soc: add source code of rtc_clk, rtc_pm

This commit is contained in:
Ivan Grokhotkov 2017-04-11 15:44:43 +08:00
parent 9ff446e6f9
commit 7ee8ee8b7e
37 changed files with 2311 additions and 327 deletions

View File

@ -7,7 +7,7 @@ PROJECT_NAME := bootloader
#We cannot include the esp32 component directly but we need its includes.
#This is fixed by adding CFLAGS from Makefile.projbuild
COMPONENTS := esptool_py bootloader bootloader_support log spi_flash micro-ecc
COMPONENTS := esptool_py bootloader bootloader_support log spi_flash micro-ecc soc
# The bootloader pseudo-component is also included in this build, for its Kconfig.projbuild to be included.
#

View File

@ -29,6 +29,7 @@
#include "soc/soc.h"
#include "soc/cpu.h"
#include "soc/rtc.h"
#include "soc/dport_reg.h"
#include "soc/io_mux_reg.h"
#include "soc/efuse_reg.h"
@ -45,7 +46,7 @@
#include "bootloader_flash.h"
#include "bootloader_random.h"
#include "bootloader_config.h"
#include "rtc.h"
#include "flash_qio_mode.h"
extern int _bss_start;
@ -234,12 +235,13 @@ static bool ota_select_valid(const esp_ota_select_entry_t *s)
void bootloader_main()
{
/* Set CPU to 80MHz.
Start by ensuring it is set to XTAL, as PLL must be off first
(may still be on due to soft reset.)
*/
rtc_set_cpu_freq(CPU_XTAL);
rtc_set_cpu_freq(CPU_80M);
/* Set CPU to 80MHz. Keep other clocks unmodified. */
uart_tx_wait_idle(0);
rtc_clk_config_t clk_cfg = RTC_CLK_CONFIG_DEFAULT();
clk_cfg.cpu_freq = RTC_CPU_FREQ_80M;
clk_cfg.slow_freq = rtc_clk_slow_freq_get();
clk_cfg.fast_freq = rtc_clk_fast_freq_get();
rtc_clk_init(clk_cfg);
uart_console_configure();
ESP_LOGI(TAG, "ESP-IDF %s 2nd stage bootloader", IDF_VER);
@ -722,16 +724,7 @@ static void uart_console_configure(void)
// Set configured UART console baud rate
const int uart_baud = CONFIG_CONSOLE_UART_BAUDRATE;
uart_div_modify(uart_num, (APB_CLK_FREQ << 4) / uart_baud);
uart_div_modify(uart_num, (rtc_clk_apb_freq_get() << 4) / uart_baud);
#endif // CONFIG_CONSOLE_UART_NONE
}
/* empty rtc_printf implementation, to work with librtc
linking. Can be removed once -lrtc is removed from bootloader's
main component.mk.
*/
int rtc_printf(void)
{
return 0;
}

View File

@ -14,11 +14,3 @@ LINKER_SCRIPTS := \
COMPONENT_ADD_LDFLAGS := -L $(COMPONENT_PATH) -lmain $(addprefix -T ,$(LINKER_SCRIPTS))
COMPONENT_ADD_LINKER_DEPS := $(LINKER_SCRIPTS)
# following lines are a workaround to link librtc into the
# bootloader, until clock setting code is in a source-based esp-idf
# component. See also rtc_printf() in bootloader_start.c
#
# See also matching COMPONENT_SUBMODULES line in Makefile.projbuild
COMPONENT_ADD_LDFLAGS += -L $(IDF_PATH)/components/esp32/lib/ -lrtc_clk -lrtc
COMPONENT_EXTRA_INCLUDES += $(IDF_PATH)/components/esp32/

View File

@ -2,7 +2,7 @@ menu "ESP32-specific"
choice ESP32_DEFAULT_CPU_FREQ_MHZ
prompt "CPU frequency"
default ESP32_DEFAULT_CPU_FREQ_240
default ESP32_DEFAULT_CPU_FREQ_160
help
CPU frequency to be set on application startup.
@ -467,14 +467,11 @@ choice ESP32_RTC_CLOCK_SOURCE
default ESP32_RTC_CLOCK_SOURCE_INTERNAL_RC
help
Choose which clock is used as RTC clock source.
The only available option for now is to use internal
150kHz RC oscillator.
config ESP32_RTC_CLOCK_SOURCE_INTERNAL_RC
bool "Internal RC"
bool "Internal 150kHz RC oscillator"
config ESP32_RTC_CLOCK_SOURCE_EXTERNAL_CRYSTAL
bool "External 32kHz crystal"
depends on DOCUMENTATION_FOR_RTC_CNTL
endchoice
config ESP32_DEEP_SLEEP_WAKEUP_DELAY

View File

@ -3,7 +3,7 @@
#
COMPONENT_SRCDIRS := . hwcrypto
LIBS := core rtc rtc_clk rtc_pm
LIBS := core rtc
ifdef CONFIG_PHY_ENABLED # BT || WIFI
LIBS += phy coexist
endif

View File

@ -17,8 +17,8 @@
#include "rom/ets_sys.h"
#include "rom/uart.h"
#include "sdkconfig.h"
#include "rtc.h"
#include "soc/soc.h"
#include "soc/rtc.h"
#include "soc/rtc_cntl_reg.h"
/*
@ -31,38 +31,31 @@
void esp_set_cpu_freq(void)
{
uint32_t freq_mhz = CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ;
// freq will be changed to 40MHz in rtc_init_lite,
// wait uart tx finish, otherwise some uart output will be lost
uart_tx_wait_idle(CONFIG_CONSOLE_UART_NUM);
rtc_init_lite(XTAL_AUTO);
// work around a bug that RTC fast memory may be isolated
// from the system after rtc_init_lite
SET_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_FASTMEM_FORCE_NOISO_M);
cpu_freq_t freq = CPU_80M;
rtc_cpu_freq_t freq = RTC_CPU_FREQ_80M;
switch(freq_mhz) {
case 240:
freq = CPU_240M;
freq = RTC_CPU_FREQ_240M;
break;
case 160:
freq = CPU_160M;
freq = RTC_CPU_FREQ_160M;
break;
default:
freq_mhz = 80;
/* no break */
case 80:
freq = CPU_80M;
freq = RTC_CPU_FREQ_80M;
break;
}
// freq will be changed to freq in rtc_set_cpu_freq,
// wait uart tx finish, otherwise some uart output will be lost
// Wait for UART TX to finish, otherwise some UART output will be lost
// when switching APB frequency
uart_tx_wait_idle(CONFIG_CONSOLE_UART_NUM);
rtc_set_cpu_freq(freq);
ets_update_cpu_frequency(freq_mhz);
rtc_config_t cfg = RTC_CONFIG_DEFAULT();
rtc_init(cfg);
rtc_clk_cpu_freq_set(freq);
#if ESP32_RTC_CLOCK_SOURCE_EXTERNAL_CRYSTAL
rtc_clk_slow_freq_set(RTC_SLOW_FREQ_32K_XTAL);
#endif
}
void IRAM_ATTR ets_update_cpu_frequency(uint32_t ticks_per_us)

View File

@ -23,6 +23,7 @@
#include "rom/cache.h"
#include "soc/cpu.h"
#include "soc/rtc.h"
#include "soc/dport_reg.h"
#include "soc/io_mux_reg.h"
#include "soc/rtc_cntl_reg.h"
@ -201,7 +202,7 @@ void start_cpu0_default(void)
#endif
esp_set_cpu_freq(); // set CPU frequency configured in menuconfig
#ifndef CONFIG_CONSOLE_UART_NONE
uart_div_modify(CONFIG_CONSOLE_UART_NUM, (APB_CLK_FREQ << 4) / CONFIG_CONSOLE_UART_BAUDRATE);
uart_div_modify(CONFIG_CONSOLE_UART_NUM, (rtc_clk_apb_freq_get() << 4) / CONFIG_CONSOLE_UART_BAUDRATE);
#endif
#if CONFIG_BROWNOUT_DET
esp_brownout_init();

View File

@ -21,13 +21,14 @@
#include "rom/rtc.h"
#include "rom/uart.h"
#include "soc/cpu.h"
#include "soc/rtc.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/rtc_io_reg.h"
#include "soc/sens_reg.h"
#include "soc/dport_reg.h"
#include "driver/rtc_io.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "rtc.h"
#include "sdkconfig.h"
/**
@ -57,6 +58,7 @@ static const char* TAG = "deepsleep";
static uint32_t get_power_down_flags();
static void ext0_wakeup_prepare();
static void ext1_wakeup_prepare();
static void timer_wakeup_prepare();
/* Wake from deep sleep stub
See esp_deepsleep.h esp_wake_deep_sleep() comments for details.
@ -119,19 +121,6 @@ void IRAM_ATTR esp_deep_sleep_start()
SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_SAR_M, 0, SENS_FORCE_XPD_SAR_S);
// Configure pins for external wakeup
if (s_config.wakeup_triggers & EXT_EVENT0_TRIG_EN) {
ext0_wakeup_prepare();
}
if (s_config.wakeup_triggers & EXT_EVENT1_TRIG_EN) {
ext1_wakeup_prepare();
}
if (s_config.wakeup_triggers & SAR_TRIG_EN) {
SET_PERI_REG_MASK(RTC_CNTL_STATE0_REG, RTC_CNTL_ULP_CP_WAKEUP_FORCE_EN);
}
// TODO: move timer wakeup configuration into a similar function
// once rtc_sleep is opensourced.
// Flush UARTs so that output is not lost due to APB frequency change
uart_tx_wait_idle(0);
uart_tx_wait_idle(1);
@ -141,19 +130,27 @@ void IRAM_ATTR esp_deep_sleep_start()
esp_set_deep_sleep_wake_stub(esp_wake_deep_sleep);
}
rtc_set_cpu_freq(CPU_XTAL);
uint32_t cycle_h = 0;
uint32_t cycle_l = 0;
// For timer wakeup, calibrate clock source against main XTAL
// This is hardcoded to use 150kHz internal oscillator for now
if (s_config.sleep_duration > 0) {
uint32_t period = rtc_slowck_cali(CALI_RTC_MUX, 128);
rtc_usec2rtc(s_config.sleep_duration >> 32, s_config.sleep_duration & UINT32_MAX,
period, &cycle_h, &cycle_l);
// Configure pins for external wakeup
if (s_config.wakeup_triggers & RTC_EXT0_TRIG_EN) {
ext0_wakeup_prepare();
}
if (s_config.wakeup_triggers & RTC_EXT1_TRIG_EN) {
ext1_wakeup_prepare();
}
// Enable ULP wakeup
if (s_config.wakeup_triggers & RTC_ULP_TRIG_EN) {
SET_PERI_REG_MASK(RTC_CNTL_STATE0_REG, RTC_CNTL_ULP_CP_WAKEUP_FORCE_EN);
}
// Configure timer wakeup
if ((s_config.wakeup_triggers & RTC_TIMER_TRIG_EN) &&
s_config.sleep_duration > 0) {
timer_wakeup_prepare();
}
// Enter deep sleep
rtc_slp_prep_lite(pd_flags, 0);
rtc_sleep(cycle_h, cycle_l, s_config.wakeup_triggers, 0);
rtc_sleep_config_t config = RTC_SLEEP_CONFIG_DEFAULT(pd_flags);
rtc_sleep_init(config);
rtc_sleep_start(s_config.wakeup_triggers, 0);
// Because RTC is in a slower clock domain than the CPU, it
// can take several CPU cycles for the sleep mode to start.
while (1) {
@ -166,11 +163,11 @@ void system_deep_sleep(uint64_t) __attribute__((alias("esp_deep_sleep")));
esp_err_t esp_deep_sleep_enable_ulp_wakeup()
{
#ifdef CONFIG_ULP_COPROC_ENABLED
if(s_config.wakeup_triggers & RTC_EXT_EVENT0_TRIG_EN) {
if(s_config.wakeup_triggers & RTC_EXT0_TRIG_EN) {
ESP_LOGE(TAG, "Conflicting wake-up trigger: ext0");
return ESP_ERR_INVALID_STATE;
}
s_config.wakeup_triggers |= RTC_SAR_TRIG_EN;
s_config.wakeup_triggers |= RTC_ULP_TRIG_EN;
return ESP_OK;
#else
return ESP_ERR_INVALID_STATE;
@ -179,14 +176,28 @@ esp_err_t esp_deep_sleep_enable_ulp_wakeup()
esp_err_t esp_deep_sleep_enable_timer_wakeup(uint64_t time_in_us)
{
s_config.wakeup_triggers |= RTC_TIMER_EXPIRE_EN;
s_config.wakeup_triggers |= RTC_TIMER_TRIG_EN;
s_config.sleep_duration = time_in_us;
return ESP_OK;
}
static void timer_wakeup_prepare()
{
// Do calibration if not using 32k XTAL
uint32_t period;
if (rtc_clk_slow_freq_get() != RTC_SLOW_FREQ_32K_XTAL) {
period = rtc_clk_cal(RTC_CAL_RTC_MUX, 128);
} else {
period = (uint32_t) ((1000000ULL /* us*Hz */ << RTC_CLK_CAL_FRACT) / 32768 /* Hz */);
}
uint64_t rtc_count_delta = rtc_time_us_to_slowclk(s_config.sleep_duration, period);
uint64_t cur_rtc_count = rtc_time_get();
rtc_sleep_set_wakeup_time(cur_rtc_count + rtc_count_delta);
}
esp_err_t esp_deep_sleep_enable_touchpad_wakeup()
{
if (s_config.wakeup_triggers & (RTC_EXT_EVENT0_TRIG_EN)) {
if (s_config.wakeup_triggers & (RTC_EXT0_TRIG_EN)) {
ESP_LOGE(TAG, "Conflicting wake-up trigger: ext0");
return ESP_ERR_INVALID_STATE;
}
@ -212,13 +223,13 @@ esp_err_t esp_deep_sleep_enable_ext0_wakeup(gpio_num_t gpio_num, int level)
if (!RTC_GPIO_IS_VALID_GPIO(gpio_num)) {
return ESP_ERR_INVALID_ARG;
}
if (s_config.wakeup_triggers & (RTC_TOUCH_TRIG_EN | RTC_SAR_TRIG_EN)) {
if (s_config.wakeup_triggers & (RTC_TOUCH_TRIG_EN | RTC_ULP_TRIG_EN)) {
ESP_LOGE(TAG, "Conflicting wake-up triggers: touch / ULP");
return ESP_ERR_INVALID_STATE;
}
s_config.ext0_rtc_gpio_num = rtc_gpio_desc[gpio_num].rtc_num;
s_config.ext0_trigger_level = level;
s_config.wakeup_triggers |= RTC_EXT_EVENT0_TRIG_EN;
s_config.wakeup_triggers |= RTC_EXT0_TRIG_EN;
return ESP_OK;
}
@ -262,7 +273,7 @@ esp_err_t esp_deep_sleep_enable_ext1_wakeup(uint64_t mask, esp_ext1_wakeup_mode_
}
s_config.ext1_rtc_gpio_mask = rtc_gpio_mask;
s_config.ext1_trigger_mode = mode;
s_config.wakeup_triggers |= RTC_EXT_EVENT1_TRIG_EN;
s_config.wakeup_triggers |= RTC_EXT1_TRIG_EN;
return ESP_OK;
}
@ -333,15 +344,15 @@ esp_deep_sleep_wakeup_cause_t esp_deep_sleep_get_wakeup_cause()
}
uint32_t wakeup_cause = REG_GET_FIELD(RTC_CNTL_WAKEUP_STATE_REG, RTC_CNTL_WAKEUP_CAUSE);
if (wakeup_cause & RTC_EXT_EVENT0_TRIG) {
if (wakeup_cause & RTC_EXT0_TRIG_EN) {
return ESP_DEEP_SLEEP_WAKEUP_EXT0;
} else if (wakeup_cause & RTC_EXT_EVENT1_TRIG) {
} else if (wakeup_cause & RTC_EXT1_TRIG_EN) {
return ESP_DEEP_SLEEP_WAKEUP_EXT1;
} else if (wakeup_cause & RTC_TIMER_EXPIRE) {
} else if (wakeup_cause & RTC_TIMER_TRIG_EN) {
return ESP_DEEP_SLEEP_WAKEUP_TIMER;
} else if (wakeup_cause & RTC_TOUCH_TRIG) {
} else if (wakeup_cause & RTC_TOUCH_TRIG_EN) {
return ESP_DEEP_SLEEP_WAKEUP_TOUCHPAD;
} else if (wakeup_cause & RTC_SAR_TRIG) {
} else if (wakeup_cause & RTC_ULP_TRIG_EN) {
return ESP_DEEP_SLEEP_WAKEUP_ULP;
} else {
return ESP_DEEP_SLEEP_WAKEUP_UNDEFINED;
@ -388,9 +399,9 @@ static uint32_t get_power_down_flags()
// RTC_PERIPH is needed for EXT0 wakeup.
// If RTC_PERIPH is auto, and EXT0 isn't enabled, power down RTC_PERIPH.
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] == ESP_PD_OPTION_AUTO) {
if (s_config.wakeup_triggers & RTC_EXT_EVENT0_TRIG_EN) {
if (s_config.wakeup_triggers & RTC_EXT0_TRIG_EN) {
s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] = ESP_PD_OPTION_ON;
} else if (s_config.wakeup_triggers & (RTC_TOUCH_TRIG_EN | RTC_SAR_TRIG_EN)) {
} else if (s_config.wakeup_triggers & (RTC_TOUCH_TRIG_EN | RTC_ULP_TRIG_EN)) {
// In both rev. 0 and rev. 1 of ESP32, forcing power up of RTC_PERIPH
// prevents ULP timer and touch FSMs from working correctly.
s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] = ESP_PD_OPTION_OFF;
@ -404,15 +415,15 @@ static uint32_t get_power_down_flags()
option_str[s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM]]);
// Prepare flags based on the selected options
uint32_t pd_flags = DEEP_SLEEP_PD_NORMAL;
uint32_t pd_flags = RTC_SLEEP_PD_DIG;
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_FAST_MEM] != ESP_PD_OPTION_ON) {
pd_flags |= DEEP_SLEEP_PD_RTC_FAST_MEM;
pd_flags |= RTC_SLEEP_PD_RTC_FAST_MEM;
}
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_SLOW_MEM] != ESP_PD_OPTION_ON) {
pd_flags |= DEEP_SLEEP_PD_RTC_SLOW_MEM;
pd_flags |= RTC_SLEEP_PD_RTC_SLOW_MEM;
}
if (s_config.pd_options[ESP_PD_DOMAIN_RTC_PERIPH] != ESP_PD_OPTION_ON) {
pd_flags |= DEEP_SLEEP_PD_RTC_PERIPH;
pd_flags |= RTC_SLEEP_PD_RTC_PERIPH;
}
return pd_flags;
}

