HCD: Add support for interrupt and isochronous pipes

This commit adds support for interrupt and isochronous pipes to the HCD:
- HCD now internally uses double buffering
- Added test cases for interrupt and isochronous transfers
- Reorganized test cases for each transfer type
- Updated API comments and maintainer's notes

Some minor bugs were also fixed
This commit is contained in:
Darian Leung 2021-03-11 20:50:05 +08:00
parent 5b8bcec333
commit 7f42104893
18 changed files with 3377 additions and 1687 deletions

View File

@ -44,6 +44,29 @@ typedef enum {
USB_PRIV_XFER_TYPE_INTR,
} usb_priv_xfer_type_t;
/**
* @brief Enumeration of different possible lengths of the periodic frame list
*/
typedef enum {
USB_HAL_FRAME_LIST_LEN_8 = 8,
USB_HAL_FRAME_LIST_LEN_16 = 16,
USB_HAL_FRAME_LIST_LEN_32 = 32,
USB_HAL_FRAME_LIST_LEN_64 = 64,
} usb_hal_frame_list_len_t;
/**
* @brief Support intervals in number of USB frames (i.e., 1ms)
*/
typedef enum {
USB_HAL_INTERVAL_1 = 1,
USB_HAL_INTERVAL_2 = 2,
USB_HAL_INTERVAL_4 = 4,
USB_HAL_INTERVAL_8 = 8,
USB_HAL_INTERVAL_16 = 16,
USB_HAL_INTERVAL_32 = 32,
USB_HAL_INTERVAL_64 = 64,
} usb_hal_interval_t;
#ifdef __cplusplus
}
#endif

View File

@ -20,7 +20,7 @@ extern "C" {
/*
NOTE: Thread safety is the responsibility fo the HAL user. All USB Host HAL
functions should be called from critical sections unless specified otherwise
functions must be called from critical sections unless specified otherwise
*/
#include <stdlib.h>
@ -30,21 +30,29 @@ NOTE: Thread safety is the responsibility fo the HAL user. All USB Host HAL
#include "hal/usbh_ll.h"
#include "hal/usb_types_private.h"
/* -----------------------------------------------------------------------------
------------------------------- Macros and Types -------------------------------
----------------------------------------------------------------------------- */
// ------------------------------------------------ Macros and Types ---------------------------------------------------
// ---------------------------- Constants/Configs ------------------------------
// ------------------ Constants/Configs --------------------
#define USBH_HAL_DMA_MEM_ALIGN 512
#define USBH_HAL_FRAME_LIST_MEM_ALIGN 512 //The frame list needs to be 512 bytes aligned (contrary to the databook)
#define USBH_HAL_NUM_CHAN 8
#define USBH_HAL_XFER_DESC_SIZE (sizeof(usbh_ll_dma_qtd_t))
#define USBH_HAL_FIFO_TOTAL_USABLE_LINES 200 //Although we have a 256 lines, only 200 lines are usuable due to EPINFO_CTL
// ------------------------------- HAL States ----------------------------------
/**
* @brief FIFO size configuration structure
*/
typedef struct {
uint32_t rx_fifo_lines; /**< Size of the RX FIFO in terms the number of FIFO lines */
uint32_t nptx_fifo_lines; /**< Size of the Non-periodic FIFO in terms the number of FIFO lines */
uint32_t ptx_fifo_lines; /**< Size of the Periodic FIFO in terms the number of FIFO lines */
} usbh_hal_fifo_config_t;
// --------------------- HAL States ------------------------
/**
* @brief Channel states
*
*/
typedef enum {
USBH_HAL_CHAN_STATE_HALTED = 0, /**< The channel is halted. No transfer descriptor list is being executed */
@ -52,7 +60,7 @@ typedef enum {
USBH_HAL_CHAN_STATE_ERROR, /**< The channel is in the error state */
} usbh_hal_chan_state_t;
// ------------------------------- HAL Events ----------------------------------
// --------------------- HAL Events ------------------------
/**
* @brief Host port HAL events
@ -72,48 +80,46 @@ typedef enum {
* @brief Channel events
*/
typedef enum {
USBH_HAL_CHAN_EVENT_SLOT_DONE, /**< The channel has completed execution of an entire transfer descriptor list. Channel is now halted */
USBH_HAL_CHAN_EVENT_SLOT_HALT, /**< The channel as completed execution of a single transfer descriptor in a list. Channel is now halted */
USBH_HAL_CHAN_EVENT_CPLT, /**< The channel has completed execution of a transfer descriptor that had the USBH_HAL_XFER_DESC_FLAG_HOC flag set. Channel is now halted */
USBH_HAL_CHAN_EVENT_ERROR, /**< The channel has encountered an error. Channel is now halted. */
USBH_HAL_CHAN_EVENT_HALT_REQ, /**< The channel has been successfully halted as requested */
USBH_HAL_CHAN_EVENT_NONE, /**< No event (interrupt ran for internal processing) */
} usbh_hal_chan_event_t;
// ------------------------------- HAL Errors ----------------------------------
// --------------------- HAL Errors ------------------------
/**
* @brief Channel errors
*/
typedef enum {
USBH_HAL_CHAN_ERROR_XCS_XACT = 0, /**< Excessive (three consecutive) transaction errors (e.g., no response, bad CRC etc */
USBH_HAL_CHAN_ERROR_BNA, /**< Buffer Not Available error (i.e., transfer slot is unfilled */
USBH_HAL_CHAN_ERROR_BNA, /**< Buffer Not Available error (i.e., An inactive transfer descriptor was fetched by the channel) */
USBH_HAL_CHAN_ERROR_PKT_BBL, /**< Packet babbler error (packet exceeded MPS) */
USBH_HAL_CHAN_ERROR_STALL, /**< STALL response received */
} usbh_hal_chan_error_t;
// ----------------------- Transfer Descriptor Related -------------------------
// ------------- Transfer Descriptor Related ---------------
/**
* @brief Flags used to describe the type of transfer descriptor to fill
*/
#define USBH_HAL_XFER_DESC_FLAG_IN 0x01
#define USBH_HAL_XFER_DESC_FLAG_SETUP 0x02
#define USBH_HAL_XFER_DESC_FLAG_NULL 0x04
#define USBH_HAL_XFER_DESC_FLAG_HALT 0x08
#define USBH_HAL_XFER_DESC_FLAG_IN 0x01 /**< Indicates this transfer descriptor is of the IN direction */
#define USBH_HAL_XFER_DESC_FLAG_SETUP 0x02 /**< Indicates this transfer descriptor is an OUT setup */
#define USBH_HAL_XFER_DESC_FLAG_HOC 0x04 /**< Indicates that the channel will be halted after this transfer descriptor completes */
/**
* @brief Status value of a transfer descriptor
*
* A transfer descriptor's status remains unexecuted until the entire transfer
* descriptor completes (either successfully or an error). Therefore, if a
* channel halt is requested before a transfer descriptor completes, the
* transfer descriptoor remains unexecuted.
* A transfer descriptor's status remains unexecuted until the entire transfer descriptor completes (either successfully
* or an error). Therefore, if a channel halt is requested before a transfer descriptor completes, the transfer
* descriptor remains unexecuted.
*/
#define USBH_HAL_XFER_DESC_STS_SUCCESS USBH_LL_QTD_STATUS_SUCCESS
#define USBH_HAL_XFER_DESC_STS_PKTERR USBH_LL_QTD_STATUS_PKTERR
#define USBH_HAL_XFER_DESC_STS_BUFFER_ERR USBH_LL_QTD_STATUS_BUFFER
#define USBH_HAL_XFER_DESC_STS_NOT_EXECUTED USBH_LL_QTD_STATUS_NOT_EXECUTED
// ------------------------------ Object Types ---------------------------------
// -------------------- Object Types -----------------------
/**
* @brief Endpoint characteristics structure
@ -131,6 +137,10 @@ typedef struct {
};
uint32_t val;
};
struct {
usb_hal_interval_t interval; /**< The interval of the endpoint */
uint32_t phase_offset_frames; /**< Phase offset in number of frames */
} periodic; /**< Characteristic for periodic (interrupt/isochronous) endpoints only */
} usbh_hal_ep_char_t;
/**
@ -143,29 +153,16 @@ typedef struct {
uint32_t active: 1; /**< The channel is enabled */
uint32_t halt_requested: 1; /**< A halt has been requested */
uint32_t error_pending: 1; /**< The channel is waiting for the error to be handled */
uint32_t reserved: 1;
uint32_t chan_idx: 4; /**< The index number of the channel */
uint32_t reserved25: 25;
uint32_t reserved24: 24;
};
uint32_t val;
} flags; /**< Flags regarding channel's status and information */
usb_host_chan_regs_t *regs; /**< Pointer to the channel's register set */
usbh_hal_chan_error_t error; /**< The last error that occurred on the channel */
usb_priv_xfer_type_t type; /**< The transfer type of the channel */
void *chan_ctx; /**< Context variable for the owner of the channel */
//Transfer Descriptor List Slot
struct {
union {
struct {
uint32_t slot_acquired: 1; /**< The transfer descriptor list slot has been acquired */
uint32_t reserved7: 7;
uint32_t cur_qtd_idx: 8; /**< Index of the first QTD in chain of QTDs being executed */
uint32_t qtd_list_len: 8; /**< Length of QTD list in number of QTDs */
uint32_t reserved8: 8;
};
uint32_t val;
} flags;
void *owner_ctx; /**< Context variable for the owner of the slot */
usbh_ll_dma_qtd_t *xfer_desc_list; /**< Pointer to transfer descriptor list */
} slot;
} usbh_hal_chan_t;
/**
@ -176,10 +173,15 @@ typedef struct {
usbh_dev_t *dev; /**< Pointer to base address of DWC_OTG registers */
usb_wrap_dev_t *wrap_dev; /**< Pointer to base address of USB Wrapper registers */
//Host Port related
uint32_t *periodic_frame_list; /**< Pointer to scheduling frame list */
usb_hal_frame_list_len_t frame_list_len; /**< Length of the periodic scheduling frame list */
union {
struct {
uint32_t dbnc_lock_enabled: 1; /**< Debounce lock enabled */
uint32_t reserved31: 31;
uint32_t dbnc_lock_enabled: 1; /**< Debounce lock enabled */
uint32_t fifo_sizes_set: 1; /**< Whether the FIFO sizes have been set or not */
uint32_t periodic_sched_enabled: 1; /**< Periodic scheduling (for interrupt and isochronous transfers) is enabled */
uint32_t reserved: 5;
uint32_t reserved24: 24;
};
uint32_t val;
} flags;
@ -191,9 +193,7 @@ typedef struct {
} channels;
} usbh_hal_context_t;
/* -----------------------------------------------------------------------------
--------------------------------- Core (Global) --------------------------------
----------------------------------------------------------------------------- */
// -------------------------------------------------- Core (Global) ----------------------------------------------------
/**
* @brief Initialize the HAL context and check if DWC_OTG is alive
@ -219,7 +219,7 @@ void usbh_hal_init(usbh_hal_context_t *hal);
* @brief Deinitialize the HAL context
*
* Entry:
* - All channels should be properly disabled, and any pending events handled
* - All channels must be properly disabled, and any pending events handled
* Exit:
* - DWC_OTG global interrupt disabled
* - HAL context deinitialized
@ -231,13 +231,9 @@ void usbh_hal_deinit(usbh_hal_context_t *hal);
/**
* @brief Issue a soft reset to the controller
*
* This should be called when the host port encounters an error event or has
* been disconnected. Before calling this, users are responsible for safely
* freeing all channels as a soft reset will wipe all host port nd channel
* registers.
*
* This function will result in the host port being put back into same state as
* after calling usbh_hal_init().
* This should be called when the host port encounters an error event or has been disconnected. Before calling this,
* users are responsible for safely freeing all channels as a soft reset will wipe all host port and channel registers.
* This function will result in the host port being put back into same state as after calling usbh_hal_init().
*
* @note This has nothing to do with a USB bus reset. It simply resets the peripheral
*
@ -245,18 +241,35 @@ void usbh_hal_deinit(usbh_hal_context_t *hal);
*/
void usbh_hal_core_soft_reset(usbh_hal_context_t *hal);
/* -----------------------------------------------------------------------------
---------------------------------- Host Port ----------------------------------
----------------------------------------------------------------------------- */
/**
* @brief Set FIFO sizes
*
* This function will set the sizes of each of the FIFOs (RX FIFO, Non-periodic TX FIFO, Periodic TX FIFO) and must be
* called at least once before allocating the channel. Based on the type of endpoints (and the endpionts' MPS), there
* may be situations where this function may need to be called again to resize the FIFOs. If resizing FIFOs dynamically,
* it is the user's responsibility to ensure there are no active channels when this function is called.
*
* @note The totol size of all the FIFOs must be less than or equal to USBH_HAL_FIFO_TOTAL_USABLE_LINES
* @note After a port reset, the FIFO size registers will reset to their default values, so this function must be called
* again post reset.
*
* @param hal Context of the HAL layer
* @param fifo_config FIFO configuration
*/
void usbh_hal_set_fifo_size(usbh_hal_context_t *hal, const usbh_hal_fifo_config_t *fifo_config);
// ---------------------------- Host Port Control ------------------------------
// ---------------------------------------------------- Host Port ------------------------------------------------------
// ------------------ Host Port Control --------------------
/**
* @brief Enable the host port's interrupt allowing port and channel events to occur
* @brief Initialize the host port
*
* - Will enable the host port's interrupts allowing port and channel events to occur
*
* @param hal Context of the HAL layer
*/
static inline void usbh_hal_port_start(usbh_hal_context_t *hal)
static inline void usbh_hal_port_init(usbh_hal_context_t *hal)
{
//Configure Host related interrupts
usbh_ll_haintmsk_dis_chan_intr(hal->dev, 0xFFFFFFFF); //Disable interrupts for all channels
@ -264,11 +277,13 @@ static inline void usbh_hal_port_start(usbh_hal_context_t *hal)
}
/**
* @brief Disable the host port's interrupt preventing any further port or channel events
* @brief Deinitialize the host port
*
* - Will disable the host port's interrupts preventing further port aand channel events from ocurring
*
* @param hal Context of the HAL layer
*/
static inline void usbh_hal_port_stop(usbh_hal_context_t *hal)
static inline void usbh_hal_port_deinit(usbh_hal_context_t *hal)
{
//Disable Host port and channel interrupts
usb_ll_dis_intrs(hal->dev, USB_LL_INTR_CORE_PRTINT | USB_LL_INTR_CORE_HCHINT);
@ -298,9 +313,8 @@ static inline void usbh_hal_port_toggle_power(usbh_hal_context_t *hal, bool powe
* Exit:
* - On release of the reset signal, a USBH_HAL_PORT_EVENT_ENABLED will be generated
*
* @note If the host port is already enabled, then issuing a reset will cause
* it be disabled and generate a USBH_HAL_PORT_EVENT_DISABLED event. The
* host port will not be enabled until the reset signal is released (thus
* @note If the host port is already enabled, then issuing a reset will cause it be disabled and generate a
* USBH_HAL_PORT_EVENT_DISABLED event. The host port will not be enabled until the reset signal is released (thus
* generating the USBH_HAL_PORT_EVENT_ENABLED event)
*
* @param hal Context of the HAL layer
@ -353,8 +367,7 @@ static inline void usbh_hal_port_suspend(usbh_hal_context_t *hal)
*
* Hosts should hold the resume signal for at least 20ms
*
* @note If a remote wakeup event occurs, the resume signal is driven
* and cleared automatically.
* @note If a remote wakeup event occurs, the resume signal is driven and cleared automatically.
*
* @param hal Context of the HAL layer
* @param enable Enable/disable resume signal
@ -371,9 +384,8 @@ static inline void usbh_hal_port_toggle_resume(usbh_hal_context_t *hal, bool ena
/**
* @brief Check whether the resume signal is being driven
*
* If a remote wakeup event occurs, the core will automatically drive and clear
* the resume signal for the required amount of time. Call this function to
* check whether the resume signal has completed.
* If a remote wakeup event occurs, the core will automatically drive and clear the resume signal for the required
* amount of time. Call this function to check whether the resume signal has completed.
*
* @param hal Context of the HAL layer
* @return true Resume signal is still being driven
@ -384,18 +396,89 @@ static inline bool usbh_hal_port_check_resume(usbh_hal_context_t *hal)
return usbh_ll_hprt_get_port_resume(hal->dev);
}
// -------------------------- Host Port Status/State ---------------------------
// ---------------- Host Port Scheduling -------------------
/**
* @brief Sets the periodic scheduling frame list
*
* @note This function must be called before attempting configuring any channels to be period via
* usbh_hal_chan_set_ep_char()
*
* @param hal Context of the HAL layer
* @param frame_list Base address of the frame list
* @param frame_list_len Number of entries in the frame list (can only be 8, 16, 32, 64)
*/
static inline void usbh_hal_port_set_frame_list(usbh_hal_context_t *hal, uint32_t *frame_list, usb_hal_frame_list_len_t len)
{
assert(!hal->flags.periodic_sched_enabled);
//Clear and save frame list
hal->periodic_frame_list = frame_list;
hal->frame_list_len = len;
}
/**
* @brief Get the pointer to the periodic scheduling frame list
*
* @param hal Context of the HAL layer
* @return uint32_t* Base address of the periodic scheduling frame list
*/
static inline uint32_t *usbh_hal_port_get_frame_list(usbh_hal_context_t *hal)
{
return hal->periodic_frame_list;
}
/**
* @brief Enable periodic scheduling
*
* @note The periodic frame list must be set via usbh_hal_port_set_frame_list() should be set before calling this
* function
* @note This function must be called before activating any periodic channels
*
* @param hal Context of the HAL layer
*/
static inline void usbh_hal_port_periodic_enable(usbh_hal_context_t *hal)
{
assert(hal->periodic_frame_list != NULL && !hal->flags.periodic_sched_enabled);
usbh_ll_set_frame_list_base_addr(hal->dev, (uint32_t)hal->periodic_frame_list);
usbh_ll_hcfg_set_num_frame_list_entries(hal->dev, hal->frame_list_len);
usbh_ll_hcfg_en_perio_sched(hal->dev);
hal->flags.periodic_sched_enabled = 1;
}
/**
* @brief Disable periodic scheduling
*
* Disabling periodic scheduling will save a bit of DMA bandwith (as the controller will no longer fetch the schedule
* from the frame list).
*
* @note Before disabling periodic scheduling, it is the user's responsibility to ensure that all periodic channels have
* halted safely.
*
* @param hal Context of the HAL layer
*/
static inline void usbh_hal_port_periodic_disable(usbh_hal_context_t *hal)
{
assert(hal->flags.periodic_sched_enabled);
usbh_ll_hcfg_dis_perio_sched(hal->dev);
hal->flags.periodic_sched_enabled = 0;
}
static inline uint32_t usbh_hal_port_get_cur_frame_num(usbh_hal_context_t *hal)
{
return usbh_ll_get_frm_num(hal->dev);
}
// --------------- Host Port Status/State ------------------
/**
* @brief Check if a device is currently connected to the host port
*
* This function is intended to be called after one of the following events
* followed by an adequate debounce delay
* This function is intended to be called after one of the following events followed by an adequate debounce delay
* - USBH_HAL_PORT_EVENT_CONN
* - USBH_HAL_PORT_EVENT_DISCONN
*
* @note No other connection/disconnection event will occur again until the
* debounce lock is disabled via usbh_hal_disable_debounce_lock()
* @note No other connection/disconnection event will occur again until the debounce lock is disabled via
* usbh_hal_disable_debounce_lock()
*
* @param hal Context of the HAL layer
* @return true A device is connected to the host port
@ -409,8 +492,7 @@ static inline bool usbh_hal_port_check_if_connected(usbh_hal_context_t *hal)
/**
* @brief Check the speed (LS/FS) of the device connected to the host port
*
* @note This function should only be called after confirming that a device is
* connected to the host port
* @note This function should only be called after confirming that a device is connected to the host port
*
* @param hal Context of the HAL layer
* @return usb_priv_speed_t Speed of the connected device (FS or LS only on the esp32-s2)
@ -423,9 +505,8 @@ static inline usb_priv_speed_t usbh_hal_port_get_conn_speed(usbh_hal_context_t *
/**
* @brief Disable the debounce lock
*
* This function should be called after calling usbh_hal_port_check_if_connected()
* and will allow connection/disconnection events to occur again. Any pending
* connection or disconenction interrupts are cleared.
* This function must be called after calling usbh_hal_port_check_if_connected() and will allow connection/disconnection
* events to occur again. Any pending connection or disconenction interrupts are cleared.
*
* @param hal Context of the HAL layer
*/
@ -439,11 +520,9 @@ static inline void usbh_hal_disable_debounce_lock(usbh_hal_context_t *hal)
usb_ll_en_intrs(hal->dev, USB_LL_INTR_CORE_PRTINT | USB_LL_INTR_CORE_DISCONNINT);
}
/* -----------------------------------------------------------------------------
----------------------------------- Channel ------------------------------------
------------------------------------------------------------------------------*/
// ----------------------------------------------------- Channel -------------------------------------------------------
// --------------------------- Channel Allocation ------------------------------
// ----------------- Channel Allocation --------------------
/**
* @brief Allocate a channel
@ -464,6 +543,8 @@ bool usbh_hal_chan_alloc(usbh_hal_context_t *hal, usbh_hal_chan_t *chan_obj, voi
*/
void usbh_hal_chan_free(usbh_hal_context_t *hal, usbh_hal_chan_t *chan_obj);
// ---------------- Channel Configuration ------------------
/**
* @brief Get the context variable of the channel
*
@ -475,8 +556,6 @@ static inline void *usbh_hal_chan_get_context(usbh_hal_chan_t *chan_obj)
return chan_obj->chan_ctx;
}
// ---------------------------- Channel Control --------------------------------
/**
* @brief Get the current state of a channel
*
@ -502,10 +581,11 @@ static inline usbh_hal_chan_state_t usbh_hal_chan_get_state(usbh_hal_chan_t *cha
* @note the channel must be in the disabled state in order to change its EP
* information
*
* @param hal Context of the HAL layer
* @param chan_obj Channel object
* @param ep_char Endpoint characteristics
*/
void usbh_hal_chan_set_ep_char(usbh_hal_chan_t *chan_obj, usbh_hal_ep_char_t *ep_char);
void usbh_hal_chan_set_ep_char(usbh_hal_context_t *hal, usbh_hal_chan_t *chan_obj, usbh_hal_ep_char_t *ep_char);
/**
* @brief Set the direction of the channel
@ -514,8 +594,7 @@ void usbh_hal_chan_set_ep_char(usbh_hal_chan_t *chan_obj, usbh_hal_ep_char_t *ep
* needing to reconfigure all of the channel's EP info. This is used primarily
* for control transfers.
*
* @note This function should only be called when the channel is in the disabled
* state or is halted from a USBH_HAL_CHAN_EVENT_SLOT_HALT event
* @note This function should only be called when the channel is halted
*
* @param chan_obj Channel object
* @param is_in Whether the direction is IN
@ -563,6 +642,51 @@ static inline uint32_t usbh_hal_chan_get_pid(usbh_hal_chan_t *chan_obj)
return usbh_ll_chan_get_pid(chan_obj->regs);
}
// ------------------- Channel Control ---------------------
/**
* @brief Activate a channel
*
* Activating a channel will cause the channel to start executing transfer descriptors.
*
* @note This function should only be called on channels that were previously halted
* @note An event will be generated when the channel is halted
*
* @param chan_obj Channel object
* @param xfer_desc_list A filled transfer descriptor list
* @param desc_list_len Transfer descriptor list length
* @param start_idx Index of the starting transfer descriptor in the list
*/
void usbh_hal_chan_activate(usbh_hal_chan_t *chan_obj, void *xfer_desc_list, int desc_list_len, int start_idx);
/**
* @brief Get the index of the current transfer descriptor
*
* @param chan_obj Channel object
* @return int Descriptor index
*/
static inline int usbh_hal_chan_get_qtd_idx(usbh_hal_chan_t *chan_obj)
{
return usbh_ll_chan_get_ctd(chan_obj->regs);
}
/**
* @brief Request to halt a channel
*
* This function should be called in order to halt a channel. If the channel is already halted, this function will
* return true. If the channel is still active, this function will return false and users must wait for the
* USBH_HAL_CHAN_EVENT_HALT_REQ event before treating the channel as halted.
*
* @note When a transfer is in progress (i.e., the channel is active) and a halt is requested, the channel will halt
* after the next USB packet is completed. If the transfer has more pending packets, the transfer will just be
* marked as USBH_HAL_XFER_DESC_STS_NOT_EXECUTED.
*
* @param chan_obj Channel object
* @return true The channel is already halted
* @return false The halt was requested, wait for USBH_HAL_CHAN_EVENT_HALT_REQ
*/
bool usbh_hal_chan_request_halt(usbh_hal_chan_t *chan_obj);
/**
* @brief Get a channel's error
*
@ -587,178 +711,74 @@ static inline void usbh_hal_chan_clear_error(usbh_hal_chan_t *chan_obj)
chan_obj->flags.error_pending = 0;
}
/* -----------------------------------------------------------------------------
-------------------------- Transfer Descriptor List ----------------------------
------------------------------------------------------------------------------*/
// -------------------------------------------- Transfer Descriptor List -----------------------------------------------
/**
* @brief Fill a single entry in a transfer descriptor list
*
* - A single entry corresponds to a USB transfer in a particular direction
* (e.g., a BULK OUT).
* - The channel will automatically split the transfer into multiple MPS sized
* packets of the endpoint.
* - For multi direction transfers (such as the various stages of a control transfer),
* the direction and PID of channel must be managed manually. Set the
* USBH_HAL_XFER_DESC_FLAG_HALT flag to halt on each entry to flip the direction
* and PID of the channel.
* - For IN transfer entries, set the USBH_HAL_XFER_DESC_FLAG_IN. The transfer
* size must also be an integer multiple of the endpoint's MPS
* - Depending on the transfer type, a single transfer descriptor may corresponds
* - A stage of a transfer (for control transfers)
* - A frame of a transfer interval (for interrupt and isoc)
* - An entire transfer (for bulk transfers)
* - Check the various USBH_HAL_XFER_DESC_FLAG_ flags for filling a specific type of descriptor
* - For IN transfer entries, set the USBH_HAL_XFER_DESC_FLAG_IN. The transfer size must also be an integer multiple of
* the endpoint's MPS
*
* @note The USBH_HAL_XFER_DESC_FLAG_HALT must be set on the last descriptor of
* the list so that an interrupt is generated at the end of the list
* @note The USBH_HAL_XFER_DESC_FLAG_HALT can be set on every descriptor if users
* prefer to manually step through the list (such as change EP directions in between)
* @note Critical section is not required for this function
*
* @param xfer_desc_list Transfer descriptor list
* @param xfer_desc_idx Transfer descriptor index
* @param desc_list Transfer descriptor list
* @param desc_idx Transfer descriptor index
* @param xfer_data_buff Transfer data buffer
* @param xfer_len Transfer length
* @param flags Transfer flags
*/
static inline void usbh_hal_xfer_desc_fill(void *xfer_desc_list, int xfer_desc_idx, uint8_t *xfer_data_buff, int xfer_len, uint32_t flags)
static inline void usbh_hal_xfer_desc_fill(void *desc_list, uint32_t desc_idx, uint8_t *xfer_data_buff, int xfer_len, uint32_t flags)
{
//Check if the channel should be halted on completion of this xfer descriptor
bool halt_on_xfer_cplt = flags & USBH_HAL_XFER_DESC_FLAG_HALT;
usbh_ll_dma_qtd_t *qtd_list = (usbh_ll_dma_qtd_t *)xfer_desc_list;
if (flags & USBH_HAL_XFER_DESC_FLAG_NULL) {
usbh_ll_set_qtd_null(&qtd_list[xfer_desc_idx]);
} else if (flags & USBH_HAL_XFER_DESC_FLAG_IN) {
usbh_ll_set_qtd_in(&qtd_list[xfer_desc_idx], xfer_data_buff, xfer_len, halt_on_xfer_cplt);
usbh_ll_dma_qtd_t *qtd_list = (usbh_ll_dma_qtd_t *)desc_list;
if (flags & USBH_HAL_XFER_DESC_FLAG_IN) {
usbh_ll_set_qtd_in(&qtd_list[desc_idx],
xfer_data_buff, xfer_len,
flags & USBH_HAL_XFER_DESC_FLAG_HOC);
} else {
usbh_ll_set_qtd_out(&qtd_list[xfer_desc_idx], xfer_data_buff, xfer_len, halt_on_xfer_cplt, (flags & USBH_HAL_XFER_DESC_FLAG_SETUP));
usbh_ll_set_qtd_out(&qtd_list[desc_idx],
xfer_data_buff,
xfer_len,
flags & USBH_HAL_XFER_DESC_FLAG_HOC,
flags & USBH_HAL_XFER_DESC_FLAG_SETUP);
}
}
/**
* @brief Parse a transfer decriptors results
* @brief Clear a transfer descriptor (sets all its fields to NULL)
*
* @param xfer_desc_list Transfer descriptor list
* @param xfer_desc_idx Transfer descriptor index
* @param desc_list Transfer descriptor list
* @param desc_idx Transfer descriptor index
*/
static inline void usbh_hal_xfer_desc_clear(void *desc_list, uint32_t desc_idx)
{
usbh_ll_dma_qtd_t *qtd_list = (usbh_ll_dma_qtd_t *)desc_list;
usbh_ll_set_qtd_null(&qtd_list[desc_idx]);
}
/**
* @brief Parse a transfer decriptor's results
*
* @param desc_list Transfer descriptor list
* @param desc_idx Transfer descriptor index
* @param[out] xfer_rem_len Remaining length of the transfer in bytes
* @param[out] xfer_status Status of the transfer
*
* @note Critical section is not required for this function
*/
static inline void usbh_hal_xfer_desc_parse(void *xfer_desc_list, int xfer_desc_idx, int *xfer_rem_len, int *xfer_status)
static inline void usbh_hal_xfer_desc_parse(void *desc_list, uint32_t desc_idx, int *xfer_rem_len, int *xfer_status)
{
usbh_ll_dma_qtd_t *qtd_list = (usbh_ll_dma_qtd_t *)xfer_desc_list;
usbh_ll_get_qtd_status(&qtd_list[xfer_desc_idx], xfer_rem_len, xfer_status);
usbh_ll_dma_qtd_t *qtd_list = (usbh_ll_dma_qtd_t *)desc_list;
usbh_ll_get_qtd_status(&qtd_list[desc_idx], xfer_rem_len, xfer_status);
//Clear the QTD to prevent it from being read again
usbh_ll_set_qtd_null(&qtd_list[desc_idx]);
}
/* -----------------------------------------------------------------------------
-------------------------------- Channel Slot ----------------------------------
------------------------------------------------------------------------------*/
/**
* @brief Acquire a slot
*
* Acquiring a channel's transfer descriptor list slot will cause a give ownership
* of the channel to the acquirer. The transfer descriptor list to be executed
* when the channel is activated.
*
* @param chan_obj Channel object
* @param xfer_desc_list A filled transfer descriptor list
* @param desc_list_len Length of the descriptor list
* @param owner_ctx Context variable of the owner
*/
static inline void usbh_hal_chan_slot_acquire(usbh_hal_chan_t *chan_obj, void *xfer_desc_list, int desc_list_len, void *owner_ctx)
{
assert(!chan_obj->slot.flags.slot_acquired);
chan_obj->slot.xfer_desc_list = (usbh_ll_dma_qtd_t *)xfer_desc_list;
chan_obj->slot.owner_ctx = owner_ctx;
chan_obj->slot.flags.cur_qtd_idx = 0; //Start from the first descriptor
chan_obj->slot.flags.qtd_list_len = desc_list_len;
chan_obj->slot.flags.slot_acquired = 1;
//Store the descriptor list length in the HCTSIZ register. Address of desc list is set when channel is activated
usbh_ll_chan_set_qtd_list_len(chan_obj->regs, desc_list_len);
}
/**
* @brief Get current owner of a slot
*
* This function reqturns a slot's context variable that was set when the slot
* was acquired
*
* @param chan_obj Channel object
* @return void* Context variable of the owner of the slot
*/
static inline void *usbh_hal_chan_slot_get_owner(usbh_hal_chan_t *chan_obj)
{
assert(chan_obj->slot.flags.slot_acquired);
return chan_obj->slot.owner_ctx;
}
/**
* @brief Release a slot
*
* @note This should only be called after confirming that the transfer descriptor
* list has completed execution.
* @note Users should parse the completed transfer descriptor list to check the
* results of each transfer.
*
* @param[in] chan_obj Channel object
* @param[out] xfer_desc_list A completed transfer descriptor list
* @param[out] desc_list_len Length of the descriptor list
*/
static inline void usbh_hal_chan_slot_release(usbh_hal_chan_t *chan_obj, void **xfer_desc_list, int *desc_list_len)
{
assert(chan_obj->slot.flags.slot_acquired);
*xfer_desc_list = (void *)chan_obj->slot.xfer_desc_list;
*desc_list_len = chan_obj->slot.flags.qtd_list_len;
chan_obj->slot.flags.slot_acquired = 0;
}
/**
* @brief Activate a channel
*
* Activating a channel will cause it to start executing the transfer descriptor
* list in its slot starting from its next descriptor index. When a transfer
* descriptor completes execution and has the HALT flag set, an event will be
* generated.
*
* @param chan_obj Channel object
* @param num_to_skip Number of transfer descriptors to skip over
*/
void usbh_hal_chan_activate(usbh_hal_chan_t *chan_obj, int num_to_skip);
/**
* @brief Get next transfer descriptor index
*
* This function returns the index of the next descriptor that will be executed
* in the transfer descriptor list.
*
* @param chan_obj Channel object
* @return int Descriptor index
*/
static inline int usbh_hal_chan_get_next_desc_index(usbh_hal_chan_t *chan_obj)
{
return chan_obj->slot.flags.cur_qtd_idx;
}
/**
* @brief Request to halt a channel
*
* This function should be called in order to halt a channel. If the channel is
* already halted, this function will return true. If the channel is still
* active, this function will return false and users must wait for the
* USBH_HAL_CHAN_EVENT_HALT_REQ event before treating the channel as halted.
*
* @note When a transfer is in progress (i.e., the channel is active) and a halt
* is requested, the channel will halt after the next USB packet is completed.
* If the transfer has more pending packets, the transfer will just be
* marked as USBH_HAL_XFER_DESC_STS_NOT_EXECUTED.
*
* @param chan_obj Channel object
* @return true The channel is already halted
* @return false The halt was requested, wait for USBH_HAL_CHAN_EVENT_HALT_REQ
*/
bool usbh_hal_chan_slot_request_halt(usbh_hal_chan_t *chan_obj);
/* -----------------------------------------------------------------------------
-------------------------------- Event Handling --------------------------------
----------------------------------------------------------------------------- */
// ------------------------------------------------- Event Handling ----------------------------------------------------
/**
* @brief Decode global and host port interrupts
@ -776,13 +796,8 @@ usbh_hal_port_event_t usbh_hal_decode_intr(usbh_hal_context_t *hal);
/**
* @brief Gets the next channel with a pending interrupt
*
* If no channel is pending an interrupt, this function will return NULL. If one
* or more channels are pending an interrupt, this function returns one of the
* channel's objects. Call this function repeatedly until it returns NULL.
*
* @note If a channel error event occurs, or a Slot halt/done event occurs, the
* channel is immediately halted and no further channel interrupt or errors
* can occur until it is reactivated.
* If no channel is pending an interrupt, this function will return NULL. If one or more channels are pending an
* interrupt, this function returns one of the channel's objects. Call this function repeatedly until it returns NULL.
*
* @param hal Context of the HAL layer
* @return usbh_hal_chan_t* Channel object. NULL if no channel are pending an interrupt.

