mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
components/log: add implementation, update a few components to use it
This also removes logging implementation from bootloader and replaces it with the one provided by the log component. Some occurrences of printf and ets_printf have been changed to ESP_LOGx APIs.
This commit is contained in:
parent
2fc60ba938
commit
716cec5ded
@ -1,33 +1,3 @@
|
||||
menu "Bootloader config"
|
||||
|
||||
choice BOOTLOADER_LOG_LEVEL
|
||||
bool "Bootloader log verbosity"
|
||||
default BOOTLOADER_LOG_LEVEL_NOTICE
|
||||
help
|
||||
Specify how much output to see in the bootloader logs.
|
||||
|
||||
Note that if MTDO is HIGH on reset, all early boot output
|
||||
(including bootloader logs) are suppressed.
|
||||
config BOOTLOADER_LOG_LEVEL_NONE
|
||||
bool "No output"
|
||||
config BOOTLOADER_LOG_LEVEL_ERROR
|
||||
bool "Error"
|
||||
config BOOTLOADER_LOG_LEVEL_WARN
|
||||
bool "Warning"
|
||||
config BOOTLOADER_LOG_LEVEL_INFO
|
||||
bool "Info"
|
||||
config BOOTLOADER_LOG_LEVEL_NOTICE
|
||||
bool "Notice"
|
||||
config BOOTLOADER_LOG_LEVEL_DEBUG
|
||||
bool "Debug"
|
||||
endchoice
|
||||
|
||||
config BOOTLOADER_LOG_COLORS
|
||||
bool "Use ANSI terminal colors in bootloader log output"
|
||||
default "y"
|
||||
help
|
||||
Enable ANSI terminal color codes in bootloader output.
|
||||
|
||||
In order to view these, your terminal program must support ANSI color codes.
|
||||
|
||||
endmenu
|
||||
|
@ -4,7 +4,7 @@
|
||||
#
|
||||
|
||||
PROJECT_NAME := bootloader
|
||||
COMPONENTS := esptool_py bootloader
|
||||
COMPONENTS := esptool_py bootloader log
|
||||
|
||||
# The bootloader pseudo-component is also included in this build, for its Kconfig.projbuild to be included.
|
||||
#
|
||||
@ -12,6 +12,6 @@ COMPONENTS := esptool_py bootloader
|
||||
IS_BOOTLOADER_BUILD := 1
|
||||
|
||||
#We cannot include the esp32 component directly but we need its includes. This is fixed by
|
||||
#adding it in the main/Makefile directory.
|
||||
EXTRA_CFLAGS := -D BOOTLOADER_BUILD=1 -I $(IDF_PATH)/components/esp32/include
|
||||
|
||||
include $(IDF_PATH)/make/project.mk
|
||||
|
@ -1,114 +0,0 @@
|
||||
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#ifndef __BOOT_LOG_H__
|
||||
#define __BOOT_LOG_H__
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#include "sdkconfig.h"
|
||||
|
||||
#define BOOT_LOG_LEVEL_NONE (0)
|
||||
#define BOOT_LOG_LEVEL_ERROR (1)
|
||||
#define BOOT_LOG_LEVEL_WARN (2)
|
||||
#define BOOT_LOG_LEVEL_INFO (3)
|
||||
#define BOOT_LOG_LEVEL_NOTICE (4)
|
||||
#define BOOT_LOG_LEVEL_DEBUG (5)
|
||||
|
||||
#define Black "30"
|
||||
#define Red "31"
|
||||
#define Green "32"
|
||||
#define Brown "33"
|
||||
#define Blue "34"
|
||||
#define Purple "35"
|
||||
#define Cyan "36"
|
||||
|
||||
#if CONFIG_BOOTLOADER_LOG_COLORS
|
||||
#define LOG_COLOR(COLOR) "\033[0;"COLOR"m"
|
||||
#define LOG_BOLD(COLOR) "\033[1;"COLOR"m"
|
||||
#define LOG_RESET_COLOR "\033[0m"
|
||||
#else
|
||||
#define LOG_COLOR(...)
|
||||
#define LOG_BOLD(...)
|
||||
#define LOG_RESET_COLOR ""
|
||||
#endif
|
||||
|
||||
// BOOT_LOG_LEVEL defined by make menuconfig
|
||||
#if CONFIG_BOOTLOADER_LOG_LEVEL_NONE
|
||||
#define BOOT_LOG_LEVEL BOOT_LOG_LEVEL_NONE
|
||||
#elif CONFIG_BOOTLOADER_LOG_LEVEL_ERROR
|
||||
#define BOOT_LOG_LEVEL BOOT_LOG_LEVEL_ERROR
|
||||
#elif CONFIG_BOOTLOADER_LOG_LEVEL_WARN
|
||||
#define BOOT_LOG_LEVEL BOOT_LOG_LEVEL_WARN
|
||||
#elif CONFIG_BOOTLOADER_LOG_LEVEL_INFO
|
||||
#define BOOT_LOG_LEVEL BOOT_LOG_LEVEL_INFO
|
||||
#elif CONFIG_BOOTLOADER_LOG_LEVEL_NOTICE
|
||||
#define BOOT_LOG_LEVEL BOOT_LOG_LEVEL_NOTICE
|
||||
#elif CONFIG_BOOTLOADER_LOG_LEVEL_DEBUG
|
||||
#define BOOT_LOG_LEVEL BOOT_LOG_LEVEL_DEBUG
|
||||
#else
|
||||
#error "No bootloader log level set in menuconfig!"
|
||||
#endif
|
||||
|
||||
//printf("\033[0;36m[NOTICE][%s][%s][%d]\n" format "\r\n", __FILE__, __FUNCTION__, __LINE__, ##__VA_ARGS__);
|
||||
#define log_notice(format, ...) \
|
||||
do{\
|
||||
if(BOOT_LOG_LEVEL >= BOOT_LOG_LEVEL_NOTICE){\
|
||||
ets_printf(LOG_COLOR(Cyan) format "\r\n", ##__VA_ARGS__); \
|
||||
ets_printf(LOG_RESET_COLOR); \
|
||||
}\
|
||||
}while(0)
|
||||
|
||||
#define log_info(format, ...) \
|
||||
do{\
|
||||
if(BOOT_LOG_LEVEL >= BOOT_LOG_LEVEL_INFO){\
|
||||
ets_printf(LOG_BOLD(Cyan) format "\r\n", ##__VA_ARGS__); \
|
||||
ets_printf(LOG_RESET_COLOR); \
|
||||
}\
|
||||
}while(0)
|
||||
|
||||
//printf("\033[0;31m[ERROR][%s][%s][%d]\n" format "\r\n", __FILE__, __FUNCTION__, __LINE__, ##__VA_ARGS__);
|
||||
#define log_error(format, ...) \
|
||||
do{\
|
||||
if(BOOT_LOG_LEVEL >= BOOT_LOG_LEVEL_ERROR){\
|
||||
ets_printf(LOG_COLOR(Red) "[ERROR][%s][%s][%d]\n" format "\r\n", __FILE__, __FUNCTION__, __LINE__, ##__VA_ARGS__); \
|
||||
ets_printf(LOG_RESET_COLOR); \
|
||||
}\
|
||||
}while(0)
|
||||
|
||||
//printf("\033[1;33m[WARN][%s][%s][%d]\n" format "\r\n", __FILE__, __FUNCTION__, __LINE__, ##__VA_ARGS__);
|
||||
#define log_warn(format, ...) \
|
||||
do{\
|
||||
if(BOOT_LOG_LEVEL >= BOOT_LOG_LEVEL_WARN){\
|
||||
ets_printf(LOG_BOLD(Brown) "[WARN][%s][%s][%d]\n" format "\r\n", __FILE__, __FUNCTION__, __LINE__, ##__VA_ARGS__); \
|
||||
ets_printf(LOG_RESET_COLOR); \
|
||||
}\
|
||||
}while(0)
|
||||
|
||||
//printf("\033[1;32m[DEBUG][%s][%s][%d]\n" format "\r\n", __FILE__, __FUNCTION__, __LINE__, ##__VA_ARGS__);
|
||||
#define log_debug(format, ...) \
|
||||
do{\
|
||||
if(BOOT_LOG_LEVEL >= BOOT_LOG_LEVEL_DEBUG){\
|
||||
ets_printf(LOG_BOLD(Green) "[DEBUG][%s][%s][%d]\n" format "\r\n", __FILE__, __FUNCTION__, __LINE__, ##__VA_ARGS__); \
|
||||
ets_printf(LOG_RESET_COLOR); \
|
||||
}\
|
||||
}while(0)
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* __BOOT_LOGGING_H__ */
|
@ -16,6 +16,7 @@
|
||||
#include <limits.h>
|
||||
|
||||
#include "esp_attr.h"
|
||||
#include "esp_log.h"
|
||||
|
||||
#include "rom/cache.h"
|
||||
#include "rom/ets_sys.h"
|
||||
@ -31,11 +32,12 @@
|
||||
|
||||
#include "sdkconfig.h"
|
||||
|
||||
#include "bootloader_log.h"
|
||||
#include "bootloader_config.h"
|
||||
|
||||
extern int _bss_start;
|
||||
extern int _bss_end;
|
||||
|
||||
static const char* TAG = "boot";
|
||||
/*
|
||||
We arrive here after the bootloader finished loading the program from flash. The hardware is mostly uninitialized,
|
||||
flash cache is down and the app CPU is in reset. We do have a stack, so we can do the initialization in C.
