTO_DS_INVALID_DIGEST, ds_r);
#endif
TEST_ASSERT_EQUAL_HEX8_ARRAY(zero, signature, DS_MAX_BITS/8);
TEST_ASSERT_EQUAL_HEX8_ARRAY(zero, signature, DS_MAX_BITS / 8);
ds_data.c[bit / 8] ^= 1 << (bit % 8);
}

View File

@ -1,52 +1,52 @@
idf_build_get_property(target IDF_TARGET)
set(srcs "wdt_hal_iram.c"
"mpu_hal.c"
"cpu_hal.c")
set(srcs "wdt_hal_iram.c"
"mpu_hal.c"
"cpu_hal.c")
set(includes "${target}/include" "include" "platform_port/include")
if(NOT BOOTLOADER_BUILD)
list(APPEND srcs
"rmt_hal.c"
"rtc_io_hal.c"
"spi_hal.c"
"spi_hal_iram.c"
"spi_slave_hal.c"
"spi_slave_hal_iram.c"
"i2s_hal.c"
"sigmadelta_hal.c"
"timer_hal.c"
"ledc_hal.c"
"ledc_hal_iram.c"
"i2c_hal.c"
"i2c_hal_iram.c"
"gpio_hal.c"
"uart_hal.c"
"uart_hal_iram.c"
"spi_flash_hal.c"
"spi_flash_hal_iram.c"
"spi_flash_encrypt_hal_iram.c"
"soc_hal.c"
"interrupt_controller_hal.c"
"sha_hal.c"
"aes_hal.c"
"twai_hal.c"
"twai_hal_iram.c"
"adc_hal.c")
"rmt_hal.c"
"rtc_io_hal.c"
"spi_hal.c"
"spi_hal_iram.c"
"spi_slave_hal.c"
"spi_slave_hal_iram.c"
"i2s_hal.c"
"sigmadelta_hal.c"
"timer_hal.c"
"ledc_hal.c"
"ledc_hal_iram.c"
"i2c_hal.c"
"i2c_hal_iram.c"
"gpio_hal.c"
"uart_hal.c"
"uart_hal_iram.c"
"spi_flash_hal.c"
"spi_flash_hal_iram.c"
"spi_flash_encrypt_hal_iram.c"
"soc_hal.c"
"interrupt_controller_hal.c"
"sha_hal.c"
"aes_hal.c"
"twai_hal.c"
"twai_hal_iram.c"
"adc_hal.c")
if(${target} STREQUAL "esp32")
list(APPEND srcs
"dac_hal.c"
"mcpwm_hal.c"
"pcnt_hal.c"
"sdio_slave_hal.c"
"touch_sensor_hal.c"
"esp32/adc_hal.c"
"esp32/brownout_hal.c"
"esp32/interrupt_descriptor_table.c"
"esp32/touch_sensor_hal.c"
"esp32/gpio_hal_workaround.c")
"dac_hal.c"
"mcpwm_hal.c"
"pcnt_hal.c"
"sdio_slave_hal.c"
"touch_sensor_hal.c"
"esp32/adc_hal.c"
"esp32/brownout_hal.c"
"esp32/interrupt_descriptor_table.c"
"esp32/touch_sensor_hal.c"
"esp32/gpio_hal_workaround.c")
if(NOT BOOTLOADER_BUILD AND CONFIG_ETH_USE_ESP32_EMAC)
list(APPEND srcs "emac_hal.c")
endif()
@ -73,6 +73,7 @@ if(NOT BOOTLOADER_BUILD)
if(${target} STREQUAL "esp32s3")
list(APPEND srcs
"ds_hal.c"
"gdma_hal.c"
"lcd_hal.c"
"mcpwm_hal.c"
@ -106,15 +107,15 @@ if(NOT BOOTLOADER_BUILD)
if(${target} STREQUAL "esp32h2")
list(APPEND srcs
"ds_hal.c"
"gdma_hal.c"
"spi_flash_hal_gpspi.c"
"spi_slave_hd_hal.c"
"systimer_hal.c"
"esp32h2/adc_hal.c"
"esp32h2/brownout_hal.c"
"esp32h2/hmac_hal.c"
"esp32h2/rtc_cntl_hal.c")
"ds_hal.c"
"gdma_hal.c"
"spi_flash_hal_gpspi.c"
"spi_slave_hd_hal.c"
"systimer_hal.c"
"esp32h2/adc_hal.c"
"esp32h2/brownout_hal.c"
"esp32h2/hmac_hal.c"
"esp32h2/rtc_cntl_hal.c")
endif()
endif()