View File

@ -159,16 +159,6 @@ typedef struct {
uint8_t *buffer;
} usbh_ll_dma_qtd_t;
/*
* Enumeration of different possible lengths of the periodic frame list
*/
typedef enum {
USBH_LL_FRAME_LIST_LEN_8 = 0,
USBH_LL_FRAME_LIST_LEN_16,
USBH_LL_FRAME_LIST_LEN_32,
USBH_LL_FRAME_LIST_LEN_64,
} usbh_ll_frame_list_len_t;
/* -----------------------------------------------------------------------------
------------------------------ USB Wrap Registers ------------------------------
----------------------------------------------------------------------------- */
@ -249,18 +239,33 @@ static inline bool usb_ll_check_dma_req_in_progress(usbh_dev_t *hw)
return hw->grstctl_reg.dmareq;
}
static inline void usb_ll_flush_tx_fifo(usbh_dev_t *hw, uint32_t chan_num)
static inline void usb_ll_flush_nptx_fifo(usbh_dev_t *hw)
{
usb_grstctl_reg_t grstctl;
grstctl.val = hw->grstctl_reg.val;
grstctl.txfnum = chan_num; //Set channel number to flush
grstctl.txfflsh = 1; //Flush that channel's TX FIFO
hw->grstctl_reg.val = grstctl.val;
hw->grstctl_reg.txfnum = 0; //Set the TX FIFO number to 0 to select the non-periodic TX FIFO
hw->grstctl_reg.txfflsh = 1; //Flush the selected TX FIFO
//Wait for the flushing to complete
while (hw->grstctl_reg.txfflsh) {
;
}
}
static inline void usb_ll_flush_ptx_fifo(usbh_dev_t *hw)
{
hw->grstctl_reg.txfnum = 1; //Set the TX FIFO number to 1 to select the periodic TX FIFO
hw->grstctl_reg.txfflsh = 1; //FLush the select TX FIFO
//Wait for the flushing to complete
while (hw->grstctl_reg.txfflsh) {
;
}
}
static inline void usb_ll_flush_rx_fifo(usbh_dev_t *hw)
{
hw->grstctl_reg.rxfflsh = 1;
//Wait for the flushing to complete
while (hw->grstctl_reg.rxfflsh) {
;
}
}
static inline void usb_ll_reset_frame_counter(usbh_dev_t *hw)
@ -320,20 +325,20 @@ static inline void usb_ll_dis_intrs(usbh_dev_t *hw, uint32_t intr_mask)
// --------------------------- GRXFSIZ Register --------------------------------
static inline void usb_ll_set_rx_fifo_size(usbh_dev_t *hw, uint32_t size)
static inline void usb_ll_set_rx_fifo_size(usbh_dev_t *hw, uint32_t num_lines)
{
//Set size in words
hw->grxfsiz_reg.rxfdep = size;
hw->grxfsiz_reg.rxfdep = num_lines;
}
// -------------------------- GNPTXFSIZ Register -------------------------------
static inline void usb_ll_set_nptx_fifo_size(usbh_dev_t *hw, uint32_t addr, uint32_t size)
static inline void usb_ll_set_nptx_fifo_size(usbh_dev_t *hw, uint32_t addr, uint32_t num_lines)
{
usb_gnptxfsiz_reg_t gnptxfsiz;
gnptxfsiz.val = hw->gnptxfsiz_reg.val;
gnptxfsiz.nptxfstaddr = addr;
gnptxfsiz.nptxfdep = size;
gnptxfsiz.nptxfdep = num_lines;
hw->gnptxfsiz_reg.val = gnptxfsiz.val;
}
@ -364,12 +369,12 @@ static inline void usb_ll_get_hardware_config(usbh_dev_t *hw, uint32_t *ghwcfg1,
// --------------------------- HPTXFSIZ Register -------------------------------
static inline void usbh_ll_set_ptx_fifo_size(usbh_dev_t *hw, uint32_t addr, uint32_t size)
static inline void usbh_ll_set_ptx_fifo_size(usbh_dev_t *hw, uint32_t addr, uint32_t num_lines)
{
usb_hptxfsiz_reg_t hptxfsiz;
hptxfsiz.val = hw->hptxfsiz_reg.val;
hptxfsiz.ptxfstaddr = addr;
hptxfsiz.ptxfsize = size;
hptxfsiz.ptxfsize = num_lines;
hw->hptxfsiz_reg.val = hptxfsiz.val;
}
@ -394,9 +399,24 @@ static inline void usbh_ll_hcfg_dis_perio_sched(usbh_dev_t *hw)
*
* @param num_entires Number of entires in the frame list
*/
static inline void usbh_ll_hcfg_set_num_frame_list_entries(usbh_dev_t *hw, usbh_ll_frame_list_len_t num_entries)
static inline void usbh_ll_hcfg_set_num_frame_list_entries(usbh_dev_t *hw, usb_hal_frame_list_len_t num_entries)
{
hw->hcfg_reg.frlisten = num_entries;
uint32_t frlisten;
switch (num_entries) {
case USB_HAL_FRAME_LIST_LEN_8:
frlisten = 0;
break;
case USB_HAL_FRAME_LIST_LEN_16:
frlisten = 1;
break;
case USB_HAL_FRAME_LIST_LEN_32:
frlisten = 2;
break;
default: //USB_HAL_FRAME_LIST_LEN_64
frlisten = 3;
break;
}
hw->hcfg_reg.frlisten = frlisten;
}
static inline void usbh_ll_hcfg_en_scatt_gatt_dma(usbh_dev_t *hw)
@ -417,7 +437,8 @@ static inline void usbh_ll_hcfg_set_fsls_pclk_sel(usbh_dev_t *hw)
/**
* @brief Sets some default values to HCFG to operate in Host mode with scatter/gather DMA
*
* @param hw
* @param hw Start address of the USB Wrap registers
* @param speed Speed to initialize the host port at
*/
static inline void usbh_ll_hcfg_set_defaults(usbh_dev_t *hw, usb_priv_speed_t speed)
{
@ -498,11 +519,27 @@ static inline void usbh_ll_haintmsk_dis_chan_intr(usbh_dev_t *hw, uint32_t mask)
// --------------------------- HFLBAddr Register -------------------------------
/**
* @brief Set the base address of the scheduling frame list
*
* @note For some reason, this address must be 512 bytes aligned or else a bunch of frames will not be scheduled when
* the frame list rolls over. However, according to the databook, there is no mention of the HFLBAddr needing to
* be aligned.
*
* @param hw Start address of the DWC_OTG registers
* @param addr Base address of the scheduling frame list
*/
static inline void usbh_ll_set_frame_list_base_addr(usbh_dev_t *hw, uint32_t addr)
{
hw->hflbaddr_reg.hflbaddr = addr;
}
/**
* @brief Get the base address of the scheduling frame list
*
* @param hw Start address of the DWC_OTG registers
* @return uint32_t Base address of the scheduling frame list
*/
static inline uint32_t usbh_ll_get_frame_list_base_addr(usbh_dev_t *hw)
{
return hw->hflbaddr_reg.hflbaddr;
@ -529,6 +566,7 @@ static inline uint32_t usbh_ll_hprt_get_test_ctl(usbh_dev_t *hw)
{
return hw->hprt_reg.prttstctl;
}
static inline void usbh_ll_hprt_set_test_ctl(usbh_dev_t *hw, uint32_t test_mode)
{
usb_hprt_reg_t hprt;
@ -604,6 +642,7 @@ static inline bool usbh_ll_hprt_get_port_resume(usbh_dev_t *hw)
{
return hw->hprt_reg.prtres;
}
static inline bool usbh_ll_hprt_get_port_overcur(usbh_dev_t *hw)
{
return hw->hprt_reg.prtovrcurract;
@ -780,9 +819,7 @@ static inline void usbh_ll_chan_set_dma_addr_non_iso(volatile usb_host_chan_regs
static inline void usbh_ll_chan_set_dma_addr_iso(volatile usb_host_chan_regs_t *chan,
void *dmaaddr,
uint32_t ntd,
uint32_t pktcnt,
uint32_t ctd)
uint32_t ntd)
{
int n;
if (ntd == 2) {
@ -861,15 +898,15 @@ static inline usb_host_chan_regs_t *usbh_ll_get_chan_regs(usbh_dev_t *dev, int c
* @param data_buff Pointer to buffer containing the data to transfer
* @param xfer_len Number of bytes in transfer. Setting 0 will do a zero length IN transfer.
* Non zero length must be mulitple of the endpoint's MPS.
* @param halt_on_cplt Generate a channel halted interrupt on completion of QTD
* @param hoc Halt on complete (will generate an interrupt and halt the channel)
*/
static inline void usbh_ll_set_qtd_in(usbh_ll_dma_qtd_t *qtd, uint8_t *data_buff, int xfer_len, bool halt_on_cplt)
static inline void usbh_ll_set_qtd_in(usbh_ll_dma_qtd_t *qtd, uint8_t *data_buff, int xfer_len, bool hoc)
{
qtd->buffer = data_buff; //Set pointer to data buffer
qtd->buffer_status_val = 0; //Reset all flags to zero
qtd->in_non_iso.xfer_size = xfer_len;
if (halt_on_cplt) {
qtd->in_non_iso.intr_cplt = 1; //Used to indicate successful completion
if (hoc) {
qtd->in_non_iso.intr_cplt = 1; //We need to set this to distinguish between a halt due to a QTD
qtd->in_non_iso.eol = 1; //Used to halt the channel at this qtd
}
qtd->in_non_iso.active = 1;
@ -882,11 +919,11 @@ static inline void usbh_ll_set_qtd_in(usbh_ll_dma_qtd_t *qtd, uint8_t *data_buff
* @param data_buff Pointer to buffer containing the data to transfer
* @param xfer_len Number of bytes to transfer. Setting 0 will do a zero length transfer.
* For ctrl setup packets, this should be set to 8.
* @param halt_on_cplt Generate a channel halted interrupt on completion of QTD.
* @param hoc Halt on complete (will generate an interrupt)
* @param is_setup Indicates whether this is a control transfer setup packet or a normal OUT Data transfer.
* (As per the USB protocol, setup packets cannot be STALLd or NAKd by the device)
*/
static inline void usbh_ll_set_qtd_out(usbh_ll_dma_qtd_t *qtd, uint8_t *data_buff, int xfer_len, bool halt_on_cplt, bool is_setup)
static inline void usbh_ll_set_qtd_out(usbh_ll_dma_qtd_t *qtd, uint8_t *data_buff, int xfer_len, bool hoc, bool is_setup)
{
qtd->buffer = data_buff; //Set pointer to data buffer
qtd->buffer_status_val = 0; //Reset all flags to zero
@ -894,9 +931,9 @@ static inline void usbh_ll_set_qtd_out(usbh_ll_dma_qtd_t *qtd, uint8_t *data_buf
if (is_setup) {
qtd->out_non_iso.is_setup = 1;
}
if (halt_on_cplt) {
qtd->out_non_iso.intr_cplt = 1; //Used to indicate successful completion
qtd->out_non_iso.eol = 1; //Used to halt the channel at this qtd
if (hoc) {
qtd->in_non_iso.intr_cplt = 1; //We need to set this to distinguish between a halt due to a QTD
qtd->in_non_iso.eol = 1; //Used to halt the channel at this qtd
}
qtd->out_non_iso.active = 1;
}