|
||||
@ -130,7 +132,7 @@ uint32_t get_bin_len(uint32_t pos)
|
||||
{
|
||||
uint32_t len = 8 + 16;
|
||||
uint8_t i;
|
||||
log_debug("pos %d %x\n",pos,*(uint8_t *)pos);
|
||||
ESP_LOGD(TAG, "pos %d %x",pos,*(uint8_t *)pos);
|
||||
if(0xE9 != *(uint8_t *)pos) {
|
||||
return 0;
|
||||
}
|
||||
@ -142,7 +144,7 @@ uint32_t get_bin_len(uint32_t pos)
|
||||
} else {
|
||||
len += 16;
|
||||
}
|
||||
log_debug("bin length = %d\n", len);
|
||||
ESP_LOGD(TAG, "bin length = %d", len);
|
||||
return len;
|
||||
}
|
||||
|
||||
@ -161,7 +163,7 @@ void boot_cache_redirect( uint32_t pos, size_t size )
|
||||
uint32_t count = (size + 0xffff) / 0x10000;
|
||||
Cache_Read_Disable( 0 );
|
||||
Cache_Flush( 0 );
|
||||
log_debug( "mmu set paddr=%08x count=%d", pos_aligned, count );
|
||||
ESP_LOGD(TAG, "mmu set paddr=%08x count=%d", pos_aligned, count );
|
||||
cache_flash_mmu_set( 0, 0, 0x3f400000, pos_aligned, 64, count );
|
||||
Cache_Read_Enable( 0 );
|
||||
}
|
||||
@ -183,13 +185,13 @@ bool load_partition_table(bootloader_state_t* bs, uint32_t addr)
|
||||
int index = 0;
|
||||
char *partition_usage;
|
||||
|
||||
log_info("Partition Table:");
|
||||
log_info("## Label Usage Type ST Offset Length");
|
||||
ESP_LOGI(TAG, "Partition Table:");
|
||||
ESP_LOGI(TAG, "## Label Usage Type ST Offset Length");
|
||||
|
||||
while (addr < end) {
|
||||
log_debug("load partition table entry from %x(%08x)", addr, MEM_CACHE(addr));
|
||||
ESP_LOGD(TAG, "load partition table entry from %x(%08x)", addr, MEM_CACHE(addr));
|
||||
memcpy(&partition, MEM_CACHE(addr), sizeof(partition));
|
||||
log_debug("type=%x subtype=%x", partition.type, partition.subtype);
|
||||
ESP_LOGD(TAG, "type=%x subtype=%x", partition.type, partition.subtype);
|
||||
partition_usage = "unknown";
|
||||
|
||||
if (partition.magic == PARTITION_MAGIC) { /* valid partition definition */
|
||||
@ -244,14 +246,14 @@ bool load_partition_table(bootloader_state_t* bs, uint32_t addr)
|
||||
}
|
||||
|
||||
/* print partition type info */
|
||||
log_info("%2d %-16s %-16s %02x %02x %08x %08x", index, partition.label, partition_usage,
|
||||
ESP_LOGI(TAG, "%2d %-16s %-16s %02x %02x %08x %08x", index, partition.label, partition_usage,
|
||||
partition.type, partition.subtype,
|
||||
partition.pos.offset, partition.pos.size);
|
||||
index++;
|
||||
addr += sizeof(partition);
|
||||
}
|
||||
|
||||
log_info("End of partition table");
|
||||
ESP_LOGI(TAG,"End of partition table");
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -274,14 +276,7 @@ static bool ota_select_valid(const ota_select *s)
|
||||
|
||||
void bootloader_main()
|
||||
{
|
||||
//Run start routine.
|
||||
/*ESP32 2ND bootload start here*/
|
||||
log_info( "\n" );
|
||||
log_info( "**************************************" );
|
||||
log_info( "* hello espressif ESP32! *" );
|
||||
log_info( "* 2nd boot is running! *" );
|
||||
log_info( "* version (%s) *", BOOT_VERSION);
|
||||
log_info( "**************************************");
|
||||
ESP_LOGI(TAG, "Espressif ESP32 2nd stage bootloader v. %s", BOOT_VERSION);
|
||||
|
||||
struct flash_hdr fhdr;
|
||||
bootloader_state_t bs;
|
||||
@ -289,7 +284,7 @@ void bootloader_main()
|
||||
ota_select sa,sb;
|
||||
memset(&bs, 0, sizeof(bs));
|
||||
|
||||
log_notice( "compile time %s\n", __TIME__ );
|
||||
ESP_LOGI(TAG, "compile time " __TIME__ );
|
||||
/* close watch dog here */
|
||||
REG_CLR_BIT( RTC_WDTCONFIG0, RTC_CNTL_WDT_FLASHBOOT_MOD_EN );
|
||||
REG_CLR_BIT( WDTCONFIG0(0), TIMERS_WDT_FLASHBOOT_MOD_EN );
|
||||
@ -302,14 +297,14 @@ void bootloader_main()
|
||||
print_flash_info(&fhdr);
|
||||
|
||||
if (!load_partition_table(&bs, PARTITION_ADD)) {
|
||||
log_error("load partition table error!");
|
||||
ESP_LOGE(TAG, "load partition table error!");
|
||||
return;
|
||||
}
|
||||
|
||||
partition_pos_t load_part_pos;
|
||||
|
||||
if (bs.ota_info.offset != 0) { // check if partition table has OTA info partition
|
||||
//log_error("OTA info sector handling is not implemented");
|
||||
//ESP_LOGE("OTA info sector handling is not implemented");
|
||||
boot_cache_redirect(bs.ota_info.offset, bs.ota_info.size );
|
||||
memcpy(&sa,MEM_CACHE(bs.ota_info.offset & 0x0000ffff),sizeof(sa));
|
||||
memcpy(&sb,MEM_CACHE((bs.ota_info.offset + 0x1000)&0x0000ffff) ,sizeof(sb));
|
||||
@ -325,13 +320,13 @@ void bootloader_main()
|
||||
spiRet1 = SPIEraseSector(bs.ota_info.offset/0x1000);
|
||||
spiRet2 = SPIEraseSector(bs.ota_info.offset/0x1000+1);
|
||||
if (spiRet1 != SPI_FLASH_RESULT_OK || spiRet2 != SPI_FLASH_RESULT_OK ) {
|
||||
log_error(SPI_ERROR_LOG);
|
||||
ESP_LOGE(TAG, SPI_ERROR_LOG);
|
||||
return;
|
||||
}
|
||||
spiRet1 = SPIWrite(bs.ota_info.offset,(uint32_t *)&sa,sizeof(ota_select));
|
||||
spiRet2 = SPIWrite(bs.ota_info.offset + 0x1000,(uint32_t *)&sb,sizeof(ota_select));
|
||||
if (spiRet1 != SPI_FLASH_RESULT_OK || spiRet2 != SPI_FLASH_RESULT_OK ) {
|
||||
log_error(SPI_ERROR_LOG);
|
||||
ESP_LOGE(TAG, SPI_ERROR_LOG);
|
||||
return;
|
||||
}
|
||||
Cache_Read_Enable(0);
|
||||
@ -344,7 +339,7 @@ void bootloader_main()
|
||||
}else if(ota_select_valid(&sb)) {
|
||||
load_part_pos = bs.ota[(sb.ota_seq - 1) % bs.app_count];
|
||||
}else {
|
||||
log_error("ota data partition info error");
|
||||
ESP_LOGE(TAG, "ota data partition info error");
|
||||
return;
|
||||
}
|
||||
}
|
||||
@ -353,15 +348,15 @@ void bootloader_main()
|
||||
} else if (bs.test.offset != 0) { // otherwise, look for test app parition
|
||||
load_part_pos = bs.test;
|
||||
} else { // nothing to load, bail out
|
||||
log_error("nothing to load");
|
||||
ESP_LOGE(TAG, "nothing to load");
|
||||
return;
|
||||
}
|
||||
|
||||
log_info("Loading app partition at offset %08x", load_part_pos);
|
||||
ESP_LOGI(TAG, "Loading app partition at offset %08x", load_part_pos);
|
||||
if(fhdr.secury_boot_flag == 0x01) {
|
||||
/* protect the 2nd_boot */
|
||||
if(false == secure_boot()){
|
||||
log_error("secure boot failed");
|
||||
ESP_LOGE(TAG, "secure boot failed");
|
||||
return;
|
||||
}
|
||||
}
|
||||
@ -369,7 +364,7 @@ void bootloader_main()
|
||||
if(fhdr.encrypt_flag == 0x01) {
|
||||
/* encrypt flash */
|
||||
if (false == flash_encrypt(&bs)) {
|
||||
log_error("flash encrypt failed");
|
||||
ESP_LOGE(TAG, "flash encrypt failed");
|
||||
return;
|
||||
}
|
||||
}
|
||||
@ -395,7 +390,7 @@ void unpack_load_app(const partition_pos_t* partition)
|
||||
uint32_t irom_load_addr = 0;
|
||||
uint32_t irom_size = 0;
|
||||
|
||||
log_debug("bin_header: %u %u %u %u %08x\n", image_header.magic,
|
||||
ESP_LOGD(TAG, "bin_header: %u %u %u %u %08x", image_header.magic,
|
||||
image_header.blocks,
|
||||
image_header.spi_mode,
|
||||