View File

@ -157,6 +157,8 @@ static inline uint32_t periph_ll_get_rst_en_mask(periph_module_t periph, bool en
return SYSTEM_DMA_RST;
case PERIPH_HMAC_MODULE:
return SYSTEM_CRYPTO_HMAC_RST;
case PERIPH_DS_MODULE:
return SYSTEM_CRYPTO_DS_RST;
case PERIPH_AES_MODULE:
if (enable == true) {
// Clear reset on digital signature, otherwise AES unit is held in reset also.
@ -203,6 +205,7 @@ static uint32_t periph_ll_get_clk_en_reg(periph_module_t periph)
case PERIPH_LCD_CAM_MODULE:
case PERIPH_GDMA_MODULE:
case PERIPH_HMAC_MODULE:
case PERIPH_DS_MODULE:
case PERIPH_AES_MODULE:
case PERIPH_SHA_MODULE:
case PERIPH_RSA_MODULE:
@ -229,6 +232,7 @@ static uint32_t periph_ll_get_rst_en_reg(periph_module_t periph)
case PERIPH_LCD_CAM_MODULE:
case PERIPH_GDMA_MODULE:
case PERIPH_HMAC_MODULE:
case PERIPH_DS_MODULE:
case PERIPH_AES_MODULE:
case PERIPH_SHA_MODULE:
case PERIPH_RSA_MODULE:

View File

@ -0,0 +1,162 @@
/*
* SPDX-FileCopyrightText: 2020-2021 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include "soc/hwcrypto_reg.h"
#include "soc/soc_caps.h"
#ifdef __cplusplus
extern "C" {
#endif
static inline void ds_ll_start(void)
{
REG_WRITE(DS_SET_START_REG, 1);
}
/**
* @brief Wait until DS peripheral has finished any outstanding operation.
*/
static inline bool ds_ll_busy(void)
{
return (REG_READ(DS_QUERY_BUSY_REG) > 0) ? true : false;
}
/**
* @brief Busy wait until the hardware is ready.
*/
static inline void ds_ll_wait_busy(void)
{
while (ds_ll_busy());
}
/**
* @brief In case of a key error, check what caused it.
*/
static inline ds_key_check_t ds_ll_key_error_source(void)
{
uint32_t key_error = REG_READ(DS_QUERY_KEY_WRONG_REG);
if (key_error == 0) {
return DS_NO_KEY_INPUT;
} else {
return DS_OTHER_WRONG;
}
}
/**
* @brief Write the initialization vector to the corresponding register field.
*/
static inline void ds_ll_configure_iv(const uint32_t *iv)
{
for (size_t i = 0; i < (SOC_DS_KEY_PARAM_MD_IV_LENGTH / sizeof(uint32_t)); i++) {
REG_WRITE(DS_IV_BASE + (i * 4), iv[i]);
}
}
/**
* @brief Write the message which should be signed.
*
* @param msg Pointer to the message.
* @param size Length of msg in bytes. It is the RSA signature length in bytes.
*/
static inline void ds_ll_write_message(const uint8_t *msg, size_t size)
{
memcpy((uint8_t *) DS_X_BASE, msg, size);
}
/**
* @brief Write the encrypted private key parameters.
*/
static inline void ds_ll_write_private_key_params(const uint8_t *encrypted_key_params)
{
/* Note: as the internal peripheral still has RSA 4096 structure,
but C is encrypted based on the actual max RSA length (ETS_DS_MAX_BITS), need to fragment it
when copying to hardware...
(note if ETS_DS_MAX_BITS == 4096, this should be the same as copying data->c to hardware in one fragment)
*/
typedef struct {
uint32_t addr;
size_t len;
} frag_t;
const frag_t frags[] = {
{DS_C_Y_BASE, SOC_DS_SIGNATURE_MAX_BIT_LEN / 8},
{DS_C_M_BASE, SOC_DS_SIGNATURE_MAX_BIT_LEN / 8},
{DS_C_RB_BASE, SOC_DS_SIGNATURE_MAX_BIT_LEN / 8},
{DS_C_BOX_BASE, DS_IV_BASE - DS_C_BOX_BASE},
};
const size_t NUM_FRAGS = sizeof(frags) / sizeof(frag_t);
const uint8_t *from = encrypted_key_params;
for (int i = 0; i < NUM_FRAGS; i++) {
memcpy((uint8_t *)frags[i].addr, from, frags[i].len);
from += frags[i].len;
}
}
/**
* @brief Begin signing procedure.
*/
static inline void ds_ll_start_sign(void)
{
REG_WRITE(DS_SET_ME_REG, 1);
}
/**
* @brief check the calculated signature.
*
* @return
* - DS_SIGNATURE_OK if no issue is detected with the signature.
* - DS_SIGNATURE_PADDING_FAIL if the padding of the private key parameters is wrong.
* - DS_SIGNATURE_MD_FAIL if the message digest check failed. This means that the message digest calculated using
* the private key parameters fails, i.e., the integrity of the private key parameters is not protected.
* - DS_SIGNATURE_PADDING_AND_MD_FAIL if both padding and message digest check fail.
*/
static inline ds_signature_check_t ds_ll_check_signature(void)
{
uint32_t result = REG_READ(DS_QUERY_CHECK_REG);
switch (result) {
case 0:
return DS_SIGNATURE_OK;
case 1:
return DS_SIGNATURE_MD_FAIL;
case 2:
return DS_SIGNATURE_PADDING_FAIL;
default:
return DS_SIGNATURE_PADDING_AND_MD_FAIL;
}
}
/**
* @brief Read the signature from the hardware.
*
* @param result The signature result.
* @param size Length of signature result in bytes. It is the RSA signature length in bytes.
*/
static inline void ds_ll_read_result(uint8_t *result, size_t size)
{
memcpy(result, (uint8_t *) DS_Z_BASE, size);
}
/**
* @brief Exit the signature operation.
*
* @note This does not deactivate the module. Corresponding clock/reset bits have to be triggered for deactivation.
*/
static inline void ds_ll_finish(void)
{
REG_WRITE(DS_SET_FINISH_REG, 1);
ds_ll_wait_busy();
}
#ifdef __cplusplus
}
#endif