View File

@ -19,11 +19,9 @@
#include "hal/usbh_hal.h"
#include "hal/usbh_ll.h"
/* -----------------------------------------------------------------------------
------------------------------- Macros and Types -------------------------------
----------------------------------------------------------------------------- */
// ------------------------------------------------ Macros and Types ---------------------------------------------------
// -------------------------------- Constants ----------------------------------
// ---------------------- Constants ------------------------
#define BENDPOINTADDRESS_NUM_MSK 0x0F //Endpoint number mask of the bEndpointAddress field of an endpoint descriptor
#define BENDPOINTADDRESS_DIR_MSK 0x80 //Endpoint direction mask of the bEndpointAddress field of an endpoint descriptor
@ -34,32 +32,7 @@
#define CORE_REG_GHWCFG3 0x00C804B5
#define CORE_REG_GHWCFG4 0xD3F0A030
// ------------------------------ Configurable ---------------------------------
#define CHAN_MAX_SLOTS 16
/*
FIFO lengths configured as follows:
RXFIFO (Receive FIFO)
- Recommended: (((LPS/4) + 2) * NUM_PACKETS) + (NUM_CHAN * 2) + (NUM_BULK_CTRL * 1)
- Actual: Assume (LPS = 64), (NUM_CHAN = 8), (NUM_BULK_CTRL = 8):
NPTXFIFO (Non-periodic TX FIFO)
- Recommended: (((LPS/4) + 2) * 2) Fit two largest packet sizes (and each packets overhead info)
- Actual: Assume LPS is 64 (is the MPS for CTRL/BULK/INTR in FS)
PTXFIFO (Periodic TX FIFO)
- Recommended: ((LPS/4) + 2) * NUM_PACKETS
- Actual: Assume a single LPS of 64 (quarter of ISO MPS), then 2 packets worth of overhead
REGFIFO (Register storage)
- Recommended: 4 * NUM_CHAN
- Actual: Assume NUM_CHAN is 8
*/
#define HW_FIFO_LEN 256
#define RX_FIFO_LEN 92
#define NPTX_FIFO_LEN 36
#define PTX_FIFO_LEN 72
#define REG_FIFO_LEN 32
_Static_assert((RX_FIFO_LEN + NPTX_FIFO_LEN + PTX_FIFO_LEN + REG_FIFO_LEN) <= HW_FIFO_LEN, "Sum of FIFO lengths not equal to HW_FIFO_LEN");
// -------------------- Configurable -----------------------
/**
* The following core interrupts will be enabled (listed LSB to MSB). Some of these
@ -114,18 +87,14 @@ _Static_assert((RX_FIFO_LEN + NPTX_FIFO_LEN + PTX_FIFO_LEN + REG_FIFO_LEN) <= HW
USBH_LL_INTR_CHAN_BNAINTR | \
USBH_LL_INTR_CHAN_XCS_XACT_ERR)
/* -----------------------------------------------------------------------------
--------------------------------- Core (Global) --------------------------------
----------------------------------------------------------------------------- */
// ---------------------------- Private Functions ------------------------------
// -------------------------------------------------- Core (Global) ----------------------------------------------------
static void set_defaults(usbh_hal_context_t *hal)
{
usbh_ll_internal_phy_conf(hal->wrap_dev); //Enable and configure internal PHY
//GAHBCFG register
usb_ll_en_dma_mode(hal->dev);
usb_ll_set_hbstlen(hal->dev, 0); //INCR16 AHB burst length
usb_ll_set_hbstlen(hal->dev, 1); //Use INCR AHB burst. MUST DO SO IN ESP32-S2 DUE TO ARBITER ERRATA.
//GUSBCFG register
usb_ll_dis_hnp_cap(hal->dev); //Disable HNP
usb_ll_dis_srp_cap(hal->dev); //Disable SRP
@ -138,16 +107,13 @@ static void set_defaults(usbh_hal_context_t *hal)
usb_ll_set_host_mode(hal->dev);
}
// ---------------------------- Public Functions -------------------------------
void usbh_hal_init(usbh_hal_context_t *hal)
{
//Check if a peripheral is alive by reading the core ID registers
usbh_dev_t *dev = &USBH;
#ifndef NDEBUG
uint32_t core_id = usb_ll_get_controller_core_id(dev);
assert(core_id == CORE_REG_GSNPSID);
#endif
(void) core_id; //Suppress unused variable warning if asserts are disabled
//Initialize HAL context
memset(hal, 0, sizeof(usbh_hal_context_t));
hal->dev = dev;
@ -177,15 +143,34 @@ void usbh_hal_core_soft_reset(usbh_hal_context_t *hal)
//Set the default bits
set_defaults(hal);
//Clear all the flags and channels
hal->periodic_frame_list = NULL;
hal->flags.val = 0;
hal->channels.num_allocd = 0;
hal->channels.chan_pend_intrs_msk = 0;
memset(hal->channels.hdls, 0, sizeof(usbh_hal_chan_t *) * USBH_HAL_NUM_CHAN);
}
/* -----------------------------------------------------------------------------
---------------------------------- Host Port ----------------------------------
----------------------------------------------------------------------------- */
void usbh_hal_set_fifo_size(usbh_hal_context_t *hal, const usbh_hal_fifo_config_t *fifo_config)
{
assert((fifo_config->rx_fifo_lines + fifo_config->nptx_fifo_lines + fifo_config->ptx_fifo_lines) <= USBH_HAL_FIFO_TOTAL_USABLE_LINES);
//Check that none of the channels are active
for (int i = 0; i < USBH_HAL_NUM_CHAN; i++) {
if (hal->channels.hdls[i] != NULL) {
assert(!hal->channels.hdls[i]->flags.active);
}
}
//Set the new FIFO lengths
usb_ll_set_rx_fifo_size(hal->dev, fifo_config->rx_fifo_lines);
usb_ll_set_nptx_fifo_size(hal->dev, fifo_config->rx_fifo_lines, fifo_config->nptx_fifo_lines);
usbh_ll_set_ptx_fifo_size(hal->dev, fifo_config->rx_fifo_lines + fifo_config->nptx_fifo_lines, fifo_config->ptx_fifo_lines);
//Flush the FIFOs
usb_ll_flush_nptx_fifo(hal->dev);
usb_ll_flush_ptx_fifo(hal->dev);
usb_ll_flush_rx_fifo(hal->dev);
hal->flags.fifo_sizes_set = 1;
}
// ---------------------------------------------------- Host Port ------------------------------------------------------
static inline void debounce_lock_enable(usbh_hal_context_t *hal)
{
@ -199,24 +184,17 @@ void usbh_hal_port_enable(usbh_hal_context_t *hal)
usb_priv_speed_t speed = usbh_ll_hprt_get_speed(hal->dev);
//Host Configuration
usbh_ll_hcfg_set_defaults(hal->dev, speed);
//Todo: Set frame list entries and ena per sched
//Configure HFIR
usbh_ll_hfir_set_defaults(hal->dev, speed);
//Config FIFO sizes
usb_ll_set_rx_fifo_size(hal->dev, RX_FIFO_LEN);
usb_ll_set_nptx_fifo_size(hal->dev, RX_FIFO_LEN, NPTX_FIFO_LEN);
usbh_ll_set_ptx_fifo_size(hal->dev, RX_FIFO_LEN + NPTX_FIFO_LEN, PTX_FIFO_LEN);
}
/* -----------------------------------------------------------------------------
----------------------------------- Channel ------------------------------------
------------------------------------------------------------------------------*/
// ----------------------------------------------------- Channel -------------------------------------------------------
// --------------------------- Channel Allocation ------------------------------
// ----------------- Channel Allocation --------------------
//Allocate a channel
bool usbh_hal_chan_alloc(usbh_hal_context_t *hal, usbh_hal_chan_t *chan_obj, void *chan_ctx)
{
assert(hal->flags.fifo_sizes_set); //FIFO sizes should be set befor attempting to allocate a channel
//Attempt to allocate channel
if (hal->channels.num_allocd == USBH_HAL_NUM_CHAN) {
return false; //Out of free channels
@ -246,22 +224,25 @@ bool usbh_hal_chan_alloc(usbh_hal_context_t *hal, usbh_hal_chan_t *chan_obj, voi
return true;
}
//Returns object memory
void usbh_hal_chan_free(usbh_hal_context_t *hal, usbh_hal_chan_t *chan_obj)
{
if (chan_obj->type == USB_PRIV_XFER_TYPE_INTR || chan_obj->type == USB_PRIV_XFER_TYPE_ISOCHRONOUS) {
//Unschedule this channel
for (int i = 0; i < hal->frame_list_len; i++) {
hal->periodic_frame_list[i] &= ~(1 << chan_obj->flags.chan_idx);
}
}
//Can only free a channel when in the disabled state and descriptor list released
assert(!chan_obj->slot.flags.slot_acquired
&& !chan_obj->flags.active
&& !chan_obj->flags.error_pending);
assert(!chan_obj->flags.active && !chan_obj->flags.error_pending);
//Deallocate channel
hal->channels.hdls[chan_obj->flags.chan_idx] = NULL;
hal->channels.num_allocd--;
assert(hal->channels.num_allocd >= 0);
}
// ---------------------------- Channel Control --------------------------------
// ---------------- Channel Configuration ------------------
void usbh_hal_chan_set_ep_char(usbh_hal_chan_t *chan_obj, usbh_hal_ep_char_t *ep_char)
void usbh_hal_chan_set_ep_char(usbh_hal_context_t *hal, usbh_hal_chan_t *chan_obj, usbh_hal_ep_char_t *ep_char)
{
//Cannot change ep_char whilst channel is still active or in error
assert(!chan_obj->flags.active && !chan_obj->flags.error_pending);
@ -273,29 +254,34 @@ void usbh_hal_chan_set_ep_char(usbh_hal_chan_t *chan_obj, usbh_hal_ep_char_t *ep
ep_char->type,
ep_char->bEndpointAddress & BENDPOINTADDRESS_DIR_MSK,
ep_char->ls_via_fs_hub);
//Save channel type
chan_obj->type = ep_char->type;
//If this is a periodic endpoint/channel, set its schedule in the frame list
if (ep_char->type == USB_PRIV_XFER_TYPE_ISOCHRONOUS || ep_char->type == USB_PRIV_XFER_TYPE_INTR) {
assert((int)ep_char->periodic.interval <= (int)hal->frame_list_len); //Interval cannot exceed the length of the frame list
//Find the effective offset in the frame list (in case the phase_offset_frames > interval)
int offset = ep_char->periodic.phase_offset_frames % ep_char->periodic.interval;
//Schedule the channel in the frame list
for (int i = offset; i < hal->frame_list_len; i+= ep_char->periodic.interval) {
hal->periodic_frame_list[i] |= 1 << chan_obj->flags.chan_idx;
}
}
}
/* -----------------------------------------------------------------------------
------------------------------- Transfers Slots --------------------------------
------------------------------------------------------------------------------*/
// ------------------- Channel Control ---------------------
void usbh_hal_chan_activate(usbh_hal_chan_t *chan_obj, int num_to_skip)
void usbh_hal_chan_activate(usbh_hal_chan_t *chan_obj, void *xfer_desc_list, int desc_list_len, int start_idx)
{
//Cannot enable a channel that has already been enabled or is pending error handling
//Cannot activate a channel that has already been enabled or is pending error handling
assert(!chan_obj->flags.active && !chan_obj->flags.error_pending);
assert(chan_obj->slot.flags.slot_acquired);
//Update the descriptor list index and check if it's within bounds
chan_obj->slot.flags.cur_qtd_idx += num_to_skip;
assert(chan_obj->slot.flags.cur_qtd_idx < chan_obj->slot.flags.qtd_list_len);
chan_obj->flags.active = 1;
//Set start address of the QTD list and starting QTD index
usbh_ll_chan_set_dma_addr_non_iso(chan_obj->regs, chan_obj->slot.xfer_desc_list, chan_obj->slot.flags.cur_qtd_idx);
//Start the channel
usbh_ll_chan_start(chan_obj->regs);
usbh_ll_chan_set_dma_addr_non_iso(chan_obj->regs, xfer_desc_list, start_idx);
usbh_ll_chan_set_qtd_list_len(chan_obj->regs, desc_list_len);
usbh_ll_chan_start(chan_obj->regs); //Start the channel
chan_obj->flags.active = 1;
}
bool usbh_hal_chan_slot_request_halt(usbh_hal_chan_t *chan_obj)
bool usbh_hal_chan_request_halt(usbh_hal_chan_t *chan_obj)
{
//Cannot request halt on a channel that is pending error handling
assert(!chan_obj->flags.error_pending);
@ -307,9 +293,7 @@ bool usbh_hal_chan_slot_request_halt(usbh_hal_chan_t *chan_obj)
return true;
}
/* -----------------------------------------------------------------------------
-------------------------------- Event Handling --------------------------------
----------------------------------------------------------------------------- */
// ------------------------------------------------- Event Handling ----------------------------------------------------
//When a device on the port is no longer valid (e.g., disconnect, port error). All channels are no longer valid
static void chan_all_halt(usbh_hal_context_t *hal)
@ -386,12 +370,9 @@ usbh_hal_chan_event_t usbh_hal_chan_decode_intr(usbh_hal_chan_t *chan_obj)
{
uint32_t chan_intrs = usbh_ll_chan_intr_read_and_clear(chan_obj->regs);
usbh_hal_chan_event_t chan_event;
//Currently, all cases where channel interrupts occur will also halt the channel, except for BNA
assert(chan_intrs & (USBH_LL_INTR_CHAN_CHHLTD | USBH_LL_INTR_CHAN_BNAINTR));
chan_obj->flags.active = 0;
//Note: Do not change the current checking order of checks. Certain interrupts (e.g., errors) have precedence over others
if (chan_intrs & CHAN_INTRS_ERROR_MSK) { //One of the error interrupts has occurred.
//Note: Errors are uncommon, so we check against the entire interrupt mask to reduce frequency of entering this call path
if (chan_intrs & CHAN_INTRS_ERROR_MSK) { //Note: Errors are uncommon, so we check against the entire interrupt mask to reduce frequency of entering this call path
assert(chan_intrs & USBH_LL_INTR_CHAN_CHHLTD); //An error should have halted the channel
//Store the error in hal context
usbh_hal_chan_error_t error;
if (chan_intrs & USBH_LL_INTR_CHAN_STALL) {
@ -405,25 +386,34 @@ usbh_hal_chan_event_t usbh_hal_chan_decode_intr(usbh_hal_chan_t *chan_obj)
}
//Update flags
chan_obj->error = error;
chan_obj->flags.active = 0;
chan_obj->flags.error_pending = 1;
//Save the error to be handled later
chan_event = USBH_HAL_CHAN_EVENT_ERROR;
} else if (chan_obj->flags.halt_requested) { //A halt was previously requested and has not been fulfilled
chan_obj->flags.halt_requested = 0;
chan_event = USBH_HAL_CHAN_EVENT_HALT_REQ;
} else if (chan_intrs & USBH_LL_INTR_CHAN_XFERCOMPL) {
int cur_qtd_idx = usbh_ll_chan_get_ctd(chan_obj->regs);
//Store current qtd index
chan_obj->slot.flags.cur_qtd_idx = cur_qtd_idx;
if (cur_qtd_idx == 0) {
//If the transfer descriptor list has completed, the CTD index should be 0 (wrapped around)
chan_event = USBH_HAL_CHAN_EVENT_SLOT_DONE;
} else if (chan_intrs & USBH_LL_INTR_CHAN_CHHLTD) {
if (chan_obj->flags.halt_requested) {
chan_obj->flags.halt_requested = 0;
chan_event = USBH_HAL_CHAN_EVENT_HALT_REQ;
} else {
chan_event = USBH_HAL_CHAN_EVENT_SLOT_HALT;
//Must have been halted due to QTD HOC
chan_event = USBH_HAL_CHAN_EVENT_CPLT;
}
chan_obj->flags.active = 0;
} else if (chan_intrs & USBH_LL_INTR_CHAN_XFERCOMPL) {
/*
A transfer complete interrupt WITHOUT the channel halting only occurs when receiving a short interrupt IN packet
and the underlying QTD does not have the HOC bit set. This signifies the last packet of the Interrupt transfer
as all interrupt packets must MPS sized except the last.
*/
//The channel isn't halted yet, so we need to halt it manually to stop the execution of the next QTD/packet
usbh_ll_chan_halt(chan_obj->regs);
/*
After setting the halt bit, this will generate another channel halted interrupt. We treat this interrupt as
a NONE event, then cycle back with the channel halted interrupt to handle the CPLT event.
*/
chan_event = USBH_HAL_CHAN_EVENT_NONE;
} else {
//Should never reach this point
abort();
abort(); //Should never reach this point
}
return chan_event;
}

View File

@ -7,6 +7,4 @@ endif()
idf_component_register(SRCS "hcd.c"
INCLUDE_DIRS ""
PRIV_INCLUDE_DIRS "private_include"
PRIV_REQUIRES "hal"
REQUIRES "")
PRIV_INCLUDE_DIRS "private_include")

File diff suppressed because it is too large Load Diff

View File

@ -31,11 +31,19 @@ The HAL layer abstracts the DWC_OTG operating in Host Mode using Internal Scatte
## HAL Channels
- Channels are essentially the controllers abstraction of USB pipes. At any one point in time, a channel can be configured to map to a particular endpoint on a particular connected device (i.e., a particular device address).
- Channels have to be allocated and freed. It's possible to change a channel's endpoint characteristics (i.e., EP number, device address, direction, transfer type etc) so long as the channel is in the Halted state whilst doing so.
- Channels transfer data using transfer descriptor lists (i.e., a list of DMA descriptors). Each channel has one slot for a single list. Use `usbh_hal_chan_slot_acquire()` to acquire a channel's list slot, and `usbh_hal_chan_activate()` to start the transfer.
- Once a transfer is completed, an channel event should be generated. Use `usbh_hal_chan_slot_release()` to free the slot, allowing for another transfer list to acquire the slot.
- To fill and parse a transfer descriptor list, use the `usbh_hal_xfer_desc_fill()` and `usbh_hal_xfer_desc_parse()` functions.
- Each channel and each channel slot will allow the callers to set a context variable. This allows client to associate a particular channel or an acquired slot with client objects (e.g., associate a channel to a HCD pipe object).
- Channels have to be allocated and freed. It's possible to change a channel's endpoint characteristics (i.e., EP number, device address, direction, transfer type etc) so long as the channel is halted (i.e., not actively executing transfer descriptors).
- Use `usbh_hal_chan_alloc()` to allocate a channel
- Once allocated, use `usbh_hal_chan_set_ep_char()` to set the Endpoint characteristics of the channel (i.e., the information of the endpoint that the channel is communicating with). There are also some `usbh_hal_chan_set...()` functions to change a particular characteristic.
- Once the channel is no longer needed, call `usbh_hal_chan_free()` to free the channel
- Channels use a list of Queue Transfer Descriptors (QTDs) to executed USB transfers.
- A transfer descriptor list must be filled using `usbh_hal_xfer_desc_fill()`
- Once filled, a channel can be activated using `usbh_hal_chan_activate()`
- Once the channel is done (i.e., a descriptor with the `USBH_HAL_XFER_DESC_FLAG_HOC` is executed), a `USBH_HAL_CHAN_EVENT_CPLT` event is generated. The channel is now halted
- Call `usbh_hal_xfer_desc_parse()` to parse the results of the descriptor list
- If you need to halt the channel early (such as aborting a transfer), call `usbh_hal_chan_request_halt()`
- In case of a channel error event:
- Call `usbh_hal_chan_get_error()` to get the specific channel error that occurred
- You must call `usbh_hal_chan_clear_error()` after an error to clear the error and allow the channel to continue to be used.
# Host Controller Driver (HCD)
@ -49,16 +57,18 @@ The HCD currently has the following limitations:
- HCD **does not** "present the root hub and its behavior according to the hub class definition". We currently don't have a hub driver yet, so the port commands in the driver do not fully represent an interface of a USB hub as described in 10.4 of the USB2.0 spec.
- No more than 8 pipes can be allocated at any one time due to underlying Host Controllers 8 channel limit. In the future, we could make particular pipes share a single Host Controller channel.
- The HCD currently only supports Control and Bulk transfer types.
- If you are connecting to a device with a large MPS requirements (e.g., Isochronous transfers), you may need to call `hcd_port_set_fifo_bias()` to adjust the size of the internal FIFO
## HCD Port
- An HCD port can be as a simplified version of a port on the Root Hub of the host controller. However, the complexity of parsing Hub Requests is discarded in favor of port commands (`hcd_port_cmd_t`) as the current USB Host Stack does not support hubs yet.
- A port must first initialized before it can be used. A port is identified by its handled of type `hcd_port_handle_t`
- The port can be manipulated using commands such as
- The port can be manipulated using commands such as:
- Powering the port ON/OFF
- Issuing reset/resume signals
- The various host port events are represented in the `hcd_port_event_t` enumeration
- When a fatal error (such as a sudden disconnection or a port over current), the port will be put into the HCD_PORT_STATE_RECOVERY state. The port can be deinitialized from there, or recovered using `hcd_port_recover()`. All the pipes routed through the port will be made invalid.
- The FIFO bias of a port can be set using `hcd_port_set_fifo_bias()`. Biasing the FIFO will affect the permissible MPS sizes of pipes. For example, if the connected device has an IN endpoint with large MPS (e.g., 512 bytes), the FIFO should be biased as `HCD_PORT_FIFO_BIAS_RX`.
## HCD Pipes

View File

@ -38,7 +38,7 @@ extern "C" {
*/
typedef enum {
HCD_PORT_STATE_NOT_POWERED, /**< The port is not powered */
HCD_PORT_STATE_DISCONNECTED, /**< The port is powered but no device is conencted */
HCD_PORT_STATE_DISCONNECTED, /**< The port is powered but no device is connected */
HCD_PORT_STATE_DISABLED, /**< A device has connected to the port but has not been reset. SOF/keep alive are not being sent */
HCD_PORT_STATE_RESETTING, /**< The port is issuing a reset condition */
HCD_PORT_STATE_SUSPENDED, /**< The port has been suspended. */
@ -74,12 +74,12 @@ typedef enum {
* On receiving a port event, hcd_port_handle_event() should be called to handle that event
*/
typedef enum {
HCD_PORT_EVENT_NONE, /**< No event has ocurred. Or the previous event is no longer valid */
HCD_PORT_EVENT_NONE, /**< No event has occurred. Or the previous event is no longer valid */
HCD_PORT_EVENT_CONNECTION, /**< A device has been connected to the port */
HCD_PORT_EVENT_DISCONNECTION, /**< A device disconnection has been detected */
HCD_PORT_EVENT_ERROR, /**< A port error has been detected. Port is now HCD_PORT_STATE_RECOVERY */
HCD_PORT_EVENT_OVERCURRENT, /**< Overcurrent detected on the port. Port is now HCD_PORT_STATE_RECOVERY */
HCD_PORT_EVENT_SUDDEN_DISCONN, /**< The port has suddenly disconencted (i.e., there was an enabled device connected
HCD_PORT_EVENT_SUDDEN_DISCONN, /**< The port has suddenly disconnected (i.e., there was an enabled device connected
to the port when the disconnection occurred. Port is now HCD_PORT_STATE_RECOVERY. */
} hcd_port_event_t;
@ -152,6 +152,12 @@ typedef bool (*hcd_port_isr_callback_t)(hcd_port_handle_t port_hdl, hcd_port_eve
*/
typedef bool (*hcd_pipe_isr_callback_t)(hcd_pipe_handle_t pipe_hdl, hcd_pipe_event_t pipe_event, void *user_arg, bool in_isr);
typedef enum {
HCD_PORT_FIFO_BIAS_BALANCED, /**< Balanced FIFO sizing for RX, Non-periodic TX, and periodic TX */
HCD_PORT_FIFO_BIAS_RX, /**< Bias towards a large RX FIFO */
HCD_PORT_FIFO_BIAS_PTX, /**< Bias towards periodic TX FIFO */
} hcd_port_fifo_bias_t;
/**
* @brief HCD configuration structure
*/
@ -165,7 +171,7 @@ typedef struct {
typedef struct {
hcd_port_isr_callback_t callback; /**< HCD port event callback */
void *callback_arg; /**< User argument for HCD port callback */
void *context;
void *context; /**< Context variable used to associate the port with upper layer object */
} hcd_port_config_t;
/**
@ -177,9 +183,9 @@ typedef struct {
hcd_pipe_isr_callback_t callback; /**< HCD pipe event ISR callback */
void *callback_arg; /**< User argument for HCD pipe callback */
void *context; /**< Context variable used to associate the pipe with upper layer object */
usb_desc_ep_t *ep_desc; /**< Pointer to endpoint descriptor of the pipe */
uint8_t dev_addr; /**< Device address of the pipe */
const usb_desc_ep_t *ep_desc; /**< Pointer to endpoint descriptor of the pipe */
usb_speed_t dev_speed; /**< Speed of the device */
uint8_t dev_addr; /**< Device address of the pipe */
} hcd_pipe_config_t;
// --------------------------------------------- Host Controller Driver ------------------------------------------------
@ -297,7 +303,7 @@ esp_err_t hcd_port_get_speed(hcd_port_handle_t port_hdl, usb_speed_t *speed);
*
* If the port has no events, this function will return HCD_PORT_EVENT_NONE.
*
* @note If callbacks are not used, this function can also be used in a polling manner to repeatedely check for and
* @note If callbacks are not used, this function can also be used in a polling manner to repeatedly check for and
* handle a port's events.
* @note This function is internally protected by a mutex. If multiple threads call this function, this function will
* can block.
@ -325,7 +331,22 @@ esp_err_t hcd_port_recover(hcd_port_handle_t port_hdl);
* @param port_hdl Port handle
* @return void* Context variable
*/
void *hcd_port_get_ctx(hcd_port_handle_t port_hdl);
void *hcd_port_get_context(hcd_port_handle_t port_hdl);
/**
* @brief Set the bias of the HCD port's internal FIFO
*
* @note This function can only be called when the following conditions are met:
* - Port is initialized
* - Port does not have any pending events
* - Port does not have any allocated pipes
*
* @param port_hdl Port handle
* @param bias Fifo bias
* @retval ESP_OK FIFO sizing successfully set
* @retval ESP_ERR_INVALID_STATE Incorrect state for FIFO sizes to be set
*/
esp_err_t hcd_port_set_fifo_bias(hcd_port_handle_t port_hdl, hcd_port_fifo_bias_t bias);
// --------------------------------------------------- HCD Pipes -------------------------------------------------------
@ -346,7 +367,7 @@ void *hcd_port_get_ctx(hcd_port_handle_t port_hdl);
* @retval ESP_ERR_NO_MEM: Insufficient memory
* @retval ESP_ERR_INVALID_ARG: Arguments are invalid
* @retval ESP_ERR_INVALID_STATE: Host port is not in the correct state to allocate a pipe
* @retval ESP_ERR_NOT_SUPPORTED: The pipe cannot be supported
* @retval ESP_ERR_NOT_SUPPORTED: The pipe's configuration cannot be supported
*/
esp_err_t hcd_pipe_alloc(hcd_port_handle_t port_hdl, const hcd_pipe_config_t *pipe_config, hcd_pipe_handle_t *pipe_hdl);
@ -365,22 +386,38 @@ esp_err_t hcd_pipe_alloc(hcd_port_handle_t port_hdl, const hcd_pipe_config_t *pi
esp_err_t hcd_pipe_free(hcd_pipe_handle_t pipe_hdl);
/**
* @brief Update a pipe's device address and maximum packet size
* @brief Update a pipe's maximum packet size
*
* This function is intended to be called on default pipes during enumeration in order to update the pipe's maximum
* packet size. This function can only be called on a pipe that has met the following conditions:
* - Pipe is still valid (i.e., not in the HCD_PIPE_STATE_INVALID state)
* - Pipe is not currently processing a command
* - All IRPs have been dequeued from the pipe
*
* @param pipe_hdl Pipe handle
* @param mps New Maximum Packet Size
*
* @retval ESP_OK: Pipe successfully updated
* @retval ESP_ERR_INVALID_STATE: Pipe is not in a condition to be updated
*/
esp_err_t hcd_pipe_update_mps(hcd_pipe_handle_t pipe_hdl, int mps);
/**
* @brief Update a pipe's device address
*
* This function is intended to be called on default pipes during enumeration in order to update the pipe's device
* address and maximum packet size. This function can only be called on a pipe that has met the following conditions:
* address. This function can only be called on a pipe that has met the following conditions:
* - Pipe is still valid (i.e., not in the HCD_PIPE_STATE_INVALID state)
* - Pipe is not currently processing a command
* - All IRPs have been dequeued from the pipe
*
* @param pipe_hdl Pipe handle
* @param dev_addr New device address
* @param mps New Maximum Packet Size
*
* @retval ESP_OK: Pipe successfully updated
* @retval ESP_ERR_INVALID_STATE: Pipe is no in a condition to be updated
* @retval ESP_ERR_INVALID_STATE: Pipe is not in a condition to be updated
*/
esp_err_t hcd_pipe_update(hcd_pipe_handle_t pipe_hdl, uint8_t dev_addr, int mps);
esp_err_t hcd_pipe_update_dev_addr(hcd_pipe_handle_t pipe_hdl, uint8_t dev_addr);
/**
* @brief Get the context variable of a pipe from its handle
@ -388,7 +425,7 @@ esp_err_t hcd_pipe_update(hcd_pipe_handle_t pipe_hdl, uint8_t dev_addr, int mps)
* @param pipe_hdl Pipe handle
* @return void* Context variable
*/
void *hcd_pipe_get_ctx(hcd_pipe_handle_t pipe_hdl);
void *hcd_pipe_get_context(hcd_pipe_handle_t pipe_hdl);
/**
* @brief Get the current sate of the pipe
@ -406,8 +443,8 @@ hcd_pipe_state_t hcd_pipe_get_state(hcd_pipe_handle_t pipe_hdl);
* - Pipe is still valid (i.e., not in the HCD_PIPE_STATE_INVALID)
* - No other thread/task processing a command on the pipe concurrently (will return)
*
* @note Some pipe commands will block until the pipe's current inflight IRP is complete. If the pipe's state
* changes unexpectedley, this function will return ESP_ERR_INVALID_RESPONSE
* @note Some pipe commands will block until the pipe's current in-flight IRP is complete. If the pipe's state
* changes unexpectedly, this function will return ESP_ERR_INVALID_RESPONSE
*
* @param pipe_hdl Pipe handle
* @param command Pipe command
@ -449,7 +486,7 @@ esp_err_t hcd_irp_enqueue(hcd_pipe_handle_t pipe_hdl, usb_irp_t *irp);
* @brief Dequeue an IRP from a particular pipe
*
* This function should be called on a pipe after a pipe receives a HCD_PIPE_EVENT_IRP_DONE event. If a pipe has
* multiple IRPs that can be dequeued, this function should be called repeatedely until all IRPs are dequeued. If a pipe
* multiple IRPs that can be dequeued, this function should be called repeatedly until all IRPs are dequeued. If a pipe
* has no more IRPs to dequeue, this function will return NULL.
*
* @param pipe_hdl Pipe handle
@ -461,7 +498,7 @@ usb_irp_t *hcd_irp_dequeue(hcd_pipe_handle_t pipe_hdl);
* @brief Abort an enqueued IRP
*
* This function will attempt to abort an IRP that is already enqueued. If the IRP has yet to be executed, it will be
* "cancelled" and can then be dequeued. If the IRP is currenty inflight or has already completed, the IRP will not be
* "cancelled" and can then be dequeued. If the IRP is currenty in-flight or has already completed, the IRP will not be
* affected by this function.
*
* @param irp I/O Request Packet to abort