image_header.spi_size,
|
||||
@ -420,7 +415,7 @@ void unpack_load_app(const partition_pos_t* partition)
|
||||
}
|
||||
|
||||
if (address >= DROM_LOW && address < DROM_HIGH) {
|
||||
log_debug("found drom section, map from %08x to %08x\n", pos,
|
||||
ESP_LOGD(TAG, "found drom section, map from %08x to %08x", pos,
|
||||
section_header.load_addr);
|
||||
drom_addr = partition->offset + pos - sizeof(section_header);
|
||||
drom_load_addr = section_header.load_addr;
|
||||
@ -430,7 +425,7 @@ void unpack_load_app(const partition_pos_t* partition)
|
||||
}
|
||||
|
||||
if (address >= IROM_LOW && address < IROM_HIGH) {
|
||||
log_debug("found irom section, map from %08x to %08x\n", pos,
|
||||
ESP_LOGD(TAG, "found irom section, map from %08x to %08x", pos,
|
||||
section_header.load_addr);
|
||||
irom_addr = partition->offset + pos - sizeof(section_header);
|
||||
irom_load_addr = section_header.load_addr;
|
||||
@ -439,7 +434,7 @@ void unpack_load_app(const partition_pos_t* partition)
|
||||
map = true;
|
||||
}
|
||||
|
||||
log_notice("section %d: paddr=0x%08x vaddr=0x%08x size=0x%05x (%6d) %s", section_index, pos, section_header.load_addr, section_header.data_len, section_header.data_len, (load)?"load":(map)?"map":"");
|
||||
ESP_LOGI(TAG, "section %d: paddr=0x%08x vaddr=0x%08x size=0x%05x (%6d) %s", section_index, pos, section_header.load_addr, section_header.data_len, section_header.data_len, (load)?"load":(map)?"map":"");
|
||||
|
||||
if (!load) {
|
||||
pos += section_header.data_len;
|
||||
@ -468,29 +463,29 @@ void IRAM_ATTR set_cache_and_start_app(
|
||||
uint32_t irom_size,
|
||||
uint32_t entry_addr)
|
||||
{
|
||||
log_debug("configure drom and irom and start\n");
|
||||
ESP_LOGD(TAG, "configure drom and irom and start");
|
||||
Cache_Read_Disable( 0 );
|
||||
Cache_Read_Disable( 1 );
|
||||
Cache_Flush( 0 );
|
||||
Cache_Flush( 1 );
|
||||
uint32_t drom_page_count = (drom_size + 64*1024 - 1) / (64*1024); // round up to 64k
|
||||
log_debug( "d mmu set paddr=%08x vaddr=%08x size=%d n=%d \n", drom_addr & 0xffff0000, drom_load_addr & 0xffff0000, drom_size, drom_page_count );
|
||||
ESP_LOGV(TAG, "d mmu set paddr=%08x vaddr=%08x size=%d n=%d", drom_addr & 0xffff0000, drom_load_addr & 0xffff0000, drom_size, drom_page_count );
|
||||
int rc = cache_flash_mmu_set( 0, 0, drom_load_addr & 0xffff0000, drom_addr & 0xffff0000, 64, drom_page_count );
|
||||
log_debug( "rc=%d", rc );
|
||||
ESP_LOGV(TAG, "rc=%d", rc );
|
||||
rc = cache_flash_mmu_set( 1, 0, drom_load_addr & 0xffff0000, drom_addr & 0xffff0000, 64, drom_page_count );
|
||||
log_debug( "rc=%d", rc );
|
||||
ESP_LOGV(TAG, "rc=%d", rc );
|
||||
uint32_t irom_page_count = (irom_size + 64*1024 - 1) / (64*1024); // round up to 64k
|
||||
log_debug( "i mmu set paddr=%08x vaddr=%08x size=%d n=%d\n", irom_addr & 0xffff0000, irom_load_addr & 0xffff0000, irom_size, irom_page_count );
|
||||
ESP_LOGV(TAG, "i mmu set paddr=%08x vaddr=%08x size=%d n=%d", irom_addr & 0xffff0000, irom_load_addr & 0xffff0000, irom_size, irom_page_count );
|
||||
rc = cache_flash_mmu_set( 0, 0, irom_load_addr & 0xffff0000, irom_addr & 0xffff0000, 64, irom_page_count );
|
||||
log_debug( "rc=%d", rc );
|
||||
ESP_LOGV(TAG, "rc=%d", rc );
|
||||
rc = cache_flash_mmu_set( 1, 0, irom_load_addr & 0xffff0000, irom_addr & 0xffff0000, 64, irom_page_count );
|
||||
log_debug( "rc=%d", rc );
|
||||
ESP_LOGV(TAG, "rc=%d", rc );
|
||||
REG_CLR_BIT( PRO_CACHE_CTRL1_REG, (DPORT_PRO_CACHE_MASK_IRAM0) | (DPORT_PRO_CACHE_MASK_IRAM1 & 0) | (DPORT_PRO_CACHE_MASK_IROM0 & 0) | DPORT_PRO_CACHE_MASK_DROM0 | DPORT_PRO_CACHE_MASK_DRAM1 );
|
||||
REG_CLR_BIT( APP_CACHE_CTRL1_REG, (DPORT_APP_CACHE_MASK_IRAM0) | (DPORT_APP_CACHE_MASK_IRAM1 & 0) | (DPORT_APP_CACHE_MASK_IROM0 & 0) | DPORT_APP_CACHE_MASK_DROM0 | DPORT_APP_CACHE_MASK_DRAM1 );
|
||||
Cache_Read_Enable( 0 );
|
||||
Cache_Read_Enable( 1 );
|
||||
|
||||
log_notice("start: 0x%08x\n", entry_addr);
|
||||
ESP_LOGD(TAG, "start: 0x%08x", entry_addr);
|
||||
typedef void (*entry_t)(void);
|
||||
entry_t entry = ((entry_t) entry_addr);
|
||||
|
||||
@ -506,11 +501,11 @@ void print_flash_info(struct flash_hdr* pfhdr)
|
||||
|
||||
struct flash_hdr fhdr = *pfhdr;
|
||||
|
||||
log_debug( "[D]: magic %02x\n", fhdr.magic );
|
||||
log_debug( "[D]: blocks %02x\n", fhdr.blocks );
|
||||
log_debug( "[D]: spi_mode %02x\n", fhdr.spi_mode );
|
||||
log_debug( "[D]: spi_speed %02x\n", fhdr.spi_speed );
|
||||
log_debug( "[D]: spi_size %02x\n", fhdr.spi_size );
|
||||
ESP_LOGD(TAG, "magic %02x", fhdr.magic );
|
||||
ESP_LOGD(TAG, "blocks %02x", fhdr.blocks );
|
||||
ESP_LOGD(TAG, "spi_mode %02x", fhdr.spi_mode );
|
||||
ESP_LOGD(TAG, "spi_speed %02x", fhdr.spi_speed );
|
||||
ESP_LOGD(TAG, "spi_size %02x", fhdr.spi_size );
|
||||
|
||||
const char* str;
|
||||
switch ( fhdr.spi_speed ) {
|
||||
@ -534,7 +529,7 @@ void print_flash_info(struct flash_hdr* pfhdr)
|
||||
str = "20MHz";
|
||||
break;
|
||||
}
|
||||
log_notice( " SPI Speed : %s", str );
|
||||
ESP_LOGI(TAG, "SPI Speed : %s", str );
|
||||
|
||||
|
||||
|
||||
@ -566,7 +561,7 @@ void print_flash_info(struct flash_hdr* pfhdr)
|
||||
str = "DIO";
|
||||
break;
|
||||
}
|
||||
log_notice( " SPI Mode : %s", str );
|
||||
ESP_LOGI(TAG, "SPI Mode : %s", str );
|
||||
|
||||
|
||||
|
||||
@ -595,6 +590,6 @@ void print_flash_info(struct flash_hdr* pfhdr)
|
||||
str = "1MB";
|
||||
break;
|
||||
}
|
||||
log_notice( " SPI Flash Size : %s", str );
|
||||
ESP_LOGI(TAG, "SPI Flash Size : %s", str );
|
||||
#endif
|
||||
}
|
||||
|
@ -8,6 +8,5 @@
|
||||
#
|
||||
|
||||
COMPONENT_ADD_LDFLAGS := -L $(abspath .) -lmain -T esp32.bootloader.ld -T $(IDF_PATH)/components/esp32/ld/esp32.rom.ld
|
||||
COMPONENT_EXTRA_INCLUDES := $(IDF_PATH)/components/esp32/include
|
||||
|
||||
include $(IDF_PATH)/make/component_common.mk
|
||||
|
@ -16,6 +16,7 @@
|
||||
|
||||
#include "esp_types.h"
|
||||
#include "esp_attr.h"
|
||||
#include "esp_log.h"
|
||||
|
||||
#include "rom/cache.h"
|
||||
#include "rom/ets_sys.h"
|
||||
@ -28,13 +29,14 @@
|
||||
|
||||
#include "sdkconfig.h"
|
||||
|
||||
#include "bootloader_log.h"
|
||||
#include "bootloader_config.h"
|
||||
|
||||
static const char* TAG = "flash_encrypt";
|
||||
|
||||
/**
|
||||
* @function : bitcount
|
||||
* @description: caculate bit 1 in flash_crypt_cnt
|
||||
* if it's even number ,need encrypt flash data,and burn efuse
|
||||
* @description: calculate bit 1 in flash_crypt_cnt
|
||||
* if it's even number, need encrypt flash data, and burn efuse
|
||||
*
|
||||
* @inputs: n flash_crypt_cnt
|
||||
* @return: number of 1 in flash_crypt_cnt
|
||||
@ -68,19 +70,19 @@ bool flash_encrypt_write(uint32_t pos, uint32_t len)