View File

@ -61,8 +61,11 @@ extern "C" {
* RTC_CNTL_STORE7_REG FAST_RTC_MEMORY_CRC
*************************************************************************************
*/
#define RTC_BOOT_TIME_LOW_REG RTC_CNTL_STORE2_REG
#define RTC_BOOT_TIME_HIGH_REG RTC_CNTL_STORE3_REG
#define RTC_XTAL_FREQ_REG RTC_CNTL_STORE4_REG
#define RTC_APB_FREQ_REG RTC_CNTL_STORE5_REG
#define RTC_ENTRY_ADDR_REG RTC_CNTL_STORE6_REG
#define RTC_MEMORY_CRC_REG RTC_CNTL_STORE7_REG

View File

@ -88,8 +88,7 @@ SECTIONS
*libesp32.a:heap_alloc_caps.o(.literal .text .literal.* .text.*)
*libphy.a:(.literal .text .literal.* .text.*)
*librtc.a:(.literal .text .literal.* .text.*)
*librtc_clk.a:(.literal .text .literal.* .text.*)
*librtc_pm.a:(.literal .text .literal.* .text.*)
*libsoc.a:(.literal .text .literal.* .text.*)
*libpp.a:pp.o(.literal .text .literal.* .text.*)
*libpp.a:lmac.o(.literal .text .literal.* .text.*)
*libpp.a:wdev.o(.literal .text .literal.* .text.*)

View File

@ -57,6 +57,11 @@ void phy_set_wifi_mode_only(bool wifi_only);
*/
void coex_bt_high_prio(void);
/**
* @brief Shutdown PHY and RF.
*/
void phy_close_rf(void);
#ifdef __cplusplus
}
#endif

View File

@ -21,6 +21,7 @@
#include "rom/ets_sys.h"
#include "rom/rtc.h"
#include "soc/rtc.h"
#include "soc/dport_reg.h"
#include "esp_err.h"
@ -34,7 +35,6 @@
#ifdef CONFIG_PHY_ENABLED
#include "phy.h"
#include "phy_init_data.h"
#include "rtc.h"
#include "esp_coexist.h"
static const char* TAG = "phy_init";

View File

@ -1,146 +0,0 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* @file rtc.h
* @brief Declarations of APIs provided by librtc.a
*
* This file is not in the include directory of esp32 component, so it is not
* part of the public API. As the source code of librtc.a is gradually moved
* into the ESP-IDF, some of these APIs will be exposed to applications.
*
* For now, only esp_deep_sleep function declared in esp_deepsleep.h
* is part of public API.
*/
#pragma once
#include <stdint.h>
#include <stddef.h>
#include "soc/soc.h"
#ifdef __cplusplus
extern "C" {
#endif
typedef enum{
XTAL_40M = 40,
XTAL_26M = 26,
XTAL_24M = 24,
XTAL_AUTO = 0
} xtal_freq_t;
typedef enum{
CPU_XTAL = 0,
CPU_80M = 1,
CPU_160M = 2,
CPU_240M = 3,
CPU_2M = 4
} cpu_freq_t;
typedef enum {
CALI_RTC_MUX = 0,
CALI_8MD256 = 1,
CALI_32K_XTAL = 2
} cali_clk_t;
/**
* This function must be called to initialize RTC library
* @param xtal_freq Frequency of main crystal
*/
void rtc_init_lite(xtal_freq_t xtal_freq);
/**
* Switch CPU frequency
* @param cpu_freq new CPU frequency
*/
void rtc_set_cpu_freq(cpu_freq_t cpu_freq);
/**
* @brief Return RTC slow clock's period
* @param cali_clk clock to calibrate
* @param slow_clk_cycles number of slow clock cycles to average
* @param xtal_freq chip's main XTAL freq
* @return average slow clock period in microseconds, Q13.19 fixed point format
*/
uint32_t rtc_slowck_cali(cali_clk_t cali_clk, uint32_t slow_clk_cycles);
/**
* @brief Convert from microseconds to slow clock cycles
* @param time_in_us_h Time in microseconds, higher 32 bit part
* @param time_in_us_l Time in microseconds, lower 32 bit part
* @param slow_clk_period Period of slow clock in microseconds, Q13.19 fixed point format (as returned by rtc_slowck_cali).
* @param[out] cylces_h output, higher 32 bit part of number of slow clock cycles
* @param[out] cycles_l output, lower 32 bit part of number of slow clock cycles
*/
void rtc_usec2rtc(uint32_t time_in_us_h, uint32_t time_in_us_l, uint32_t slow_clk_period, uint32_t *cylces_h, uint32_t *cycles_l);
#define DEEP_SLEEP_PD_NORMAL BIT(0) /*!< Base deep sleep mode */
#define DEEP_SLEEP_PD_RTC_PERIPH BIT(1) /*!< Power down RTC peripherals */
#define DEEP_SLEEP_PD_RTC_SLOW_MEM BIT(2) /*!< Power down RTC SLOW memory */
#define DEEP_SLEEP_PD_RTC_FAST_MEM BIT(3) /*!< Power down RTC FAST memory */
/**
* @brief Prepare for entering sleep mode
* @param deep_slp DEEP_SLEEP_PD_ flags combined with OR (DEEP_SLEEP_PD_NORMAL must be included)
* @param cpu_lp_mode for deep sleep, should be 0
*/
void rtc_slp_prep_lite(uint32_t deep_slp, uint32_t cpu_lp_mode);
#define RTC_EXT_EVENT0_TRIG BIT(0)
#define RTC_EXT_EVENT1_TRIG BIT(1)
#define RTC_GPIO_TRIG BIT(2)
#define RTC_TIMER_EXPIRE BIT(3)
#define RTC_SDIO_TRIG BIT(4)
#define RTC_MAC_TRIG BIT(5)
#define RTC_UART0_TRIG BIT(6)
#define RTC_UART1_TRIG BIT(7)
#define RTC_TOUCH_TRIG BIT(8)
#define RTC_SAR_TRIG BIT(9)
#define RTC_BT_TRIG BIT(10)
#define RTC_EXT_EVENT0_TRIG_EN RTC_EXT_EVENT0_TRIG
#define RTC_EXT_EVENT1_TRIG_EN RTC_EXT_EVENT1_TRIG
#define RTC_GPIO_TRIG_EN RTC_GPIO_TRIG
#define RTC_TIMER_EXPIRE_EN RTC_TIMER_EXPIRE
#define RTC_SDIO_TRIG_EN RTC_SDIO_TRIG
#define RTC_MAC_TRIG_EN RTC_MAC_TRIG
#define RTC_UART0_TRIG_EN RTC_UART0_TRIG
#define RTC_UART1_TRIG_EN RTC_UART1_TRIG
#define RTC_TOUCH_TRIG_EN RTC_TOUCH_TRIG
#define RTC_SAR_TRIG_EN RTC_SAR_TRIG
#define RTC_BT_TRIG_EN RTC_BT_TRIG
/**
* @brief Enter sleep mode for given number of cycles
* @param cycles_h higher 32 bit part of number of slow clock cycles
* @param cycles_l lower 32 bit part of number of slow clock cycles
* @param wakeup_opt wake up reason to enable (RTC_xxx_EN flags combined with OR)
* @param reject_opt reserved, should be 0
* @return TBD
*/
uint32_t rtc_sleep(uint32_t cycles_h, uint32_t cycles_l, uint32_t wakeup_opt, uint32_t reject_opt);
/**
* @brief Shutdown PHY and RF. TODO: convert this function to another one.
*/
void phy_close_rf(void);
#ifdef __cplusplus
}
#endif

View File

@ -29,10 +29,10 @@
#include "soc/timer_group_reg.h"
#include "soc/timer_group_struct.h"
#include "soc/cpu.h"
#include "soc/rtc.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/xtensa_api.h"
#include "rtc.h"
static const char* TAG = "system_api";
@ -224,7 +224,7 @@ void IRAM_ATTR esp_restart_noos()
REG_WRITE(DPORT_PERIP_RST_EN_REG, 0);
// Set CPU back to XTAL source, no PLL, same as hard reset
rtc_set_cpu_freq(CPU_XTAL);
rtc_clk_cpu_freq_set(RTC_CPU_FREQ_XTAL);
// Reset CPUs
if (core_id == 0) {

5
components/soc/component.mk Executable file
View File

@ -0,0 +1,5 @@
# currently the only SoC supported; to be moved into Kconfig
SOC_NAME := esp32
COMPONENT_SRCDIRS := $(SOC_NAME)
COMPONENT_ADD_INCLUDEDIRS := $(SOC_NAME)/include

View File

@ -0,0 +1,136 @@
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
/**
* @file i2c_apll.h
* @brief Register definitions for audio PLL (APLL)
*
* This file lists register fields of APLL, located on an internal configuration
* bus. These definitions are used via macros defined in i2c_rtc_clk.h, by
* rtc_clk_apll_enable function in rtc_clk.c.
*/
#define I2C_APLL 0X6D
#define I2C_APLL_HOSTID 3
#define I2C_APLL_IR_CAL_DELAY 0
#define I2C_APLL_IR_CAL_DELAY_MSB 3
#define I2C_APLL_IR_CAL_DELAY_LSB 0
#define I2C_APLL_IR_CAL_RSTB 0
#define I2C_APLL_IR_CAL_RSTB_MSB 4
#define I2C_APLL_IR_CAL_RSTB_LSB 4
#define I2C_APLL_IR_CAL_START 0
#define I2C_APLL_IR_CAL_START_MSB 5
#define I2C_APLL_IR_CAL_START_LSB 5
#define I2C_APLL_IR_CAL_UNSTOP 0
#define I2C_APLL_IR_CAL_UNSTOP_MSB 6
#define I2C_APLL_IR_CAL_UNSTOP_LSB 6
#define I2C_APLL_OC_ENB_FCAL 0
#define I2C_APLL_OC_ENB_FCAL_MSB 7
#define I2C_APLL_OC_ENB_FCAL_LSB 7
#define I2C_APLL_IR_CAL_EXT_CAP 1
#define I2C_APLL_IR_CAL_EXT_CAP_MSB 4
#define I2C_APLL_IR_CAL_EXT_CAP_LSB 0
#define I2C_APLL_IR_CAL_ENX_CAP 1
#define I2C_APLL_IR_CAL_ENX_CAP_MSB 5
#define I2C_APLL_IR_CAL_ENX_CAP_LSB 5
#define I2C_APLL_OC_LBW 1
#define I2C_APLL_OC_LBW_MSB 6
#define I2C_APLL_OC_LBW_LSB 6
#define I2C_APLL_IR_CAL_CK_DIV 2
#define I2C_APLL_IR_CAL_CK_DIV_MSB 3
#define I2C_APLL_IR_CAL_CK_DIV_LSB 0
#define I2C_APLL_OC_DCHGP 2
#define I2C_APLL_OC_DCHGP_MSB 6
#define I2C_APLL_OC_DCHGP_LSB 4
#define I2C_APLL_OC_ENB_VCON 2
#define I2C_APLL_OC_ENB_VCON_MSB 7
#define I2C_APLL_OC_ENB_VCON_LSB 7
#define I2C_APLL_OR_CAL_CAP 3
#define I2C_APLL_OR_CAL_CAP_MSB 4
#define I2C_APLL_OR_CAL_CAP_LSB 0
#define I2C_APLL_OR_CAL_UDF 3
#define I2C_APLL_OR_CAL_UDF_MSB 5
#define I2C_APLL_OR_CAL_UDF_LSB 5
#define I2C_APLL_OR_CAL_OVF 3
#define I2C_APLL_OR_CAL_OVF_MSB 6
#define I2C_APLL_OR_CAL_OVF_LSB 6
#define I2C_APLL_OR_CAL_END 3
#define I2C_APLL_OR_CAL_END_MSB 7
#define I2C_APLL_OR_CAL_END_LSB 7
#define I2C_APLL_OR_OUTPUT_DIV 4
#define I2C_APLL_OR_OUTPUT_DIV_MSB 4
#define I2C_APLL_OR_OUTPUT_DIV_LSB 0
#define I2C_APLL_OC_TSCHGP 4
#define I2C_APLL_OC_TSCHGP_MSB 6
#define I2C_APLL_OC_TSCHGP_LSB 6
#define I2C_APLL_EN_FAST_CAL 4
#define I2C_APLL_EN_FAST_CAL_MSB 7
#define I2C_APLL_EN_FAST_CAL_LSB 7
#define I2C_APLL_OC_DHREF_SEL 5
#define I2C_APLL_OC_DHREF_SEL_MSB 1
#define I2C_APLL_OC_DHREF_SEL_LSB 0
#define I2C_APLL_OC_DLREF_SEL 5
#define I2C_APLL_OC_DLREF_SEL_MSB 3
#define I2C_APLL_OC_DLREF_SEL_LSB 2
#define I2C_APLL_SDM_DITHER 5
#define I2C_APLL_SDM_DITHER_MSB 4
#define I2C_APLL_SDM_DITHER_LSB 4
#define I2C_APLL_SDM_STOP 5
#define I2C_APLL_SDM_STOP_MSB 5
#define I2C_APLL_SDM_STOP_LSB 5
#define I2C_APLL_SDM_RSTB 5
#define I2C_APLL_SDM_RSTB_MSB 6
#define I2C_APLL_SDM_RSTB_LSB 6
#define I2C_APLL_OC_DVDD 6
#define I2C_APLL_OC_DVDD_MSB 4
#define I2C_APLL_OC_DVDD_LSB 0
#define I2C_APLL_DSDM2 7
#define I2C_APLL_DSDM2_MSB 5
#define I2C_APLL_DSDM2_LSB 0
#define I2C_APLL_DSDM1 8
#define I2C_APLL_DSDM1_MSB 7
#define I2C_APLL_DSDM1_LSB 0
#define I2C_APLL_DSDM0 9
#define I2C_APLL_DSDM0_MSB 7
#define I2C_APLL_DSDM0_LSB 0