View File

@ -54,10 +54,10 @@ typedef enum {
* @note The enum values need to match the bmAttributes field of an EP descriptor
*/
typedef enum {
USB_XFER_TYPE_CTRL = 0,
USB_XFER_TYPE_ISOCHRONOUS,
USB_XFER_TYPE_BULK,
USB_XFER_TYPE_INTR,
USB_TRANSFER_TYPE_CTRL = 0,
USB_TRANSFER_TYPE_ISOCHRONOUS,
USB_TRANSFER_TYPE_BULK,
USB_TRANSFER_TYPE_INTR,
} usb_transfer_type_t;
/**
@ -67,10 +67,11 @@ typedef enum {
USB_TRANSFER_STATUS_COMPLETED, /**< The transfer was successful (but may be short) */
USB_TRANSFER_STATUS_ERROR, /**< The transfer failed because due to excessive errors (e.g. no response or CRC error) */
USB_TRANSFER_STATUS_TIMED_OUT, /**< The transfer failed due to a time out */
USB_TRANSFER_STATUS_CANCELLED, /**< The transfer was canceled */
USB_TRANSFER_STATUS_CANCELED, /**< The transfer was canceled */
USB_TRANSFER_STATUS_STALL, /**< The transfer was stalled */
USB_TRANSFER_STATUS_NO_DEVICE, /**< The transfer failed because the device is no longer valid (e.g., disconnected */
USB_TRANSFER_STATUS_OVERFLOW, /**< The transfer as more data was sent than was requested */
USB_TRANSFER_STATUS_SKIPPED, /**< ISOC only. The packet was skipped due to system latency */
} usb_transfer_status_t;
/**
@ -87,6 +88,8 @@ typedef struct {
usb_transfer_status_t status; /**< Status of the packet */
} usb_iso_packet_desc_t;
#define USB_IRP_FLAG_ZERO_PACK 0x01 /**< (For bulk OUT only). Indicates that a bulk OUT transfers should always terminate with a short packet, even if it means adding an extra zero length packet */
/**
* @brief USB IRP (I/O Request Packet). See USB2.0 Spec
*
@ -114,8 +117,9 @@ struct usb_irp_obj {
uint8_t *data_buffer; /**< Pointer to data buffer. Must be DMA capable memory */
int num_bytes; /**< Number of bytes in IRP. Control should exclude size of setup. IN should be integer multiple of MPS */
int actual_num_bytes; /**< Actual number of bytes transmitted/receives in the IRP */
uint32_t flags; /**< IRP flags */
usb_transfer_status_t status; /**< Status of the transfer */
uint32_t timeout; /**< Timeout (in milliseconds) of the packet */
uint32_t timeout; /**< Timeout (in milliseconds) of the packet (currently not supported yet) */
void *context; /**< Context variable used to associate the IRP object with another object */
int num_iso_packets; /**< Only relevant to Isochronous. Number of service periods to transfer data buffer over. Set to 0 for non-iso transfers */
usb_iso_packet_desc_t iso_packet_desc[0]; /**< Descriptors for each ISO packet */
@ -125,6 +129,15 @@ typedef struct usb_irp_obj usb_irp_t;
// ---------------------------------------------------- Chapter 9 ------------------------------------------------------
#define USB_B_DESCRIPTOR_TYPE_DEVICE 1
#define USB_B_DESCRIPTOR_TYPE_CONFIGURATION 2
#define USB_B_DESCRIPTOR_TYPE_STRING 3
#define USB_B_DESCRIPTOR_TYPE_INTERFACE 4
#define USB_B_DESCRIPTOR_TYPE_ENDPOINT 5
#define USB_B_DESCRIPTOR_TYPE_DEVICE_QUALIFIER 6
#define USB_B_DESCRIPTOR_TYPE_OTHER_SPEED_CONFIGURATION 7
#define USB_B_DESCRIPTOR_TYPE_INTERFACE_POWER 8
// ------------------- Control Request ---------------------
/**
@ -250,12 +263,23 @@ _Static_assert(sizeof(usb_ctrl_req_t) == USB_CTRL_REQ_SIZE, "Size of usb_ctrl_re
(ctrl_req_ptr)->wLength = 0; \
})
/**
* @brief Initializer for a request to set an interface's alternate setting
*/
#define USB_CTRL_REQ_INIT_SET_INTERFACE(ctrl_req_ptr, intf_num, alt_setting_num) ({ \
(ctrl_req_ptr)->bRequestType = USB_B_REQUEST_TYPE_DIR_OUT | USB_B_REQUEST_TYPE_TYPE_STANDARD | USB_B_REQUEST_TYPE_RECIP_INTERFACE; \
(ctrl_req_ptr)->bRequest = USB_B_REQUEST_SET_INTERFACE; \
(ctrl_req_ptr)->wValue = (alt_setting_num); \
(ctrl_req_ptr)->wIndex = (intf_num); \
(ctrl_req_ptr)->wLength = 0; \
})
// ------------------ Device Descriptor --------------------
/**
* @brief Size of a USB device descriptor in bytes
*/
#define USB_DESC_DEV_SIZE 18
#define USB_DESC_DEVC_SIZE 18
/**
* @brief Structure representing a USB device descriptor
@ -277,9 +301,9 @@ typedef union {
uint8_t iSerialNumber;
uint8_t bNumConfigurations;
} USB_DESC_ATTR;
uint8_t val[USB_DESC_DEV_SIZE];
uint8_t val[USB_DESC_DEVC_SIZE];
} usb_desc_devc_t;
_Static_assert(sizeof(usb_desc_devc_t) == USB_DESC_DEV_SIZE, "Size of usb_desc_devc_t incorrect");
_Static_assert(sizeof(usb_desc_devc_t) == USB_DESC_DEVC_SIZE, "Size of usb_desc_devc_t incorrect");
/**
* @brief Possible base class values of the bDeviceClass field of a USB device descriptor

View File

@ -5,7 +5,7 @@ if(NOT "${target}" STREQUAL "esp32s2")
return()
endif()
idf_component_register(SRC_DIRS "."
PRIV_INCLUDE_DIRS "." "../private_include"
idf_component_register(SRC_DIRS "hcd"
PRIV_INCLUDE_DIRS "../private_include" "." "hcd"
PRIV_REQUIRES cmock usb test_utils
)

View File

@ -0,0 +1,262 @@
// Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <stdbool.h>
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "unity.h"
#include "test_utils.h"
#include "test_hcd_common.h"
// ------------------------------------------------- Mock MSC SCSI -----------------------------------------------------
/*
Note: The following test requires that USB flash drive be connected. The flash drive should...
- Be implement the Mass Storage class supporting BULK only transfers using SCSI commands
- It's configuration 1 should have the following endpoints
Endpoint Descriptor:
bLength 7
bDescriptorType 5
bEndpointAddress 0x01 EP 1 OUT
bmAttributes 2
Transfer Type Bulk
Synch Type None
Usage Type Data
wMaxPacketSize 0x0040 1x 64 bytes
bInterval 1
Endpoint Descriptor:
bLength 7
bDescriptorType 5
bEndpointAddress 0x82 EP 2 IN
bmAttributes 2
Transfer Type Bulk
Synch Type None
Usage Type Data
wMaxPacketSize 0x0040 1x 64 bytes
bInterval 1
If you're using a flash driver with different endpoints, modify the endpoint descriptors below.
*/
static const usb_desc_ep_t bulk_out_ep_desc = {
.bLength = sizeof(usb_desc_ep_t),
.bDescriptorType = USB_B_DESCRIPTOR_TYPE_ENDPOINT,
.bEndpointAddress = 0x01, //EP 1 OUT
.bmAttributes = USB_BM_ATTRIBUTES_XFER_BULK,
.wMaxPacketSize = 64, //MPS of 64 bytes
.bInterval = 1,
};
static const usb_desc_ep_t bulk_in_ep_desc = {
.bLength = sizeof(usb_desc_ep_t),
.bDescriptorType = USB_B_DESCRIPTOR_TYPE_ENDPOINT,
.bEndpointAddress = 0x82, //EP 2 IN
.bmAttributes = USB_BM_ATTRIBUTES_XFER_BULK,
.wMaxPacketSize = 64, //MPS of 64 bytes
.bInterval = 1,
};
#define MOCK_MSC_SCSI_SECTOR_SIZE 512
#define MOCK_MSC_SCSI_LUN 0
#define MSC_SCSI_INTR_NUMBER 0
#define MOCK_MSC_SCSI_REQ_INIT_RESET(ctrl_req_ptr, intf_num) ({ \
(ctrl_req_ptr)->bRequestType = USB_B_REQUEST_TYPE_DIR_OUT | USB_B_REQUEST_TYPE_TYPE_CLASS | USB_B_REQUEST_TYPE_RECIP_INTERFACE; \
(ctrl_req_ptr)->bRequest = 0xFF; \
(ctrl_req_ptr)->wValue = 0; \
(ctrl_req_ptr)->wIndex = (intf_num); \
(ctrl_req_ptr)->wLength = 0; \
})
typedef struct __attribute__((packed)) {
uint8_t opcode; //0x28 = read(10), 0x2A=write(10)
uint8_t flags;
uint8_t lba_3;
uint8_t lba_2;
uint8_t lba_1;
uint8_t lba_0;
uint8_t group;
uint8_t len_1;
uint8_t len_0;
uint8_t control;
} mock_scsi_cmd10_t;
typedef struct __attribute__((packed)) {
uint32_t dCBWSignature;
uint32_t dCBWTag;
uint32_t dCBWDataTransferLength;
uint8_t bmCBWFlags;
uint8_t bCBWLUN;
uint8_t bCBWCBLength;
mock_scsi_cmd10_t CBWCB;
uint8_t padding[6];
} mock_msc_bulk_cbw_t;
// USB Bulk Transfer Command Status Wrapper data
typedef struct __attribute__((packed)) {
uint32_t dCSWSignature;
uint32_t dCSWTag;
uint32_t dCSWDataResidue;
uint8_t bCSWStatus;
} mock_msc_bulk_csw_t;
static void mock_msc_reset_req(hcd_pipe_handle_t default_pipe)
{
//Create IRP
usb_irp_t *irp = heap_caps_calloc(1, sizeof(usb_irp_t), MALLOC_CAP_DEFAULT);
TEST_ASSERT_NOT_EQUAL(NULL, irp);
irp->data_buffer = heap_caps_malloc(sizeof(usb_ctrl_req_t), MALLOC_CAP_DMA);
TEST_ASSERT_NOT_EQUAL(NULL, irp->data_buffer);
usb_ctrl_req_t *ctrl_req = (usb_ctrl_req_t *)irp->data_buffer;
MOCK_MSC_SCSI_REQ_INIT_RESET(ctrl_req, MSC_SCSI_INTR_NUMBER);
irp->num_bytes = 0;
//Enqueue, wait, dequeue, and check IRP
TEST_ASSERT_EQUAL(ESP_OK, hcd_irp_enqueue(default_pipe, irp));
test_hcd_expect_pipe_event(default_pipe, HCD_PIPE_EVENT_IRP_DONE);
TEST_ASSERT_EQUAL(irp, hcd_irp_dequeue(default_pipe));
TEST_ASSERT_EQUAL(USB_TRANSFER_STATUS_COMPLETED, irp->status);
//Free IRP
heap_caps_free(irp->data_buffer);
heap_caps_free(irp);
}
static void mock_msc_scsi_init_cbw(mock_msc_bulk_cbw_t *cbw, bool is_read, int offset, int num_sectors, uint32_t tag)
{
cbw->dCBWSignature = 0x43425355; //Fixed value
cbw->dCBWTag = tag; //Random value that is echoed back
cbw->dCBWDataTransferLength = num_sectors * MOCK_MSC_SCSI_SECTOR_SIZE;
cbw->bmCBWFlags = (is_read) ? (1 << 7) : 0; //If this is a read, set the direction flag
cbw->bCBWLUN = MOCK_MSC_SCSI_LUN;
cbw->bCBWCBLength = 10; //The length of the SCSI command
//Initialize SCSI CMD as READ10 or WRITE 10
cbw->CBWCB.opcode = (is_read) ? 0x28 : 0x2A; //SCSI CMD READ10 or WRITE10
cbw->CBWCB.flags = 0;
cbw->CBWCB.lba_3 = (offset >> 24);
cbw->CBWCB.lba_2 = (offset >> 16);
cbw->CBWCB.lba_1 = (offset >> 8);
cbw->CBWCB.lba_0 = (offset >> 0);
cbw->CBWCB.group = 0;
cbw->CBWCB.len_1 = (num_sectors >> 8);
cbw->CBWCB.len_0 = (num_sectors >> 0);
cbw->CBWCB.control = 0;
}
static bool mock_msc_scsi_check_csw(mock_msc_bulk_csw_t *csw, uint32_t tag_expect)
{
bool no_issues = true;
if (csw->dCSWSignature != 0x53425355) {
no_issues = false;
printf("Warning: csw signature corrupt (0x%X)\n", csw->dCSWSignature);
}
if (csw->dCSWTag != tag_expect) {
no_issues = false;
printf("Warning: csw tag unexpected! Expected %d got %d\n", tag_expect, csw->dCSWTag);
}
if (csw->dCSWDataResidue) {
no_issues = false;
printf("Warning: csw indicates data residue of %d bytes!\n", csw->dCSWDataResidue);
}
if (csw->bCSWStatus) {
no_issues = false;
printf("Warning: csw indicates non-good status %d!\n", csw->bCSWStatus);
}
return no_issues;
}
// --------------------------------------------------- Test Cases ------------------------------------------------------
/*
Test HCD bulk pipe IRPs
Purpose:
- Test that a bulk pipe can be created
- IRPs can be created and enqueued to the bulk pipe pipe
- Bulk pipe returns HCD_PIPE_EVENT_IRP_DONE for completed IRPs
- Test utilizes a bare bones (i.e., mock) MSC class using SCSI commands
Procedure:
- Setup HCD and wait for connection
- Allocate default pipe and enumerate the device
- Allocate separate IRPS for CBW, Data, and CSW transfers of the MSC class
- Read TEST_NUM_SECTORS number of sectors for the mass storage device
- Expect HCD_PIPE_EVENT_IRP_DONE for each IRP
- Deallocate IRPs
- Teardown
*/
#define TEST_NUM_SECTORS 10
#define TEST_NUM_SECTORS_PER_ITER 2
TEST_CASE("Test HCD bulk pipe IRPs", "[hcd][ignore]")
{
hcd_port_handle_t port_hdl = test_hcd_setup(); //Setup the HCD and port
usb_speed_t port_speed = test_hcd_wait_for_conn(port_hdl); //Trigger a connection
vTaskDelay(pdMS_TO_TICKS(100)); //Short delay send of SOF (for FS) or EOPs (for LS)
//Enumerate and reset MSC SCSI device
hcd_pipe_handle_t default_pipe = test_hcd_pipe_alloc(port_hdl, NULL, 0, port_speed); //Create a default pipe (using a NULL EP descriptor)
uint8_t dev_addr = test_hcd_enum_devc(default_pipe);
mock_msc_reset_req(default_pipe);
//Create BULK IN and BULK OUT pipes for SCSI
hcd_pipe_handle_t bulk_out_pipe = test_hcd_pipe_alloc(port_hdl, &bulk_out_ep_desc, dev_addr, port_speed);
hcd_pipe_handle_t bulk_in_pipe = test_hcd_pipe_alloc(port_hdl, &bulk_in_ep_desc, dev_addr, port_speed);
//Create IRPs for CBW, Data, and CSW transport. IN Buffer sizes are rounded up to nearest MPS
usb_irp_t *irp_cbw = test_hcd_alloc_irp(0, sizeof(mock_msc_bulk_cbw_t));
usb_irp_t *irp_data = test_hcd_alloc_irp(0, TEST_NUM_SECTORS_PER_ITER * MOCK_MSC_SCSI_SECTOR_SIZE);
usb_irp_t *irp_csw = test_hcd_alloc_irp(0, sizeof(mock_msc_bulk_csw_t) + (bulk_in_ep_desc.wMaxPacketSize - (sizeof(mock_msc_bulk_csw_t) % bulk_in_ep_desc.wMaxPacketSize)));
irp_cbw->num_bytes = sizeof(mock_msc_bulk_cbw_t);
irp_data->num_bytes = TEST_NUM_SECTORS_PER_ITER * MOCK_MSC_SCSI_SECTOR_SIZE;
irp_csw->num_bytes = sizeof(mock_msc_bulk_csw_t) + (bulk_in_ep_desc.wMaxPacketSize - (sizeof(mock_msc_bulk_csw_t) % bulk_in_ep_desc.wMaxPacketSize));
for (int block_num = 0; block_num < TEST_NUM_SECTORS; block_num += TEST_NUM_SECTORS_PER_ITER) {
//Initialize CBW IRP, then send it on the BULK OUT pipe
mock_msc_scsi_init_cbw((mock_msc_bulk_cbw_t *)irp_cbw->data_buffer, true, block_num, TEST_NUM_SECTORS_PER_ITER, 0xAAAAAAAA);
TEST_ASSERT_EQUAL(ESP_OK, hcd_irp_enqueue(bulk_out_pipe, irp_cbw));
test_hcd_expect_pipe_event(bulk_out_pipe, HCD_PIPE_EVENT_IRP_DONE);
TEST_ASSERT_EQUAL(irp_cbw, hcd_irp_dequeue(bulk_out_pipe));
TEST_ASSERT_EQUAL(USB_TRANSFER_STATUS_COMPLETED, irp_cbw->status);
//Read data through BULK IN pipe
TEST_ASSERT_EQUAL(ESP_OK, hcd_irp_enqueue(bulk_in_pipe, irp_data));
test_hcd_expect_pipe_event(bulk_in_pipe, HCD_PIPE_EVENT_IRP_DONE);
TEST_ASSERT_EQUAL(irp_data, hcd_irp_dequeue(bulk_in_pipe));
TEST_ASSERT_EQUAL(USB_TRANSFER_STATUS_COMPLETED, irp_data->status);
//Read the CSW through BULK IN pipe
TEST_ASSERT_EQUAL(ESP_OK, hcd_irp_enqueue(bulk_in_pipe, irp_csw));
test_hcd_expect_pipe_event(bulk_in_pipe, HCD_PIPE_EVENT_IRP_DONE);
TEST_ASSERT_EQUAL(irp_csw, hcd_irp_dequeue(bulk_in_pipe));
TEST_ASSERT_EQUAL(USB_TRANSFER_STATUS_COMPLETED, irp_data->status);
TEST_ASSERT_EQUAL(sizeof(mock_msc_bulk_csw_t), irp_csw->actual_num_bytes);
TEST_ASSERT_EQUAL(true, mock_msc_scsi_check_csw((mock_msc_bulk_csw_t *)irp_csw->data_buffer, 0xAAAAAAAA));
//Print the read data
printf("Block %d to %d:\n", block_num, block_num + TEST_NUM_SECTORS_PER_ITER);
for (int i = 0; i < irp_data->actual_num_bytes; i++) {
printf("0x%02x,", ((char *)irp_data->data_buffer)[i]);
}
printf("\n\n");
}
test_hcd_free_irp(irp_cbw);
test_hcd_free_irp(irp_data);
test_hcd_free_irp(irp_csw);
test_hcd_pipe_free(bulk_out_pipe);
test_hcd_pipe_free(bulk_in_pipe);
test_hcd_pipe_free(default_pipe);
//Cleanup
test_hcd_wait_for_disconn(port_hdl, false);
test_hcd_teardown(port_hdl);
}