|
||||
spiRet = SPIRead(pos, buf, SPI_SEC_SIZE);
|
||||
if (spiRet != SPI_FLASH_RESULT_OK) {
|
||||
Cache_Read_Enable(0);
|
||||
log_error(SPI_ERROR_LOG);
|
||||
ESP_LOGE(TAG, SPI_ERROR_LOG);
|
||||
return false;
|
||||
}
|
||||
spiRet = SPIEraseSector(pos/SPI_SEC_SIZE);
|
||||
if (spiRet != SPI_FLASH_RESULT_OK) {
|
||||
Cache_Read_Enable(0);
|
||||
log_error(SPI_ERROR_LOG);
|
||||
ESP_LOGE(TAG, SPI_ERROR_LOG);
|
||||
return false;
|
||||
}
|
||||
spiRet = SPI_Encrypt_Write(pos, buf, SPI_SEC_SIZE);
|
||||
if (spiRet != SPI_FLASH_RESULT_OK) {
|
||||
Cache_Read_Enable(0);
|
||||
log_error(SPI_ERROR_LOG);
|
||||
ESP_LOGE(TAG, SPI_ERROR_LOG);
|
||||
return false;
|
||||
}
|
||||
pos += SPI_SEC_SIZE;
|
||||
@ -104,53 +106,53 @@ bool flash_encrypt(bootloader_state_t *bs)
|
||||
uint32_t flash_crypt_cnt = REG_GET_FIELD(EFUSE_BLK0_RDATA0, EFUSE_FLASH_CRYPT_CNT);
|
||||
uint8_t count = bitcount(flash_crypt_cnt);
|
||||
int i = 0;
|
||||
log_debug("flash crypt cnt %x, count %d\n", flash_crypt_cnt, count);
|
||||
ESP_LOGD(TAG, "flash encrypt cnt %x, bitcount %d\n", flash_crypt_cnt, count);
|
||||
|
||||
if ((count % 2) == 0) {
|
||||
boot_cache_redirect( 0, 64*1024);
|
||||
/* encrypt iv and abstruct */
|
||||
if (false == flash_encrypt_write(0,SPI_SEC_SIZE)) {
|
||||
log_error("encrypt iv and abstruct error");
|
||||
if (false == flash_encrypt_write(0, SPI_SEC_SIZE)) {
|
||||
ESP_LOGE(TAG, "encrypt iv and abstract error");
|
||||
return false;
|
||||
}
|
||||
|
||||
/* encrypt write boot bin*/
|
||||
bin_len = get_bin_len((uint32_t)MEM_CACHE(0x1000));
|
||||
if(bin_len != 0) {
|
||||
if (false == flash_encrypt_write(0x1000,bin_len)) {
|
||||
log_error("encrypt 2nd boot error");
|
||||
if (false == flash_encrypt_write(0x1000, bin_len)) {
|
||||
ESP_LOGE(TAG, "encrypt 2nd boot error");
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
log_error("2nd boot len error");
|
||||
ESP_LOGE(TAG, "2nd boot len error");
|
||||
return false;
|
||||
}
|
||||
/* encrypt partition table */
|
||||
if (false == flash_encrypt_write(PARTITION_ADD,SPI_SEC_SIZE)) {
|
||||
log_error("encrypt partition table error");
|
||||
if (false == flash_encrypt_write(PARTITION_ADD, SPI_SEC_SIZE)) {
|
||||
ESP_LOGE(TAG, "encrypt partition table error");
|
||||
return false;
|
||||
}
|
||||
|
||||
/* encrypt write factory bin */
|
||||
if(bs->factory.offset != 0x00) {
|
||||
log_debug("have factory bin\n");
|
||||
boot_cache_redirect(bs->factory.offset,bs->factory.size);
|
||||
ESP_LOGD(TAG, "have factory bin\n");
|
||||
boot_cache_redirect(bs->factory.offset, bs->factory.size);
|
||||
bin_len = get_bin_len((uint32_t)MEM_CACHE(bs->factory.offset&0xffff));
|
||||
if(bin_len != 0) {
|
||||
if (false == flash_encrypt_write(bs->factory.offset,bin_len)) {
|
||||
log_error("encrypt factory bin error");
|
||||
if (false == flash_encrypt_write(bs->factory.offset, bin_len)) {
|
||||
ESP_LOGE(TAG, "encrypt factory bin error");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* encrypt write test bin */
|
||||
if(bs->test.offset != 0x00) {
|
||||
ets_printf("have test bin\n");
|
||||
boot_cache_redirect(bs->test.offset,bs->test.size);
|
||||
ESP_LOGD(TAG, "have test bin\n");
|
||||
boot_cache_redirect(bs->test.offset, bs->test.size);
|
||||
bin_len = get_bin_len((uint32_t)MEM_CACHE(bs->test.offset&0xffff));
|
||||
if(bin_len != 0) {
|
||||
if (false == flash_encrypt_write(bs->test.offset,bin_len)) {
|
||||
log_error("encrypt test bin error");
|
||||
if (false == flash_encrypt_write(bs->test.offset, bin_len)) {
|
||||
ESP_LOGE(TAG, "encrypt test bin error");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
@ -158,33 +160,33 @@ bool flash_encrypt(bootloader_state_t *bs)
|
||||
/* encrypt write ota bin */
|
||||
for (i = 0;i<16;i++) {
|
||||
if(bs->ota[i].offset != 0x00) {
|
||||
log_debug("have ota[%d] bin\n",i);
|
||||
boot_cache_redirect(bs->ota[i].offset,bs->ota[i].size);
|
||||
ESP_LOGD(TAG, "have ota[%d] bin\n",i);
|
||||
boot_cache_redirect(bs->ota[i].offset, bs->ota[i].size);
|
||||
bin_len = get_bin_len((uint32_t)MEM_CACHE(bs->ota[i].offset&0xffff));
|
||||
if(bin_len != 0) {
|
||||
if (false == flash_encrypt_write(bs->ota[i].offset,bin_len)) {
|
||||
log_error("encrypt ota bin error");
|
||||
if (false == flash_encrypt_write(bs->ota[i].offset, bin_len)) {
|
||||
ESP_LOGE(TAG, "encrypt ota bin error");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
/* encrypt write ota info bin */
|
||||
if (false == flash_encrypt_write(bs->ota_info.offset,2*SPI_SEC_SIZE)) {
|
||||
log_error("encrypt ota binfo error");
|
||||
if (false == flash_encrypt_write(bs->ota_info.offset, 2*SPI_SEC_SIZE)) {
|
||||
ESP_LOGE(TAG, "encrypt ota info error");
|
||||
return false;
|
||||
}
|
||||
REG_SET_FIELD(EFUSE_BLK0_WDATA0, EFUSE_FLASH_CRYPT_CNT, 0x04);
|
||||
REG_WRITE(EFUSE_CONF, 0x5A5A); /* efuse_pgm_op_ena, force no rd/wr disable */
|
||||
REG_WRITE(EFUSE_CMD, 0x02); /* efuse_pgm_cmd */
|
||||
while (REG_READ(EFUSE_CMD)); /* wait for efuse_pagm_cmd=0 */
|
||||
log_warn("burn flash_crypt_cnt\n");
|
||||
ESP_LOGW(TAG, "burn flash_crypt_cnt");
|
||||
REG_WRITE(EFUSE_CONF, 0x5AA5); /* efuse_read_op_ena, release force */
|
||||
REG_WRITE(EFUSE_CMD, 0x01); /* efuse_read_cmd */
|
||||
while (REG_READ(EFUSE_CMD)); /* wait for efuse_read_cmd=0 */
|
||||
return true;
|
||||
} else {
|
||||
log_info("flash already encrypted.\n");
|
||||
ESP_LOGI(TAG, "flash already encrypted.");
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
@ -16,6 +16,7 @@
|
||||
|
||||
#include "esp_attr.h"
|
||||
#include "esp_types.h"
|
||||
#include "esp_log.h"
|
||||
|
||||
#include "rom/cache.h"
|
||||
#include "rom/ets_sys.h"
|
||||
@ -29,12 +30,13 @@
|
||||
|
||||
#include "sdkconfig.h"
|
||||
|
||||
#include "bootloader_log.h"
|
||||
#include "bootloader_config.h"
|
||||
|
||||
static const char* TAG = "secure_boot";
|
||||
|
||||
/**
|
||||
* @function : secure_boot_generate
|
||||
* @description: generate boot abstruct & iv
|
||||
* @description: generate boot abstract & iv
|
||||
*
|
||||
* @inputs: bool
|
||||
*/
|
||||
@ -53,17 +55,17 @@ bool secure_boot_generate(uint32_t bin_len){
|
||||
spiRet = SPIEraseSector(0);
|
||||
if (spiRet != SPI_FLASH_RESULT_OK)
|
||||
{
|
||||
log_error(SPI_ERROR_LOG);
|
||||
ESP_LOGE(TAG, SPI_ERROR_LOG);
|
||||
return false;
|
||||
}
|
||||
/* write iv to flash, 0x0000, 128 bytes (1024 bits) */
|
||||
spiRet = SPIWrite(0, buf, 128);
|
||||
if (spiRet != SPI_FLASH_RESULT_OK)
|
||||
{
|
||||
log_error(SPI_ERROR_LOG);
|
||||
ESP_LOGE(TAG, SPI_ERROR_LOG);
|
||||
return false;
|
||||
}
|
||||
log_debug("write iv to flash.\n");
|
||||
ESP_LOGD(TAG, "write iv to flash.");
|