View File

@ -21,7 +21,7 @@
#pragma once
#if CONFIG_IDF_TARGET_ESP32
#error "ESP32 doesn't have a DS peripheral"
#error "ESP32 doesn't have a DS peripheral"
#endif
#include <stdint.h>

View File

@ -1,16 +1,9 @@
// Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*
* SPDX-FileCopyrightText: 2020-2021 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include "soc.h"
@ -129,6 +122,10 @@
/* Digital Signature registers*/
#define DS_C_BASE ((DR_REG_DIGITAL_SIGNATURE_BASE) + 0x000 )
#define DS_C_Y_BASE ((DR_REG_DIGITAL_SIGNATURE_BASE) + 0x000 )
#define DS_C_M_BASE ((DR_REG_DIGITAL_SIGNATURE_BASE) + 0x200 )
#define DS_C_RB_BASE ((DR_REG_DIGITAL_SIGNATURE_BASE) + 0x400 )
#define DS_C_BOX_BASE ((DR_REG_DIGITAL_SIGNATURE_BASE) + 0x600 )
#define DS_IV_BASE ((DR_REG_DIGITAL_SIGNATURE_BASE) + 0x630 )
#define DS_X_BASE ((DR_REG_DIGITAL_SIGNATURE_BASE) + 0x800 )
#define DS_Z_BASE ((DR_REG_DIGITAL_SIGNATURE_BASE) + 0xA00 )

View File

@ -18,7 +18,7 @@
#define SOC_USB_OTG_SUPPORTED 1
#define SOC_RTC_SLOW_MEM_SUPPORTED 1
#define SOC_CCOMP_TIMER_SUPPORTED 1
#define SOC_DIG_SIGN_SUPPORTED 0
#define SOC_DIG_SIGN_SUPPORTED 1
#define SOC_HMAC_SUPPORTED 1
#define SOC_ASYNC_MEMCPY_SUPPORTED 1
#define SOC_SUPPORTS_SECURE_DL_MODE 1
@ -51,6 +51,17 @@
/*-------------------------- CPU CAPS ----------------------------------------*/
#include "cpu_caps.h"
/*-------------------------- DIGITAL SIGNATURE CAPS ----------------------------------------*/
/** The maximum length of a Digital Signature in bits. */
#define SOC_DS_SIGNATURE_MAX_BIT_LEN (4096)
/** Initialization vector (IV) length for the RSA key parameter message digest (MD) in bytes. */
#define SOC_DS_KEY_PARAM_MD_IV_LENGTH (16)
/** Maximum wait time for DS parameter decryption key. If overdue, then key error.
See TRM DS chapter for more details */
#define SOC_DS_KEY_CHECK_MAX_WAIT_US (1100)
/*-------------------------- GDMA CAPS ---------------------------------------*/
#define SOC_GDMA_GROUPS (1) // Number of GDMA groups
#define SOC_GDMA_PAIRS_PER_GROUP (5) // Number of GDMA pairs in each group

View File

@ -1,6 +1,7 @@
INPUT += \
$(PROJECT_PATH)/components/ulp/include/$(IDF_TARGET)/ulp.h \
$(PROJECT_PATH)/components/esp_hw_support/include/soc/$(IDF_TARGET)/esp_hmac.h \
$(PROJECT_PATH)/components/esp_hw_support/include/soc/$(IDF_TARGET)/esp_ds.h \
$(PROJECT_PATH)/components/hal/include/hal/mcpwm_types.h \
$(PROJECT_PATH)/components/driver/include/driver/mcpwm.h \
$(PROJECT_PATH)/components/hal/include/hal/pcnt_types.h \