View File

@ -0,0 +1,350 @@
// Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//Todo: Move all the port and PHY to here
//Have a separate test file for INTR (HID), ISOC (UVC), and BULK (SCSI)
//Each test case has a fixed HW device
//Implements bare minimum for a MOCK protocol
#include <stdio.h>
#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "test_utils.h"
#include "soc/gpio_pins.h"
#include "soc/gpio_sig_map.h"
#include "esp_intr_alloc.h"
#include "esp_err.h"
#include "esp_attr.h"
#include "esp_rom_gpio.h"
#include "hal/usbh_ll.h"
#include "usb.h"
#include "hcd.h"
#define PORT_NUM 1
#define EVENT_QUEUE_LEN 5
#define ENUM_ADDR 1 //Device address to use for tests that enumerate the device
#define ENUM_CONFIG 1 //Device configuration number to use for tests that enumerate the device
typedef struct {
hcd_port_handle_t port_hdl;
hcd_port_event_t port_event;
} port_event_msg_t;
typedef struct {
hcd_pipe_handle_t pipe_hdl;
hcd_pipe_event_t pipe_event;
} pipe_event_msg_t;
// ---------------------------------------------------- Private --------------------------------------------------------
/**
* @brief HCD port callback. Registered when initializing an HCD port
*
* @param port_hdl Port handle
* @param port_event Port event that triggered the callback
* @param user_arg User argument
* @param in_isr Whether callback was called in an ISR context
* @return true ISR should yield after this callback returns
* @return false No yield required (non-ISR context calls should always return false)
*/
static bool port_callback(hcd_port_handle_t port_hdl, hcd_port_event_t port_event, void *user_arg, bool in_isr)
{
//We store the port's queue handle in the port's context variable
void *port_ctx = hcd_port_get_context(port_hdl);
QueueHandle_t port_evt_queue = (QueueHandle_t)port_ctx;
TEST_ASSERT(in_isr); //Current HCD implementation should never call a port callback in a task context
port_event_msg_t msg = {
.port_hdl = port_hdl,
.port_event = port_event,
};
BaseType_t xTaskWoken = pdFALSE;
xQueueSendFromISR(port_evt_queue, &msg, &xTaskWoken);
return (xTaskWoken == pdTRUE);
}
/**
* @brief HCD pipe callback. Registered when allocating a HCD pipe
*
* @param pipe_hdl Pipe handle
* @param pipe_event Pipe event that triggered the callback
* @param user_arg User argument
* @param in_isr Whether the callback was called in an ISR context
* @return true ISR should yield after this callback returns
* @return false No yield required (non-ISR context calls should always return false)
*/
static bool pipe_callback(hcd_pipe_handle_t pipe_hdl, hcd_pipe_event_t pipe_event, void *user_arg, bool in_isr)
{
QueueHandle_t pipe_evt_queue = (QueueHandle_t)user_arg;
pipe_event_msg_t msg = {
.pipe_hdl = pipe_hdl,
.pipe_event = pipe_event,
};
if (in_isr) {
BaseType_t xTaskWoken = pdFALSE;
xQueueSendFromISR(pipe_evt_queue, &msg, &xTaskWoken);
return (xTaskWoken == pdTRUE);
} else {
xQueueSend(pipe_evt_queue, &msg, portMAX_DELAY);
return false;
}
}
// ------------------------------------------------- HCD Event Test ----------------------------------------------------
void test_hcd_expect_port_event(hcd_port_handle_t port_hdl, hcd_port_event_t expected_event)
{
//Get the port event queue from the port's context variable
QueueHandle_t port_evt_queue = (QueueHandle_t)hcd_port_get_context(port_hdl);
TEST_ASSERT_NOT_EQUAL(NULL, port_evt_queue);
//Wait for port callback to send an event message
port_event_msg_t msg;
xQueueReceive(port_evt_queue, &msg, portMAX_DELAY);
//Check the contents of that event message
TEST_ASSERT_EQUAL(port_hdl, msg.port_hdl);
TEST_ASSERT_EQUAL(expected_event, msg.port_event);
printf("\t-> Port event\n");
}
void test_hcd_expect_pipe_event(hcd_pipe_handle_t pipe_hdl, hcd_pipe_event_t expected_event)
{
//Get the pipe's event queue from the pipe's context variable
QueueHandle_t pipe_evt_queue = (QueueHandle_t)hcd_pipe_get_context(pipe_hdl);
TEST_ASSERT_NOT_EQUAL(NULL, pipe_evt_queue);
//Wait for pipe callback to send an event message
pipe_event_msg_t msg;
xQueueReceive(pipe_evt_queue, &msg, portMAX_DELAY);
//Check the contents of that event message
TEST_ASSERT_EQUAL(pipe_hdl, msg.pipe_hdl);
TEST_ASSERT_EQUAL(expected_event, msg.pipe_event);
}
int test_hcd_get_num_port_events(hcd_port_handle_t port_hdl)
{
//Get the port event queue from the port's context variable
QueueHandle_t port_evt_queue = (QueueHandle_t)hcd_port_get_context(port_hdl);
TEST_ASSERT_NOT_EQUAL(NULL, port_evt_queue);
return EVENT_QUEUE_LEN - uxQueueSpacesAvailable(port_evt_queue);
}
int test_hcd_get_num_pipe_events(hcd_pipe_handle_t pipe_hdl)
{
//Get the pipe's event queue from the pipe's context variable
QueueHandle_t pipe_evt_queue = (QueueHandle_t)hcd_pipe_get_context(pipe_hdl);
TEST_ASSERT_NOT_EQUAL(NULL, pipe_evt_queue);
return EVENT_QUEUE_LEN - uxQueueSpacesAvailable(pipe_evt_queue);
}
// ----------------------------------------------- Driver/Port Related -------------------------------------------------
void test_hcd_force_conn_state(bool connected, TickType_t delay_ticks)
{
vTaskDelay(delay_ticks);
usb_wrap_dev_t *wrap = &USB_WRAP;
if (connected) {
//Swap back to internal PHY that is connected to a device
wrap->otg_conf.phy_sel = 0;
} else {
//Set external PHY input signals to fixed voltage levels mimicking a disconnected state
esp_rom_gpio_connect_in_signal(GPIO_MATRIX_CONST_ZERO_INPUT, USB_EXTPHY_VP_IDX, false);
esp_rom_gpio_connect_in_signal(GPIO_MATRIX_CONST_ZERO_INPUT, USB_EXTPHY_VM_IDX, false);
esp_rom_gpio_connect_in_signal(GPIO_MATRIX_CONST_ONE_INPUT, USB_EXTPHY_RCV_IDX, false);
//Swap to the external PHY
wrap->otg_conf.phy_sel = 1;
}
}
hcd_port_handle_t test_hcd_setup(void)
{
//Create a queue for port callback to queue up port events
QueueHandle_t port_evt_queue = xQueueCreate(EVENT_QUEUE_LEN, sizeof(port_event_msg_t));
TEST_ASSERT_NOT_EQUAL(NULL, port_evt_queue);
//Install HCD
hcd_config_t hcd_config = {
.intr_flags = ESP_INTR_FLAG_LEVEL1,
};
TEST_ASSERT_EQUAL(ESP_OK, hcd_install(&hcd_config));
//Initialize a port
hcd_port_config_t port_config = {
.callback = port_callback,
.callback_arg = (void *)port_evt_queue,
.context = (void *)port_evt_queue,
};
hcd_port_handle_t port_hdl;
TEST_ASSERT_EQUAL(ESP_OK, hcd_port_init(PORT_NUM, &port_config, &port_hdl));
TEST_ASSERT_NOT_EQUAL(NULL, port_hdl);
TEST_ASSERT_EQUAL(HCD_PORT_STATE_NOT_POWERED, hcd_port_get_state(port_hdl));
test_hcd_force_conn_state(false, 0); //Force disconnected state on PHY
return port_hdl;
}
void test_hcd_teardown(hcd_port_handle_t port_hdl)
{
//Get the queue handle from the port's context variable
QueueHandle_t port_evt_queue = (QueueHandle_t)hcd_port_get_context(port_hdl);
TEST_ASSERT_NOT_EQUAL(NULL, port_evt_queue);
//Deinitialize a port
TEST_ASSERT_EQUAL(ESP_OK, hcd_port_deinit(port_hdl));
//Uninstall the HCD
TEST_ASSERT_EQUAL(ESP_OK, hcd_uninstall());
vQueueDelete(port_evt_queue);
}
usb_speed_t test_hcd_wait_for_conn(hcd_port_handle_t port_hdl)
{
//Power ON the port
TEST_ASSERT_EQUAL(ESP_OK, hcd_port_command(port_hdl, HCD_PORT_CMD_POWER_ON));
TEST_ASSERT_EQUAL(HCD_PORT_STATE_DISCONNECTED, hcd_port_get_state(port_hdl));
//Wait for connection event
printf("Waiting for connection\n");
test_hcd_force_conn_state(true, pdMS_TO_TICKS(100)); //Allow for connected state on PHY
test_hcd_expect_port_event(port_hdl, HCD_PORT_EVENT_CONNECTION);
TEST_ASSERT_EQUAL(HCD_PORT_EVENT_CONNECTION, hcd_port_handle_event(port_hdl));
TEST_ASSERT_EQUAL(HCD_PORT_STATE_DISABLED, hcd_port_get_state(port_hdl));
//Reset newly connected device
printf("Resetting\n");
TEST_ASSERT_EQUAL(ESP_OK, hcd_port_command(port_hdl, HCD_PORT_CMD_RESET));
TEST_ASSERT_EQUAL(HCD_PORT_STATE_ENABLED, hcd_port_get_state(port_hdl));
//Get speed of connected
usb_speed_t port_speed;
TEST_ASSERT_EQUAL(ESP_OK, hcd_port_get_speed(port_hdl, &port_speed));
if (port_speed == USB_SPEED_FULL) {
printf("Full speed enabled\n");
} else {
printf("Low speed enabled\n");
}
return port_speed;
}
void test_hcd_wait_for_disconn(hcd_port_handle_t port_hdl, bool already_disabled)
{
if (!already_disabled) {
//Disable the device
printf("Disabling\n");
TEST_ASSERT_EQUAL(ESP_OK, hcd_port_command(port_hdl, HCD_PORT_CMD_DISABLE));
TEST_ASSERT_EQUAL(HCD_PORT_STATE_DISABLED, hcd_port_get_state(port_hdl));
}
//Wait for a safe disconnect
printf("Waiting for disconnection\n");
test_hcd_force_conn_state(false, pdMS_TO_TICKS(100)); //Force disconnected state on PHY
test_hcd_expect_port_event(port_hdl, HCD_PORT_EVENT_DISCONNECTION);
TEST_ASSERT_EQUAL(HCD_PORT_EVENT_DISCONNECTION, hcd_port_handle_event(port_hdl));
TEST_ASSERT_EQUAL(HCD_PORT_STATE_DISCONNECTED, hcd_port_get_state(port_hdl));
//Power down the port
TEST_ASSERT_EQUAL(ESP_OK, hcd_port_command(port_hdl, HCD_PORT_CMD_POWER_OFF));
TEST_ASSERT_EQUAL(HCD_PORT_STATE_NOT_POWERED, hcd_port_get_state(port_hdl));
}
// ---------------------------------------------- Pipe Setup/Tear-down -------------------------------------------------
hcd_pipe_handle_t test_hcd_pipe_alloc(hcd_port_handle_t port_hdl, const usb_desc_ep_t *ep_desc, uint8_t dev_addr, usb_speed_t dev_speed)
{
//Create a queue for pipe callback to queue up pipe events
QueueHandle_t pipe_evt_queue = xQueueCreate(EVENT_QUEUE_LEN, sizeof(pipe_event_msg_t));
TEST_ASSERT_NOT_EQUAL(NULL, pipe_evt_queue);
printf("Creating pipe\n");
hcd_pipe_config_t pipe_config = {
.callback = pipe_callback,
.callback_arg = (void *)pipe_evt_queue,
.context = (void *)pipe_evt_queue,
.ep_desc = ep_desc,
.dev_addr = dev_addr,
.dev_speed = dev_speed,
};
hcd_pipe_handle_t pipe_hdl;
TEST_ASSERT_EQUAL(ESP_OK, hcd_pipe_alloc(port_hdl, &pipe_config, &pipe_hdl));
TEST_ASSERT_NOT_EQUAL(NULL, pipe_hdl);
return pipe_hdl;
}
void test_hcd_pipe_free(hcd_pipe_handle_t pipe_hdl)
{
//Get the pipe's event queue from its context variable
QueueHandle_t pipe_evt_queue = (QueueHandle_t)hcd_pipe_get_context(pipe_hdl);
TEST_ASSERT_NOT_EQUAL(NULL, pipe_evt_queue);
//Free the pipe and queue
TEST_ASSERT_EQUAL(ESP_OK, hcd_pipe_free(pipe_hdl));
vQueueDelete(pipe_evt_queue);
}
usb_irp_t *test_hcd_alloc_irp(int num_iso_packets, size_t data_buffer_size)
{
//Allocate list of IRPs
usb_irp_t *irp = heap_caps_calloc(1, sizeof(usb_irp_t) + (num_iso_packets * sizeof(usb_iso_packet_desc_t)), MALLOC_CAP_DEFAULT);
TEST_ASSERT_NOT_EQUAL(NULL, irp);
//Allocate data buffer for each IRP and assign them
uint8_t *data_buffer = heap_caps_malloc(data_buffer_size, MALLOC_CAP_DMA);
TEST_ASSERT_NOT_EQUAL(NULL, data_buffer);
irp->data_buffer = data_buffer;
irp->num_iso_packets = num_iso_packets;
return irp;
}
void test_hcd_free_irp(usb_irp_t *irp)
{
//Free data buffers of each IRP
heap_caps_free(irp->data_buffer);
//Free the IRP list
heap_caps_free(irp);
}
uint8_t test_hcd_enum_devc(hcd_pipe_handle_t default_pipe)
{
//We need to create an IRP for the enumeration control transfers
usb_irp_t *irp = heap_caps_calloc(1, sizeof(usb_irp_t), MALLOC_CAP_DEFAULT);
TEST_ASSERT_NOT_EQUAL(NULL, irp);
//We use a single data buffer for all control transfers during enumerations. 256 bytes should be large enough for most descriptors
irp->data_buffer = heap_caps_malloc(sizeof(usb_ctrl_req_t) + 256, MALLOC_CAP_DMA);
TEST_ASSERT_NOT_EQUAL(NULL, irp->data_buffer);
usb_ctrl_req_t *ctrl_req = (usb_ctrl_req_t *)irp->data_buffer;
//Get the device descriptor (note that device might only return 8 bytes)
USB_CTRL_REQ_INIT_GET_DEVC_DESC(ctrl_req);
irp->num_bytes = sizeof(usb_desc_devc_t);
TEST_ASSERT_EQUAL(ESP_OK, hcd_irp_enqueue(default_pipe, irp));
test_hcd_expect_pipe_event(default_pipe, HCD_PIPE_EVENT_IRP_DONE);
TEST_ASSERT_EQUAL(irp, hcd_irp_dequeue(default_pipe));
TEST_ASSERT_EQUAL(USB_TRANSFER_STATUS_COMPLETED, irp->status);
//Update the MPS of the default pipe
usb_desc_devc_t *devc_desc = (usb_desc_devc_t *)(irp->data_buffer + sizeof(usb_ctrl_req_t));
TEST_ASSERT_EQUAL(ESP_OK, hcd_pipe_update_mps(default_pipe, devc_desc->bMaxPacketSize0));
//Send a set address request
USB_CTRL_REQ_INIT_SET_ADDR(ctrl_req, ENUM_ADDR); //We only support one device for now so use address 1
irp->num_bytes = 0;
TEST_ASSERT_EQUAL(ESP_OK, hcd_irp_enqueue(default_pipe, irp));
test_hcd_expect_pipe_event(default_pipe, HCD_PIPE_EVENT_IRP_DONE);
TEST_ASSERT_EQUAL(irp, hcd_irp_dequeue(default_pipe));
TEST_ASSERT_EQUAL(USB_TRANSFER_STATUS_COMPLETED, irp->status);
//Update address of default pipe
TEST_ASSERT_EQUAL(ESP_OK, hcd_pipe_update_dev_addr(default_pipe, ENUM_ADDR));
//Send a set configuration request
USB_CTRL_REQ_INIT_SET_CONFIG(ctrl_req, ENUM_CONFIG);
irp->num_bytes = 0;
TEST_ASSERT_EQUAL(ESP_OK, hcd_irp_enqueue(default_pipe, irp));
test_hcd_expect_pipe_event(default_pipe, HCD_PIPE_EVENT_IRP_DONE);
TEST_ASSERT_EQUAL(irp, hcd_irp_dequeue(default_pipe));
TEST_ASSERT_EQUAL(USB_TRANSFER_STATUS_COMPLETED, irp->status);
//Free IRP
heap_caps_free(irp->data_buffer);
heap_caps_free(irp);
return ENUM_ADDR;
}

View File

@ -0,0 +1,151 @@
// Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "usb.h"
#include "hcd.h"
#define IRP_CONTEXT_VAL ((void *)0xDEADBEEF)
// ------------------------------------------------- HCD Event Test ----------------------------------------------------
/**
* @brief Expect (wait) for an HCD port event
*
* @param port_hdl Port handle to expect event from
* @param expected_event Port event to expect
*/
void test_hcd_expect_port_event(hcd_port_handle_t port_hdl, hcd_port_event_t expected_event);
/**
* @brief Expect (wait) for an HCD pipe event
*
* @param pipe_hdl Pipe handle to expect event from
* @param expected_event Pipe event to expect
*/
void test_hcd_expect_pipe_event(hcd_pipe_handle_t pipe_hdl, hcd_pipe_event_t expected_event);
/**
* @brief Get the current number of queued port events (dequeued using test_hcd_expect_port_event())
*
* @param port_hdl Port handle
* @return int Number of port events currently queued
*/
int test_hcd_get_num_port_events(hcd_port_handle_t port_hdl);
/**
* @brief Get the current number of queued pipe events (dequeued using test_hcd_expect_pipe_event())
*
* @param pipe_hdl Pipe handle
* @return int Number of pipe events currently queued
*/
int test_hcd_get_num_pipe_events(hcd_pipe_handle_t pipe_hdl);
// ----------------------------------------------- Driver/Port Related -------------------------------------------------
/**
* @brief For the USB PHY into the connected or disconnected state
*
* @param connected For into connected state if true, disconnected if false
* @param delay_ticks Delay in ticks before forcing state
*/
void test_hcd_force_conn_state(bool connected, TickType_t delay_ticks);
/**
* @brief Sets up the HCD and initializes an HCD port.
*
* @return hcd_port_handle_t Port handle
*/
hcd_port_handle_t test_hcd_setup(void);
/**
* @brief Frees and HCD port and uninstalls the HCD
*
* @param port_hdl Port handle
*/
void test_hcd_teardown(hcd_port_handle_t port_hdl);
/**
* @brief Wait for a connection on an HCD port
*
* @note This function will internally call test_hcd_force_conn_state() to allow for a connection
*
* @param port_hdl Port handle
* @return usb_speed_t Speed of the connected device
*/
usb_speed_t test_hcd_wait_for_conn(hcd_port_handle_t port_hdl);
/**
* @brief Wait for a disconnection on an HCD port
*
* @note This fucntion will internally call test_hcd_force_conn_state() to force a disconnection
*
* @param port_hdl Port handle
* @param already_disabled Whether the HCD port is already in the disabled state
*/
void test_hcd_wait_for_disconn(hcd_port_handle_t port_hdl, bool already_disabled);
// ------------------------------------------------- Pipe alloc/free ---------------------------------------------------
/**
* @brief Test the allocation of a pipe
*
* @param port_hdl Port handle
* @param ep_desc Endpoint descriptor
* @param dev_addr Device address of the pipe
* @param dev_speed Device speed of the pipe
* @return hcd_pipe_handle_t Pipe handle
*/
hcd_pipe_handle_t test_hcd_pipe_alloc(hcd_port_handle_t port_hdl, const usb_desc_ep_t *ep_desc, uint8_t dev_addr, usb_speed_t dev_speed);
/**
* @brief Test the freeing of a pipe
*
* @param pipe_hdl Pipe handle
*/
void test_hcd_pipe_free(hcd_pipe_handle_t pipe_hdl);
/**
* @brief Allocate an IRP
*
* @param num_iso_packets Number of isochronous packets
* @param data_buffer_size Size of the data buffer of the IRP
* @return usb_irp_t* IRP
*/
usb_irp_t *test_hcd_alloc_irp(int num_iso_packets, size_t data_buffer_size);
/**
* @brief Free an IRP
*
* @param irp IRP
*/
void test_hcd_free_irp(usb_irp_t *irp);
// --------------------------------------------------- Enumeration -----------------------------------------------------
/**
* @brief Do some basic enumeration of the device
*
* For tests that need a device to have been enumerated (such as bulk tests). This function will enumerate that device
* using the device's default pipe. The minimal enumeration will include
*
* - Getting the device's descriptor and updating the default pipe's MPS
* - Setting the device's address and updating the default pipe to use that address
* - Setting the device to configuration 1 (i.e., the first configuration found
*
* @param default_pipe The connected device's default pipe
* @return uint8_t The address of the device after enumeration
*/
uint8_t test_hcd_enum_devc(hcd_pipe_handle_t default_pipe);