||||
Cache_Read_Enable(0);
|
||||
/* read 4K code image from flash, for test */
|
||||
for (i = 0; i < bin_len; i+=128) {
|
||||
@ -77,10 +79,10 @@ bool secure_boot_generate(uint32_t bin_len){
|
||||
/* write abstract to flash, 0x0080, 64 bytes (512 bits) */
|
||||
spiRet = SPIWrite(0x80, buf, 64);
|
||||
if (spiRet != SPI_FLASH_RESULT_OK) {
|
||||
log_error(SPI_ERROR_LOG);
|
||||
ESP_LOGE(TAG, SPI_ERROR_LOG);
|
||||
return false;
|
||||
}
|
||||
log_debug("write abstract to flash.\n");
|
||||
ESP_LOGD(TAG, "write abstract to flash.");
|
||||
Cache_Read_Enable(0);
|
||||
return true;
|
||||
}
|
||||
@ -88,7 +90,7 @@ bool secure_boot_generate(uint32_t bin_len){
|
||||
|
||||
/**
|
||||
* @function : secure_boot
|
||||
* @description: protect boot code inflash
|
||||
* @description: protect boot code in flash
|
||||
*
|
||||
* @inputs: bool
|
||||
*/
|
||||
@ -96,17 +98,17 @@ bool secure_boot(void){
|
||||
uint32_t bin_len = 0;
|
||||
if (REG_READ(EFUSE_BLK0_RDATA6) & EFUSE_RD_ABS_DONE_0)
|
||||
{
|
||||
log_info("already secure boot !\n");
|
||||
ESP_LOGD(TAG, "already secure boot !");
|
||||
return true;
|
||||
} else {
|
||||
boot_cache_redirect( 0, 64*1024);
|
||||
bin_len = get_bin_len((uint32_t)MEM_CACHE(0x1000));
|
||||
if (bin_len == 0) {
|
||||
log_error("boot len is error");
|
||||
ESP_LOGE(TAG, "boot len is error");
|
||||
return false;
|
||||
}
|
||||
if (false == secure_boot_generate(bin_len)){
|
||||
log_error("secure boot generate failed");
|
||||
ESP_LOGE(TAG, "secure boot generate failed");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
@ -115,11 +117,11 @@ bool secure_boot(void){
|
||||
REG_WRITE(EFUSE_CONF, 0x5A5A); /* efuse_pgm_op_ena, force no rd/wr disable */
|
||||
REG_WRITE(EFUSE_CMD, 0x02); /* efuse_pgm_cmd */
|
||||
while (REG_READ(EFUSE_CMD)); /* wait for efuse_pagm_cmd=0 */
|
||||
log_warn("burn abstract_done_0\n");
|
||||
ESP_LOGI(TAG, "burn abstract_done_0");
|
||||
REG_WRITE(EFUSE_CONF, 0x5AA5); /* efuse_read_op_ena, release force */
|
||||
REG_WRITE(EFUSE_CMD, 0x01); /* efuse_read_cmd */
|
||||
while (REG_READ(EFUSE_CMD)); /* wait for efuse_read_cmd=0 */
|
||||
log_debug("read EFUSE_BLK0_RDATA6 %x\n", REG_READ(EFUSE_BLK0_RDATA6));
|
||||
ESP_LOGD(TAG, "read EFUSE_BLK0_RDATA6 %x\n", REG_READ(EFUSE_BLK0_RDATA6));
|
||||
return true;
|
||||
|
||||
}
|
||||
|
@ -39,11 +39,11 @@
|
||||
#include "esp_event.h"
|
||||
#include "esp_spi_flash.h"
|
||||
#include "esp_ipc.h"
|
||||
#include "esp_log.h"
|
||||
|
||||
static void IRAM_ATTR user_start_cpu0(void);
|
||||
static void IRAM_ATTR call_user_start_cpu1();
|
||||
static void IRAM_ATTR user_start_cpu1(void);
|
||||
void Cache_Read_Enable();
|
||||
extern void ets_setup_syscalls(void);
|
||||
|
||||
|
||||
@ -57,6 +57,8 @@ extern int _iram_romjumptable_end;
|
||||
extern int _iram_text_start;
|
||||
extern int _iram_text_end;
|
||||
|
||||
static const char* TAG = "cpu_start";
|
||||
|
||||
/*
|
||||
We arrive here after the bootloader finished loading the program from flash. The hardware is mostly uninitialized,
|
||||
flash cache is down and the app CPU is in reset. We do have a stack, so we can do the initialization in C.
|
||||
@ -110,13 +112,13 @@ void IRAM_ATTR call_user_start_cpu0() {
|
||||
|
||||
memset(&_bss_start, 0, (&_bss_end - &_bss_start) * sizeof(_bss_start));
|
||||
|
||||
//Initialize heap allocator
|
||||
// Initialize heap allocator
|
||||
heap_alloc_caps_init();
|
||||
|
||||
ets_printf("Pro cpu up.\n");
|
||||
ESP_EARLY_LOGI(TAG, "Pro cpu up.");
|
||||
|
||||
#ifndef CONFIG_FREERTOS_UNICORE
|
||||
ets_printf("Starting app cpu, entry point is %p\n", call_user_start_cpu1);
|
||||
ESP_EARLY_LOGI(TAG, "Starting app cpu, entry point is %p", call_user_start_cpu1);
|
||||
|
||||
SET_PERI_REG_MASK(APPCPU_CTRL_REG_B, DPORT_APPCPU_CLKGATE_EN);
|
||||
CLEAR_PERI_REG_MASK(APPCPU_CTRL_REG_C, DPORT_APPCPU_RUNSTALL);
|
||||
@ -128,9 +130,10 @@ void IRAM_ATTR call_user_start_cpu0() {
|
||||
ets_delay_us(100);
|
||||
}
|
||||
#else
|
||||
ESP_EARLY_LOGI(TAG, "Single core mode");
|
||||
CLEAR_PERI_REG_MASK(APPCPU_CTRL_REG_B, DPORT_APPCPU_CLKGATE_EN);
|
||||
#endif
|
||||
ets_printf("Pro cpu start user code\n");
|
||||
ESP_EARLY_LOGI(TAG, "Pro cpu start user code");
|
||||
user_start_cpu0();
|
||||
}
|
||||
|
||||
@ -173,7 +176,7 @@ void IRAM_ATTR call_user_start_cpu1() {
|
||||
"isync\n" \
|
||||
:::"a4","a5");
|
||||
|
||||
ets_printf("App cpu up.\n");
|
||||
ESP_EARLY_LOGI(TAG, "App cpu up.");
|
||||
app_cpu_started = 1;
|
||||
user_start_cpu1();
|
||||
}
|
||||
@ -185,7 +188,7 @@ void IRAM_ATTR user_start_cpu1(void) {
|
||||
while (port_xSchedulerRunning[0] == 0) {
|
||||
;
|
||||
}
|
||||
ets_printf("Starting scheduler on APP CPU.\n");
|
||||
ESP_LOGI(TAG, "Starting scheduler on APP CPU.");
|
||||
xPortStartScheduler();
|
||||
}
|
||||
|
||||
@ -201,7 +204,7 @@ static void do_global_ctors(void) {
|
||||
extern esp_err_t app_main(void *ctx);
|
||||
|
||||
void user_start_cpu0(void) {
|
||||
ets_setup_syscalls();
|
||||
ets_setup_syscalls();
|
||||
do_global_ctors();
|
||||
esp_ipc_init();
|
||||
spi_flash_init();
|
||||
@ -209,7 +212,7 @@ void user_start_cpu0(void) {
|
||||
#if CONFIG_WIFI_ENABLED
|
||||
esp_err_t ret = nvs_flash_init(5, 3);
|
||||
if (ret != ESP_OK) {
|
||||
printf("nvs_flash_init failed, ret=%d\n", ret);
|
||||
ESP_LOGE(TAG, "nvs_flash_init failed, ret=%d", ret);
|
||||
}
|
||||
|
||||
system_init();
|
||||
@ -226,7 +229,7 @@ void user_start_cpu0(void) {
|
||||
app_main(NULL);
|
||||
#endif
|
||||
|
||||
ets_printf("Starting scheduler on PRO CPU.\n");
|
||||
ESP_LOGI(TAG, "Starting scheduler on PRO CPU.");
|
||||
vTaskStartScheduler();
|
||||
}
|
||||
|
||||
|
@ -17,6 +17,9 @@
|
||||
|
||||
#include "heap_alloc_caps.h"
|
||||
#include "spiram.h"
|
||||
#include "esp_log.h"
|
||||
|
||||
static const char* TAG = "heap_alloc_caps";
|
||||
|
||||
/*
|
||||
This file, combined with a region allocator that supports tags, solves the problem that the ESP32 has RAM that's
|
||||
@ -147,7 +150,7 @@ static void disable_mem_region(void *from, void *to) {
|
||||
regions[i].xSizeInBytes-=(uint8_t *)regEnd-(uint8_t *)from;
|
||||
} else if (regStart<from && regEnd>to) {
|
||||
//Range punches a hole in the region! We do not support this.
|
||||
ets_printf("%s: region %d: hole punching is not supported!\n", i);
|
||||
ESP_EARLY_LOGE(TAG, "region %d: hole punching is not supported!", i);
|
||||
regions[i].xTag=-1; //Just disable memory region. That'll teach them!
|
||||
}
|
||||
}
|
||||
@ -204,12 +207,13 @@ void heap_alloc_caps_init() {
|
||||
}
|
||||
}
|
||||
|
||||
#if 1 //Change to 1 to show the regions the heap allocator is initialized with.