View File

@ -0,0 +1,208 @@
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
/**
* @file i2c_apll.h
* @brief Register definitions for digital PLL (BBPLL)
*
* This file lists register fields of BBPLL, located on an internal configuration
* bus. These definitions are used via macros defined in i2c_rtc_clk.h, by
* rtc_clk_cpu_freq_set function in rtc_clk.c.
*/
#define I2C_BBPLL 0x66
#define I2C_BBPLL_HOSTID 4
#define I2C_BBPLL_IR_CAL_DELAY 0
#define I2C_BBPLL_IR_CAL_DELAY_MSB 3
#define I2C_BBPLL_IR_CAL_DELAY_LSB 0
#define I2C_BBPLL_IR_CAL_CK_DIV 0
#define I2C_BBPLL_IR_CAL_CK_DIV_MSB 7
#define I2C_BBPLL_IR_CAL_CK_DIV_LSB 4
#define I2C_BBPLL_IR_CAL_EXT_CAP 1
#define I2C_BBPLL_IR_CAL_EXT_CAP_MSB 3
#define I2C_BBPLL_IR_CAL_EXT_CAP_LSB 0
#define I2C_BBPLL_IR_CAL_ENX_CAP 1
#define I2C_BBPLL_IR_CAL_ENX_CAP_MSB 4
#define I2C_BBPLL_IR_CAL_ENX_CAP_LSB 4
#define I2C_BBPLL_IR_CAL_RSTB 1
#define I2C_BBPLL_IR_CAL_RSTB_MSB 5
#define I2C_BBPLL_IR_CAL_RSTB_LSB 5
#define I2C_BBPLL_IR_CAL_START 1
#define I2C_BBPLL_IR_CAL_START_MSB 6
#define I2C_BBPLL_IR_CAL_START_LSB 6
#define I2C_BBPLL_IR_CAL_UNSTOP 1
#define I2C_BBPLL_IR_CAL_UNSTOP_MSB 7
#define I2C_BBPLL_IR_CAL_UNSTOP_LSB 7
#define I2C_BBPLL_OC_REF_DIV 2
#define I2C_BBPLL_OC_REF_DIV_MSB 3
#define I2C_BBPLL_OC_REF_DIV_LSB 0
#define I2C_BBPLL_OC_DIV_10_8 2
#define I2C_BBPLL_OC_DIV_10_8_MSB 6
#define I2C_BBPLL_OC_DIV_10_8_LSB 4
#define I2C_BBPLL_OC_LREF 2
#define I2C_BBPLL_OC_LREF_MSB 7
#define I2C_BBPLL_OC_LREF_LSB 7
#define I2C_BBPLL_OC_DIV_7_0 3
#define I2C_BBPLL_OC_DIV_7_0_MSB 7
#define I2C_BBPLL_OC_DIV_7_0_LSB 0
#define I2C_BBPLL_OC_ENB_FCAL 4
#define I2C_BBPLL_OC_ENB_FCAL_MSB 0
#define I2C_BBPLL_OC_ENB_FCAL_LSB 0
#define I2C_BBPLL_OC_DCHGP 4
#define I2C_BBPLL_OC_DCHGP_MSB 3
#define I2C_BBPLL_OC_DCHGP_LSB 1
#define I2C_BBPLL_OC_DHREF_SEL 4
#define I2C_BBPLL_OC_DHREF_SEL_MSB 5
#define I2C_BBPLL_OC_DHREF_SEL_LSB 4
#define I2C_BBPLL_OC_DLREF_SEL 4
#define I2C_BBPLL_OC_DLREF_SEL_MSB 7
#define I2C_BBPLL_OC_DLREF_SEL_LSB 6
#define I2C_BBPLL_OC_DCUR 5
#define I2C_BBPLL_OC_DCUR_MSB 2
#define I2C_BBPLL_OC_DCUR_LSB 0
#define I2C_BBPLL_OC_BST_DIV 5
#define I2C_BBPLL_OC_BST_DIV_MSB 3
#define I2C_BBPLL_OC_BST_DIV_LSB 3
#define I2C_BBPLL_OC_BST_E2C 5
#define I2C_BBPLL_OC_BST_E2C_MSB 4
#define I2C_BBPLL_OC_BST_E2C_LSB 4
#define I2C_BBPLL_OC_TSCHGP 5
#define I2C_BBPLL_OC_TSCHGP_MSB 5
#define I2C_BBPLL_OC_TSCHGP_LSB 5
#define I2C_BBPLL_OC_BW 5
#define I2C_BBPLL_OC_BW_MSB 7
#define I2C_BBPLL_OC_BW_LSB 6
#define I2C_BBPLL_OR_LOCK1 6
#define I2C_BBPLL_OR_LOCK1_MSB 0
#define I2C_BBPLL_OR_LOCK1_LSB 0
#define I2C_BBPLL_OR_LOCK2 6
#define I2C_BBPLL_OR_LOCK2_MSB 1
#define I2C_BBPLL_OR_LOCK2_LSB 1
#define I2C_BBPLL_OR_CAL_CAP 7
#define I2C_BBPLL_OR_CAL_CAP_MSB 3
#define I2C_BBPLL_OR_CAL_CAP_LSB 0
#define I2C_BBPLL_OR_CAL_UDF 7
#define I2C_BBPLL_OR_CAL_UDF_MSB 4
#define I2C_BBPLL_OR_CAL_UDF_LSB 4
#define I2C_BBPLL_OR_CAL_OVF 7
#define I2C_BBPLL_OR_CAL_OVF_MSB 5
#define I2C_BBPLL_OR_CAL_OVF_LSB 5
#define I2C_BBPLL_OR_CAL_END 7
#define I2C_BBPLL_OR_CAL_END_MSB 6
#define I2C_BBPLL_OR_CAL_END_LSB 6
#define I2C_BBPLL_BBADC_DELAY1 8
#define I2C_BBPLL_BBADC_DELAY1_MSB 1
#define I2C_BBPLL_BBADC_DELAY1_LSB 0
#define I2C_BBPLL_BBADC_DELAY2 8
#define I2C_BBPLL_BBADC_DELAY2_MSB 3
#define I2C_BBPLL_BBADC_DELAY2_LSB 2
#define I2C_BBPLL_BBADC_DELAY3 8
#define I2C_BBPLL_BBADC_DELAY3_MSB 5
#define I2C_BBPLL_BBADC_DELAY3_LSB 4
#define I2C_BBPLL_BBADC_DELAY4 8
#define I2C_BBPLL_BBADC_DELAY4_MSB 7
#define I2C_BBPLL_BBADC_DELAY4_LSB 6
#define I2C_BBPLL_BBADC_DELAY5 9
#define I2C_BBPLL_BBADC_DELAY5_MSB 1
#define I2C_BBPLL_BBADC_DELAY5_LSB 0
#define I2C_BBPLL_BBADC_DELAY6 9
#define I2C_BBPLL_BBADC_DELAY6_MSB 3
#define I2C_BBPLL_BBADC_DELAY6_LSB 2
#define I2C_BBPLL_BBADC_DSMP 9
#define I2C_BBPLL_BBADC_DSMP_MSB 7
#define I2C_BBPLL_BBADC_DSMP_LSB 4
#define I2C_BBPLL_DTEST 10
#define I2C_BBPLL_DTEST_MSB 1
#define I2C_BBPLL_DTEST_LSB 0
#define I2C_BBPLL_ENT_ADC 10
#define I2C_BBPLL_ENT_ADC_MSB 3
#define I2C_BBPLL_ENT_ADC_LSB 2
#define I2C_BBPLL_BBADC_DIV 10
#define I2C_BBPLL_BBADC_DIV_MSB 5
#define I2C_BBPLL_BBADC_DIV_LSB 4
#define I2C_BBPLL_ENT_PLL 10
#define I2C_BBPLL_ENT_PLL_MSB 6
#define I2C_BBPLL_ENT_PLL_LSB 6
#define I2C_BBPLL_OC_ENB_VCON 10
#define I2C_BBPLL_OC_ENB_VCON_MSB 7
#define I2C_BBPLL_OC_ENB_VCON_LSB 7
#define I2C_BBPLL_DIV_DAC 11
#define I2C_BBPLL_DIV_DAC_MSB 0
#define I2C_BBPLL_DIV_DAC_LSB 0
#define I2C_BBPLL_DIV_CPU 11
#define I2C_BBPLL_DIV_CPU_MSB 1
#define I2C_BBPLL_DIV_CPU_LSB 1
#define I2C_BBPLL_BBADC_INPUT_SHORT 11
#define I2C_BBPLL_BBADC_INPUT_SHORT_MSB 2
#define I2C_BBPLL_BBADC_INPUT_SHORT_LSB 2
#define I2C_BBPLL_BBADC_CAL_9_8 11
#define I2C_BBPLL_BBADC_CAL_9_8_MSB 4
#define I2C_BBPLL_BBADC_CAL_9_8_LSB 3
#define I2C_BBPLL_BBADC_DCM 11
#define I2C_BBPLL_BBADC_DCM_MSB 6
#define I2C_BBPLL_BBADC_DCM_LSB 5
#define I2C_BBPLL_ENDIV5 11
#define I2C_BBPLL_ENDIV5_MSB 7
#define I2C_BBPLL_ENDIV5_LSB 7
#define I2C_BBPLL_BBADC_CAL_7_0 12
#define I2C_BBPLL_BBADC_CAL_7_0_MSB 7
#define I2C_BBPLL_BBADC_CAL_7_0_LSB 0

View File

@ -0,0 +1,48 @@
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "i2c_apll.h"
#include "i2c_bbpll.h"
/* Analog function control register */
#define ANA_CONFIG_REG 0x6000E044
#define ANA_CONFIG_S (8)
#define ANA_CONFIG_M (0x3FF)
/* Clear to enable APLL */
#define I2C_APLL_M (BIT(14))
/* Clear to enable BBPLL */
#define I2C_BBPLL_M (BIT(17))
/* ROM functions which read/write internal control bus */
uint8_t rom_i2c_readReg(uint8_t block, uint8_t host_id, uint8_t reg_add);
uint8_t rom_i2c_readReg_Mask(uint8_t block, uint8_t host_id, uint8_t reg_add, uint8_t msb, uint8_t lsb);
void rom_i2c_writeReg(uint8_t block, uint8_t host_id, uint8_t reg_add, uint8_t data);
void rom_i2c_writeReg_Mask(uint8_t block, uint8_t host_id, uint8_t reg_add, uint8_t msb, uint8_t lsb, uint8_t data);
/* Convenience macros for the above functions, these use register definitions
* from i2c_apll.h/i2c_bbpll.h header files.
*/
#define I2C_WRITEREG_MASK_RTC(block, reg_add, indata) \
rom_i2c_writeReg_Mask(block, block##_HOSTID, reg_add, reg_add##_MSB, reg_add##_LSB, indata)
#define I2C_READREG_MASK_RTC(block, reg_add) \
rom_i2c_readReg_Mask(block, block##_HOSTID, reg_add, reg_add##_MSB, reg_add##_LSB)
#define I2C_WRITEREG_RTC(block, reg_add, indata) \
rom_i2c_writeReg(block, block##_HOSTID, reg_add, indata)
#define I2C_READREG_RTC(block, reg_add) \
rom_i2c_readReg(block, block##_HOSTID, reg_add)

92
components/soc/esp32/include/soc/bb_reg.h Executable file → Normal file
View File

@ -15,88 +15,20 @@
#ifndef _SOC_BB_REG_H_
#define _SOC_BB_REG_H_
#define apb_bb_offset 0x6001c000
/* Some of the baseband control registers.
* PU/PD fields defined here are used in sleep related functions.
*/
#define BB_DLY apb_bb_offset + 0x00009b00 // reg 00
#define BB_TEST apb_bb_offset + 0x00009b08 // reg 02
#define BB_TM1 apb_bb_offset + 0x00009b0c // reg 03
#define BB_TM_CNTL apb_bb_offset + 0x00009b14 // reg 05
#define BB_DEL_CNTL apb_bb_offset + 0x00009b28 // reg 10
#define BB_PARAL_CNTL apb_bb_offset + 0x00009b2c // reg 11
#define BB_FSM1 apb_bb_offset + 0x00009b44 // reg 17
#define BB_MXG apb_bb_offset + 0x00009b48 // reg 18
#define BB_MNOF apb_bb_offset + 0x00009b4c // reg 19
#define BB_SIZE apb_bb_offset + 0x00009b50 // reg 20
#define BB_TM3a apb_bb_offset + 0x00009b54 // reg 21
#define BB_TM4a apb_bb_offset + 0x00009b58 // reg 22
#define BB_GAIN apb_bb_offset + 0x00009b5c // reg 23
#define BB_CNTL apb_bb_offset + 0x00009b60 // reg 24
#define BB_CAD apb_bb_offset + 0x00009b64 // reg 25
#define BB_DET apb_bb_offset + 0x00009b68 // reg 26
#define BB_DETL apb_bb_offset + 0x00009b6c // reg 27
#define BBPD_CTRL (DR_REG_BB_BASE + 0x0054)
#define BB_FFT_FORCE_PU (BIT(3))
#define BB_FFT_FORCE_PU_S 3
#define BB_FFT_FORCE_PD (BIT(2))
#define BB_FFT_FORCE_PD_S 2
#define BB_DC_EST_FORCE_PU (BIT(1))
#define BB_DC_EST_FORCE_PU_S 1
#define BB_DC_EST_FORCE_PD (BIT(0))
#define BB_DC_EST_FORCE_PD_S 0
#define BB_MASK_PCLL apb_bb_offset + 0x00009d08 // reg 66
#define BB_MASK_PCLH apb_bb_offset + 0x00009d0c // reg 67
#define BB_RX_CTRL4 apb_bb_offset + 0x00009d10 // reg 68
#define BB_RX_CTRL apb_bb_offset + 0x00009d1c // reg 71
#define BB_RX_CTRL2 apb_bb_offset + 0x00009d20 // reg 72
#define BB_RX_CTRL3 apb_bb_offset + 0x00009d24 // reg 73
#define BB_DEL4 apb_bb_offset + 0x00009d40 // reg 80
#define BB_TM5 apb_bb_offset + 0x00009d44 // reg 81
#define BB_TM6 apb_bb_offset + 0x00009d48 // reg 82
#define BB_PMCTRL apb_bb_offset + 0x00009d4c // reg 83
#define BB_PWR apb_bb_offset + 0x00009d68 // reg 90
#define BB_BCTRL2 apb_bb_offset + 0x00009d70 // reg 92
#define BB_MASK_PL apb_bb_offset + 0x00009884 // reg 97
#define BB_MASK_PCHL apb_bb_offset + 0x00009888 // reg 98
#define BB_MASK_PCHH apb_bb_offset + 0x0000988c // reg 99
#define BB_MASK_CL apb_bb_offset + 0x0000989c // reg 103
#define BB_TONE apb_bb_offset + 0x000098a0 // reg 104
#define BB_MASK_CH apb_bb_offset + 0x000098d4 // reg 117
#define BB_SER apb_bb_offset + 0x000098ec // reg 123
#define BB_GN_TB apb_bb_offset + 0x00009e00 // reg 128
#define BB_MODE apb_bb_offset + 0x00009c00 // reg 640
#define BB_TXCTRL apb_bb_offset + 0x00009c04 // reg 641
#define BB_BCTRL3 apb_bb_offset + 0x00009c08 // reg 642
#define BB_BCTRL apb_bb_offset + 0x00009c28 // reg 650
#define BB_SMCTRL apb_bb_offset + 0x00009c48 // reg 658
#define BB_SMCTRL2 apb_bb_offset + 0x00009c4C // reg 659
#define BB_TXCNT apb_bb_offset + 0x00009c58 // reg 662
#define BB_RXCTRL apb_bb_offset + 0x00009c68 // reg 666
#define BB_TXGAIN apb_bb_offset + 0x00009900 // reg 704
#define BB_RXS_CNTL apb_bb_offset + 0x00009988 // reg 738
#define BB_MASK2_PCLL apb_bb_offset + 0x000099a8 // reg 746
#define BB_MASK2_PCLH apb_bb_offset + 0x000099ac // reg 747
#define BB_MASK_PH apb_bb_offset + 0x000099b0 // reg 748
#define BB_MASK2_PCHL apb_bb_offset + 0x000099b8 // reg 750
#define BB_MASK2_PCHH apb_bb_offset + 0x000099bc // reg 751
//
#define BB_TX_TONE_CNTL apb_bb_offset + 0x000099f0 // reg 764
#define BB_ADD_CNTL0 apb_bb_offset + 0x00009a28 // reg 778
#define BB_ADD_CNTL2 apb_bb_offset + 0x00009a2c // reg 779
#define BB_GAIN_CNTL0 apb_bb_offset + 0x00009a34 // reg 781
#define BB_GAIN_CNTL1 apb_bb_offset + 0x00009a38 // reg 782
#define BB_GAIN_CNTL2 apb_bb_offset + 0x00009a3c // reg 783
#define BB_AGCMEM_CTRL apb_bb_offset + 0x00009a68 // reg 794
#define BB_11B_RECORD apb_bb_offset + 0x00009808 // reg 802
#define BB_FILTER_CNTL apb_bb_offset + 0x0000980c // reg 803
#define BB_ANALOG_CTRL1 apb_bb_offset + 0x00009838
#define BB_ANALOG_CTRL2 apb_bb_offset + 0x0000983c //reg 815
#define BB_ANALOG_CTRL3 apb_bb_offset + 0x00009840 //reg 816
#define BB_RFCFG_CTRL0 apb_bb_offset + 0x00009844 //reg 817
#define BB_RFCFG_CTRL1 apb_bb_offset + 0x00009848 //reg 818
#define BB_ADD_CNTL1 apb_bb_offset + 0x00009860 //reg824
#define BB_PA_CNTL apb_bb_offset + 0x00009864 //reg825
#define BB_RFCFG_CTRL2 apb_bb_offset + 0x0000986c //reg827
#define BB_RXDEL_CTRL apb_bb_offset + 0x00009d18
#define BB_RXLENGTH_CTRL apb_bb_offset + 0x00009d1c
#endif /* _SOC_BB_REG_H_ */