View File

@ -0,0 +1,271 @@
// Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "unity.h"
#include "test_utils.h"
#include "test_hcd_common.h"
#define TEST_DEV_ADDR 0
#define NUM_IRPS 3
#define TRANSFER_MAX_BYTES 256
#define IRP_DATA_BUFF_SIZE (sizeof(usb_ctrl_req_t) + TRANSFER_MAX_BYTES) //256 is worst case size for configuration descriptors
/*
Test HCD control pipe IRPs (normal completion and early abort)
Purpose:
- Test that a control pipe can be created
- IRPs can be created and enqueued to the control pipe
- Control pipe returns HCD_PIPE_EVENT_IRP_DONE
- Test that IRPs can be aborted when enqueued
Procedure:
- Setup HCD and wait for connection
- Setup default pipe and allocate IRPs
- Enqueue IRPs
- Expect HCD_PIPE_EVENT_IRP_DONE
- Requeue IRPs, but abort them immediately
- Expect IRP to be USB_TRANSFER_STATUS_CANCELED or USB_TRANSFER_STATUS_COMPLETED
- Teardown
*/
TEST_CASE("Test HCD control pipe IRPs", "[hcd][ignore]")
{
hcd_port_handle_t port_hdl = test_hcd_setup(); //Setup the HCD and port
usb_speed_t port_speed = test_hcd_wait_for_conn(port_hdl); //Trigger a connection
vTaskDelay(pdMS_TO_TICKS(100)); //Short delay send of SOF (for FS) or EOPs (for LS)
//Allocate some IRPs and initialize their data buffers with control transfers
hcd_pipe_handle_t default_pipe = test_hcd_pipe_alloc(port_hdl, NULL, TEST_DEV_ADDR, port_speed); //Create a default pipe (using a NULL EP descriptor)
usb_irp_t *irp_list[NUM_IRPS];
for (int i = 0; i < NUM_IRPS; i++) {
irp_list[i] = test_hcd_alloc_irp(0, IRP_DATA_BUFF_SIZE);
//Initialize with a "Get Config Descriptor request"
irp_list[i]->num_bytes = TRANSFER_MAX_BYTES;
USB_CTRL_REQ_INIT_GET_CFG_DESC((usb_ctrl_req_t *)irp_list[i]->data_buffer, 0, TRANSFER_MAX_BYTES);
irp_list[i]->context = IRP_CONTEXT_VAL;
}
//Enqueue IRPs but immediately suspend the port
printf("Enqueuing IRPs\n");
for (int i = 0; i < NUM_IRPS; i++) {
TEST_ASSERT_EQUAL(ESP_OK, hcd_irp_enqueue(default_pipe, irp_list[i]));
}
//Wait for each done event of each IRP
for (int i = 0; i < NUM_IRPS; i++) {
test_hcd_expect_pipe_event(default_pipe, HCD_PIPE_EVENT_IRP_DONE);
}
//Dequeue IRPs
for (int i = 0; i < NUM_IRPS; i++) {
usb_irp_t *irp = hcd_irp_dequeue(default_pipe);
TEST_ASSERT_EQUAL(irp_list[i], irp);
TEST_ASSERT_EQUAL(USB_TRANSFER_STATUS_COMPLETED, irp->status);
TEST_ASSERT_EQUAL(IRP_CONTEXT_VAL, irp->context);
}
//Enqueue IRPs again but abort them short after
for (int i = 0; i < NUM_IRPS; i++) {
TEST_ASSERT_EQUAL(ESP_OK, hcd_irp_enqueue(default_pipe, irp_list[i]));
}
for (int i = 0; i < NUM_IRPS; i++) {
TEST_ASSERT_EQUAL(ESP_OK, hcd_irp_abort(irp_list[i]));
}
vTaskDelay(pdMS_TO_TICKS(100)); //Give some time for any inflight transfers to complete
//Wait for the IRPs to complete and dequeue them, then check results
//Dequeue IRPs
for (int i = 0; i < NUM_IRPS; i++) {
usb_irp_t *irp = hcd_irp_dequeue(default_pipe);
//No need to check for IRP pointer address as they may be out of order
TEST_ASSERT(irp->status == USB_TRANSFER_STATUS_COMPLETED || irp->status == USB_TRANSFER_STATUS_CANCELED);
if (irp->status == USB_TRANSFER_STATUS_COMPLETED) {
TEST_ASSERT_GREATER_THAN(0, irp->actual_num_bytes);
} else {
TEST_ASSERT_EQUAL(0, irp->actual_num_bytes);
}
TEST_ASSERT_EQUAL(irp->context, IRP_CONTEXT_VAL);
}
//Free IRP list and pipe
for (int i = 0; i < NUM_IRPS; i++) {
test_hcd_free_irp(irp_list[i]);
}
test_hcd_pipe_free(default_pipe);
//Cleanup
test_hcd_wait_for_disconn(port_hdl, false);
test_hcd_teardown(port_hdl);
}
/*
Test HCD control pipe STALL condition, abort, and clear
Purpose:
- Test that a control pipe can react to a STALL (i.e., a HCD_PIPE_EVENT_HALTED event)
- The HCD_PIPE_CMD_ABORT can retire all IRPs
- Pipe clear command can return the pipe to being active
Procedure:
- Setup HCD and wait for connection
- Setup default pipe and allocate IRPs
- Corrupt the first IRP so that it will trigger a STALL, then enqueue all the IRPs
- Check that a HCD_PIPE_EVENT_ERROR_STALL event is triggered
- Check that all IRPs can be retired using HCD_PIPE_CMD_ABORT
- Check that the STALL can be cleared by using HCD_PIPE_CMD_CLEAR
- Fix the corrupt first IRP and retry the IRPs
- Dequeue IRPs
- Teardown
*/
TEST_CASE("Test HCD control pipe STALL", "[hcd][ignore]")
{
hcd_port_handle_t port_hdl = test_hcd_setup(); //Setup the HCD and port
usb_speed_t port_speed = test_hcd_wait_for_conn(port_hdl); //Trigger a connection
vTaskDelay(pdMS_TO_TICKS(100)); //Short delay send of SOF (for FS) or EOPs (for LS)
//Allocate some IRPs and initialize their data buffers with control transfers
hcd_pipe_handle_t default_pipe = test_hcd_pipe_alloc(port_hdl, NULL, TEST_DEV_ADDR, port_speed); //Create a default pipe (using a NULL EP descriptor)
usb_irp_t *irp_list[NUM_IRPS];
for (int i = 0; i < NUM_IRPS; i++) {
irp_list[i] = test_hcd_alloc_irp(0, IRP_DATA_BUFF_SIZE);
//Initialize with a "Get Config Descriptor request"
irp_list[i]->num_bytes = TRANSFER_MAX_BYTES;
USB_CTRL_REQ_INIT_GET_CFG_DESC((usb_ctrl_req_t *)irp_list[i]->data_buffer, 0, TRANSFER_MAX_BYTES);
irp_list[i]->context = IRP_CONTEXT_VAL;
}
//Corrupt the first IRP so that it triggers a STALL
((usb_ctrl_req_t *)irp_list[0]->data_buffer)->bRequest = 0xAA;
//Enqueue IRPs. A STALL should occur
for (int i = 0; i < NUM_IRPS; i++) {
TEST_ASSERT_EQUAL(ESP_OK, hcd_irp_enqueue(default_pipe, irp_list[i]));
}
printf("Expecting STALL\n");
test_hcd_expect_pipe_event(default_pipe, HCD_PIPE_EVENT_ERROR_STALL);
TEST_ASSERT_EQUAL(HCD_PIPE_STATE_HALTED, hcd_pipe_get_state(default_pipe));
//Call the pipe abort command to retire all IRPs then dequeue them all
TEST_ASSERT_EQUAL(ESP_OK, hcd_pipe_command(default_pipe, HCD_PIPE_CMD_ABORT));
for (int i = 0; i < NUM_IRPS; i++) {
usb_irp_t *irp = hcd_irp_dequeue(default_pipe);
TEST_ASSERT_EQUAL(irp_list[i], irp);
TEST_ASSERT(irp->status == USB_TRANSFER_STATUS_STALL || irp->status == USB_TRANSFER_STATUS_CANCELED);
if (irp->status == USB_TRANSFER_STATUS_COMPLETED) {
TEST_ASSERT_GREATER_THAN(0, irp->actual_num_bytes);
} else {
TEST_ASSERT_EQUAL(0, irp->actual_num_bytes);
}
TEST_ASSERT_EQUAL(IRP_CONTEXT_VAL, irp->context);
}
//Call the clear command to un-stall the pipe
TEST_ASSERT_EQUAL(ESP_OK, hcd_pipe_command(default_pipe, HCD_PIPE_CMD_CLEAR));
TEST_ASSERT_EQUAL(HCD_PIPE_STATE_ACTIVE, hcd_pipe_get_state(default_pipe));
printf("Retrying\n");
//Correct first IRP then requeue
USB_CTRL_REQ_INIT_GET_CFG_DESC((usb_ctrl_req_t *)irp_list[0]->data_buffer, 0, TRANSFER_MAX_BYTES);
for (int i = 0; i < NUM_IRPS; i++) {
TEST_ASSERT_EQUAL(ESP_OK, hcd_irp_enqueue(default_pipe, irp_list[i]));
}
//Wait for each IRP to be done, deequeue, and check results
for (int i = 0; i < NUM_IRPS; i++) {
test_hcd_expect_pipe_event(default_pipe, HCD_PIPE_EVENT_IRP_DONE);
//expect_pipe_event(pipe_evt_queue, default_pipe, HCD_PIPE_EVENT_IRP_DONE);
usb_irp_t *irp = hcd_irp_dequeue(default_pipe);
TEST_ASSERT_EQUAL(irp_list[i], irp);
TEST_ASSERT_EQUAL(USB_TRANSFER_STATUS_COMPLETED, irp->status);
TEST_ASSERT_GREATER_THAN(0, irp->actual_num_bytes);
TEST_ASSERT_EQUAL(IRP_CONTEXT_VAL, irp->context);
}
//Free IRP list and pipe
for (int i = 0; i < NUM_IRPS; i++) {
test_hcd_free_irp(irp_list[i]);
}
test_hcd_pipe_free(default_pipe);
//Cleanup
test_hcd_wait_for_disconn(port_hdl, false);
test_hcd_teardown(port_hdl);
}
/*
Test control pipe run-time halt and clear
Purpose:
- Test that a control pipe can be halted with HCD_PIPE_CMD_HALT whilst there are ongoing IRPs
- Test that a control pipe can be un-halted with a HCD_PIPE_CMD_CLEAR
- Test that enqueued IRPs are resumed when pipe is un-halted
Procedure:
- Setup HCD and wait for connection
- Setup default pipe and allocate IRPs
- Enqqueue IRPs but execute a HCD_PIPE_CMD_HALT command immediately after. Halt command should let on
the current going IRP finish before actually halting the pipe.
- Un-halt the pipe a HCD_PIPE_CMD_HALT command. Enqueued IRPs will be resumed
- Check that all IRPs have completed successfully
- Dequeue IRPs and teardown
*/
TEST_CASE("Test HCD control pipe runtime halt and clear", "[hcd][ignore]")
{
hcd_port_handle_t port_hdl = test_hcd_setup(); //Setup the HCD and port
usb_speed_t port_speed = test_hcd_wait_for_conn(port_hdl); //Trigger a connection
vTaskDelay(pdMS_TO_TICKS(100)); //Short delay send of SOF (for FS) or EOPs (for LS)
//Allocate some IRPs and initialize their data buffers with control transfers
hcd_pipe_handle_t default_pipe = test_hcd_pipe_alloc(port_hdl, NULL, TEST_DEV_ADDR, port_speed); //Create a default pipe (using a NULL EP descriptor)
usb_irp_t *irp_list[NUM_IRPS];
for (int i = 0; i < NUM_IRPS; i++) {
irp_list[i] = test_hcd_alloc_irp(0, IRP_DATA_BUFF_SIZE);
//Initialize with a "Get Config Descriptor request"
irp_list[i]->num_bytes = TRANSFER_MAX_BYTES;
USB_CTRL_REQ_INIT_GET_CFG_DESC((usb_ctrl_req_t *)irp_list[i]->data_buffer, 0, TRANSFER_MAX_BYTES);
irp_list[i]->context = IRP_CONTEXT_VAL;
}
//Enqueue IRPs but immediately halt the pipe
printf("Enqueuing IRPs\n");
for (int i = 0; i < NUM_IRPS; i++) {
TEST_ASSERT_EQUAL(ESP_OK, hcd_irp_enqueue(default_pipe, irp_list[i]));
}
TEST_ASSERT_EQUAL(ESP_OK, hcd_pipe_command(default_pipe, HCD_PIPE_CMD_HALT));
TEST_ASSERT_EQUAL(HCD_PIPE_STATE_HALTED, hcd_pipe_get_state(default_pipe));
printf("Pipe halted\n");
//Un-halt the pipe
TEST_ASSERT_EQUAL(ESP_OK, hcd_pipe_command(default_pipe, HCD_PIPE_CMD_CLEAR));
TEST_ASSERT_EQUAL(HCD_PIPE_STATE_ACTIVE, hcd_pipe_get_state(default_pipe));
printf("Pipe cleared\n");
vTaskDelay(pdMS_TO_TICKS(100)); //Give some time pending for transfers to restart and complete
//Wait for each IRP to be done, dequeue, and check results
for (int i = 0; i < NUM_IRPS; i++) {
test_hcd_expect_pipe_event(default_pipe, HCD_PIPE_EVENT_IRP_DONE);
usb_irp_t *irp = hcd_irp_dequeue(default_pipe);
TEST_ASSERT_EQUAL(irp_list[i], irp);
TEST_ASSERT_EQUAL(USB_TRANSFER_STATUS_COMPLETED, irp->status);
TEST_ASSERT_GREATER_THAN(0, irp->actual_num_bytes);
TEST_ASSERT_EQUAL(IRP_CONTEXT_VAL, irp->context);
}
//Free IRP list and pipe
for (int i = 0; i < NUM_IRPS; i++) {
test_hcd_free_irp(irp_list[i]);
}
test_hcd_pipe_free(default_pipe);
//Cleanup
test_hcd_wait_for_disconn(port_hdl, false);
test_hcd_teardown(port_hdl);
}

View File

@ -0,0 +1,159 @@
// Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "unity.h"
#include "test_utils.h"
#include "test_hcd_common.h"
// ------------------------------------------------- Mock HID Mice -----------------------------------------------------
/*
Note: The following test requires that USB low speed mouse be connected. The mouse should...
- Be implement the HID with standard report format used by mice
- It's configuration 1 should have the following endpoint
Endpoint Descriptor:
bLength 7
bDescriptorType 5
bEndpointAddress 0x81 EP 1 IN
bmAttributes 3
Transfer Type Interrupt
Synch Type None
Usage Type Data
wMaxPacketSize 0x0004 1x 4 bytes
bInterval 10
If you're using another mice with different endpoints, modify the endpoint descriptor below
*/
static const usb_desc_ep_t in_ep_desc = {
.bLength = sizeof(usb_desc_ep_t),
.bDescriptorType = USB_B_DESCRIPTOR_TYPE_ENDPOINT,
.bEndpointAddress = 0x81, //EP 1 IN
.bmAttributes = USB_BM_ATTRIBUTES_XFER_INT,
.wMaxPacketSize = 4, //MPS of 4 bytes
.bInterval = 10, //Interval of 10ms
};
typedef union {
struct {
uint32_t left_button: 1;
uint32_t right_button: 1;
uint32_t middle_button: 1;
uint32_t reserved5: 5;
uint8_t x_movement;
uint8_t y_movement;
} __attribute__((packed));
uint8_t val[3];
} mock_hid_mouse_report_t;
_Static_assert(sizeof(mock_hid_mouse_report_t) == 3, "Size of HID mouse report incorrect");
static void mock_hid_process_report(mock_hid_mouse_report_t *report, int iter)
{
static int x_pos = 0;
static int y_pos = 0;
//Update X position
if (report->x_movement & 0x80) { //Positive movement
x_pos += report->x_movement & 0x7F;
} else { //Negative movement
x_pos -= report->x_movement & 0x7F;
}
//Update Y position
if (report->y_movement & 0x80) { //Positive movement
y_pos += report->y_movement & 0x7F;
} else { //Negative movement
y_pos -= report->y_movement & 0x7F;
}
printf("\rX:%d\tY:%d\tIter: %d\n", x_pos, y_pos, iter);
}
// --------------------------------------------------- Test Cases ------------------------------------------------------
/*
Test HCD interrupt pipe IRPs
Purpose:
- Test that an interrupt pipe can be created
- IRPs can be created and enqueued to the interrupt pipe
- Interrupt pipe returns HCD_PIPE_EVENT_IRP_DONE
- Test that IRPs can be aborted when enqueued
Procedure:
- Setup HCD and wait for connection
- Allocate default pipe and enumerate the device
- Setup interrupt pipe and allocate IRPs
- Enqueue IRPs, expect HCD_PIPE_EVENT_IRP_DONE, and requeue
- Stop after fixed number of iterations
- Deallocate IRPs
- Teardown
Note: Some mice will NAK until it is moved, so try moving the mouse around if this test case gets stuck.
*/
#define TEST_HID_DEV_SPEED USB_SPEED_LOW
#define NUM_IRPS 3
#define IRP_DATA_BUFF_SIZE 4 //MPS is 4
#define MOCK_HID_NUM_REPORT_PER_IRP 2
#define NUM_IRP_ITERS (NUM_IRPS * 100)
TEST_CASE("Test HCD interrupt pipe IRPs", "[hcd][ignore]")
{
hcd_port_handle_t port_hdl = test_hcd_setup(); //Setup the HCD and port
usb_speed_t port_speed = test_hcd_wait_for_conn(port_hdl); //Trigger a connection
TEST_ASSERT_EQUAL(TEST_HID_DEV_SPEED, TEST_HID_DEV_SPEED);
vTaskDelay(pdMS_TO_TICKS(100)); //Short delay send of SOF (for FS) or EOPs (for LS)
hcd_pipe_handle_t default_pipe = test_hcd_pipe_alloc(port_hdl, NULL, 0, port_speed); //Create a default pipe (using a NULL EP descriptor)
uint8_t dev_addr = test_hcd_enum_devc(default_pipe);
//Allocate interrupt pipe and IRPS
hcd_pipe_handle_t intr_pipe = test_hcd_pipe_alloc(port_hdl, &in_ep_desc, dev_addr, port_speed);
usb_irp_t *irp_list[NUM_IRPS];
for (int i = 0; i < NUM_IRPS; i++) {
irp_list[i] = test_hcd_alloc_irp(0, IRP_DATA_BUFF_SIZE);
irp_list[i]->num_bytes = IRP_DATA_BUFF_SIZE;
irp_list[i]->context = IRP_CONTEXT_VAL;
}
//Enqueue IRPs
for (int i = 0; i < NUM_IRPS; i++) {
TEST_ASSERT_EQUAL(ESP_OK, hcd_irp_enqueue(intr_pipe, irp_list[i]));
}
int iter_count = NUM_IRP_ITERS;
for (iter_count = NUM_IRP_ITERS; iter_count > 0; iter_count--) {
//Wait for an IRP to be done
test_hcd_expect_pipe_event(intr_pipe, HCD_PIPE_EVENT_IRP_DONE);
//Dequeue the IRP and check results
usb_irp_t *irp = hcd_irp_dequeue(intr_pipe);
TEST_ASSERT_EQUAL(USB_TRANSFER_STATUS_COMPLETED, irp->status);
TEST_ASSERT_EQUAL(IRP_CONTEXT_VAL, irp->context);
mock_hid_process_report((mock_hid_mouse_report_t *)irp->data_buffer, iter_count);
//Requeue IRP
if (iter_count > NUM_IRPS) {
TEST_ASSERT_EQUAL(ESP_OK, hcd_irp_enqueue(intr_pipe, irp));
}
}
//Free IRP list and pipe
for (int i = 0; i < NUM_IRPS; i++) {
test_hcd_free_irp(irp_list[i]);
}
test_hcd_pipe_free(intr_pipe);
test_hcd_pipe_free(default_pipe);
//Clearnup
test_hcd_wait_for_disconn(port_hdl, false);
test_hcd_teardown(port_hdl);
}

View File

@ -0,0 +1,114 @@
// Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "unity.h"
#include "test_utils.h"
#include "test_hcd_common.h"
//We talk to a non-existent device. Since ISOC out requires no ACK, there should be no errors.
#define MOCK_ISOC_EP_NUM 2
#define MOCK_ISOC_EP_MPS 512
#define NUM_IRPS 3
#define NUM_PACKETS_PER_IRP 3
#define ISOC_PACKET_SIZE MOCK_ISOC_EP_MPS
#define IRP_DATA_BUFF_SIZE (NUM_PACKETS_PER_IRP * ISOC_PACKET_SIZE)
static const usb_desc_ep_t isoc_out_ep_desc = {
.bLength = sizeof(usb_desc_ep_t),
.bDescriptorType = USB_B_DESCRIPTOR_TYPE_ENDPOINT,
.bEndpointAddress = MOCK_ISOC_EP_NUM,
.bmAttributes = USB_BM_ATTRIBUTES_XFER_ISOC,
.wMaxPacketSize = MOCK_ISOC_EP_MPS, //MPS of 512 bytes
.bInterval = 1, //Isoc interval is (2 ^ (bInterval - 1)) which means an interval of 1ms
};
/*
Test HCD ISOC pipe IRPs
Purpose:
- Test that an isochronous pipe can be created
- IRPs can be created and enqueued to the isoc pipe pipe
- isoc pipe returns HCD_PIPE_EVENT_IRP_DONE for completed IRPs
- Test utilizes ISOC OUT transfers and do not require ACKs. So the isoc pipe will target a non existing endpoint
Procedure:
- Setup HCD and wait for connection
- Allocate default pipe and enumerate the device
- Allocate an isochronous pipe and multiple IRPs. Each IRP should contain multiple packets to test HCD's ability to
schedule an IRP across multiple intervals.
- Enqueue those IRPs
- Expect HCD_PIPE_EVENT_IRP_DONE for each IRP. Verify that data is correct using logic analyzer
- Deallocate IRPs
- Teardown
*/
TEST_CASE("Test HCD isochronous pipe IRPs", "[hcd][ignore]")
{
hcd_port_handle_t port_hdl = test_hcd_setup(); //Setup the HCD and port
usb_speed_t port_speed = test_hcd_wait_for_conn(port_hdl); //Trigger a connection
//The MPS of the ISOC OUT pipe is quite large, so we need to bias the FIFO sizing
TEST_ASSERT_EQUAL(ESP_OK, hcd_port_set_fifo_bias(port_hdl, HCD_PORT_FIFO_BIAS_PTX));
vTaskDelay(pdMS_TO_TICKS(100)); //Short delay send of SOF (for FS) or EOPs (for LS)
//Enumerate and reset device
hcd_pipe_handle_t default_pipe = test_hcd_pipe_alloc(port_hdl, NULL, 0, port_speed); //Create a default pipe (using a NULL EP descriptor)
uint8_t dev_addr = test_hcd_enum_devc(default_pipe);
//Create ISOC OUT pipe to non-existent device
hcd_pipe_handle_t isoc_out_pipe = test_hcd_pipe_alloc(port_hdl, &isoc_out_ep_desc, dev_addr + 1, port_speed);
//Create IRPs
usb_irp_t *irp_list[NUM_IRPS];
//Initialize IRPs
for (int irp_idx = 0; irp_idx < NUM_IRPS; irp_idx++) {
irp_list[irp_idx] = test_hcd_alloc_irp(NUM_PACKETS_PER_IRP, IRP_DATA_BUFF_SIZE);
irp_list[irp_idx]->num_bytes = 0; //num_bytes is not used for ISOC
irp_list[irp_idx]->context = IRP_CONTEXT_VAL;
for (int pkt_idx = 0; pkt_idx < NUM_PACKETS_PER_IRP; pkt_idx++) {
irp_list[irp_idx]->iso_packet_desc[pkt_idx].length = ISOC_PACKET_SIZE;
//Each packet will consist of the same byte, but each subsequent packet's byte will increment (i.e., packet 0 transmits all 0x0, packet 1 transmits all 0x1)
memset(&irp_list[irp_idx]->data_buffer[pkt_idx * ISOC_PACKET_SIZE], (irp_idx * NUM_IRPS) + pkt_idx, ISOC_PACKET_SIZE);
}
}
//Enqueue IRPs
for (int i = 0; i < NUM_IRPS; i++) {
TEST_ASSERT_EQUAL(ESP_OK, hcd_irp_enqueue(isoc_out_pipe, irp_list[i]));
}
//Wait for each done event from each IRP
for (int i = 0; i < NUM_IRPS; i++) {
test_hcd_expect_pipe_event(isoc_out_pipe, HCD_PIPE_EVENT_IRP_DONE);
}
//Dequeue IRPs
for (int irp_idx = 0; irp_idx < NUM_IRPS; irp_idx++) {
usb_irp_t *irp = hcd_irp_dequeue(isoc_out_pipe);
TEST_ASSERT_EQUAL(irp_list[irp_idx], irp);
TEST_ASSERT_EQUAL(IRP_CONTEXT_VAL, irp->context);
for (int pkt_idx = 0; pkt_idx < NUM_PACKETS_PER_IRP; pkt_idx++) {
TEST_ASSERT_EQUAL(USB_TRANSFER_STATUS_COMPLETED, irp->iso_packet_desc[pkt_idx].status);
}
}
//Free IRP list and pipe
for (int i = 0; i < NUM_IRPS; i++) {
test_hcd_free_irp(irp_list[i]);
}
test_hcd_pipe_free(isoc_out_pipe);
test_hcd_pipe_free(default_pipe);
//Cleanup
test_hcd_wait_for_disconn(port_hdl, false);
test_hcd_teardown(port_hdl);
}