|
||||
ets_printf("Initializing heap allocator:\n");
|
||||
ESP_EARLY_LOGI(TAG, "Initializing heap allocator:");
|
||||
for (i=0; regions[i].xSizeInBytes!=0; i++) {
|
||||
if ( regions[i].xTag != -1 ) ets_printf("Region %02d: %08X len %08X tag %d\n", i, (int)regions[i].pucStartAddress, regions[i].xSizeInBytes, regions[i].xTag);
|
||||
if (regions[i].xTag != -1) {
|
||||
ESP_EARLY_LOGI(TAG, "Region %02d: %08X len %08X tag %d", i,
|
||||
(int)regions[i].pucStartAddress, regions[i].xSizeInBytes, regions[i].xTag);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
//Initialize the malloc implementation.
|
||||
vPortDefineHeapRegionsTagged( regions );
|
||||
}
|
||||
|
48
components/log/Kconfig
Normal file
48
components/log/Kconfig
Normal file
@ -0,0 +1,48 @@
|
||||
menu "Log output"
|
||||
|
||||
choice LOG_DEFAULT_LEVEL
|
||||
bool "Default log verbosity"
|
||||
default LOG_DEFAULT_LEVEL_INFO
|
||||
help
|
||||
Specify how much output to see in logs by default.
|
||||
You can set lower verbosity level at runtime using
|
||||
esp_log_level_set function.
|
||||
|
||||
Note that this setting limits which log statements
|
||||
are compiled into the program. So setting this to, say,
|
||||
"Warning" would mean that changing log level to "Debug"
|
||||
at runtime will not be possible.
|
||||
|
||||
config LOG_DEFAULT_LEVEL_NONE
|
||||
bool "No output"
|
||||
config LOG_DEFAULT_LEVEL_ERROR
|
||||
bool "Error"
|
||||
config LOG_DEFAULT_LEVEL_WARN
|
||||
bool "Warning"
|
||||
config LOG_DEFAULT_LEVEL_INFO
|
||||
bool "Info"
|
||||
config LOG_DEFAULT_LEVEL_DEBUG
|
||||
bool "Debug"
|
||||
config LOG_DEFAULT_LEVEL_VERBOSE
|
||||
bool "Verbose"
|
||||
endchoice
|
||||
|
||||
config LOG_DEFAULT_LEVEL
|
||||
int
|
||||
default 0 if LOG_DEFAULT_LEVEL_NONE
|
||||
default 1 if LOG_DEFAULT_LEVEL_ERROR
|
||||
default 2 if LOG_DEFAULT_LEVEL_WARN
|
||||
default 3 if LOG_DEFAULT_LEVEL_INFO
|
||||
default 4 if LOG_DEFAULT_LEVEL_DEBUG
|
||||
default 5 if LOG_DEFAULT_LEVEL_VERBOSE
|
||||
|
||||
config LOG_COLORS
|
||||
bool "Use ANSI terminal colors in log output"
|
||||
default "y"
|
||||
help
|
||||
Enable ANSI terminal color codes in bootloader output.
|
||||
|
||||
In order to view these, your terminal program must support ANSI color codes.
|
||||
|
||||
|
||||
endmenu
|
3
components/log/component.mk
Executable file
3
components/log/component.mk
Executable file
@ -0,0 +1,3 @@
|
||||
COMPONENT_ADD_INCLUDEDIRS := include
|
||||
|
||||
include $(IDF_PATH)/make/component_common.mk
|
@ -16,6 +16,8 @@
|
||||
#define __ESP_LOG_H__
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdarg.h>
|
||||
#include "sdkconfig.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
@ -24,6 +26,20 @@ extern "C" {
|
||||
/**
|
||||
* @brief Logging library
|
||||
*
|
||||
* Log library has two ways of managing log verbosity: compile time, set via
|
||||
* menuconfig, and runtime, using esp_log_set_level function.
|
||||
*
|
||||
* At compile time, filtering is done using CONFIG_LOG_DEFAULT_LEVEL macro, set via
|
||||
* menuconfig. All logging statments for levels higher than CONFIG_LOG_DEFAULT_LEVEL
|
||||
* will be removed by the preprocessor.
|
||||
*
|
||||
* At run time, all logs below CONFIG_LOG_DEFAULT_LEVEL are enabled by default.
|
||||
* esp_log_set_level function may be used to set logging level per module.
|
||||
* Modules are identified by their tags, which are human-readable ASCII
|
||||
* zero-terminated strings.
|
||||
*
|
||||
* How to use this library:
|
||||
*
|
||||
* In each C file which uses logging functionality, define TAG variable like this:
|
||||
*
|
||||
* static const char* TAG = "MyModule";
|
||||
@ -32,31 +48,46 @@ extern "C" {
|
||||
*
|
||||
* ESP_LOGW(TAG, "Baud rate error %.1f%%. Requested: %d baud, actual: %d baud", error * 100, baud_req, baud_real);
|
||||
*
|
||||
* Log filtering happens both at compile time and at runtime.
|
||||
* Several macros are available for different verbosity levels:
|
||||
*
|
||||
* At compile time, filtering is done using CONFIG_ESP_LOG_LEVEL macro, set via menuconfig.
|
||||
* All logging statments for levels higher than CONFIG_ESP_LOG_LEVEL will be removed by the preprocessor.
|
||||
* ESP_LOGE — error
|
||||
* ESP_LOGW — warning
|
||||
* ESP_LOGI — info
|
||||
* ESP_LOGD - debug
|
||||
* ESP_LOGV - verbose
|
||||
*
|
||||
* At run time, all logs below CONFIG_ESP_LOG_LEVEL are enabled by default.
|
||||
* esp_log_set function may be used to set logging level per tag.
|
||||
* Additionally there is an _EARLY_ variant for each of these macros (e.g. ESP_EARLY_LOGE).
|
||||
* These variants can run in startup code, before heap allocator and syscalls
|
||||
* have been initialized.
|
||||
* When compiling bootloader, normal ESP_LOGx macros fall back to the same implementation
|
||||
* as ESP_EARLY_LOGx macros. So the only place where ESP_EARLY_LOGx have to be used explicitly
|
||||
* is the early startup code, such as heap allocator initialization code.
|
||||
*
|
||||
* esp_log_set("*", ESP_LOG_ERROR); // set all components to ERROR level
|
||||
* esp_log_set("wifi", ESP_LOG_WARN); // enable WARN logs from WiFi stack
|
||||
* esp_log_set("dhcpc", ESP_LOG_INFO); // enable INFO logs from DHCP client
|
||||
* (Note that such distinction would not have been necessary if we would have an
|
||||
* ets_vprintf function in the ROM. Then it would be possible to switch implementation
|
||||
* from _EARLY version to normal version on the fly. Unfortunately, ets_vprintf in ROM
|
||||
* has been inlined by the compiler into ets_printf, so it is not accessible outside.)
|
||||
*
|
||||
*
|
||||
* To configure logging output per module, add calls to esp_log_set_level function:
|
||||
*
|
||||
* esp_log_set_level("*", ESP_LOG_ERROR); // set all components to ERROR level
|
||||
* esp_log_set_level("wifi", ESP_LOG_WARN); // enable WARN logs from WiFi stack
|
||||
* esp_log_set_level("dhcpc", ESP_LOG_INFO); // enable INFO logs from DHCP client
|
||||
*
|
||||
*/
|
||||
|
||||
|
||||
typedef enum {
|
||||
ESP_LOG_NONE,
|
||||
ESP_LOG_ERROR,
|
||||
ESP_LOG_WARN,
|
||||
ESP_LOG_INFO,
|
||||
ESP_LOG_DEBUG,
|
||||
ESP_LOG_VERBOSE
|
||||
ESP_LOG_NONE, // No log output
|
||||
ESP_LOG_ERROR, // Critical errors, software module can not recover on its own
|
||||
ESP_LOG_WARN, // Error conditions from which recovery measures have been taken
|
||||
ESP_LOG_INFO, // Information messages which describe normal flow of events
|
||||
ESP_LOG_DEBUG, // Extra information which is not necessary for normal use (values, pointers, sizes, etc).
|
||||
ESP_LOG_VERBOSE // Bigger chunks of debugging information, or frequent messages which can potentially flood the output.
|
||||
} esp_log_level_t;
|
||||
|
||||
typedef int (*vprintf_like_t)(const char *, va_list);
|
||||
|
||||
/**
|
||||
* @brief Set log level for given tag
|
||||
@ -64,52 +95,134 @@ typedef enum {
|
||||
* If logging for given component has already been enabled, changes previous setting.
|
||||
*
|
||||
* @param tag Tag of the log entries to enable. Must be a non-NULL zero terminated string.
|
||||
* Value "*" means that all tags are affected.
|
||||
* Value "*" resets log level for all tags to the given value.
|
||||
*
|
||||
* @param level Selects log level to enable. Only logs at this and lower levels will be shown.
|
||||
*/
|
||||
void esp_log_set(const char* tag, esp_log_level_t level);
|
||||
void esp_log_level_set(const char* tag, esp_log_level_t level);
|
||||
|
||||
/**
|
||||
* @brief Set function used to output log entries
|
||||
*
|
||||
* By default, log output goes to UART0. This function can be used to redirect log
|
||||
* output to some other destination, such as file or network.
|
||||
*
|
||||
* @param func Function used for output. Must have same signature as vprintf.
|
||||
*/
|
||||
void esp_log_set_vprintf(vprintf_like_t func);
|
||||
|
||||
/**
|
||||
* @brief Write message into the log
|
||||
*
|
||||
* This function is not intended to be used directly. Instead, use one of
|
||||
* ESP_LOGE, ESP_LOGW, ESP_LOGI, ESP_LOGD, ESP_LOGV macros.