0
components/soc/esp32/include/soc/boot_mode.h Executable file → Normal file
View File

View File

@ -0,0 +1,33 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "soc/soc.h"
/* Some of the RF frontend control registers.
* PU/PD fields defined here are used in sleep related functions.
*/
#define FE_GEN_CTRL (DR_REG_FE_BASE + 0x0090)
#define FE_IQ_EST_FORCE_PU (BIT(5))
#define FE_IQ_EST_FORCE_PU_S 5
#define FE_IQ_EST_FORCE_PD (BIT(4))
#define FE_IQ_EST_FORCE_PD_S 4
#define FE2_TX_INTERP_CTRL (DR_REG_FE2_BASE + 0x00f0)
#define FE2_TX_INF_FORCE_PU (BIT(10))
#define FE2_TX_INF_FORCE_PU_S 10
#define FE2_TX_INF_FORCE_PD (BIT(9))
#define FE2_TX_INF_FORCE_PD_S 9

View File

@ -0,0 +1,39 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "soc/soc.h"
/* Some of the WiFi RX control registers.
* PU/PD fields defined here are used in sleep related functions.
*/
#define NRXPD_CTRL (DR_REG_NRX_BASE + 0x00d4)
#define NRX_CHAN_EST_FORCE_PU (BIT(7))
#define NRX_CHAN_EST_FORCE_PU_S 7
#define NRX_CHAN_EST_FORCE_PD (BIT(6))
#define NRX_CHAN_EST_FORCE_PD_S 6
#define NRX_RX_ROT_FORCE_PU (BIT(5))
#define NRX_RX_ROT_FORCE_PU_S 5
#define NRX_RX_ROT_FORCE_PD (BIT(4))
#define NRX_RX_ROT_FORCE_PD_S 4
#define NRX_VIT_FORCE_PU (BIT(3))
#define NRX_VIT_FORCE_PU_S 3
#define NRX_VIT_FORCE_PD (BIT(2))
#define NRX_VIT_FORCE_PD_S 2
#define NRX_DEMAP_FORCE_PU (BIT(1))
#define NRX_DEMAP_FORCE_PU_S 1
#define NRX_DEMAP_FORCE_PD (BIT(0))
#define NRX_DEMAP_FORCE_PD_S 0

View File

@ -0,0 +1,496 @@
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include "soc/soc.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @file rtc.h
* @brief Low-level RTC power, clock, and sleep functions.
*
* Functions in this file facilitate configuration of ESP32's RTC_CNTL peripheral.
* RTC_CNTL peripheral handles many functions:
* - enables/disables clocks and power to various parts of the chip; this is
* done using direct register access (forcing power up or power down) or by
* allowing state machines to control power and clocks automatically
* - handles sleep and wakeup functions
* - maintains a 48-bit counter which can be used for timekeeping
*
* These functions are not thread safe, and should not be viewed as high level
* APIs. For example, while this file provides a function which can switch
* CPU frequency, this function is on its own is not sufficient to implement
* frequency switching in ESP-IDF context: some coordination with RTOS,
* peripheral drivers, and WiFi/BT stacks is also required.
*
* These functions will normally not be used in applications directly.
* ESP-IDF provides, or will provide, drivers and other facilities to use
* RTC subsystem functionality.
*
* The functions are loosely split into the following groups:
* - rtc_clk: clock switching, calibration
* - rtc_time: reading RTC counter, conversion between counter values and time
* - rtc_sleep: entry into sleep modes
* - rtc_init: initialization
*/
/**
* @brief Possible main XTAL frequency values.
*
* Enum values should be equal to frequency in MHz.
*/
typedef enum {
RTC_XTAL_FREQ_AUTO = 0, //!< Automatic XTAL frequency detection
RTC_XTAL_FREQ_40M = 40, //!< 40 MHz XTAL
RTC_XTAL_FREQ_26M = 26, //!< 26 MHz XTAL
RTC_XTAL_FREQ_24M = 24, //!< 24 MHz XTAL
} rtc_xtal_freq_t;
/**
* @brief CPU frequency values
*/
typedef enum {
RTC_CPU_FREQ_XTAL = 0, //!< Main XTAL frequency
RTC_CPU_FREQ_80M = 1, //!< 80 MHz
RTC_CPU_FREQ_160M = 2, //!< 160 MHz
RTC_CPU_FREQ_240M = 3, //!< 240 MHz
RTC_CPU_FREQ_2M = 4, //!< 2 MHz
} rtc_cpu_freq_t;
/**
* @brief RTC SLOW_CLK frequency values
*/
typedef enum {
RTC_SLOW_FREQ_RTC = 0, //!< Internal 150 kHz RC oscillator
RTC_SLOW_FREQ_32K_XTAL = 1, //!< External 32 kHz XTAL
RTC_SLOW_FREQ_8MD256 = 2, //!< Internal 8 MHz RC oscillator, divided by 256
} rtc_slow_freq_t;
/**
* @brief RTC FAST_CLK frequency values
*/
typedef enum {
RTC_FAST_FREQ_XTALD4 = 0, //!< Main XTAL, divided by 4
RTC_FAST_FREQ_8M = 1, //!< Internal 8 MHz RC oscillator
} rtc_fast_freq_t;
/**
* @brief Clock source to be calibrated using rtc_clk_cal function
*/
typedef enum {
RTC_CAL_RTC_MUX = 0, //!< Currently selected RTC SLOW_CLK
RTC_CAL_8MD256 = 1, //!< Internal 8 MHz RC oscillator, divided by 256
RTC_CAL_32K_XTAL = 2 //!< External 32 kHz XTAL
} rtc_cal_sel_t;
/**
* Initialization parameters for rtc_clk_init
*/
typedef struct {
rtc_xtal_freq_t xtal_freq : 8; //!< Main XTAL frequency
rtc_cpu_freq_t cpu_freq : 3; //!< CPU frequency to set
rtc_fast_freq_t fast_freq : 1; //!< RTC_FAST_CLK frequency to set
rtc_slow_freq_t slow_freq : 2; //!< RTC_SLOW_CLK frequency to set
uint32_t clk_8m_div : 3; //!< RTC 8M clock divider (division is by clk_8m_div+1, i.e. 0 means 8MHz frequency)
uint32_t slow_clk_dcap : 8; //!< RTC 150k clock adjustment parameter (higher value leads to lower frequency)
uint32_t clk_8m_dfreq : 8; //!< RTC 8m clock adjustment parameter (higher value leads to higher frequency)
} rtc_clk_config_t;
/**
* Default initializer for rtc_clk_config_t
*/
#define RTC_CLK_CONFIG_DEFAULT() { \
.xtal_freq = RTC_XTAL_FREQ_AUTO, \
.cpu_freq = RTC_CPU_FREQ_80M, \
.fast_freq = RTC_FAST_FREQ_8M, \
.slow_freq = RTC_SLOW_FREQ_RTC, \
.clk_8m_div = 0, \
.slow_clk_dcap = RTC_CNTL_SCK_DCAP_DEFAULT, \
.clk_8m_dfreq = RTC_CNTL_CK8M_DFREQ_DEFAULT, \
}
/**
* Initialize clocks and set CPU frequency
*
* If cfg.xtal_freq is set to RTC_XTAL_FREQ_AUTO, this function will attempt
* to auto detect XTAL frequency. Auto detection is performed by comparing
* XTAL frequency with the frequency of internal 8MHz oscillator. Note that at
* high temperatures the frequency of the internal 8MHz oscillator may drift
* enough for auto detection to be unreliable.
* Auto detection code will attempt to distinguish between 26MHz and 40MHz
* crystals. 24 MHz crystals are not supported by auto detection code.
* If XTAL frequency can not be auto detected, this 26MHz frequency will be used.
*
* @param cfg clock configuration as rtc_clk_config_t
*/
void rtc_clk_init(rtc_clk_config_t cfg);
/**
* @brief Get main XTAL frequency
*
* This is the value passed to rtc_clk_init function, or if the value was
* RTC_XTAL_FREQ_AUTO, the detected XTAL frequency.
*
* @return XTAL frequency, one of rtc_xtal_freq_t
*/
rtc_xtal_freq_t rtc_clk_xtal_freq_get();
/**
* @brief Enable or disable 32 kHz XTAL oscillator
* @param en true to enable, false to disable
*/
void rtc_clk_32k_enable(bool en);
/**
* @brief Get the state of 32k XTAL oscillator
* @return true if 32k XTAL oscillator has been enabled
*/
bool rtc_clk_32k_enabled();
/**
* @brief Enable or disable 8 MHz internal oscillator
*
* Output from 8 MHz internal oscillator is passed into a configurable
* divider, which by default divides the input clock frequency by 256.
* Output of the divider may be used as RTC_SLOW_CLK source.
* Output of the divider is referred to in register descriptions and code as
* 8md256 or simply d256. Divider values other than 256 may be configured, but
* this facility is not currently needed, so is not exposed in the code.
*
* When 8MHz/256 divided output is not needed, the divider should be disabled
* to reduce power consumption.
*
* @param clk_8m_en true to enable 8MHz generator
* @param d256_en true to enable /256 divider
*/
void rtc_clk_8m_enable(bool clk_8m_en, bool d256_en);
/**
* @brief Get the state of 8 MHz internal oscillator
* @return true if the oscillator is enabled
*/
bool rtc_clk_8m_enabled();
/**
* @brief Get the state of /256 divider which is applied to 8MHz clock
* @return true if the divided output is enabled
*/
bool rtc_clk_8md256_enabled();
/**
* @brief Enable or disable APLL
*
* Output frequency is given by the formula:
* apll_freq = xtal_freq * (4 + sdm2 + sdm1/256 + sdm0/65536)/((o_div + 2) * 2)
*
* The dividend in this expression should be in the range of 240 - 600 MHz.
*
* In rev. 0 of ESP32, sdm0 and sdm1 are unused and always set to 0.
*
* @param enable true to enable, false to disable
* @param sdm0 frequency adjustment parameter, 0..255
* @param sdm1 frequency adjustment parameter, 0..255
* @param sdm2 frequency adjustment parameter, 0..63
* @param o_div frequency divider, 0..31
*/
void rtc_clk_apll_enable(bool enable, uint32_t sdm0, uint32_t sdm1,
uint32_t sdm2, uint32_t o_div);
/**
* @brief Select source for RTC_SLOW_CLK
* @param slow_freq clock source (one of rtc_slow_freq_t values)
*/
void rtc_clk_slow_freq_set(rtc_slow_freq_t slow_freq);
/**
* @brief Get the RTC_SLOW_CLK source
* @return currently selected clock source (one of rtc_slow_freq_t values)
*/
rtc_slow_freq_t rtc_clk_slow_freq_get();
/**
* @brief Select source for RTC_FAST_CLK
* @param fast_freq clock source (one of rtc_fast_freq_t values)
*/
void rtc_clk_fast_freq_set(rtc_fast_freq_t fast_freq);
/**
* @brief Get the RTC_FAST_CLK source
* @return currently selected clock source (one of rtc_fast_freq_t values)
*/
rtc_fast_freq_t rtc_clk_fast_freq_get();
/**
* @brief Switch CPU frequency
*
* If a PLL-derived frequency is requested (80, 160, 240 MHz), this function
* will enable the PLL. Otherwise, PLL will be disabled.
* Note: this function is not optimized for switching speed. It may take several
* hundred microseconds to perform frequency switch.
*
* @param cpu_freq new CPU frequency
*/
void rtc_clk_cpu_freq_set(rtc_cpu_freq_t cpu_freq);
/**
* @brief Get the currently selected CPU frequency
*
* Although CPU can be clocked by APLL and RTC 8M sources, such support is not
* exposed through this library. As such, this function will not return
* meaningful values when these clock sources are configured (e.g. using direct
* access to clock selection registers). In debug builds, it will assert; in
* release builds, it will return RTC_CPU_FREQ_XTAL.
*
* @return CPU frequency (one of rtc_cpu_freq_t values)
*/
rtc_cpu_freq_t rtc_clk_cpu_freq_get();
/**
* @brief Get corresponding frequency value for rtc_cpu_freq_t enum value
* @param cpu_freq CPU frequency, on of rtc_cpu_freq_t values
* @return CPU frequency, in HZ
*/
uint32_t rtc_clk_cpu_freq_value(rtc_cpu_freq_t cpu_freq);
/**
* @brief Store new APB frequency value into RTC_APB_FREQ_REG
*
* This function doesn't change any hardware clocks.
*
* Functions which perform frequency switching and change APB frequency call
* this function to update the value of APB frequency stored in RTC_APB_FREQ_REG
* (one of RTC general purpose retention registers). This should not normally
* be called from application code.
*
* @param apb_freq new APB frequency, in Hz
*/
void rtc_clk_apb_freq_update(uint32_t apb_freq);
/**
* @brief Get the current stored APB frequency.
* @return The APB frequency value as last set via rtc_clk_apb_freq_update(), in Hz.
*/
uint32_t rtc_clk_apb_freq_get();
#define RTC_CLK_CAL_FRACT 19 //!< Number of fractional bits in values returned by rtc_clk_cal
/**
* @brief Measure RTC slow clock's period, based on main XTAL frequency
*
* This function will time out and return 0 if the time for the given number
* of cycles to be counted exceeds the expected time twice. This may happen if
* 32k XTAL is being calibrated, but the oscillator has not started up (due to
* incorrect loading capacitance, board design issue, or lack of 32 XTAL on board).
*
* @param cal_clk clock to be measured
* @param slow_clk_cycles number of slow clock cycles to average
* @return average slow clock period in microseconds, Q13.19 fixed point format,
* or 0 if calibration has timed out
*/
uint32_t rtc_clk_cal(rtc_cal_sel_t cal_clk, uint32_t slow_clk_cycles);
/**
* @brief Convert time interval from microseconds to RTC_SLOW_CLK cycles
* @param time_in_us Time interval in microseconds
* @param slow_clk_period Period of slow clock in microseconds, Q13.19
* fixed point format (as returned by rtc_slowck_cali).
* @return number of slow clock cycles
*/
uint64_t rtc_time_us_to_slowclk(uint64_t time_in_us, uint32_t period);
/**
* @brief Convert time interval from RTC_SLOW_CLK to microseconds
* @param time_in_us Time interval in RTC_SLOW_CLK cycles
* @param slow_clk_period Period of slow clock in microseconds, Q13.19
* fixed point format (as returned by rtc_slowck_cali).
* @return time interval in microseconds
*/
uint64_t rtc_time_slowclk_to_us(uint64_t rtc_cycles, uint32_t period);
/**
* @brief Get current value of RTC counter
*
* RTC has a 48-bit counter which is incremented by 2 every 2 RTC_SLOW_CLK
* cycles. Counter value is not writable by software. The value is not adjusted
* when switching to a different RTC_SLOW_CLK source.
*
* Note: this function may take up to 1 RTC_SLOW_CLK cycle to execute
*
* @return current value of RTC counter
*/
uint64_t rtc_time_get();
/**
* @brief sleep configuration for rtc_sleep_init function
*/
typedef struct {
uint32_t soc_clk_sel : 2; //!< SoC clock select, see RTC_CNTL_SOC_CLK_SEL
uint32_t lslp_mem_inf_fpu : 1; //!< force normal voltage in sleep mode (digital domain memory)
uint32_t rtc_mem_inf_fpu : 1; //!< force normal voltage in sleep mode (RTC memory)
uint32_t rtc_mem_inf_follow_cpu : 1;//!< keep low voltage in sleep mode (even if ULP/touch is used)
uint32_t rtc_fastmem_pd_en : 1; //!< power down RTC fast memory
uint32_t rtc_slowmem_pd_en : 1; //!< power down RTC slow memory
uint32_t rtc_peri_pd_en : 1; //!< power down RTC peripherals
uint32_t wifi_pd_en : 1; //!< power down WiFi
uint32_t rom_mem_pd_en : 1; //!< power down main RAM and ROM
uint32_t deep_slp : 1; //!< power down digital domain
uint32_t wdt_flashboot_mod_en : 1; //!< enable WDT flashboot mode
uint32_t dig_dbias_wak : 3; //!< set bias for digital domain, in active mode
uint32_t dig_dbias_slp : 3; //!< set bias for digital domain, in sleep mode
uint32_t rtc_dbias_wak : 3; //!< set bias for RTC domain, in active mode
uint32_t rtc_dbias_slp : 3; //!< set bias for RTC domain, in sleep mode
uint32_t lslp_meminf_pd : 1; //!< remove all peripheral force power up flags
} rtc_sleep_config_t;
/**
* Default initializer for rtc_sleep_config_t
*
* This initializer sets all fields to "reasonable" values (e.g. suggested for
* production use) based on a combination of RTC_SLEEP_PD_x flags.
*
* @param RTC_SLEEP_PD_x flags combined using bitwise OR
*/
#define RTC_SLEEP_CONFIG_DEFAULT(sleep_flags) { \
.soc_clk_sel = RTC_CNTL_SOC_CLK_SEL_XTL, \
.lslp_mem_inf_fpu = 0, \
.rtc_mem_inf_fpu = 0, \
.rtc_mem_inf_follow_cpu = ((sleep_flags) & RTC_SLEEP_PD_RTC_MEM_FOLLOW_CPU) ? 1 : 0, \
.rtc_fastmem_pd_en = ((sleep_flags) & RTC_SLEEP_PD_RTC_FAST_MEM) ? 1 : 0, \
.rtc_slowmem_pd_en = ((sleep_flags) & RTC_SLEEP_PD_RTC_SLOW_MEM) ? 1 : 0, \
.rtc_peri_pd_en = ((sleep_flags) & RTC_SLEEP_PD_RTC_PERIPH) ? 1 : 0, \
.wifi_pd_en = 0, \
.rom_mem_pd_en = 0, \
.deep_slp = ((sleep_flags) & RTC_SLEEP_PD_DIG) ? 1 : 0, \
.wdt_flashboot_mod_en = 0, \
.dig_dbias_wak = RTC_CNTL_DBIAS_1V10, \
.dig_dbias_slp = RTC_CNTL_DBIAS_0V90, \
.rtc_dbias_wak = RTC_CNTL_DBIAS_0V90, \
.rtc_dbias_slp = RTC_CNTL_DBIAS_0V90, \
.lslp_meminf_pd = 1 \
};
#define RTC_SLEEP_PD_DIG BIT(0) //!< Deep sleep (power down digital domain)
#define RTC_SLEEP_PD_RTC_PERIPH BIT(1) //!< Power down RTC peripherals
#define RTC_SLEEP_PD_RTC_SLOW_MEM BIT(2) //!< Power down RTC SLOW memory
#define RTC_SLEEP_PD_RTC_FAST_MEM BIT(3) //!< Power down RTC FAST memory
#define RTC_SLEEP_PD_RTC_MEM_FOLLOW_CPU BIT(4) //!< RTC FAST and SLOW memories are automatically powered up and down along with the CPU
/**
* @brief Prepare the chip to enter sleep mode
*
* This function configures various power control state machines to handle
* entry into light sleep or deep sleep mode, switches APB and CPU clock source
* (usually to XTAL), and sets bias voltages for digital and RTC power domains.
*
* This function does not actually enter sleep mode; this is done using
* rtc_sleep_start function. Software may do some other actions between
* rtc_sleep_init and rtc_sleep_start, such as set wakeup timer and configure
* wakeup sources.
* @param cfg sleep mode configuration
*/
void rtc_sleep_init(rtc_sleep_config_t cfg);
/**
* @brief Set target value of RTC counter for RTC_TIMER_TRIG_EN wakeup source
* @param t value of RTC counter at which wakeup from sleep will happen;
* only the lower 48 bits are used
*/
void rtc_sleep_set_wakeup_time(uint64_t t);
#define RTC_EXT0_TRIG_EN BIT(0) //!< EXT0 GPIO wakeup
#define RTC_EXT1_TRIG_EN BIT(1) //!< EXT1 GPIO wakeup
#define RTC_GPIO_TRIG_EN BIT(2) //!< GPIO wakeup (light sleep only)
#define RTC_TIMER_TRIG_EN BIT(3) //!< Timer wakeup
#define RTC_SDIO_TRIG_EN BIT(4) //!< SDIO wakeup (light sleep only)
#define RTC_MAC_TRIG_EN BIT(5) //!< MAC wakeup (light sleep only)
#define RTC_UART0_TRIG_EN BIT(6) //!< UART0 wakeup (light sleep only)
#define RTC_UART1_TRIG_EN BIT(7) //!< UART1 wakeup (light sleep only)
#define RTC_TOUCH_TRIG_EN BIT(8) //!< Touch wakeup
#define RTC_ULP_TRIG_EN BIT(9) //!< ULP wakeup
#define RTC_BT_TRIG_EN BIT(10) //!< BT wakeup (light sleep only)
/**
* @brief Enter deep or light sleep mode
*
* This function enters the sleep mode previously configured using rtc_sleep_init
* function. Before entering sleep, software should configure wake up sources
* appropriately (set up GPIO wakeup registers, timer wakeup registers,
* and so on).
*
* If deep sleep mode was configured using rtc_sleep_init, and sleep is not
* rejected by hardware (based on reject_opt flags), this function never returns.
* When the chip wakes up from deep sleep, CPU is reset and execution starts
* from ROM bootloader.
*
* If light sleep mode was configured using rtc_sleep_init, this function
* returns on wakeup, or if sleep is rejected by hardware.
*
* @param wakeup_opt bit mask wake up reasons to enable (RTC_xxx_TRIG_EN flags
* combined with OR)
* @param reject_opt bit mask of sleep reject reasons:
* - RTC_CNTL_GPIO_REJECT_EN
* - RTC_CNTL_SDIO_REJECT_EN
* These flags are used to prevent entering sleep when e.g.
* an external host is communicating via SDIO slave
* @return non-zero if sleep was rejected by hardware
*/
uint32_t rtc_sleep_start(uint32_t wakeup_opt, uint32_t reject_opt);
/**
* RTC power and clock control initialization settings
*/
typedef struct {
uint32_t ck8m_wait : 8; //!< Number of rtc_fast_clk cycles to wait for 8M clock to be ready
uint32_t xtal_wait : 8; //!< Number of rtc_fast_clk cycles to wait for XTAL clock to be ready
uint32_t pll_wait : 8; //!< Number of rtc_fast_clk cycles to wait for PLL to be ready
uint32_t clkctl_init : 1; //!< Perform clock control related initialization
uint32_t pwrctl_init : 1; //!< Perform power control related initialization
uint32_t rtc_dboost_fpd : 1; //!< Force power down RTC_DBOOST
} rtc_config_t;
/**
* Default initializer of rtc_config_t.
*
* This initializer sets all fields to "reasonable" values (e.g. suggested for
* production use).
*/
#define RTC_CONFIG_DEFAULT() {\
.ck8m_wait = RTC_CNTL_CK8M_WAIT_DEFAULT, \
.xtal_wait = RTC_CNTL_XTL_BUF_WAIT_DEFAULT, \
.pll_wait = RTC_CNTL_PLL_BUF_WAIT_DEFAULT, \
.clkctl_init = 1, \
.pwrctl_init = 1, \
.rtc_dboost_fpd = 1 \
}
/**
* Initialize RTC clock and power control related functions
* @param cfg configuration options as rtc_config_t
*/
void rtc_init(rtc_config_t cfg);
#ifdef __cplusplus
}
#endif