View File

@ -0,0 +1,309 @@
// Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "unity.h"
#include "test_utils.h"
#include "test_hcd_common.h"
#define TEST_DEV_ADDR 0
#define NUM_IRPS 3
#define TRANSFER_MAX_BYTES 256
#define IRP_DATA_BUFF_SIZE (sizeof(usb_ctrl_req_t) + TRANSFER_MAX_BYTES) //256 is worst case size for configuration descriptors
/*
Test a port sudden disconnect and port recovery
Purpose: Test that when sudden disconnection happens on an HCD port, the port will
- Generate the HCD_PORT_EVENT_SUDDEN_DISCONN and be put into the HCD_PORT_STATE_RECOVERY state
- Ongoing IRPs and pipes are handled correctly
Procedure:
- Setup the HCD and a port
- Trigger a port connection
- Create a default pipe
- Start transfers but immediately trigger a disconnect
- Check that HCD_PORT_EVENT_SUDDEN_DISCONN event is generated. Handle the event.
- Check that default pipe received a HCD_PIPE_EVENT_INVALID event. Pipe state should be invalid. Dequeue IRPs
- Free default pipe
- Recover the port
- Trigger connection and disconnection again (to make sure the port works post recovery)
- Teardown port and HCD
*/
TEST_CASE("Test HCD port sudden disconnect", "[hcd][ignore]")
{
hcd_port_handle_t port_hdl = test_hcd_setup(); //Setup the HCD and port
usb_speed_t port_speed = test_hcd_wait_for_conn(port_hdl); //Trigger a connection
vTaskDelay(pdMS_TO_TICKS(100)); //Short delay send of SOF (for FS) or EOPs (for LS)
//Allocate some IRPs and initialize their data buffers with control transfers
hcd_pipe_handle_t default_pipe = test_hcd_pipe_alloc(port_hdl, NULL, TEST_DEV_ADDR, port_speed); //Create a default pipe (using a NULL EP descriptor)
usb_irp_t *irp_list[NUM_IRPS];
for (int i = 0; i < NUM_IRPS; i++) {
irp_list[i] = test_hcd_alloc_irp(0, IRP_DATA_BUFF_SIZE);
//Initialize with a "Get Config Descriptor request"
irp_list[i]->num_bytes = TRANSFER_MAX_BYTES;
USB_CTRL_REQ_INIT_GET_CFG_DESC((usb_ctrl_req_t *)irp_list[i]->data_buffer, 0, TRANSFER_MAX_BYTES);
irp_list[i]->context = (void *)0xDEADBEEF;
}
//Enqueue IRPs but immediately trigger a disconnect
printf("Enqueuing IRPs\n");
for (int i = 0; i < NUM_IRPS; i++) {
TEST_ASSERT_EQUAL(ESP_OK, hcd_irp_enqueue(default_pipe, irp_list[i]));
}
test_hcd_force_conn_state(false, 0);
//Disconnect event should have occurred. Handle the event
test_hcd_expect_port_event(port_hdl, HCD_PORT_EVENT_SUDDEN_DISCONN);
TEST_ASSERT_EQUAL(HCD_PORT_EVENT_SUDDEN_DISCONN, hcd_port_handle_event(port_hdl));
TEST_ASSERT_EQUAL(HCD_PORT_STATE_RECOVERY, hcd_port_get_state(port_hdl));
printf("Sudden disconnect\n");
//Pipe should have received (zero or more HCD_PIPE_EVENT_IRP_DONE) followed by a HCD_PIPE_EVENT_INVALID (MUST OCCUR)
int num_pipe_events = test_hcd_get_num_pipe_events(default_pipe);
for (int i = 0; i < num_pipe_events - 1; i++) {
test_hcd_expect_pipe_event(default_pipe, HCD_PIPE_EVENT_IRP_DONE);
}
test_hcd_expect_pipe_event(default_pipe, HCD_PIPE_EVENT_INVALID);
TEST_ASSERT_EQUAL(hcd_pipe_get_state(default_pipe), HCD_PIPE_STATE_INVALID);
//Dequeue IRPs
for (int i = 0; i < NUM_IRPS; i++) {
usb_irp_t *irp = hcd_irp_dequeue(default_pipe);
TEST_ASSERT_EQUAL(irp_list[i], irp);
TEST_ASSERT(irp->status == USB_TRANSFER_STATUS_COMPLETED || irp->status == USB_TRANSFER_STATUS_NO_DEVICE);
if (irp->status == USB_TRANSFER_STATUS_COMPLETED) {
TEST_ASSERT_GREATER_THAN(0, irp->actual_num_bytes);
} else {
TEST_ASSERT_EQUAL(0, irp->actual_num_bytes);
}
TEST_ASSERT_EQUAL(0xDEADBEEF, irp->context);
}
//Free IRP list and pipe
for (int i = 0; i < NUM_IRPS; i++) {
test_hcd_free_irp(irp_list[i]);
}
test_hcd_pipe_free(default_pipe);
//Recover the port should return to the to NOT POWERED state
TEST_ASSERT_EQUAL(ESP_OK, hcd_port_recover(port_hdl));
TEST_ASSERT_EQUAL(HCD_PORT_STATE_NOT_POWERED, hcd_port_get_state(port_hdl));
//Recovered port should be able to connect and disconnect again
test_hcd_wait_for_conn(port_hdl);
test_hcd_wait_for_disconn(port_hdl, false);
test_hcd_teardown(port_hdl);
}
/*
Test port suspend and resume with active pipes
Purpose:
- Test port suspend and resume commands work correctly whilst there are active pipes with ongoing transfers
- When suspending, the pipes should be allowed to finish their current ongoing transfer before the bus is suspended.
- When resuming, pipes with pending transfer should be started after the bus is resumed.
Procedure:
- Setup the HCD and a port
- Trigger a port connection
- Create a default pipe
- Start transfers but suspend the port immediately
- Resume the port
- Check that all the IRPs have completed successfully
- Cleanup IRPs and default pipe
- Trigger disconnection and teardown
*/
TEST_CASE("Test HCD port suspend and resume", "[hcd][ignore]")
{
hcd_port_handle_t port_hdl = test_hcd_setup(); //Setup the HCD and port
usb_speed_t port_speed = test_hcd_wait_for_conn(port_hdl); //Trigger a connection
vTaskDelay(pdMS_TO_TICKS(100)); //Short delay send of SOF (for FS) or EOPs (for LS)
//Allocate some IRPs and initialize their data buffers with control transfers
hcd_pipe_handle_t default_pipe = test_hcd_pipe_alloc(port_hdl, NULL, TEST_DEV_ADDR, port_speed); //Create a default pipe (using a NULL EP descriptor)
usb_irp_t *irp_list[NUM_IRPS];
for (int i = 0; i < NUM_IRPS; i++) {
irp_list[i] = test_hcd_alloc_irp(0, IRP_DATA_BUFF_SIZE);
//Initialize with a "Get Config Descriptor request"
irp_list[i]->num_bytes = TRANSFER_MAX_BYTES;
USB_CTRL_REQ_INIT_GET_CFG_DESC((usb_ctrl_req_t *)irp_list[i]->data_buffer, 0, TRANSFER_MAX_BYTES);
irp_list[i]->context = (void *)0xDEADBEEF;
}
//Enqueue IRPs but immediately suspend the port
printf("Enqueuing IRPs\n");
for (int i = 0; i < NUM_IRPS; i++) {
TEST_ASSERT_EQUAL(ESP_OK, hcd_irp_enqueue(default_pipe, irp_list[i]));
}
TEST_ASSERT_EQUAL(ESP_OK, hcd_port_command(port_hdl, HCD_PORT_CMD_SUSPEND));
TEST_ASSERT_EQUAL(HCD_PORT_STATE_SUSPENDED, hcd_port_get_state(port_hdl));
printf("Suspended\n");
vTaskDelay(pdMS_TO_TICKS(100)); //Give some time for bus to remain suspended
//Resume the port
TEST_ASSERT_EQUAL(ESP_OK, hcd_port_command(port_hdl, HCD_PORT_CMD_RESUME));
TEST_ASSERT_EQUAL(HCD_PORT_STATE_ENABLED, hcd_port_get_state(port_hdl));
printf("Resumed\n");
vTaskDelay(pdMS_TO_TICKS(100)); //Give some time for resumed IRPs to complete
//Dequeue IRPs
for (int i = 0; i < NUM_IRPS; i++) {
usb_irp_t *irp = hcd_irp_dequeue(default_pipe);
TEST_ASSERT_EQUAL(irp_list[i], irp);
TEST_ASSERT_EQUAL(irp->status, USB_TRANSFER_STATUS_COMPLETED);
TEST_ASSERT_GREATER_THAN(0, irp->actual_num_bytes);
TEST_ASSERT_EQUAL(0xDEADBEEF, irp->context);
}
//Free IRP list and pipe
for (int i = 0; i < NUM_IRPS; i++) {
test_hcd_free_irp(irp_list[i]);
}
test_hcd_pipe_free(default_pipe);
//Cleanup
test_hcd_wait_for_disconn(port_hdl, false);
test_hcd_teardown(port_hdl);
}
/*
Test HCD port disable with active pipes
Purpose:
- Test that the port disable command works correctly with active pipes
- Pipes should be to finish their current ongoing transfer before port is disabled
- After disabling the port, all pipes should become invalid.
Procedure:
- Setup HCD, a default pipe, and multiple IRPs
- Start transfers but immediately disable the port
- Check pipe received invalid event
- Check that transfer are either done or not executed
- Teardown
*/
TEST_CASE("Test HCD port disable", "[hcd][ignore]")
{
hcd_port_handle_t port_hdl = test_hcd_setup(); //Setup the HCD and port
usb_speed_t port_speed = test_hcd_wait_for_conn(port_hdl); //Trigger a connection
vTaskDelay(pdMS_TO_TICKS(100)); //Short delay send of SOF (for FS) or EOPs (for LS)
//Allocate some IRPs and initialize their data buffers with control transfers
hcd_pipe_handle_t default_pipe = test_hcd_pipe_alloc(port_hdl, NULL, TEST_DEV_ADDR, port_speed); //Create a default pipe (using a NULL EP descriptor)
usb_irp_t *irp_list[NUM_IRPS];
for (int i = 0; i < NUM_IRPS; i++) {
irp_list[i] = test_hcd_alloc_irp(0, IRP_DATA_BUFF_SIZE);
//Initialize with a "Get Config Descriptor request"
irp_list[i]->num_bytes = TRANSFER_MAX_BYTES;
USB_CTRL_REQ_INIT_GET_CFG_DESC((usb_ctrl_req_t *)irp_list[i]->data_buffer, 0, TRANSFER_MAX_BYTES);
irp_list[i]->context = (void *)0xDEADBEEF;
}
//Enqueue IRPs but immediately disable the port
printf("Enqueuing IRPs\n");
for (int i = 0; i < NUM_IRPS; i++) {
TEST_ASSERT_EQUAL(ESP_OK, hcd_irp_enqueue(default_pipe, irp_list[i]));
}
TEST_ASSERT_EQUAL(ESP_OK, hcd_port_command(port_hdl, HCD_PORT_CMD_DISABLE));
TEST_ASSERT_EQUAL(HCD_PORT_STATE_DISABLED, hcd_port_get_state(port_hdl));
printf("Disabled\n");
//Pipe should have received (zero or more HCD_PIPE_EVENT_IRP_DONE) followed by a HCD_PIPE_EVENT_INVALID (MUST OCCUR)
int num_pipe_events = test_hcd_get_num_pipe_events(default_pipe);
for (int i = 0; i < num_pipe_events - 1; i++) {
test_hcd_expect_pipe_event(default_pipe, HCD_PIPE_EVENT_IRP_DONE);
}
test_hcd_expect_pipe_event(default_pipe, HCD_PIPE_EVENT_INVALID);
//Dequeue IRPs
for (int i = 0; i < NUM_IRPS; i++) {
usb_irp_t *irp = hcd_irp_dequeue(default_pipe);
TEST_ASSERT_EQUAL(irp_list[i], irp);
TEST_ASSERT(irp->status == USB_TRANSFER_STATUS_COMPLETED || irp->status == USB_TRANSFER_STATUS_NO_DEVICE);
if (irp->status == USB_TRANSFER_STATUS_COMPLETED) {
TEST_ASSERT_GREATER_THAN(0, irp->actual_num_bytes);
} else {
TEST_ASSERT_EQUAL(0, irp->actual_num_bytes);
}
TEST_ASSERT_EQUAL(0xDEADBEEF, irp->context);
}
//Free IRP list and pipe
for (int i = 0; i < NUM_IRPS; i++) {
test_hcd_free_irp(irp_list[i]);
}
test_hcd_pipe_free(default_pipe);
//Cleanup
test_hcd_wait_for_disconn(port_hdl, true);
test_hcd_teardown(port_hdl);
}
/*
Test HCD port command bailout
Purpose:
- Test that if the a port's state changes whilst a command is being executed, the port command should return
ESP_ERR_INVALID_RESPONSE
Procedure:
- Setup HCD and wait for connection
- Suspend the port
- Resume the port but trigger a disconnect from another thread during the resume command
- Check that port command returns ESP_ERR_INVALID_RESPONSE
*/
static void concurrent_task(void *arg)
{
SemaphoreHandle_t sync_sem = (SemaphoreHandle_t) arg;
xSemaphoreTake(sync_sem, portMAX_DELAY);
vTaskDelay(pdMS_TO_TICKS(10)); //Give a short delay let reset command start in main thread
//Force a disconnection
test_hcd_force_conn_state(false, 0);
vTaskDelay(portMAX_DELAY); //Block forever and wait to be deleted
}
TEST_CASE("Test HCD port command bailout", "[hcd][ignore]")
{
hcd_port_handle_t port_hdl = test_hcd_setup(); //Setup the HCD and port
test_hcd_wait_for_conn(port_hdl); //Trigger a connection
vTaskDelay(pdMS_TO_TICKS(100)); //Short delay send of SOF (for FS) or EOPs (for LS)
//Create task to run port commands concurrently
SemaphoreHandle_t sync_sem = xSemaphoreCreateBinary();
TaskHandle_t task_handle;
TEST_ASSERT_NOT_EQUAL(NULL, sync_sem);
TEST_ASSERT_EQUAL(pdTRUE, xTaskCreatePinnedToCore(concurrent_task, "tsk", 4096, (void *) sync_sem, UNITY_FREERTOS_PRIORITY + 1, &task_handle, 0));
//Suspend the device
printf("Suspending\n");
TEST_ASSERT_EQUAL(ESP_OK, hcd_port_command(port_hdl, HCD_PORT_CMD_SUSPEND));
vTaskDelay(pdMS_TO_TICKS(20)); //Short delay for device to enter suspend state
//Attempt to resume the port. But the concurrent task should override this with a disconnection event
printf("Attempting to resume\n");
xSemaphoreGive(sync_sem); //Trigger concurrent task
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_RESPONSE, hcd_port_command(port_hdl, HCD_PORT_CMD_RESUME));
//Check that concurrent task triggered a sudden disconnection
test_hcd_expect_port_event(port_hdl, HCD_PORT_EVENT_SUDDEN_DISCONN);
TEST_ASSERT_EQUAL(HCD_PORT_EVENT_SUDDEN_DISCONN, hcd_port_handle_event(port_hdl));
TEST_ASSERT_EQUAL(HCD_PORT_STATE_RECOVERY, hcd_port_get_state(port_hdl));
//Cleanup task and semaphore
vTaskDelay(pdMS_TO_TICKS(10)); //Short delay for concurrent task finish running
vTaskDelete(task_handle);
vSemaphoreDelete(sync_sem);
test_hcd_teardown(port_hdl);
}