|
||||
*
|
||||
* This function or these macros should not be used from an interrupt.
|
||||
*/
|
||||
void esp_log_write(esp_log_level_t level, const char* tag, const char* format, ...) __attribute__ ((format (printf, 3, 4)));
|
||||
#ifndef CONFIG_ESP_LOG_LEVEL
|
||||
#define CONFIG_ESP_LOG_LEVEL ESP_LOG_NONE
|
||||
#endif
|
||||
|
||||
#if (CONFIG_ESP_LOG_LEVEL < ESP_LOG_ERROR)
|
||||
#define ESP_LOGE( tag, format, ... ) esp_log_write(ESP_LOG_ERROR, tag, format, ##__VA_ARGS__)
|
||||
|
||||
/**
|
||||
* @brief Function which returns timestamp to be used in log output
|
||||
*
|
||||
* This function is used in expansion of ESP_LOGx macros.
|
||||
* In the 2nd stage bootloader, and at early application startup stage
|
||||
* this function uses CPU cycle counter as time source. Later when
|
||||
* FreeRTOS scheduler start running, it switches to FreeRTOS tick count.
|
||||
*
|
||||
* For now, we ignore millisecond counter overflow.
|
||||
*
|
||||
* @return timestamp, in milliseconds
|
||||
*/
|
||||
uint32_t esp_log_timestamp();
|
||||
|
||||
|
||||
#if CONFIG_LOG_COLORS
|
||||
#define LOG_COLOR_BLACK "30"
|
||||
#define LOG_COLOR_RED "31"
|
||||
#define LOG_COLOR_GREEN "32"
|
||||
#define LOG_COLOR_BROWN "33"
|
||||
#define LOG_COLOR_BLUE "34"
|
||||
#define LOG_COLOR_PURPLE "35"
|
||||
#define LOG_COLOR_CYAN "36"
|
||||
#define LOG_COLOR(COLOR) "\033[0;"COLOR"m"
|
||||
#define LOG_BOLD(COLOR) "\033[1;"COLOR"m"
|
||||
#define LOG_RESET_COLOR "\033[0m"
|
||||
#define LOG_COLOR_E LOG_COLOR(LOG_COLOR_RED)
|
||||
#define LOG_COLOR_W LOG_COLOR(LOG_COLOR_BROWN)
|
||||
#define LOG_COLOR_I LOG_COLOR(LOG_COLOR_GREEN)
|
||||
#define LOG_COLOR_D
|
||||
#define LOG_COLOR_V
|
||||
#else //CONFIG_LOG_COLORS
|
||||
#define LOG_COLOR_E
|
||||
#define LOG_COLOR_W
|
||||
#define LOG_COLOR_I
|
||||
#define LOG_COLOR_D
|
||||
#define LOG_COLOR_V
|
||||
#define LOG_RESET_COLOR
|
||||
#endif //CONFIG_LOG_COLORS
|
||||
|
||||
#define LOG_FORMAT(letter, format) LOG_COLOR_ ## letter #letter " (%d) %s: " format LOG_RESET_COLOR "\n"
|
||||
|
||||
#if (CONFIG_LOG_DEFAULT_LEVEL >= ESP_LOG_ERROR)
|
||||
#define ESP_EARLY_LOGE( tag, format, ... ) ets_printf(LOG_FORMAT(E, format), esp_log_timestamp(), tag, ##__VA_ARGS__)
|
||||
#ifndef BOOTLOADER_BUILD
|
||||
#define ESP_LOGE( tag, format, ... ) esp_log_write(ESP_LOG_ERROR, tag, LOG_FORMAT(E, format), esp_log_timestamp(), tag, ##__VA_ARGS__)
|
||||
#else
|
||||
#define ESP_LOGE( tag, format, ... ) ESP_EARLY_LOGE( tag, format, ##__VA_ARGS__)
|
||||
#endif // BOOTLOADER_BUILD
|
||||
#else
|
||||
#define ESP_LOGE( tag, format, ... )
|
||||
#define ESP_EARLY_LOGE( tag, format, ... )
|
||||
#endif
|
||||
|
||||
#if (CONFIG_ESP_LOG_LEVEL < ESP_LOG_WARN)
|
||||
#define ESP_LOGW( tag, format, ... ) esp_log_write(ESP_LOG_WARN, tag, format, ##__VA_ARGS__)
|
||||
#if (CONFIG_LOG_DEFAULT_LEVEL >= ESP_LOG_WARN)
|
||||
#define ESP_EARLY_LOGW( tag, format, ... ) ets_printf(LOG_FORMAT(W, format), esp_log_timestamp(), tag, ##__VA_ARGS__)
|
||||
#ifndef BOOTLOADER_BUILD
|
||||
#define ESP_LOGW( tag, format, ... ) esp_log_write(ESP_LOG_WARN, tag, LOG_FORMAT(W, format), esp_log_timestamp(), tag, ##__VA_ARGS__)
|
||||
#else
|
||||
#define ESP_LOGW( tag, format, ... ) ESP_EARLY_LOGW( tag, format, ##__VA_ARGS__)
|
||||
#endif // BOOTLOADER_BUILD
|
||||
#else
|
||||
#define ESP_LOGW( tag, format, ... )
|
||||
#define ESP_EARLY_LOGW( tag, format, ... )
|
||||
#endif
|
||||
|
||||
#if (CONFIG_ESP_LOG_LEVEL < ESP_LOG_INFO)
|
||||
#define ESP_LOGI( tag, format, ... ) esp_log_write(ESP_LOG_INFO, tag, format, ##__VA_ARGS__)
|
||||
#if (CONFIG_LOG_DEFAULT_LEVEL >= ESP_LOG_INFO)
|
||||
#define ESP_EARLY_LOGI( tag, format, ... ) ets_printf(LOG_FORMAT(I, format), esp_log_timestamp(), tag, ##__VA_ARGS__)
|
||||
#ifndef BOOTLOADER_BUILD
|
||||
#define ESP_LOGI( tag, format, ... ) esp_log_write(ESP_LOG_INFO, tag, LOG_FORMAT(I, format), esp_log_timestamp(), tag, ##__VA_ARGS__)
|
||||
#else
|
||||
#define ESP_LOGI( tag, format, ... ) ESP_EARLY_LOGI( tag, format, ##__VA_ARGS__)
|
||||
#endif //BOOTLOADER_BUILD
|
||||
#else
|
||||
#define ESP_LOGI( tag, format, ... )
|
||||
#define ESP_EARLY_LOGI( tag, format, ... )
|
||||
#endif
|
||||
|
||||
|
||||
#if (CONFIG_ESP_LOG_LEVEL < ESP_LOG_DEBUG)
|
||||
#define ESP_LOGD( tag, format, ... ) esp_log_write(ESP_LOG_DEBUG, tag, format, ##__VA_ARGS__)
|
||||
#if (CONFIG_LOG_DEFAULT_LEVEL >= ESP_LOG_DEBUG)
|
||||
#define ESP_EARLY_LOGD( tag, format, ... ) ets_printf(LOG_FORMAT(D, format), esp_log_timestamp(), tag, ##__VA_ARGS__)
|
||||
#ifndef BOOTLOADER_BUILD
|
||||
#define ESP_LOGD( tag, format, ... ) esp_log_write(ESP_LOG_DEBUG, tag, LOG_FORMAT(D, format), esp_log_timestamp(), tag, ##__VA_ARGS__)
|
||||
#else
|
||||
#define ESP_LOGD( tag, format, ... ) ESP_EARLY_LOGD(tag, format, ##__VA_ARGS__)
|
||||
#endif // BOOTLOADER_BUILD
|
||||
#else
|
||||
#define ESP_LOGD( tag, format, ... )
|
||||
#define ESP_EARLY_LOGD( tag, format, ... )
|
||||
#endif
|
||||
|
||||
#if (CONFIG_ESP_LOG_VERBOSE < ESP_LOG_ERROR)
|
||||
#define ESP_LOGV( tag, format, ... ) esp_log_write(ESP_LOG_VERBOSE, tag, format, ##__VA_ARGS__)
|
||||
#if (CONFIG_LOG_DEFAULT_LEVEL >= ESP_LOG_VERBOSE)
|
||||
#define ESP_EARLY_LOGV( tag, format, ... ) ets_printf(LOG_FORMAT(V, format), esp_log_timestamp(), tag, ##__VA_ARGS__)
|
||||
#ifndef BOOTLOADER_BUILD
|
||||
#define ESP_LOGV( tag, format, ... ) esp_log_write(ESP_LOG_VERBOSE, tag, LOG_FORMAT(V, format), esp_log_timestamp(), tag, ##__VA_ARGS__)
|
||||
#else
|
||||
#define ESP_LOGV( tag, format, ... ) ESP_EARLY_LOGV(tag, format, ##__VA_ARGS__)
|
||||
#endif // BOOTLOADER_BUILD
|
||||
#else
|
||||
#define ESP_LOGV( tag, format, ... )
|
||||
#define ESP_EARLY_LOGV( tag, format, ... )
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
283
components/log/log.c
Normal file
283
components/log/log.c
Normal file
@ -0,0 +1,283 @@
|
||||
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
/*
|
||||
* Log library — implementation notes.
|
||||
*
|
||||
* Log library stores all tags provided to esp_log_set_level as a linked
|
||||
* list. See uncached_tag_entry_t structure.
|
||||
*
|
||||
* To avoid looking up log level for given tag each time message is
|
||||
* printed, this library caches pointers to tags. Because the suggested
|
||||
* way of creating tags uses one 'TAG' constant per file, this caching
|
||||
* should be effective. Cache is a binary min-heap of cached_tag_entry_t
|
||||
* items, ordering is done on 'generation' member. In this context,
|
||||
* generation is an integer which is incremented each time an operation
|
||||
* with cache is performed. When cache is full, new item is inserted in
|
||||
* place of an oldest item (that is, with smallest 'generation' value).
|
||||
* After that, bubble-down operation is performed to fix ordering in the
|
||||
* min-heap.
|
||||
*
|
||||
* The potential problem with wrap-around of cache generation counter is
|
||||
* ignored for now. This will happen if someone happens to output more
|
||||
* than 4 billion log entries, at which point wrap-around will not be
|
||||
* the biggest problem.