View File

@ -321,18 +321,21 @@
#define RTC_CNTL_PLL_BUF_WAIT_M ((RTC_CNTL_PLL_BUF_WAIT_V)<<(RTC_CNTL_PLL_BUF_WAIT_S))
#define RTC_CNTL_PLL_BUF_WAIT_V 0xFF
#define RTC_CNTL_PLL_BUF_WAIT_S 24
#define RTC_CNTL_PLL_BUF_WAIT_DEFAULT 20
/* RTC_CNTL_XTL_BUF_WAIT : R/W ;bitpos:[23:14] ;default: 10'd80 ; */
/*description: XTAL wait cycles in slow_clk_rtc*/
#define RTC_CNTL_XTL_BUF_WAIT 0x000003FF
#define RTC_CNTL_XTL_BUF_WAIT_M ((RTC_CNTL_XTL_BUF_WAIT_V)<<(RTC_CNTL_XTL_BUF_WAIT_S))
#define RTC_CNTL_XTL_BUF_WAIT_V 0x3FF
#define RTC_CNTL_XTL_BUF_WAIT_S 14
#define RTC_CNTL_XTL_BUF_WAIT_DEFAULT 20
/* RTC_CNTL_CK8M_WAIT : R/W ;bitpos:[13:6] ;default: 8'h10 ; */
/*description: CK8M wait cycles in slow_clk_rtc*/
#define RTC_CNTL_CK8M_WAIT 0x000000FF
#define RTC_CNTL_CK8M_WAIT_M ((RTC_CNTL_CK8M_WAIT_V)<<(RTC_CNTL_CK8M_WAIT_S))
#define RTC_CNTL_CK8M_WAIT_V 0xFF
#define RTC_CNTL_CK8M_WAIT_S 6
#define RTC_CNTL_CK8M_WAIT_DEFAULT 20
/* RTC_CNTL_CPU_STALL_WAIT : R/W ;bitpos:[5:1] ;default: 5'd1 ; */
/*description: CPU stall wait cycles in fast_clk_rtc*/
#define RTC_CNTL_CPU_STALL_WAIT 0x0000001F
@ -892,6 +895,10 @@
#define RTC_CNTL_SOC_CLK_SEL_M ((RTC_CNTL_SOC_CLK_SEL_V)<<(RTC_CNTL_SOC_CLK_SEL_S))
#define RTC_CNTL_SOC_CLK_SEL_V 0x3
#define RTC_CNTL_SOC_CLK_SEL_S 27
#define RTC_CNTL_SOC_CLK_SEL_XTL 0
#define RTC_CNTL_SOC_CLK_SEL_PLL 1
#define RTC_CNTL_SOC_CLK_SEL_8M 2
#define RTC_CNTL_SOC_CLK_SEL_APLL 3
/* RTC_CNTL_CK8M_FORCE_PU : R/W ;bitpos:[26] ;default: 1'd0 ; */
/*description: CK8M force power up*/
#define RTC_CNTL_CK8M_FORCE_PU (BIT(26))
@ -910,6 +917,7 @@
#define RTC_CNTL_CK8M_DFREQ_M ((RTC_CNTL_CK8M_DFREQ_V)<<(RTC_CNTL_CK8M_DFREQ_S))
#define RTC_CNTL_CK8M_DFREQ_V 0xFF
#define RTC_CNTL_CK8M_DFREQ_S 17
#define RTC_CNTL_CK8M_DFREQ_DEFAULT 172
/* RTC_CNTL_CK8M_FORCE_NOGATING : R/W ;bitpos:[16] ;default: 1'd0 ; */
/*description: CK8M force no gating during sleep*/
#define RTC_CNTL_CK8M_FORCE_NOGATING (BIT(16))
@ -1109,6 +1117,7 @@
#define RTC_CNTL_SCK_DCAP_M ((RTC_CNTL_SCK_DCAP_V)<<(RTC_CNTL_SCK_DCAP_S))
#define RTC_CNTL_SCK_DCAP_V 0xFF
#define RTC_CNTL_SCK_DCAP_S 14
#define RTC_CNTL_SCK_DCAP_DEFAULT 255
/* RTC_CNTL_DIG_DBIAS_WAK : R/W ;bitpos:[13:11] ;default: 3'd4 ; */
/*description: DIG_REG_DBIAS during wakeup*/
#define RTC_CNTL_DIG_DBIAS_WAK 0x00000007
@ -1128,6 +1137,19 @@
#define RTC_CNTL_SCK_DCAP_FORCE_V 0x1
#define RTC_CNTL_SCK_DCAP_FORCE_S 7
/* Approximate mapping of voltages to RTC_CNTL_DBIAS_WAK, RTC_CNTL_DBIAS_SLP,
* RTC_CNTL_DIG_DBIAS_WAK, RTC_CNTL_DIG_DBIAS_SLP values.
* Valid if RTC_CNTL_DBG_ATTEN is 0.
*/
#define RTC_CNTL_DBIAS_0V90 0
#define RTC_CNTL_DBIAS_0V95 1
#define RTC_CNTL_DBIAS_1V00 2
#define RTC_CNTL_DBIAS_1V05 3
#define RTC_CNTL_DBIAS_1V10 4
#define RTC_CNTL_DBIAS_1V15 5
#define RTC_CNTL_DBIAS_1V20 6
#define RTC_CNTL_DBIAS_1V25 7
#define RTC_CNTL_PWC_REG (DR_REG_RTCCNTL_BASE + 0x80)
/* RTC_CNTL_PD_EN : R/W ;bitpos:[20] ;default: 1'd0 ; */
/*description: enable power down rtc_peri in sleep*/
@ -1257,6 +1279,24 @@
#define RTC_CNTL_FASTMEM_FORCE_NOISO_V 0x1
#define RTC_CNTL_FASTMEM_FORCE_NOISO_S 0
/* Useful groups of RTC_CNTL_PWC_REG bits */
#define RTC_CNTL_MEM_FORCE_ISO \
(RTC_CNTL_SLOWMEM_FORCE_ISO | RTC_CNTL_FASTMEM_FORCE_ISO)
#define RTC_CNTL_MEM_FORCE_NOISO \
(RTC_CNTL_SLOWMEM_FORCE_NOISO | RTC_CNTL_FASTMEM_FORCE_NOISO)
#define RTC_CNTL_MEM_PD_EN \
(RTC_CNTL_SLOWMEM_PD_EN | RTC_CNTL_FASTMEM_PD_EN)
#define RTC_CNTL_MEM_FORCE_PU \
(RTC_CNTL_SLOWMEM_FORCE_PU | RTC_CNTL_FASTMEM_FORCE_PU)
#define RTC_CNTL_MEM_FORCE_PD \
(RTC_CNTL_SLOWMEM_FORCE_PD | RTC_CNTL_FASTMEM_FORCE_PD)
#define RTC_CNTL_MEM_FOLW_CPU \
(RTC_CNTL_SLOWMEM_FOLW_CPU | RTC_CNTL_FASTMEM_FOLW_CPU)
#define RTC_CNTL_MEM_FORCE_LPU \
(RTC_CNTL_SLOWMEM_FORCE_LPU | RTC_CNTL_FASTMEM_FORCE_LPU)
#define RTC_CNTL_MEM_FORCE_LPD \
(RTC_CNTL_SLOWMEM_FORCE_LPD | RTC_CNTL_FASTMEM_FORCE_LPD)
#define RTC_CNTL_DIG_PWC_REG (DR_REG_RTCCNTL_BASE + 0x84)
/* RTC_CNTL_DG_WRAP_PD_EN : R/W ;bitpos:[31] ;default: 0 ; */
/*description: enable power down digital core in sleep*/
@ -1415,6 +1455,20 @@
#define RTC_CNTL_LSLP_MEM_FORCE_PD_V 0x1
#define RTC_CNTL_LSLP_MEM_FORCE_PD_S 3
/* Useful groups of RTC_CNTL_DIG_PWC_REG bits */
#define RTC_CNTL_CPU_ROM_RAM_PD_EN \
(RTC_CNTL_INTER_RAM4_PD_EN | RTC_CNTL_INTER_RAM3_PD_EN |\
RTC_CNTL_INTER_RAM2_PD_EN | RTC_CNTL_INTER_RAM1_PD_EN |\
RTC_CNTL_INTER_RAM0_PD_EN | RTC_CNTL_ROM0_PD_EN)
#define RTC_CNTL_CPU_ROM_RAM_FORCE_PU \
(RTC_CNTL_INTER_RAM4_FORCE_PU | RTC_CNTL_INTER_RAM3_FORCE_PU |\
RTC_CNTL_INTER_RAM2_FORCE_PU | RTC_CNTL_INTER_RAM1_FORCE_PU |\
RTC_CNTL_INTER_RAM0_FORCE_PU | RTC_CNTL_ROM0_FORCE_PU)
#define RTC_CNTL_CPU_ROM_RAM_FORCE_PD \
(RTC_CNTL_INTER_RAM4_FORCE_PD | RTC_CNTL_INTER_RAM3_FORCE_PD |\
RTC_CNTL_INTER_RAM2_FORCE_PD | RTC_CNTL_INTER_RAM1_FORCE_PD |\
RTC_CNTL_INTER_RAM0_FORCE_PD | RTC_CNTL_ROM0_FORCE_PD
#define RTC_CNTL_DIG_ISO_REG (DR_REG_RTCCNTL_BASE + 0x88)
/* RTC_CNTL_DG_WRAP_FORCE_NOISO : R/W ;bitpos:[31] ;default: 1'd1 ; */
/*description: digital core force no ISO*/
@ -1567,6 +1621,16 @@
#define RTC_CNTL_DIG_ISO_FORCE_OFF_V 0x1
#define RTC_CNTL_DIG_ISO_FORCE_OFF_S 7
/* Useful groups of RTC_CNTL_DIG_ISO_REG bits */
#define RTC_CNTL_CPU_ROM_RAM_FORCE_ISO \
(RTC_CNTL_INTER_RAM4_FORCE_ISO | RTC_CNTL_INTER_RAM3_FORCE_ISO |\
RTC_CNTL_INTER_RAM2_FORCE_ISO | RTC_CNTL_INTER_RAM1_FORCE_ISO |\
RTC_CNTL_INTER_RAM0_FORCE_ISO | RTC_CNTL_ROM0_FORCE_ISO)
#define RTC_CNTL_CPU_ROM_RAM_FORCE_NOISO \
(RTC_CNTL_INTER_RAM4_FORCE_NOISO | RTC_CNTL_INTER_RAM3_FORCE_NOISO |\
RTC_CNTL_INTER_RAM2_FORCE_NOISO | RTC_CNTL_INTER_RAM1_FORCE_NOISO |\
RTC_CNTL_INTER_RAM0_FORCE_NOISO | RTC_CNTL_ROM0_FORCE_NOISO)
#define RTC_CNTL_WDTCONFIG0_REG (DR_REG_RTCCNTL_BASE + 0x8c)
/* RTC_CNTL_WDT_EN : R/W ;bitpos:[31] ;default: 1'h0 ; */
/*description: enable RTC WDT*/