View File

@ -1,790 +0,0 @@
// Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "unity.h"
#include "test_utils.h"
#include "soc/gpio_pins.h"
#include "soc/gpio_sig_map.h"
#include "esp_intr_alloc.h"
#include "esp_err.h"
#include "esp_attr.h"
#include "esp_rom_gpio.h"
#include "hal/usbh_ll.h"
#include "usb.h"
#include "hcd.h"
// -------------------------------------------------- PHY Control ------------------------------------------------------
static void phy_force_conn_state(bool connected, TickType_t delay_ticks)
{
vTaskDelay(delay_ticks);
usb_wrap_dev_t *wrap = &USB_WRAP;
if (connected) {
//Swap back to internal PHY that is connected to a device
wrap->otg_conf.phy_sel = 0;
} else {
//Set external PHY input signals to fixed voltage levels mimicking a disconnected state
esp_rom_gpio_connect_in_signal(GPIO_MATRIX_CONST_ZERO_INPUT, USB_EXTPHY_VP_IDX, false);
esp_rom_gpio_connect_in_signal(GPIO_MATRIX_CONST_ZERO_INPUT, USB_EXTPHY_VM_IDX, false);
esp_rom_gpio_connect_in_signal(GPIO_MATRIX_CONST_ONE_INPUT, USB_EXTPHY_RCV_IDX, false);
//Swap to the external PHY
wrap->otg_conf.phy_sel = 1;
}
}
// ------------------------------------------------ Helper Functions ---------------------------------------------------
#define EVENT_QUEUE_LEN 5
#define NUM_IRPS 3
#define TRANSFER_DATA_MAX_BYTES 256 //Just assume that will only IN/OUT 256 bytes for now
#define PORT_NUM 1
#define IRP_CONTEXT_VAL ((void *)0xDEADBEEF) //Conext value for created IRPs
typedef struct {
hcd_port_handle_t port_hdl;
hcd_port_event_t port_event;
} port_event_msg_t;
typedef struct {
hcd_pipe_handle_t pipe_hdl;
hcd_pipe_event_t pipe_event;
} pipe_event_msg_t;
static bool port_callback(hcd_port_handle_t port_hdl, hcd_port_event_t port_event, void *user_arg, bool in_isr)
{
QueueHandle_t port_evt_queue = (QueueHandle_t)user_arg;
TEST_ASSERT(in_isr); //Current HCD implementation should never call a port callback in a task context
port_event_msg_t msg = {
.port_hdl = port_hdl,
.port_event = port_event,
};
BaseType_t xTaskWoken = pdFALSE;
xQueueSendFromISR(port_evt_queue, &msg, &xTaskWoken);
return (xTaskWoken == pdTRUE);
}
static bool pipe_callback(hcd_pipe_handle_t pipe_hdl, hcd_pipe_event_t pipe_event, void *user_arg, bool in_isr)
{
QueueHandle_t pipe_evt_queue = (QueueHandle_t)user_arg;
pipe_event_msg_t msg = {
.pipe_hdl = pipe_hdl,
.pipe_event = pipe_event,
};
if (in_isr) {
BaseType_t xTaskWoken = pdFALSE;
xQueueSendFromISR(pipe_evt_queue, &msg, &xTaskWoken);
return (xTaskWoken == pdTRUE);
} else {
xQueueSend(pipe_evt_queue, &msg, portMAX_DELAY);
return false;
}
}
static void expect_port_event(QueueHandle_t port_evt_queue, hcd_port_handle_t expected_hdl, hcd_port_event_t expected_event)
{
port_event_msg_t msg;
xQueueReceive(port_evt_queue, &msg, portMAX_DELAY);
TEST_ASSERT_EQUAL(expected_hdl, msg.port_hdl);
TEST_ASSERT_EQUAL(expected_event, msg.port_event);
printf("\t-> Port event\n");
}
static void expect_pipe_event(QueueHandle_t pipe_evt_queue, hcd_pipe_handle_t expected_hdl, hcd_pipe_event_t expected_event)
{
pipe_event_msg_t msg;
xQueueReceive(pipe_evt_queue, &msg, portMAX_DELAY);
TEST_ASSERT_EQUAL(expected_hdl, msg.pipe_hdl);
TEST_ASSERT_EQUAL(expected_event, msg.pipe_event);
}
/**
* @brief Creates port and pipe event queues. Sets up the HCD, and initializes a port.
*
* @param[out] port_evt_queue Port event queue
* @param[out] pipe_evt_queue Pipe event queue
* @param[out] port_hdl Port handle
*/
static void setup(QueueHandle_t *port_evt_queue, QueueHandle_t *pipe_evt_queue, hcd_port_handle_t *port_hdl)
{
*port_evt_queue = xQueueCreate(EVENT_QUEUE_LEN, sizeof(port_event_msg_t));
*pipe_evt_queue = xQueueCreate(EVENT_QUEUE_LEN, sizeof(pipe_event_msg_t));
TEST_ASSERT_NOT_EQUAL(NULL, *port_evt_queue);
TEST_ASSERT_NOT_EQUAL(NULL, *pipe_evt_queue);
//Install HCD
hcd_config_t config = {
.intr_flags = ESP_INTR_FLAG_LEVEL1,
};
TEST_ASSERT_EQUAL(ESP_OK, hcd_install(&config));
//Initialize a port
hcd_port_config_t port_config = {
.callback = port_callback,
.callback_arg = (void *)*port_evt_queue,
.context = NULL,
};
TEST_ASSERT_EQUAL(ESP_OK, hcd_port_init(PORT_NUM, &port_config, port_hdl));
TEST_ASSERT_NOT_EQUAL(NULL, *port_hdl);
TEST_ASSERT_EQUAL(HCD_PORT_STATE_NOT_POWERED, hcd_port_get_state(*port_hdl));
phy_force_conn_state(false, 0); //Force disconnected state on PHY
}
/**
* @brief Deinitializes the port, uninstalls HCD, and frees port and pipe event queues
*
* @param[in] port_evt_queue Port event queue
* @param[in] pipe_evt_queue Pipe event semaphore
* @param[in] port_hdl Port handle
*/
static void teardown(QueueHandle_t port_evt_queue, QueueHandle_t pipe_evt_queue, hcd_port_handle_t port_hdl)
{
//Deinitialize a port
TEST_ASSERT_EQUAL(ESP_OK, hcd_port_deinit(port_hdl));
//Uninstall the HCD
TEST_ASSERT_EQUAL(ESP_OK, hcd_uninstall());
vQueueDelete(port_evt_queue);
vQueueDelete(pipe_evt_queue);
}
/**
* @brief Powers ON a port and waits for a connection, then resets the connected device
*
* @param port_hdl Port handle
* @param port_evt_queue Port event queue
*/
static void wait_for_connection(hcd_port_handle_t port_hdl, QueueHandle_t port_evt_queue)
{
//Power ON the port
TEST_ASSERT_EQUAL(ESP_OK, hcd_port_command(port_hdl, HCD_PORT_CMD_POWER_ON));
TEST_ASSERT_EQUAL(HCD_PORT_STATE_DISCONNECTED, hcd_port_get_state(port_hdl));
//Wait for connection event
printf("Waiting for conenction\n");
phy_force_conn_state(true, pdMS_TO_TICKS(100)); //Allow for connected state on PHY
expect_port_event(port_evt_queue, port_hdl, HCD_PORT_EVENT_CONNECTION);
TEST_ASSERT_EQUAL(HCD_PORT_EVENT_CONNECTION, hcd_port_handle_event(port_hdl));
TEST_ASSERT_EQUAL(HCD_PORT_STATE_DISABLED, hcd_port_get_state(port_hdl));
//Reset newly connected device
printf("Resetting\n");
TEST_ASSERT_EQUAL(ESP_OK, hcd_port_command(port_hdl, HCD_PORT_CMD_RESET));
TEST_ASSERT_EQUAL(HCD_PORT_STATE_ENABLED, hcd_port_get_state(port_hdl));
//Get speed of conencted
usb_speed_t port_speed;
TEST_ASSERT_EQUAL(ESP_OK, hcd_port_get_speed(port_hdl, &port_speed));
if (port_speed == USB_SPEED_FULL) {
printf("Full speed enabled\n");
} else {
printf("Low speed enabled\n");
}
}
/**
* @brief Disables the port, waits for a disconnection, then powers OFF the port
*
* @param port_hdl Port handle
* @param port_evt_queue Port event queue
* @param already_disabled If the port is already disabled, it will skip disabling the port
*/
static void wait_for_disconnection(hcd_port_handle_t port_hdl, QueueHandle_t port_evt_queue, bool already_disabled)
{
if (!already_disabled) {
//Disable the device
printf("Disabling\n");
TEST_ASSERT_EQUAL(ESP_OK, hcd_port_command(port_hdl, HCD_PORT_CMD_DISABLE));
TEST_ASSERT_EQUAL(HCD_PORT_STATE_DISABLED, hcd_port_get_state(port_hdl));
}
//Wait for a safe disconnect
printf("Waiting for disconnection\n");
phy_force_conn_state(false, pdMS_TO_TICKS(100)); //Force disconnected state on PHY
expect_port_event(port_evt_queue, port_hdl, HCD_PORT_EVENT_DISCONNECTION);
TEST_ASSERT_EQUAL(HCD_PORT_EVENT_DISCONNECTION, hcd_port_handle_event(port_hdl));
TEST_ASSERT_EQUAL(HCD_PORT_STATE_DISCONNECTED, hcd_port_get_state(port_hdl));
//Power down the port
TEST_ASSERT_EQUAL(ESP_OK, hcd_port_command(port_hdl, HCD_PORT_CMD_POWER_OFF));
TEST_ASSERT_EQUAL(HCD_PORT_STATE_NOT_POWERED, hcd_port_get_state(port_hdl));
}
static void alloc_pipe_and_irp_list(hcd_port_handle_t port_hdl,
QueueHandle_t pipe_evt_queue,
int num_irps,
hcd_pipe_handle_t *pipe_hdl,
usb_irp_t ***irp_list)
{
//We don't support hubs yet. Just get the speed of the port to determine the speed of the device
usb_speed_t port_speed;
TEST_ASSERT_EQUAL(ESP_OK, hcd_port_get_speed(port_hdl, &port_speed));
//Create default pipe
printf("Creating default pipe\n");
hcd_pipe_config_t config = {
.callback = pipe_callback,
.callback_arg = (void *)pipe_evt_queue,
.context = NULL,
.ep_desc = NULL, //NULL EP descriptor to create a default pipe
.dev_addr = 0,
.dev_speed = port_speed,
};
TEST_ASSERT_EQUAL(ESP_OK, hcd_pipe_alloc(port_hdl, &config, pipe_hdl));
TEST_ASSERT_NOT_EQUAL(NULL, *pipe_hdl);
//Create IRPs and their data buffers
printf("Creating IRPs and IRP list\n");
*irp_list = heap_caps_malloc(sizeof(usb_irp_t *) * num_irps, MALLOC_CAP_DEFAULT);
TEST_ASSERT_NOT_EQUAL(NULL, *irp_list);
for (int i = 0; i < num_irps; i++) {
//Allocate IRP
usb_irp_t *irp = heap_caps_calloc(1, sizeof(usb_irp_t), MALLOC_CAP_DEFAULT);
TEST_ASSERT_NOT_EQUAL(NULL, irp);
//Allocate data buffer
uint8_t *data_buffer = heap_caps_malloc(sizeof(usb_ctrl_req_t) + TRANSFER_DATA_MAX_BYTES, MALLOC_CAP_DMA);
TEST_ASSERT_NOT_EQUAL(NULL, data_buffer);
//Initialize IRP and IRP list
irp->data_buffer = data_buffer;
irp->num_iso_packets = 0;
(*irp_list)[i] = irp;
}
}
static void free_pipe_and_irp_list(hcd_pipe_handle_t pipe_hdl,
int num_irps,
usb_irp_t **irp_list)
{
printf("Freeing IRPs and IRP list\n");
for (int i = 0; i < num_irps; i++) {
usb_irp_t *irp = irp_list[i] ;
//Free data buffer
heap_caps_free(irp->data_buffer);
heap_caps_free(irp);
}
heap_caps_free(irp_list);
printf("Freeing default pipe\n");
TEST_ASSERT_EQUAL(ESP_OK, hcd_pipe_free(pipe_hdl));
}
// ------------------------------------------------ Host Port Tests ----------------------------------------------------
/*
Test a port sudden disconnect and port recovery
Purpose: Test that when sudden disconnection happens on an HCD port, the port will
- Generate the HCD_PORT_EVENT_SUDDEN_DISCONN and be put into the HCD_PORT_STATE_RECOVERY state
- Ongoing IRPs and pipes are handled correctly
Procedure:
- Setup HCD, a default pipe, and multiple IRPs
- Start transfers but immediately trigger a disconnect
- Check that HCD_PORT_EVENT_SUDDEN_DISCONN event is generated
- Check that default pipe is invalid and IRPs can be dequeued
- Recover the port and try to connect then disconnect again (to make sure the port works port recovery)
- Teardown HCD
*/
TEST_CASE("Test HCD port sudden disconnect", "[hcd][ignore]")
{
QueueHandle_t port_evt_queue;
QueueHandle_t pipe_evt_queue;
hcd_port_handle_t port_hdl;
setup(&port_evt_queue, &pipe_evt_queue, &port_hdl);
wait_for_connection(port_hdl, port_evt_queue);
vTaskDelay(pdMS_TO_TICKS(100)); //Short delay send of SOF (for FS) or EOPs (for LS)
//Allocate default pipe and IRPs
hcd_pipe_handle_t default_pipe;
usb_irp_t **irp_list;
alloc_pipe_and_irp_list(port_hdl, pipe_evt_queue, NUM_IRPS, &default_pipe, &irp_list);
//Initialize IRPs to send a "Get Device Descriptor" request
for (int i = 0; i < NUM_IRPS; i++) {
irp_list[i]->num_bytes = 64; //1 worst case MPS
USB_CTRL_REQ_INIT_GET_CFG_DESC((usb_ctrl_req_t *) irp_list[i]->data_buffer, 0, TRANSFER_DATA_MAX_BYTES);
irp_list[i]->context = IRP_CONTEXT_VAL;
}
//Enqueue those IRPs
for (int i = 0; i < NUM_IRPS; i++) {
TEST_ASSERT_EQUAL(ESP_OK, hcd_irp_enqueue(default_pipe, irp_list[i]));
}
phy_force_conn_state(false, 0); //Force disconnected state on PHY
expect_port_event(port_evt_queue, port_hdl, HCD_PORT_EVENT_SUDDEN_DISCONN);
TEST_ASSERT_EQUAL(HCD_PORT_EVENT_SUDDEN_DISCONN, hcd_port_handle_event(port_hdl));
TEST_ASSERT_EQUAL(HCD_PORT_STATE_RECOVERY, hcd_port_get_state(port_hdl));
printf("Sudden disconnect\n");
//Handling the disconnection event should have invalidated all pipes.
//Pipe should have received (zero or more HCD_PIPE_EVENT_IRP_DONE) followed by a HCD_PIPE_EVENT_INVALID (MUST OCCUR)
int num_pipe_events = EVENT_QUEUE_LEN - uxQueueSpacesAvailable(pipe_evt_queue);
for (int i = 0; i < num_pipe_events - 1; i++) {
expect_pipe_event(pipe_evt_queue, default_pipe, HCD_PIPE_EVENT_IRP_DONE);
}
expect_pipe_event(pipe_evt_queue, default_pipe, HCD_PIPE_EVENT_INVALID);
TEST_ASSERT_EQUAL(hcd_pipe_get_state(default_pipe), HCD_PIPE_STATE_INVALID);
//Dequeue IRPs
for (int i = 0; i < NUM_IRPS; i++) {
usb_irp_t *irp = hcd_irp_dequeue(default_pipe);
TEST_ASSERT_NOT_EQUAL(NULL, irp);
TEST_ASSERT(irp->status == USB_TRANSFER_STATUS_COMPLETED || irp->status == USB_TRANSFER_STATUS_NO_DEVICE);
TEST_ASSERT(irp->context == IRP_CONTEXT_VAL);
}
//Free IRPs
free_pipe_and_irp_list(default_pipe, NUM_IRPS, irp_list);
//Recover the port should return to the to NOT POWERED state
TEST_ASSERT_EQUAL(ESP_OK, hcd_port_recover(port_hdl));
TEST_ASSERT_EQUAL(HCD_PORT_STATE_NOT_POWERED, hcd_port_get_state(port_hdl));
//Recovered port should be able to connect and disconnect again
wait_for_connection(port_hdl, port_evt_queue);
wait_for_disconnection(port_hdl, port_evt_queue, false);
teardown(port_evt_queue, pipe_evt_queue, port_hdl);
}
/*
Test port suspend and resume with active pipes
Purpose:
- Test port suspend and resume commands work correctly whilst there are active pipes with ongoing transfers
- When suspending, the pipes should be allowed to finish their current ongoing transfer before the bus is suspended.
- When resuming, pipes with pending transfer should be started after the bus is resumed.
Procedure:
- Setup HCD, a port, a default pipe, and multiple IRPS
- Start transfers but immediately suspend the port
- Resume the port
- Check all IRPs have also be resumed and completed on port resume
- Teardown
*/
TEST_CASE("Test HCD port suspend and resume", "[hcd][ignore]")
{
QueueHandle_t port_evt_queue;
QueueHandle_t pipe_evt_queue;
hcd_port_handle_t port_hdl;
setup(&port_evt_queue, &pipe_evt_queue, &port_hdl);
wait_for_connection(port_hdl, port_evt_queue);
vTaskDelay(pdMS_TO_TICKS(100)); //Short delay send of SOF (for FS) or EOPs (for LS)
//Allocate default pipe and IRPs
hcd_pipe_handle_t default_pipe;
usb_irp_t **irp_list;
alloc_pipe_and_irp_list(port_hdl, pipe_evt_queue, NUM_IRPS, &default_pipe, &irp_list);
//Initialize IRPs to send a "Get Device Descriptor" request
for (int i = 0; i < NUM_IRPS; i++) {
irp_list[i]->num_bytes = 64; //1 worst case MPS
USB_CTRL_REQ_INIT_GET_CFG_DESC((usb_ctrl_req_t *)irp_list[i]->data_buffer, 0, TRANSFER_DATA_MAX_BYTES);
irp_list[i]->context = IRP_CONTEXT_VAL;
}
//Enqueue those IRPs
for (int i = 0; i < NUM_IRPS; i++) {
TEST_ASSERT_EQUAL(ESP_OK, hcd_irp_enqueue(default_pipe, irp_list[i]));
}
//Immediately suspend the bus whilst pies are active
TEST_ASSERT_EQUAL(ESP_OK, hcd_port_command(port_hdl, HCD_PORT_CMD_SUSPEND));
TEST_ASSERT_EQUAL(HCD_PORT_STATE_SUSPENDED, hcd_port_get_state(port_hdl));
printf("Suspended\n");
vTaskDelay(pdMS_TO_TICKS(100));
TEST_ASSERT_EQUAL(ESP_OK, hcd_port_command(port_hdl, HCD_PORT_CMD_RESUME));
TEST_ASSERT_EQUAL(HCD_PORT_STATE_ENABLED, hcd_port_get_state(port_hdl));
vTaskDelay(pdMS_TO_TICKS(100)); //Give some time for resumed transfers to complete
//Dequeue IRPs
for (int i = 0; i < NUM_IRPS; i++) {
expect_pipe_event(pipe_evt_queue, default_pipe, HCD_PIPE_EVENT_IRP_DONE);
usb_irp_t *irp = hcd_irp_dequeue(default_pipe);
TEST_ASSERT_NOT_EQUAL(NULL, irp);
TEST_ASSERT(irp->status == USB_TRANSFER_STATUS_COMPLETED);
TEST_ASSERT(irp->context == IRP_CONTEXT_VAL);
}
//Free IRPs
free_pipe_and_irp_list(default_pipe, NUM_IRPS, irp_list);
//Cleanup
vTaskDelay(pdMS_TO_TICKS(100)); //Short delay send of SOF (for FS) or EOPs (for LS)
wait_for_disconnection(port_hdl, port_evt_queue, false);
teardown(port_evt_queue, pipe_evt_queue, port_hdl);
}
/*
Test HCD port disable with active pipes
Purpose:
- Test that the port disable command works correctly with active pipes
- Pipes should be to finish their current ongoing transfer before port is disabled
- After disabling the port, all pipes should become invalid.
Procedure:
- Setup HCD, a default pipe, and multiple IRPs
- Start transfers but immediately disable the port
- Check pipe received invalid event
- Check that transfer are either done or not executed
- Teardown
*/
TEST_CASE("Test HCD port disable", "[hcd][ignore]")
{
QueueHandle_t port_evt_queue;
QueueHandle_t pipe_evt_queue;
hcd_port_handle_t port_hdl;
setup(&port_evt_queue, &pipe_evt_queue, &port_hdl);
wait_for_connection(port_hdl, port_evt_queue);
vTaskDelay(pdMS_TO_TICKS(100)); //Short delay send of SOF (for FS) or EOPs (for LS)
//Allocate default pipe and IRPs
hcd_pipe_handle_t default_pipe;
usb_irp_t **irp_list;
alloc_pipe_and_irp_list(port_hdl, pipe_evt_queue, NUM_IRPS, &default_pipe, &irp_list);
//Initialize IRPs to send a "Get Device Descriptor" request
for (int i = 0; i < NUM_IRPS; i++) {
irp_list[i]->num_bytes = 64; //1 worst case MPS
USB_CTRL_REQ_INIT_GET_CFG_DESC((usb_ctrl_req_t *) irp_list[i]->data_buffer, 0, TRANSFER_DATA_MAX_BYTES);
irp_list[i]->context = IRP_CONTEXT_VAL;
}
//Enqueue those IRPs
for (int i = 0; i < NUM_IRPS; i++) {
TEST_ASSERT_EQUAL(ESP_OK, hcd_irp_enqueue(default_pipe, irp_list[i]));
}
//Immediately disable port
TEST_ASSERT_EQUAL(ESP_OK, hcd_port_command(port_hdl, HCD_PORT_CMD_DISABLE));
TEST_ASSERT_EQUAL(HCD_PORT_STATE_DISABLED, hcd_port_get_state(port_hdl));
printf("Disabled\n");
//Pipe should have received (zero or more HCD_PIPE_EVENT_IRP_DONE) followed by a HCD_PIPE_EVENT_INVALID (MUST OCCUR)
int num_pipe_events = EVENT_QUEUE_LEN - uxQueueSpacesAvailable(pipe_evt_queue);
for (int i = 0; i < num_pipe_events - 1; i++) {
expect_pipe_event(pipe_evt_queue, default_pipe, HCD_PIPE_EVENT_IRP_DONE);
}
expect_pipe_event(pipe_evt_queue, default_pipe, HCD_PIPE_EVENT_INVALID);
//Dequeue IRPs
for (int i = 0; i < NUM_IRPS; i++) {
usb_irp_t *irp = hcd_irp_dequeue(default_pipe);
TEST_ASSERT_NOT_EQUAL(NULL, irp);
TEST_ASSERT(irp->status == USB_TRANSFER_STATUS_COMPLETED || irp->status == USB_TRANSFER_STATUS_NO_DEVICE);
TEST_ASSERT(irp->context == IRP_CONTEXT_VAL);
}
//Free IRPs
free_pipe_and_irp_list(default_pipe, NUM_IRPS, irp_list);
//Already disabled. Disconnect and teardown
wait_for_disconnection(port_hdl, port_evt_queue, true);
teardown(port_evt_queue, pipe_evt_queue, port_hdl);
}
/*
Test HCD port command bailout
Purpose:
- Test that if the a port's state changes whilst a command is being executed, the port command should return
ESP_ERR_INVALID_RESPONSE
Procedure:
- Setup HCD and wait for connection
- Suspend the port
- Resume the port but trigger a disconnect from another thread during the resume command
- Check that port command returns ESP_ERR_INVALID_RESPONSE
*/
static void concurrent_task(void *arg)
{
SemaphoreHandle_t sync_sem = (SemaphoreHandle_t) arg;
xSemaphoreTake(sync_sem, portMAX_DELAY);
vTaskDelay(pdMS_TO_TICKS(10)); //Give a short delay let reset command start in main thread
//Forcibly a disconnection
phy_force_conn_state(false, 0);
vTaskDelay(portMAX_DELAY); //Block forever and wait to be deleted
}
TEST_CASE("Test HCD port command bailout", "[hcd][ignore]")
{
QueueHandle_t port_evt_queue;
QueueHandle_t pipe_evt_queue;
hcd_port_handle_t port_hdl;
setup(&port_evt_queue, &pipe_evt_queue, &port_hdl);
wait_for_connection(port_hdl, port_evt_queue);
vTaskDelay(pdMS_TO_TICKS(100)); //Short delay send of SOF (for FS) or EOPs (for LS)
//Create task to run commands concurrently
SemaphoreHandle_t sync_sem = xSemaphoreCreateBinary();
TaskHandle_t task_handle;
TEST_ASSERT_NOT_EQUAL(NULL, sync_sem);
TEST_ASSERT_EQUAL(pdTRUE, xTaskCreatePinnedToCore(concurrent_task, "tsk", 4096, (void *) sync_sem, UNITY_FREERTOS_PRIORITY + 1, &task_handle, 0));
//Suspend the device
printf("Suspending\n");
TEST_ASSERT_EQUAL(ESP_OK, hcd_port_command(port_hdl, HCD_PORT_CMD_SUSPEND));
vTaskDelay(pdMS_TO_TICKS(20)); //Short delay for device to enter suspend state
printf("Attempting to resume\n");
xSemaphoreGive(sync_sem); //Trigger concurrent task
//Attempt to resume the port. But the concurrent task should override this with a disconnection event
TEST_ASSERT_EQUAL(ESP_ERR_INVALID_RESPONSE, hcd_port_command(port_hdl, HCD_PORT_CMD_RESUME));
//Check that concurrent task triggered a sudden disconnection
expect_port_event(port_evt_queue, port_hdl, HCD_PORT_EVENT_SUDDEN_DISCONN);
TEST_ASSERT_EQUAL(HCD_PORT_EVENT_SUDDEN_DISCONN, hcd_port_handle_event(port_hdl));
TEST_ASSERT_EQUAL(HCD_PORT_STATE_RECOVERY, hcd_port_get_state(port_hdl));
vTaskDelay(pdMS_TO_TICKS(10)); //Short delay for concurrent task finish running
vTaskDelete(task_handle);
vSemaphoreDelete(sync_sem);
//Directly teardown the port without recovery
teardown(port_evt_queue, pipe_evt_queue, port_hdl);
}
// --------------------------------------------------- Pipe Tests ------------------------------------------------------
/*
Test HCD IRPs (normal completion and early abort)
Purpose:
- Test that pipes can be created
- IRPs can be created and enqueued
- Pipe returns HCD_PIPE_EVENT_IRP_DONE
- Test that IRPs can be aborted when enqueued
Procedure:
- Setup
- Allocate IRPs. Initialize as Get Device Descriptor request
- Enqueue IRPs
- Expect HCD_PIPE_EVENT_IRP_DONE. Deallocate IRPs
- Requeue IRPs, but abort them immediately
- Teardown
*/
TEST_CASE("Test HCD IRP enqueue", "[hcd][ignore]")
{
QueueHandle_t port_evt_queue;
QueueHandle_t pipe_evt_queue;
hcd_port_handle_t port_hdl;
setup(&port_evt_queue, &pipe_evt_queue, &port_hdl);
wait_for_connection(port_hdl, port_evt_queue);
vTaskDelay(pdMS_TO_TICKS(100)); //Short delay send of SOF (for FS) or EOPs (for LS)
//Allocate default pipe and IRPs
hcd_pipe_handle_t default_pipe;
usb_irp_t **irp_list;
alloc_pipe_and_irp_list(port_hdl, pipe_evt_queue, NUM_IRPS, &default_pipe, &irp_list);
//Initialize IRPs to send a "Get Config Descriptor 0" request
for (int i = 0; i < NUM_IRPS; i++) {
irp_list[i]->num_bytes = 64; //1 worst case MPS
USB_CTRL_REQ_INIT_GET_CFG_DESC((usb_ctrl_req_t *) irp_list[i]->data_buffer, 0, TRANSFER_DATA_MAX_BYTES);
irp_list[i]->context = IRP_CONTEXT_VAL;
}
//Enqueue those IRPs
for (int i = 0; i < NUM_IRPS; i++) {
TEST_ASSERT_EQUAL(ESP_OK, hcd_irp_enqueue(default_pipe, irp_list[i]));
}
//Wait for each done event of each IRP
for (int i = 0; i < NUM_IRPS; i++) {
expect_pipe_event(pipe_evt_queue, default_pipe, HCD_PIPE_EVENT_IRP_DONE);
}
//Dequeue IRPs
for (int i = 0; i < NUM_IRPS; i++) {
usb_irp_t *irp = hcd_irp_dequeue(default_pipe);
TEST_ASSERT_NOT_EQUAL(NULL, irp);
TEST_ASSERT(irp->status == USB_TRANSFER_STATUS_COMPLETED);
TEST_ASSERT(irp->context == IRP_CONTEXT_VAL);
}
//Enqueue them again but abort them short after
for (int i = 0; i < NUM_IRPS; i++) {
TEST_ASSERT_EQUAL(ESP_OK, hcd_irp_enqueue(default_pipe, irp_list[i]));
}
for (int i = 0; i < NUM_IRPS; i++) {
TEST_ASSERT_EQUAL(ESP_OK, hcd_irp_abort(irp_list[i]));
}
vTaskDelay(pdMS_TO_TICKS(100)); //Give some time for any in-flight transfers to complete
expect_pipe_event(pipe_evt_queue, default_pipe, HCD_PIPE_EVENT_IRP_DONE);
//Wait for the IRPs to complete and dequeue them, then check results
for (int i = 0; i < NUM_IRPS; i++) {
usb_irp_t *irp = hcd_irp_dequeue(default_pipe);
TEST_ASSERT_NOT_EQUAL(NULL, irp);
TEST_ASSERT(irp->status == USB_TRANSFER_STATUS_COMPLETED || irp->status == USB_TRANSFER_STATUS_CANCELLED);
TEST_ASSERT(irp->context == IRP_CONTEXT_VAL);
}
//Free IRPs and default pipe
free_pipe_and_irp_list(default_pipe, NUM_IRPS, irp_list);
vTaskDelay(pdMS_TO_TICKS(100)); //Short delay send of SOF (for FS) or EOPs (for LS)
wait_for_disconnection(port_hdl, port_evt_queue, false);
teardown(port_evt_queue, pipe_evt_queue, port_hdl);
}
/*
Test HCD pipe STALL condition, abort, and clear
Purpose:
- Test that a pipe can react to a STALL (i.e., a HCD_PIPE_EVENT_HALTED event)
- The HCD_PIPE_CMD_ABORT can retire all IRPs
- Pipe clear command can return the pipe to being active
Procedure:
- Setup HCD and a port, a default pipe, and multiple IRPs
- Corrupt the first IRP, then enqueue all of them.
- The corrupted IRP should trigger a STALL response from the endpoint
- Check that the correct pipe event, error, and state is returned from the pipe
- Check that the other transfers can be retired using the abort command
- Check that the halt can be cleared by using the clear command
- Requeue correct transfers to check that pipe still works after being cleared
- Teardown
*/
TEST_CASE("Test HCD pipe STALL", "[hcd][ignore]")
{
QueueHandle_t port_evt_queue;
QueueHandle_t pipe_evt_queue;
hcd_port_handle_t port_hdl;
setup(&port_evt_queue, &pipe_evt_queue, &port_hdl);
wait_for_connection(port_hdl, port_evt_queue);
vTaskDelay(pdMS_TO_TICKS(100)); //Short delay send of SOF (for FS) or EOPs (for LS)
//Allocate default pipe and IRPs
hcd_pipe_handle_t default_pipe;
usb_irp_t **irp_list;
alloc_pipe_and_irp_list(port_hdl, pipe_evt_queue, NUM_IRPS, &default_pipe, &irp_list);
//Initialize IRPs to send a "Get Device Descriptor" request
for (int i = 0; i < NUM_IRPS; i++) {
irp_list[i]->num_bytes = 64; //1 worst case MPS
USB_CTRL_REQ_INIT_GET_CFG_DESC((usb_ctrl_req_t *) irp_list[i]->data_buffer, 0, TRANSFER_DATA_MAX_BYTES);
irp_list[i]->context = IRP_CONTEXT_VAL;
}
//Corrupt first transfer so that it triggers a STALL
((usb_ctrl_req_t *)irp_list[0]->data_buffer)->bRequest = 0xAA;
//Enqueue those IRPs
for (int i = 0; i < NUM_IRPS; i++) {
TEST_ASSERT_EQUAL(ESP_OK, hcd_irp_enqueue(default_pipe, irp_list[i]));
}
vTaskDelay(pdMS_TO_TICKS(100)); //Give some time for transfers to complete
//Check that pipe has been stalled
printf("Expecting STALL\n");
expect_pipe_event(pipe_evt_queue, default_pipe, HCD_PIPE_EVENT_ERROR_STALL);
TEST_ASSERT_EQUAL(HCD_PIPE_STATE_HALTED, hcd_pipe_get_state(default_pipe));
//Call the pipe abort command to retire all transfers then dequeue all transfers
TEST_ASSERT_EQUAL(ESP_OK, hcd_pipe_command(default_pipe, HCD_PIPE_CMD_ABORT));
//Dequeue IRPs
for (int i = 0; i < NUM_IRPS; i++) {
usb_irp_t *irp = hcd_irp_dequeue(default_pipe);
TEST_ASSERT_NOT_EQUAL(NULL, irp);
TEST_ASSERT(irp->status == USB_TRANSFER_STATUS_STALL || irp->status == USB_TRANSFER_STATUS_CANCELLED);
TEST_ASSERT(irp->context == IRP_CONTEXT_VAL);
}
//Call the clear command to un-stall the pipe
TEST_ASSERT_EQUAL(ESP_OK, hcd_pipe_command(default_pipe, HCD_PIPE_CMD_CLEAR));
TEST_ASSERT_EQUAL(HCD_PIPE_STATE_ACTIVE, hcd_pipe_get_state(default_pipe));
//Correct first transfer then requeue
USB_CTRL_REQ_INIT_GET_CFG_DESC((usb_ctrl_req_t *) irp_list[0]->data_buffer, 0, TRANSFER_DATA_MAX_BYTES);
for (int i = 0; i < NUM_IRPS; i++) {
TEST_ASSERT_EQUAL(ESP_OK, hcd_irp_enqueue(default_pipe, irp_list[i]));
}
vTaskDelay(pdMS_TO_TICKS(100)); //Give some time for transfers to complete
//Wait for the IRPs to complete and dequeue them, then check results
for (int i = 0; i < NUM_IRPS; i++) {
expect_pipe_event(pipe_evt_queue, default_pipe, HCD_PIPE_EVENT_IRP_DONE);
usb_irp_t *irp = hcd_irp_dequeue(default_pipe);
TEST_ASSERT_NOT_EQUAL(NULL, irp);
TEST_ASSERT(irp->status == USB_TRANSFER_STATUS_COMPLETED);
TEST_ASSERT(irp->context == IRP_CONTEXT_VAL);
}
//Free IRPs
free_pipe_and_irp_list(default_pipe, NUM_IRPS, irp_list);
vTaskDelay(pdMS_TO_TICKS(100)); //Short delay send of SOF (for FS) or EOPs (for LS)
wait_for_disconnection(port_hdl, port_evt_queue, false);
teardown(port_evt_queue, pipe_evt_queue, port_hdl);
}
/*
Test Pipe runtime halt and clear
Purpose:
- Test that a pipe can be halted with a command whilst there are ongoing IRPs
- Test that a pipe can be un-halted with a HCD_PIPE_CMD_CLEAR
- Test that enqueued IRPs are resumed when pipe is cleared
Procedure:
- Setup HCD, a default pipe, and multiple IRPs
- Enqueue IRPs but execute a HCD_PIPE_CMD_HALT command immediately after. Halt command should let on
the current going IRP finish before actually halting the pipe.
- Clear the pipe halt using a HCD_PIPE_CMD_HALT command. Enqueued IRPs will be resumed
- Check that all IRPs have completed successfully.
- Teardown
*/
TEST_CASE("Test HCD pipe runtime halt and clear", "[hcd][ignore]")
{
QueueHandle_t port_evt_queue;
QueueHandle_t pipe_evt_queue;
hcd_port_handle_t port_hdl;
setup(&port_evt_queue, &pipe_evt_queue, &port_hdl);
wait_for_connection(port_hdl, port_evt_queue);
vTaskDelay(pdMS_TO_TICKS(100)); //Short delay send of SOF (for FS) or EOPs (for LS)
//Allocate default pipe and IRPs
hcd_pipe_handle_t default_pipe;
usb_irp_t **irp_list;
alloc_pipe_and_irp_list(port_hdl, pipe_evt_queue, NUM_IRPS, &default_pipe, &irp_list);
//Initialize IRPs to send a "Get Device Descriptor" request
for (int i = 0; i < NUM_IRPS; i++) {
irp_list[i]->num_bytes = 64; //1 worst case MPS
USB_CTRL_REQ_INIT_GET_CFG_DESC((usb_ctrl_req_t *)irp_list[i]->data_buffer, 0, TRANSFER_DATA_MAX_BYTES);
irp_list[i]->context = IRP_CONTEXT_VAL;
}
printf("Enqueuing IRPs\n");
//Enqueue those IRPs
for (int i = 0; i < NUM_IRPS; i++) {
TEST_ASSERT_EQUAL(ESP_OK, hcd_irp_enqueue(default_pipe, irp_list[i]));
}
//Halt the pipe immediately
TEST_ASSERT_EQUAL(ESP_OK, hcd_pipe_command(default_pipe, HCD_PIPE_CMD_HALT));
TEST_ASSERT_EQUAL(HCD_PIPE_STATE_HALTED, hcd_pipe_get_state(default_pipe));
printf("Pipe halted\n");
vTaskDelay(pdMS_TO_TICKS(100)); //Give some time for current in-flight transfer to complete
//Clear command to un-halt the pipe
TEST_ASSERT_EQUAL(ESP_OK, hcd_pipe_command(default_pipe, HCD_PIPE_CMD_CLEAR));
TEST_ASSERT_EQUAL(HCD_PIPE_STATE_ACTIVE, hcd_pipe_get_state(default_pipe));
printf("Pipe cleared\n");
vTaskDelay(pdMS_TO_TICKS(100)); //Give some time pending for transfers to restart and complete
//Dequeue IRPs
for (int i = 0; i < NUM_IRPS; i++) {
expect_pipe_event(pipe_evt_queue, default_pipe, HCD_PIPE_EVENT_IRP_DONE);
usb_irp_t *irp = hcd_irp_dequeue(default_pipe);
TEST_ASSERT_NOT_EQUAL(NULL, irp);
TEST_ASSERT(irp->status == USB_TRANSFER_STATUS_COMPLETED);
TEST_ASSERT(irp->context == IRP_CONTEXT_VAL);
}
//Free IRPs
free_pipe_and_irp_list(default_pipe, NUM_IRPS, irp_list);
vTaskDelay(pdMS_TO_TICKS(100)); //Short delay send of SOF (for FS) or EOPs (for LS)
wait_for_disconnection(port_hdl, port_evt_queue, false);
teardown(port_evt_queue, pipe_evt_queue, port_hdl);
}