View File

@ -511,6 +511,8 @@
#define RTC_IO_DEBUG_SEL0_M ((RTC_IO_DEBUG_SEL0_V)<<(RTC_IO_DEBUG_SEL0_S))
#define RTC_IO_DEBUG_SEL0_V 0x1F
#define RTC_IO_DEBUG_SEL0_S 0
#define RTC_IO_DEBUG_SEL0_32K_XTAL 4
#define RTC_IO_DEBUG_SEL0_150K_OSC 5
#define RTC_IO_DIG_PAD_HOLD_REG (DR_REG_RTCIO_BASE + 0x74)
/* RTC_IO_DIG_PAD_HOLD : R/W ;bitpos:[31:0] ;default: 1'd0 ; */

2
components/soc/esp32/include/soc/soc.h Executable file → Normal file
View File

@ -179,6 +179,8 @@
#define DR_REG_LEDC_BASE 0x3ff59000
#define DR_REG_EFUSE_BASE 0x3ff5A000
#define DR_REG_SPI_ENCRYPT_BASE 0x3ff5B000
#define DR_REG_NRX_BASE 0x3ff5CC00
#define DR_REG_BB_BASE 0x3ff5D000
#define DR_REG_PWM_BASE 0x3ff5E000
#define DR_REG_TIMERGROUP0_BASE 0x3ff5F000
#define DR_REG_TIMERGROUP1_BASE 0x3ff60000

View File

@ -0,0 +1,534 @@
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdbool.h>
#include <stdint.h>
#include <stddef.h>
#include <assert.h>
#include "rom/ets_sys.h"
#include "rom/rtc.h"
#include "rom/uart.h"
#include "soc/rtc.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/rtc_io_reg.h"
#include "soc/sens_reg.h"
#include "soc/dport_reg.h"
#include "soc/efuse_reg.h"
#include "soc/apb_ctrl_reg.h"
#include "i2c_rtc_clk.h"
#include "soc_log.h"
#include "sdkconfig.h"
#define MHZ (1000000)
static const char* TAG = "rtc_clk";
/* Various constants related to the analog internals of the chip.
* Defined here because they don't have any use outside of this file.
*/
#define BBPLL_ENDIV5_VAL_320M 0x43
#define BBPLL_BBADC_DSMP_VAL_320M 0x84
#define BBPLL_ENDIV5_VAL_480M 0xc3
#define BBPLL_BBADC_DSMP_VAL_480M 0x74
#define APLL_SDM_STOP_VAL_1 0x09
#define APLL_SDM_STOP_VAL_2_REV0 0x69
#define APLL_SDM_STOP_VAL_2_REV1 0x49
#define APLL_CAL_DELAY_1 0x0f
#define APLL_CAL_DELAY_2 0x3f
#define APLL_CAL_DELAY_3 0x1f
#define XTAL_32K_DAC_VAL 1
#define XTAL_32K_DRES_VAL 3
#define XTAL_32K_DBIAS_VAL 0
/* Delays for various clock sources to be enabled/switched.
* All values are in microseconds.
* TODO: some of these are excessive, and should be reduced.
*/
#define DELAY_CPU_FREQ_SWITCH_TO_XTAL 80
#define DELAY_CPU_FREQ_SWITCH_TO_PLL 10
#define DELAY_PLL_DBIAS_RAISE 3
#define DELAY_PLL_ENABLE 80
#define DELAY_FAST_CLK_SWITCH 3
#define DELAY_SLOW_CLK_SWITCH 300
#define DELAY_8M_ENABLE 50
void rtc_clk_32k_enable(bool enable)
{
if (enable) {
SET_PERI_REG_MASK(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_X32N_MUX_SEL | RTC_IO_X32P_MUX_SEL);
CLEAR_PERI_REG_MASK(RTC_IO_XTAL_32K_PAD_REG,
RTC_IO_X32P_RDE | RTC_IO_X32P_RUE | RTC_IO_X32N_RUE |
RTC_IO_X32N_RDE | RTC_IO_X32N_MUX_SEL | RTC_IO_X32P_MUX_SEL);
REG_SET_FIELD(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_DAC_XTAL_32K, XTAL_32K_DAC_VAL);
REG_SET_FIELD(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_DRES_XTAL_32K, XTAL_32K_DRES_VAL);
REG_SET_FIELD(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_DBIAS_XTAL_32K, XTAL_32K_DBIAS_VAL);
SET_PERI_REG_MASK(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_XPD_XTAL_32K);
} else {
CLEAR_PERI_REG_MASK(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_XPD_XTAL_32K);
}
}
bool rtc_clk_32k_enabled()
{
return GET_PERI_REG_MASK(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_XPD_XTAL_32K) != 0;
}
void rtc_clk_8m_enable(bool clk_8m_en, bool d256_en)
{
if (clk_8m_en) {
CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M);
/* no need to wait once enabled by software */
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_CK8M_WAIT, 1);
if (d256_en) {
CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M_DIV);
} else {
SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M_DIV);
}
ets_delay_us(DELAY_8M_ENABLE);
} else {
SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M);
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_CK8M_WAIT, RTC_CNTL_CK8M_WAIT_DEFAULT);
}
}
bool rtc_clk_8m_enabled()
{
return GET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M) == 0;
}
bool rtc_clk_8md256_enabled()
{
return GET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M_DIV) == 0;
}
void rtc_clk_apll_enable(bool enable, uint32_t sdm0, uint32_t sdm1, uint32_t sdm2, uint32_t o_div)
{
REG_SET_FIELD(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_PLLA_FORCE_PD, enable ? 0 : 1);
REG_SET_FIELD(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_PLLA_FORCE_PU, enable ? 1 : 0);
REG_SET_FIELD(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BIAS_I2C_FORCE_PD, enable ? 0 : 1);
if (!enable &&
REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_SOC_CLK_SEL) != RTC_CNTL_SOC_CLK_SEL_PLL) {
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BIAS_I2C_FORCE_PD);
}
if (enable) {
uint8_t sdm_stop_val_2 = APLL_SDM_STOP_VAL_2_REV1;
uint32_t is_rev0 = (GET_PERI_REG_BITS2(EFUSE_BLK0_RDATA3_REG, 1, 15) == 0);
if (is_rev0) {
sdm0 = 0;
sdm1 = 0;
sdm_stop_val_2 = APLL_SDM_STOP_VAL_2_REV0;
}
I2C_WRITEREG_MASK_RTC(I2C_APLL, I2C_APLL_DSDM2, sdm2);
I2C_WRITEREG_MASK_RTC(I2C_APLL, I2C_APLL_DSDM0, sdm0);
I2C_WRITEREG_MASK_RTC(I2C_APLL, I2C_APLL_DSDM1, sdm1);
I2C_WRITEREG_RTC(I2C_APLL, I2C_APLL_SDM_STOP, APLL_SDM_STOP_VAL_1);
I2C_WRITEREG_RTC(I2C_APLL, I2C_APLL_SDM_STOP, sdm_stop_val_2);
I2C_WRITEREG_MASK_RTC(I2C_APLL, I2C_APLL_OR_OUTPUT_DIV, o_div);
/* calibration */
I2C_WRITEREG_RTC(I2C_APLL, I2C_APLL_IR_CAL_DELAY, APLL_CAL_DELAY_1);
I2C_WRITEREG_RTC(I2C_APLL, I2C_APLL_IR_CAL_DELAY, APLL_CAL_DELAY_2);
I2C_WRITEREG_RTC(I2C_APLL, I2C_APLL_IR_CAL_DELAY, APLL_CAL_DELAY_3);
/* wait for calibration end */
while (!(I2C_READREG_MASK_RTC(I2C_APLL, I2C_APLL_OR_CAL_END))) {
/* use ets_delay_us so the RTC bus doesn't get flooded */
ets_delay_us(1);
}
}
}
void rtc_clk_slow_freq_set(rtc_slow_freq_t slow_freq)
{
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ANA_CLK_RTC_SEL, slow_freq);
ets_delay_us(DELAY_SLOW_CLK_SWITCH);
}
rtc_slow_freq_t rtc_clk_slow_freq_get()
{
return REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ANA_CLK_RTC_SEL);
}
void rtc_clk_fast_freq_set(rtc_fast_freq_t fast_freq)
{
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_FAST_CLK_RTC_SEL, fast_freq);
ets_delay_us(DELAY_FAST_CLK_SWITCH);
}
rtc_fast_freq_t rtc_clk_fast_freq_get()
{
return REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_FAST_CLK_RTC_SEL);
}
void rtc_clk_bbpll_set(rtc_xtal_freq_t xtal_freq, rtc_cpu_freq_t cpu_freq)
{
uint8_t div_ref;
uint8_t div7_0;
uint8_t div10_8;
uint8_t lref;
uint8_t dcur;
uint8_t bw;
if (cpu_freq != RTC_CPU_FREQ_240M) {
/* Configure 320M PLL */
switch (xtal_freq) {
case RTC_XTAL_FREQ_40M:
div_ref = 0;
div7_0 = 32;
div10_8 = 0;
lref = 0;
dcur = 6;
bw = 3;
break;
case RTC_XTAL_FREQ_26M:
div_ref = 12;
div7_0 = 224;
div10_8 = 4;
lref = 1;
dcur = 0;
bw = 1;
break;
case RTC_XTAL_FREQ_24M:
div_ref = 11;
div7_0 = 224;
div10_8 = 4;
lref = 1;
dcur = 0;
bw = 1;
break;
default:
div_ref = 12;
div7_0 = 224;
div10_8 = 4;
lref = 0;
dcur = 0;
bw = 0;
break;
}
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_ENDIV5, BBPLL_ENDIV5_VAL_320M);
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_BBADC_DSMP, BBPLL_BBADC_DSMP_VAL_320M);
} else {
/* Raise the voltage */
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, RTC_CNTL_DBIAS_1V25);
ets_delay_us(DELAY_PLL_DBIAS_RAISE);
/* Configure 480M PLL */
switch (xtal_freq) {
case RTC_XTAL_FREQ_40M:
div_ref = 0;
div7_0 = 28;
div10_8 = 0;
lref = 0;
dcur = 6;
bw = 3;
break;
case RTC_XTAL_FREQ_26M:
div_ref = 12;
div7_0 = 144;
div10_8 = 4;
lref = 1;
dcur = 0;
bw = 1;
break;
case RTC_XTAL_FREQ_24M:
div_ref = 11;
div7_0 = 144;
div10_8 = 4;
lref = 1;
dcur = 0;
bw = 1;
break;
default:
div_ref = 12;
div7_0 = 224;
div10_8 = 4;
lref = 0;
dcur = 0;
bw = 0;
break;
}
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_ENDIV5, BBPLL_ENDIV5_VAL_480M);
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_BBADC_DSMP, BBPLL_BBADC_DSMP_VAL_480M);
}
uint8_t i2c_bbpll_lref = (lref << 7) | (div10_8 << 4) | (div_ref);
uint8_t i2c_bbpll_div_7_0 = div7_0;
uint8_t i2c_bbpll_dcur = (bw << 6) | dcur;
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_OC_LREF, i2c_bbpll_lref);
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_OC_DIV_7_0, i2c_bbpll_div_7_0);
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_OC_DCUR, i2c_bbpll_dcur);
ets_delay_us(DELAY_PLL_ENABLE);
}
void rtc_clk_cpu_freq_set(rtc_cpu_freq_t cpu_freq)
{
rtc_xtal_freq_t xtal_freq = rtc_clk_xtal_freq_get();
/* Switch CPU to XTAL frequency first */
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, RTC_CNTL_DBIAS_1V10);
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_SOC_CLK_SEL, RTC_CNTL_SOC_CLK_SEL_XTL);
REG_SET_FIELD(APB_CTRL_SYSCLK_CONF_REG, APB_CTRL_PRE_DIV_CNT, 0);
ets_update_cpu_frequency(xtal_freq);
ets_delay_us(DELAY_CPU_FREQ_SWITCH_TO_XTAL);
REG_SET_FIELD(DPORT_CPU_PER_CONF_REG, DPORT_CPUPERIOD_SEL, 0);
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG,
RTC_CNTL_BB_I2C_FORCE_PD | RTC_CNTL_BBPLL_FORCE_PD |
RTC_CNTL_BBPLL_I2C_FORCE_PD);
rtc_clk_apb_freq_update(xtal_freq * MHZ);
/* is APLL under force power down? */
uint32_t apll_fpd = REG_GET_FIELD(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_PLLA_FORCE_PD);
if (apll_fpd) {
/* then also power down the internal I2C bus */
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BIAS_I2C_FORCE_PD);
}
/* now switch to the desired frequency */
if (cpu_freq == RTC_CPU_FREQ_XTAL) {
/* already at XTAL, nothing to do */
} else if (cpu_freq == RTC_CPU_FREQ_2M) {
/* set up divider to produce 2MHz from XTAL */
REG_SET_FIELD(APB_CTRL_SYSCLK_CONF_REG, APB_CTRL_PRE_DIV_CNT, (xtal_freq / 2) - 1);
ets_update_cpu_frequency(2);
rtc_clk_apb_freq_update(2 * MHZ);
/* lower the voltage */
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, RTC_CNTL_DBIAS_1V00);
} else {
/* use PLL as clock source */
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG,
RTC_CNTL_BIAS_I2C_FORCE_PD | RTC_CNTL_BB_I2C_FORCE_PD |
RTC_CNTL_BBPLL_FORCE_PD | RTC_CNTL_BBPLL_I2C_FORCE_PD);
rtc_clk_bbpll_set(xtal_freq, cpu_freq);
if (cpu_freq == RTC_CPU_FREQ_80M) {
REG_SET_FIELD(DPORT_CPU_PER_CONF_REG, DPORT_CPUPERIOD_SEL, 0);
ets_update_cpu_frequency(80);
} else if (cpu_freq == RTC_CPU_FREQ_160M) {
REG_SET_FIELD(DPORT_CPU_PER_CONF_REG, DPORT_CPUPERIOD_SEL, 1);
ets_update_cpu_frequency(160);
} else if (cpu_freq == RTC_CPU_FREQ_240M) {
REG_SET_FIELD(DPORT_CPU_PER_CONF_REG, DPORT_CPUPERIOD_SEL, 2);
ets_update_cpu_frequency(240);
}
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_SOC_CLK_SEL, RTC_CNTL_SOC_CLK_SEL_PLL);
ets_delay_us(DELAY_CPU_FREQ_SWITCH_TO_PLL);
rtc_clk_apb_freq_update(80 * MHZ);
}
}
rtc_cpu_freq_t rtc_clk_cpu_freq_get()
{
uint32_t soc_clk_sel = REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_SOC_CLK_SEL);
switch (soc_clk_sel) {
case RTC_CNTL_SOC_CLK_SEL_XTL: {
uint32_t pre_div = REG_GET_FIELD(APB_CTRL_SYSCLK_CONF_REG, APB_CTRL_PRE_DIV_CNT);
if (pre_div == 0) {
return RTC_CPU_FREQ_XTAL;
} else if (pre_div == rtc_clk_xtal_freq_get() / 2 - 1) {
return RTC_CPU_FREQ_2M;
} else {
assert(false && "unsupported frequency");
}
break;
}
case RTC_CNTL_SOC_CLK_SEL_PLL: {
uint32_t cpuperiod_sel = REG_GET_FIELD(DPORT_CPU_PER_CONF_REG, DPORT_CPUPERIOD_SEL);
if (cpuperiod_sel == 0) {
return RTC_CPU_FREQ_80M;
} else if (cpuperiod_sel == 1) {
return RTC_CPU_FREQ_160M;
} else if (cpuperiod_sel == 2) {
return RTC_CPU_FREQ_240M;
} else {
assert(false && "unsupported frequency");
}
break;
}
case RTC_CNTL_SOC_CLK_SEL_APLL:
case RTC_CNTL_SOC_CLK_SEL_8M:
default:
assert(false && "unsupported frequency");
}
return RTC_CNTL_SOC_CLK_SEL_XTL;
}
uint32_t rtc_clk_cpu_freq_value(rtc_cpu_freq_t cpu_freq)
{
switch (cpu_freq) {
case RTC_CPU_FREQ_XTAL:
return ((uint32_t) rtc_clk_xtal_freq_get()) * MHZ;
case RTC_CPU_FREQ_2M:
return 2 * MHZ;
case RTC_CPU_FREQ_80M:
return 80 * MHZ;
case RTC_CPU_FREQ_160M:
return 160 * MHZ;
case RTC_CPU_FREQ_240M:
return 240 * MHZ;
default:
assert(false && "invalid rtc_cpu_freq_t value");
return 0;
}
}
/* Values of RTC_XTAL_FREQ_REG and RTC_APB_FREQ_REG are stored as two copies in
* lower and upper 16-bit halves. These are the routines to work with such a
* representation.
*/
static bool clk_val_is_valid(uint32_t val) {
return (val & 0xffff) == ((val >> 16) & 0xffff) &&
val != 0 &&
val != UINT32_MAX;
}
static uint32_t reg_val_to_clk_val(uint32_t val) {
return val & UINT16_MAX;
}
static uint32_t clk_val_to_reg_val(uint32_t val) {
return (val & UINT16_MAX) | ((val & UINT16_MAX) << 16);
}
rtc_xtal_freq_t rtc_clk_xtal_freq_get()
{
/* We may have already written XTAL value into RTC_XTAL_FREQ_REG */
uint32_t xtal_freq_reg = READ_PERI_REG(RTC_XTAL_FREQ_REG);
if (!clk_val_is_valid(xtal_freq_reg)) {
SOC_LOGW(TAG, "invalid RTC_XTAL_FREQ_REG value: 0x%08x", xtal_freq_reg);
return RTC_XTAL_FREQ_AUTO;
}
return reg_val_to_clk_val(xtal_freq_reg);
}
void rtc_clk_xtal_freq_update(rtc_xtal_freq_t xtal_freq)
{
WRITE_PERI_REG(RTC_XTAL_FREQ_REG, clk_val_to_reg_val(xtal_freq));
}
static rtc_xtal_freq_t rtc_clk_xtal_freq_estimate()
{
/* ROM startup code estimates XTAL frequency using an 8MD256 clock and stores
* the value into RTC_APB_FREQ_REG. The value is in Hz, right shifted by 12.
* Use this value to guess the real XTAL frequency.
*
* TODO: make this more robust by calibrating again after setting
* RTC_CNTL_CK8M_DFREQ.
*/
uint32_t apb_freq_reg = READ_PERI_REG(RTC_APB_FREQ_REG);
if (!clk_val_is_valid(apb_freq_reg)) {
SOC_LOGW(TAG, "invalid RTC_APB_FREQ_REG value: 0x%08x", apb_freq_reg);
return RTC_XTAL_FREQ_AUTO;
}
uint32_t freq_mhz = (reg_val_to_clk_val(apb_freq_reg) << 12) / MHZ;
/* Guess the XTAL type. For now, only 40 and 26MHz are supported.
*/
switch (freq_mhz) {
case 21 ... 31:
return RTC_XTAL_FREQ_26M;
case 32 ... 33:
SOC_LOGW(TAG, "Potentially bogus XTAL frequency: %d MHz, guessing 26 MHz", freq_mhz);
return RTC_XTAL_FREQ_26M;
case 34 ... 35:
SOC_LOGW(TAG, "Potentially bogus XTAL frequency: %d MHz, guessing 40 MHz", freq_mhz);
return RTC_XTAL_FREQ_40M;
case 36 ... 45:
return RTC_XTAL_FREQ_40M;
default:
SOC_LOGW(TAG, "Bogus XTAL frequency: %d MHz", freq_mhz);
return RTC_XTAL_FREQ_AUTO;
}
}
void rtc_clk_apb_freq_update(uint32_t apb_freq)
{
WRITE_PERI_REG(RTC_APB_FREQ_REG, clk_val_to_reg_val(apb_freq >> 12));
}
uint32_t rtc_clk_apb_freq_get()
{
return reg_val_to_clk_val(READ_PERI_REG(RTC_APB_FREQ_REG)) << 12;
}
void rtc_clk_init(rtc_clk_config_t cfg)
{
/* Set tuning parameters for 8M and 150k clocks.
* Note: this doesn't attempt to set the clocks to precise frequencies.
* Instead, we calibrate these clocks against XTAL frequency later, when necessary.
* - SCK_DCAP value controls tuning of 150k clock.
* The higher the value of DCAP is, the lower is the frequency.
* - CK8M_DFREQ value controls tuning of 8M clock.
* CLK_8M_DFREQ constant gives the best temperature characteristics.
*/
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_SCK_DCAP, cfg.slow_clk_dcap);
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_DFREQ, cfg.clk_8m_dfreq);
/* Configure 8M clock division */
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_DIV_SEL, cfg.clk_8m_div);
/* Enable the internal bus used to configure PLLs */
SET_PERI_REG_BITS(ANA_CONFIG_REG, ANA_CONFIG_M, ANA_CONFIG_M, ANA_CONFIG_S);
CLEAR_PERI_REG_MASK(ANA_CONFIG_REG, I2C_APLL_M | I2C_BBPLL_M);
/* Estimate XTAL frequency if requested */
rtc_xtal_freq_t xtal_freq = cfg.xtal_freq;
if (xtal_freq == RTC_XTAL_FREQ_AUTO) {
xtal_freq = rtc_clk_xtal_freq_estimate();
if (xtal_freq == RTC_XTAL_FREQ_AUTO) {
SOC_LOGW(TAG, "Can't estimate XTAL frequency, assuming 26MHz");
xtal_freq = RTC_XTAL_FREQ_26M;
}
}
rtc_clk_xtal_freq_update(xtal_freq);
rtc_clk_apb_freq_update(xtal_freq * MHZ);
/* Set CPU frequency */
rtc_clk_cpu_freq_set(cfg.cpu_freq);
/* Slow & fast clocks setup */
if (cfg.slow_freq == RTC_SLOW_FREQ_32K_XTAL) {
rtc_clk_32k_enable(false);
}
if (cfg.fast_freq == RTC_FAST_FREQ_8M) {
bool need_8md256 = cfg.slow_freq == RTC_SLOW_FREQ_8MD256;
rtc_clk_8m_enable(true, need_8md256);
}
rtc_clk_fast_freq_set(cfg.fast_freq);
rtc_clk_slow_freq_set(cfg.slow_freq);
}
/* Name used in libphy.a:phy_chip_v7.o
* TODO: update the library to use rtc_clk_xtal_freq_get
*/
rtc_xtal_freq_t rtc_get_xtal() __attribute__((alias("rtc_clk_xtal_freq_get")));
/* Referenced in librtc.a:rtc.o.
* TODO: remove
*/
void rtc_uart_div_modify(int latch)
{
}
/* Referenced in librtc.a:rtc.o.
* TODO: remove
*/
void rtc_uart_tx_wait_idle(int uart)
{
}

View File

@ -0,0 +1,96 @@
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include "soc/soc.h"
#include "soc/rtc.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/dport_reg.h"
void rtc_init(rtc_config_t cfg)
{
CLEAR_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_PVTMON_PU);
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_PLL_BUF_WAIT, cfg.pll_wait);
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_XTL_BUF_WAIT, cfg.xtal_wait);
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_CK8M_WAIT, cfg.ck8m_wait);
REG_SET_FIELD(RTC_CNTL_BIAS_CONF_REG, RTC_CNTL_DBG_ATTEN, 0x3);
SET_PERI_REG_MASK(RTC_CNTL_BIAS_CONF_REG,
RTC_CNTL_DEC_HEARTBEAT_WIDTH | RTC_CNTL_INC_HEARTBEAT_PERIOD);
/* Reset RTC bias to default value (needed if waking up from deep sleep) */
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DBIAS_WAK, RTC_CNTL_DBIAS_1V10);
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DBIAS_SLP, RTC_CNTL_DBIAS_1V10);
if (cfg.clkctl_init) {
//clear CMMU clock force on
CLEAR_PERI_REG_MASK(DPORT_PRO_CACHE_CTRL1_REG, DPORT_PRO_CMMU_FORCE_ON);
CLEAR_PERI_REG_MASK(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CMMU_FORCE_ON);
//clear rom clock force on
SET_PERI_REG_BITS(DPORT_ROM_FO_CTRL_REG, DPORT_SHARE_ROM_FO, 0, DPORT_SHARE_ROM_FO_S);
CLEAR_PERI_REG_MASK(DPORT_ROM_FO_CTRL_REG, DPORT_APP_ROM_FO);
CLEAR_PERI_REG_MASK(DPORT_ROM_FO_CTRL_REG, DPORT_PRO_ROM_FO);
//clear sram clock force on
SET_PERI_REG_BITS(DPORT_SRAM_FO_CTRL_0_REG, DPORT_SRAM_FO_0, 0, DPORT_SRAM_FO_0_S);
CLEAR_PERI_REG_MASK(DPORT_SRAM_FO_CTRL_0_REG, DPORT_SRAM_FO_1);
//clear tag clock force on
CLEAR_PERI_REG_MASK(DPORT_TAG_FO_CTRL_REG, DPORT_APP_CACHE_TAG_FORCE_ON);
CLEAR_PERI_REG_MASK(DPORT_TAG_FO_CTRL_REG, DPORT_PRO_CACHE_TAG_FORCE_ON);
}
if (cfg.pwrctl_init) {
CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_FORCE_PU);
//cancel xtal force pu
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_XTL_FORCE_PU);
//cancel BIAS force pu
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BIAS_CORE_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BIAS_I2C_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BIAS_FORCE_NOSLEEP);
// bias follow 8M
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BIAS_CORE_FOLW_8M);
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BIAS_I2C_FOLW_8M);
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BIAS_SLEEP_FOLW_8M);
// CLEAR APLL close
CLEAR_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_PLLA_FORCE_PU);
SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_PLLA_FORCE_PD);
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BBPLL_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BBPLL_I2C_FORCE_PU);
//cancel RTC REG force PU
CLEAR_PERI_REG_MASK(RTC_CNTL_REG, RTC_CNTL_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_REG, RTC_CNTL_DBOOST_FORCE_PU);
if (cfg.rtc_dboost_fpd) {
SET_PERI_REG_MASK(RTC_CNTL_REG, RTC_CNTL_DBOOST_FORCE_PD);
} else {
CLEAR_PERI_REG_MASK(RTC_CNTL_REG, RTC_CNTL_DBOOST_FORCE_PD);
}
//cancel digital pu force
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_LSLP_MEM_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_DG_WRAP_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_WIFI_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_CPU_ROM_RAM_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_MEM_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_PWC_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_DG_WRAP_FORCE_NOISO);
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_WIFI_FORCE_NOISO);
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_CPU_ROM_RAM_FORCE_NOISO);
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_MEM_FORCE_NOISO);
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_FORCE_NOISO);
//cancel digital PADS force no iso
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_DG_PAD_FORCE_UNHOLD);
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_DG_PAD_FORCE_NOISO);
}
}

View File

@ -0,0 +1,68 @@
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include <assert.h>
#include "soc/rtc.h"
#include "soc/rtc_cntl_reg.h"
typedef enum {
PM_LIGHT_SLEEP = BIT(2), /*!< WiFi PD, memory in light sleep */
} pm_sleep_mode_t;
typedef enum{
PM_SW_NOREJECT = 0,
PM_SW_REJECT = 1
} pm_sw_reject_t;
/* These MAC-related functions are defined in the closed source part of
* RTC library
*/
extern void pm_mac_init();
extern int pm_check_mac_idle();
extern void pm_mac_deinit();
/* This sleep-related function is called from the closed source part of RTC
* library.
*/
pm_sw_reject_t pm_set_sleep_mode(pm_sleep_mode_t sleep_mode, void(*pmac_save_params)())
{
(void) pmac_save_params; /* unused */
pm_mac_deinit();
if (pm_check_mac_idle()) {
pm_mac_init();
return PM_SW_REJECT;
}
rtc_sleep_config_t cfg = { 0 };
cfg.soc_clk_sel = RTC_CNTL_SOC_CLK_SEL_XTL;
switch (sleep_mode) {
case PM_LIGHT_SLEEP:
cfg.wifi_pd_en = 1;
cfg.dig_dbias_wak = 4;
cfg.dig_dbias_slp = 0;
cfg.rtc_dbias_wak = 0;
cfg.rtc_dbias_slp = 0;
cfg.lslp_meminf_pd = 1;
rtc_sleep_init(cfg);
break;
default:
assert(0 && "unsupported sleep mode");
}
return PM_SW_NOREJECT;
}

View File

@ -0,0 +1,225 @@
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include "soc/soc.h"
#include "soc/rtc.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/dport_reg.h"
#include "soc/rtc.h"
#include "soc/i2s_reg.h"
#include "soc/timer_group_reg.h"
#include "soc/bb_reg.h"
#include "soc/nrx_reg.h"
#include "soc/fe_reg.h"
#include "soc/rtc.h"
#include "rom/ets_sys.h"
#define MHZ (1000000)
/* Various delays to be programmed into power control state machines */
#define ROM_RAM_POWERUP_DELAY 3
#define ROM_RAM_WAIT_DELAY 3
#define WIFI_POWERUP_DELAY 3
#define WIFI_WAIT_DELAY 3
#define RTC_POWERUP_DELAY 3
#define RTC_WAIT_DELAY 3
#define DG_WRAP_POWERUP_DELAY 3
#define DG_WRAP_WAIT_DELAY 3
#define RTC_MEM_POWERUP_DELAY 3
#define RTC_MEM_WAIT_DELAY 3
/**
* @brief Power down flags for rtc_sleep_pd function
*/
typedef struct {
uint32_t dig_pd : 1; //!< Set to 1 to power down digital part in sleep
uint32_t rtc_pd : 1; //!< Set to 1 to power down RTC memories in sleep
uint32_t cpu_pd : 1; //!< Set to 1 to power down digital memories and CPU in sleep
uint32_t i2s_pd : 1; //!< Set to 1 to power down I2S in sleep
uint32_t bb_pd : 1; //!< Set to 1 to power down WiFi in sleep
uint32_t nrx_pd : 1; //!< Set to 1 to power down WiFi in sleep
uint32_t fe_pd : 1; //!< Set to 1 to power down WiFi in sleep
} rtc_sleep_pd_config_t;
/**
* Initializer for rtc_sleep_pd_config_t which sets all flags to the same value
*/
#define RTC_SLEEP_PD_CONFIG_ALL(val) {\
.dig_pd = (val), \
.rtc_pd = (val), \
.cpu_pd = (val), \
.i2s_pd = (val), \
.bb_pd = (val), \
.nrx_pd = (val), \
.fe_pd = (val), \
}
/**
* Configure whether certain peripherals are powered down in deep sleep
* @param cfg power down flags as rtc_sleep_pd_config_t structure
*/
static void rtc_sleep_pd(rtc_sleep_pd_config_t cfg)
{
REG_SET_FIELD(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_LSLP_MEM_FORCE_PU, ~cfg.dig_pd);
REG_SET_FIELD(RTC_CNTL_PWC_REG, RTC_CNTL_SLOWMEM_FORCE_LPU, ~cfg.rtc_pd);
REG_SET_FIELD(RTC_CNTL_PWC_REG, RTC_CNTL_FASTMEM_FORCE_LPU, ~cfg.rtc_pd);
REG_SET_FIELD(DPORT_MEM_PD_MASK_REG, DPORT_LSLP_MEM_PD_MASK, ~cfg.cpu_pd);
REG_SET_FIELD(I2S_PD_CONF_REG(0), I2S_PLC_MEM_FORCE_PU, ~cfg.i2s_pd);
REG_SET_FIELD(I2S_PD_CONF_REG(0), I2S_FIFO_FORCE_PU, ~cfg.i2s_pd);
REG_SET_FIELD(BBPD_CTRL, BB_FFT_FORCE_PU, ~cfg.bb_pd);
REG_SET_FIELD(BBPD_CTRL, BB_DC_EST_FORCE_PU, ~cfg.bb_pd);
REG_SET_FIELD(NRXPD_CTRL, NRX_RX_ROT_FORCE_PU, ~cfg.nrx_pd);
REG_SET_FIELD(NRXPD_CTRL, NRX_VIT_FORCE_PU, ~cfg.nrx_pd);
REG_SET_FIELD(NRXPD_CTRL, NRX_DEMAP_FORCE_PU, ~cfg.nrx_pd);
REG_SET_FIELD(FE_GEN_CTRL, FE_IQ_EST_FORCE_PU, ~cfg.fe_pd);
REG_SET_FIELD(FE2_TX_INTERP_CTRL, FE2_TX_INF_FORCE_PU, ~cfg.fe_pd);
}
void rtc_sleep_init(rtc_sleep_config_t cfg)
{
rtc_xtal_freq_t xtal_freq = rtc_clk_xtal_freq_get();
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_SOC_CLK_SEL, cfg.soc_clk_sel);
//set 5 PWC state machine times to fit in main state machine time
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_PLL_BUF_WAIT, 1);
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_XTL_BUF_WAIT, RTC_CNTL_XTL_BUF_WAIT_DEFAULT);
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_CK8M_WAIT, RTC_CNTL_CK8M_WAIT_DEFAULT);
//set rom&ram timer
REG_SET_FIELD(RTC_CNTL_TIMER3_REG, RTC_CNTL_ROM_RAM_POWERUP_TIMER, ROM_RAM_POWERUP_DELAY);
REG_SET_FIELD(RTC_CNTL_TIMER3_REG, RTC_CNTL_ROM_RAM_WAIT_TIMER, ROM_RAM_WAIT_DELAY);
//set wifi timer
REG_SET_FIELD(RTC_CNTL_TIMER3_REG, RTC_CNTL_WIFI_POWERUP_TIMER, WIFI_POWERUP_DELAY);
REG_SET_FIELD(RTC_CNTL_TIMER3_REG, RTC_CNTL_WIFI_WAIT_TIMER, WIFI_WAIT_DELAY);
//set rtc peri timer
REG_SET_FIELD(RTC_CNTL_TIMER4_REG, RTC_CNTL_POWERUP_TIMER, RTC_POWERUP_DELAY);
REG_SET_FIELD(RTC_CNTL_TIMER4_REG, RTC_CNTL_WAIT_TIMER, RTC_WAIT_DELAY);
//set digital wrap timer
REG_SET_FIELD(RTC_CNTL_TIMER4_REG, RTC_CNTL_DG_WRAP_POWERUP_TIMER, DG_WRAP_POWERUP_DELAY);
REG_SET_FIELD(RTC_CNTL_TIMER4_REG, RTC_CNTL_DG_WRAP_WAIT_TIMER, DG_WRAP_WAIT_DELAY);
//set rtc memory timer
REG_SET_FIELD(RTC_CNTL_TIMER5_REG, RTC_CNTL_RTCMEM_POWERUP_TIMER, RTC_MEM_POWERUP_DELAY);
REG_SET_FIELD(RTC_CNTL_TIMER5_REG, RTC_CNTL_RTCMEM_WAIT_TIMER, RTC_MEM_WAIT_DELAY);
if (cfg.soc_clk_sel == RTC_CNTL_SOC_CLK_SEL_PLL) {
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_PLL_BUF_WAIT, RTC_CNTL_PLL_BUF_WAIT_DEFAULT);
} else if (cfg.soc_clk_sel == RTC_CNTL_SOC_CLK_SEL_XTL) {
ets_update_cpu_frequency(xtal_freq);
rtc_clk_apb_freq_update(xtal_freq * MHZ);
} else if (cfg.soc_clk_sel == RTC_CNTL_SOC_CLK_SEL_8M) {
ets_update_cpu_frequency(8);
rtc_clk_apb_freq_update(8 * MHZ);
}
if (cfg.lslp_mem_inf_fpu) {
SET_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_LSLP_MEM_FORCE_PU);
} else {
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_LSLP_MEM_FORCE_PU);
}
rtc_sleep_pd_config_t pd_cfg = RTC_SLEEP_PD_CONFIG_ALL(cfg.lslp_meminf_pd);
rtc_sleep_pd(pd_cfg);
if (cfg.rtc_mem_inf_fpu) {
SET_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_MEM_FORCE_PU);
} else {
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_MEM_FORCE_PU);
}
if (cfg.rtc_mem_inf_follow_cpu) {
SET_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_MEM_FOLW_CPU);
} else {
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_MEM_FOLW_CPU);
}
if (cfg.rtc_fastmem_pd_en) {
SET_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_FASTMEM_PD_EN);
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_FASTMEM_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_FASTMEM_FORCE_NOISO);
} else {
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_FASTMEM_PD_EN);
SET_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_FASTMEM_FORCE_PU);
SET_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_FASTMEM_FORCE_NOISO);
}
if (cfg.rtc_slowmem_pd_en) {
SET_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_SLOWMEM_PD_EN);
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_SLOWMEM_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_SLOWMEM_FORCE_NOISO);
} else {
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_SLOWMEM_PD_EN);
SET_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_SLOWMEM_FORCE_PU);
SET_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_SLOWMEM_FORCE_NOISO);
}
if (cfg.rtc_peri_pd_en) {
SET_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_PD_EN);
} else {
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_PD_EN);
}
if (cfg.wifi_pd_en) {
SET_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_WIFI_PD_EN);
} else {
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_WIFI_PD_EN);
}
if (cfg.rom_mem_pd_en) {
SET_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_CPU_ROM_RAM_PD_EN);
} else {
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_CPU_ROM_RAM_PD_EN);
}
if (cfg.deep_slp) {
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG,
RTC_CNTL_DG_PAD_FORCE_ISO | RTC_CNTL_DG_PAD_FORCE_NOISO);
SET_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_DG_WRAP_PD_EN);
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG,
RTC_CNTL_DG_WRAP_FORCE_PU | RTC_CNTL_DG_WRAP_FORCE_PD);
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BIAS_FORCE_NOSLEEP);
} else {
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_DG_WRAP_PD_EN);
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BIAS_FORCE_NOSLEEP);
}
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DBIAS_SLP, cfg.rtc_dbias_slp);
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DBIAS_WAK, cfg.rtc_dbias_wak);
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, cfg.dig_dbias_wak);
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_SLP, cfg.dig_dbias_slp);
}
void rtc_sleep_set_wakeup_time(uint64_t t)
{
WRITE_PERI_REG(RTC_CNTL_SLP_TIMER0_REG, t & UINT32_MAX);
WRITE_PERI_REG(RTC_CNTL_SLP_TIMER1_REG, t >> 32);
}
uint32_t rtc_sleep_start(uint32_t wakeup_opt, uint32_t reject_opt)
{
REG_SET_FIELD(RTC_CNTL_WAKEUP_STATE_REG, RTC_CNTL_WAKEUP_ENA, wakeup_opt);
WRITE_PERI_REG(RTC_CNTL_SLP_REJECT_CONF_REG, reject_opt);
/* Start entry into sleep mode */
SET_PERI_REG_MASK(RTC_CNTL_STATE0_REG, RTC_CNTL_SLEEP_EN);
while (GET_PERI_REG_MASK(RTC_CNTL_INT_RAW_REG,
RTC_CNTL_SLP_REJECT_INT_RAW | RTC_CNTL_SLP_WAKEUP_INT_RAW) == 0) {
;
}
/* In deep sleep mode, we never get here */
uint32_t reject = REG_GET_FIELD(RTC_CNTL_INT_RAW_REG, RTC_CNTL_SLP_REJECT_INT_RAW);
SET_PERI_REG_MASK(RTC_CNTL_INT_CLR_REG,
RTC_CNTL_SLP_REJECT_INT_CLR | RTC_CNTL_SLP_WAKEUP_INT_CLR);
return reject;
}

View File

@ -0,0 +1,116 @@
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include "rom/ets_sys.h"
#include "soc/rtc.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/timer_group_reg.h"
#define MHZ (1000000)
/* Calibration of RTC_SLOW_CLK is performed using a special feature of TIMG0.
* This feature counts the number of XTAL clock cycles within a given number of
* RTC_SLOW_CLK cycles.
*
* Slow clock calibration feature has two modes of operation: one-off and cycling.
* In cycling mode (which is enabled by default on SoC reset), counting of XTAL
* cycles within RTC_SLOW_CLK cycle is done continuously. Cycling mode is enabled
* using TIMG_RTC_CALI_START_CYCLING bit. In one-off mode counting is performed
* once, and TIMG_RTC_CALI_RDY bit is set when counting is done. One-off mode is
* enabled using TIMG_RTC_CALI_START bit.
*/
uint32_t rtc_clk_cal(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
{
rtc_xtal_freq_t xtal_freq = rtc_clk_xtal_freq_get();
/* Enable requested clock (150k clock is always on) */
if (cal_clk == RTC_CAL_32K_XTAL) {
SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN);
}
if (cal_clk == RTC_CAL_8MD256) {
SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_D256_EN);
}
/* Prepare calibration */
REG_SET_FIELD(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_CLK_SEL, cal_clk);
CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START_CYCLING);
REG_SET_FIELD(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_MAX, slowclk_cycles);
/* Figure out how long to wait for calibration to finish */
uint32_t expected_freq;
rtc_slow_freq_t slow_freq = REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ANA_CLK_RTC_SEL);
if (cal_clk == RTC_CAL_32K_XTAL ||
(cal_clk == RTC_CAL_RTC_MUX && slow_freq == RTC_SLOW_FREQ_32K_XTAL)) {
expected_freq = 32768; /* standard 32k XTAL */
} else if (cal_clk == RTC_CAL_8MD256 ||
(cal_clk == RTC_CAL_RTC_MUX && slow_freq == RTC_SLOW_FREQ_8MD256)) {
expected_freq = 8 * MHZ / 256;
} else {
expected_freq = 150000; /* 150k internal oscillator */
}
uint32_t us_time_estimate = slowclk_cycles * MHZ / expected_freq;
/* Start calibration */
CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
SET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
/* Wait the expected time calibration should take.
* TODO: if running under RTOS, and us_time_estimate > RTOS tick, use the
* RTOS delay function.
*/
ets_delay_us(us_time_estimate);
/* Wait for calibration to finish up to another us_time_estimate */
int timeout_us = us_time_estimate;
while (!GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_RDY) &&
timeout_us-- > 0) {
ets_delay_us(1);
}
if (cal_clk == RTC_CAL_32K_XTAL) {
CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN);
}
if (cal_clk == RTC_CAL_8MD256) {
CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_D256_EN);
}
if (timeout_us == 0) {
/* timed out waiting for calibration */
return 0;
}
uint64_t xtal_cycles = REG_GET_FIELD(TIMG_RTCCALICFG1_REG(0), TIMG_RTC_CALI_VALUE);
uint64_t divider = ((uint64_t)xtal_freq) * slowclk_cycles;
uint64_t period_64 = (xtal_cycles << RTC_CLK_CAL_FRACT) / divider;
uint32_t period = (uint32_t)(period_64 & UINT32_MAX);
return period;
}
uint64_t rtc_time_us_to_slowclk(uint64_t time_in_us, uint32_t period)
{
/* Overflow will happen in this function if time_in_us >= 2^45, which is about 400 days.
* TODO: fix overflow.
*/
return (time_in_us << RTC_CLK_CAL_FRACT) / period;
}
uint64_t rtc_time_slowclk_to_us(uint64_t rtc_cycles, uint32_t period)
{
return (rtc_cycles * period) >> RTC_CLK_CAL_FRACT;
}
uint64_t rtc_time_get()
{
SET_PERI_REG_MASK(RTC_CNTL_TIME_UPDATE_REG, RTC_CNTL_TIME_UPDATE);
while (GET_PERI_REG_MASK(RTC_CNTL_TIME_UPDATE_REG, RTC_CNTL_TIME_VALID) == 0) {
ets_delay_us(1); // might take 1 RTC slowclk period, don't flood RTC bus
}
SET_PERI_REG_MASK(RTC_CNTL_INT_CLR_REG, RTC_CNTL_TIME_VALID_INT_CLR);
uint64_t t = READ_PERI_REG(RTC_CNTL_TIME0_REG);
t |= ((uint64_t) READ_PERI_REG(RTC_CNTL_TIME1_REG)) << 32;
return t;
}

View File

@ -0,0 +1,40 @@
// Copyright 2016-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
/**
* @file soc_log.h
* @brief SOC library logging functions
*
* To make SOC library compatible with environments which don't use ESP-IDF,
* this header file provides wrappers for logging functions.
*/
#ifdef ESP_PLATFORM
#include "esp_log.h"
#define SOC_LOGE(tag, fmt, ...) ESP_LOGE(tag, fmt, ##__VA_ARGS__)
#define SOC_LOGW(tag, fmt, ...) ESP_LOGW(tag, fmt, ##__VA_ARGS__)
#define SOC_LOGI(tag, fmt, ...) ESP_LOGI(tag, fmt, ##__VA_ARGS__)
#define SOC_LOGD(tag, fmt, ...) ESP_LOGD(tag, fmt, ##__VA_ARGS__)
#define SOC_LOGV(tag, fmt, ...) ESP_LOGV(tag, fmt, ##__VA_ARGS__)
#else
#include "rom/ets_sys.h"
#define SOC_LOGE(tag, fmt, ...) ets_printf("%s(err): " fmt, tag, ##__VA_ARGS__)
#define SOC_LOGW(tag, fmt, ...) ets_printf("%s(warn): " fmt, tag, ##__VA_ARGS__)
#define SOC_LOGI(tag, fmt, ...) ets_printf("%s(info): " fmt, tag, ##__VA_ARGS__)
#define SOC_LOGD(tag, fmt, ...) ets_printf("%s(dbg): " fmt, tag, ##__VA_ARGS__)
#define SOC_LOGV(tag, fmt, ...) ets_printf("%s: " fmt, tag, ##__VA_ARGS__)
#endif //ESP_PLATFORM

View File

@ -0,0 +1,84 @@
#include <stdio.h>
#include "unity.h"
#include "rom/ets_sys.h"
#include "soc/rtc.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/rtc_io_reg.h"
#include "soc/sens_reg.h"
#include "soc/io_mux_reg.h"
#include "driver/rtc_io.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#define CALIBRATE_ONE(cali_clk) calibrate_one(cali_clk, #cali_clk)
static uint32_t calibrate_one(rtc_cal_sel_t cal_clk, const char* name)
{
const uint32_t cal_count = 1000;
const float factor = (1 << 19) * 1000.0f;
uint32_t cali_val;
printf("%s:\n", name);
for (int i = 0; i < 5; ++i) {
printf("calibrate (%d): ", i);
cali_val = rtc_clk_cal(cal_clk, cal_count);
printf("%.3f kHz\n", factor / (float) cali_val);
}
return cali_val;
}
TEST_CASE("RTC_SLOW_CLK sources calibration", "[rtc_clk]")
{
rtc_clk_32k_enable(true);
rtc_clk_8m_enable(true, true);
CALIBRATE_ONE(RTC_CAL_RTC_MUX);
CALIBRATE_ONE(RTC_CAL_8MD256);
uint32_t cal_32k = CALIBRATE_ONE(RTC_CAL_32K_XTAL);
if (cal_32k == 0) {
printf("32K XTAL OSC has not started up");
} else {
printf("switching to RTC_SLOW_FREQ_32K_XTAL: ");
rtc_clk_slow_freq_set(RTC_SLOW_FREQ_32K_XTAL);
printf("done\n");
CALIBRATE_ONE(RTC_CAL_RTC_MUX);
CALIBRATE_ONE(RTC_CAL_8MD256);
CALIBRATE_ONE(RTC_CAL_32K_XTAL);
}
printf("switching to RTC_SLOW_FREQ_8MD256: ");
rtc_clk_slow_freq_set(RTC_SLOW_FREQ_8MD256);
printf("done\n");
CALIBRATE_ONE(RTC_CAL_RTC_MUX);
CALIBRATE_ONE(RTC_CAL_8MD256);
CALIBRATE_ONE(RTC_CAL_32K_XTAL);
}
/* The following two are not unit tests, but are added here to make it easy to
* check the frequency of 150k/32k oscillators. The following two "tests" will
* output either 32k or 150k clock to GPIO25.
*/
static void pull_out_clk(int sel)
{
REG_SET_BIT(RTC_IO_PAD_DAC1_REG, RTC_IO_PDAC1_MUX_SEL_M);
REG_CLR_BIT(RTC_IO_PAD_DAC1_REG, RTC_IO_PDAC1_RDE_M | RTC_IO_PDAC1_RUE_M);
REG_SET_FIELD(RTC_IO_PAD_DAC1_REG, RTC_IO_PDAC1_FUN_SEL, 1);
REG_SET_FIELD(SENS_SAR_DAC_CTRL1_REG, SENS_DEBUG_BIT_SEL, 0);
REG_SET_FIELD(RTC_IO_RTC_DEBUG_SEL_REG, RTC_IO_DEBUG_SEL0, sel);
}
TEST_CASE("Output 150k clock to GPIO25", "[rtc_clk][ignore]")
{
pull_out_clk(RTC_IO_DEBUG_SEL0_150K_OSC);
}
TEST_CASE("Output 32k XTAL clock to GPIO25", "[rtc_clk][ignore]")
{
rtc_clk_32k_enable(true);
pull_out_clk(RTC_IO_DEBUG_SEL0_32K_XTAL);
}

View File

@ -0,0 +1,8 @@
# currently the only SoC supported; to be moved into Kconfig
SOC_NAME := esp32
COMPONENT_SRCDIRS := ../$(SOC_NAME)/test
COMPONENT_ADD_LDFLAGS = -Wl,--whole-archive -l$(COMPONENT_NAME) -Wl,--no-whole-archive