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef BOOTLOADER_BUILD
|
||||
#include <freertos/FreeRTOS.h>
|
||||
#include <freertos/FreeRTOSConfig.h>
|
||||
#include <freertos/task.h>
|
||||
#include <freertos/semphr.h>
|
||||
#endif
|
||||
|
||||
#include "esp_attr.h"
|
||||
#include "xtensa/hal.h"
|
||||
#include "soc/soc.h"
|
||||
#include <stdbool.h>
|
||||
#include <stdarg.h>
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include "esp_log.h"
|
||||
|
||||
|
||||
#ifndef BOOTLOADER_BUILD
|
||||
|
||||
#define TAG_CACHE_SIZE 32
|
||||
#define MAX_MUTEX_WAIT_TICKS ((10 + portTICK_PERIOD_MS - 1) / portTICK_PERIOD_MS)
|
||||
|
||||
typedef struct {
|
||||
const char* tag;
|
||||
uint32_t level : 3;
|
||||
uint32_t generation : 29;
|
||||
} cached_tag_entry_t;
|
||||
|
||||
typedef struct uncached_tag_entry_{
|
||||
struct uncached_tag_entry_* next;
|
||||
uint8_t level; // esp_log_level_t as uint8_t
|
||||
char tag[0]; // beginning of a zero-terminated string
|
||||
} uncached_tag_entry_t;
|
||||
|
||||
static esp_log_level_t s_default_level = (esp_log_level_t) CONFIG_LOG_DEFAULT_LEVEL;
|
||||
static uncached_tag_entry_t* s_head = NULL;
|
||||
static uncached_tag_entry_t* s_tail = NULL;
|
||||
static cached_tag_entry_t s_cache[TAG_CACHE_SIZE];
|
||||
static uint32_t s_cache_max_generation = 0;
|
||||
static uint32_t s_cache_entry_count = 0;
|
||||
static vprintf_like_t s_print_func = &vprintf;
|
||||
static SemaphoreHandle_t s_mutex = NULL;
|
||||
|
||||
static inline bool get_cached_log_level(const char* tag, esp_log_level_t* level);
|
||||
static inline bool get_uncached_log_level(const char* tag, esp_log_level_t* level);
|
||||
static inline void add_to_cache(const char* tag, esp_log_level_t level);
|
||||
static void heap_bubble_down(int index);
|
||||
static inline void heap_swap(int i, int j);
|
||||
static inline bool should_output(esp_log_level_t level_for_message, esp_log_level_t level_for_tag);
|
||||
static inline void clear_log_level_list();
|
||||
|
||||
void esp_log_set_vprintf(vprintf_like_t func)
|
||||
{
|
||||
s_print_func = func;
|
||||
}
|
||||
|
||||
void esp_log_level_set(const char* tag, esp_log_level_t level)
|
||||
{
|
||||
if (!s_mutex) {
|
||||
s_mutex = xSemaphoreCreateMutex();
|
||||
}
|
||||
xSemaphoreTake(&s_mutex, portMAX_DELAY);
|
||||
|
||||
// for wildcard tag, remove all linked list items and clear the cache
|
||||
if (strcmp(tag, "*") == 0) {
|
||||
s_default_level = level;
|
||||
clear_log_level_list();
|
||||
xSemaphoreGive(&s_mutex);
|
||||
return;
|
||||
}
|
||||
|
||||
// allocate new linked list entry and append it to the endo of the list
|
||||
size_t entry_size = offsetof(uncached_tag_entry_t, tag) + strlen(tag) + 1;
|
||||
uncached_tag_entry_t* new_entry = (uncached_tag_entry_t*) malloc(entry_size);
|
||||
if (!new_entry) {
|
||||
xSemaphoreGive(&s_mutex);
|
||||
return;
|
||||
}
|
||||
new_entry->next = NULL;
|
||||
new_entry->level = (uint8_t) level;
|
||||
strcpy(new_entry->tag, tag);
|
||||
if (s_tail) {
|
||||
s_tail->next = new_entry;
|
||||
}
|
||||
s_tail = new_entry;
|
||||
if (!s_head) {
|
||||
s_head = new_entry;
|
||||
}
|
||||
xSemaphoreGive(&s_mutex);
|
||||
}
|
||||
|
||||
void clear_log_level_list()
|
||||
{
|
||||
for (uncached_tag_entry_t* it = s_head; it != NULL; ) {
|
||||
uncached_tag_entry_t* next = it->next;
|
||||
free(it);
|
||||
it = next;
|
||||
}
|
||||
|
||||
s_cache_entry_count = 0;
|
||||
s_cache_max_generation = 0;
|
||||
}
|
||||
|
||||
void IRAM_ATTR esp_log_write(esp_log_level_t level,
|
||||
const char* tag,
|
||||
const char* format, ...)
|
||||
{
|
||||
if (!s_mutex) {
|
||||
s_mutex = xSemaphoreCreateMutex();
|
||||
}
|
||||
if (xSemaphoreTake(&s_mutex, MAX_MUTEX_WAIT_TICKS) == pdFALSE) {
|
||||
return;
|
||||
}
|
||||
esp_log_level_t level_for_tag;
|
||||
// Look for the tag in cache first, then in the linked list of all tags
|
||||
if (!get_cached_log_level(tag, &level_for_tag)) {
|
||||
if (!get_uncached_log_level(tag, &level_for_tag)) {
|
||||
level_for_tag = s_default_level;
|
||||
}
|
||||
add_to_cache(tag, level_for_tag);
|
||||
}
|
||||
xSemaphoreGive(&s_mutex);
|
||||
if (!should_output(level, level_for_tag)) {
|
||||
return;
|
||||
}
|
||||
|
||||
va_list list;
|
||||
va_start(list, format);
|
||||
(*s_print_func)(format, list);
|
||||
va_end(list);
|
||||
}
|
||||
|
||||
static inline bool get_cached_log_level(const char* tag, esp_log_level_t* level)
|
||||
{
|
||||
// Look for `tag` in cache
|
||||
int i;
|
||||
for (i = 0; i < s_cache_entry_count; ++i) {
|
||||
if (s_cache[i].tag == tag) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (i == s_cache_entry_count) { // Not found in cache
|
||||
return false;
|
||||
}
|
||||
// Return level from cache
|
||||
*level = (esp_log_level_t) s_cache[i].level;
|
||||
// Update item generation
|
||||
s_cache[i].generation = s_cache_max_generation++;
|
||||
// Restore heap ordering
|
||||
heap_bubble_down(i);
|
||||
return true;
|
||||
}
|
||||
|
||||
static inline void add_to_cache(const char* tag, esp_log_level_t level)
|
||||
{
|
||||
uint32_t generation = s_cache_max_generation++;
|
||||
// First consider the case when cache is not filled yet.
|
||||
// In this case, just add new entry at the end.
|
||||
// This happens to satisfy binary min-heap ordering.
|
||||
if (s_cache_entry_count < TAG_CACHE_SIZE) {
|
||||
s_cache[s_cache_entry_count] = (cached_tag_entry_t) {
|
||||
.generation = generation,
|
||||
.level = level,
|
||||
.tag = tag
|
||||
};
|
||||
++s_cache_entry_count;
|
||||
return;
|
||||
}
|
||||
|
||||
// Cache is full, so we replace the oldest entry (which is at index 0
|
||||
// because this is a min-heap) with the new one, and do bubble-down
|
||||
// operation to restore min-heap ordering.
|
||||
s_cache[0] = (cached_tag_entry_t) {
|
||||
.tag = tag,
|
||||
.level = level,
|
||||
.generation = generation
|
||||
};
|
||||
heap_bubble_down(0);
|
||||
}
|
||||
|
||||
static inline bool get_uncached_log_level(const char* tag, esp_log_level_t* level)
|
||||
{
|
||||
// Walk the linked list of all tags and see if given tag is present in the list.
|
||||
// This is slow because tags are compared as strings.
|
||||
for (uncached_tag_entry_t* it = s_head; it != NULL; ++it) {
|
||||
if (strcmp(tag, it->tag) == 0) {
|
||||
*level = it->level;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
static inline bool should_output(esp_log_level_t level_for_message, esp_log_level_t level_for_tag)
|
||||
{
|
||||
return level_for_message <= level_for_tag;
|
||||
}
|
||||
|
||||
static void heap_bubble_down(int index)
|
||||
{
|
||||
while (index < TAG_CACHE_SIZE / 2) {
|
||||
int left_index = index * 2 + 1;
|
||||
int right_index = left_index + 1;
|
||||
int next = (s_cache[left_index].generation < s_cache[right_index].generation) ? left_index : right_index;
|
||||
heap_swap(index, next);
|
||||
index = next;
|
||||
}
|
||||
}
|
||||
|
||||
static inline void heap_swap(int i, int j)
|
||||
{
|
||||
cached_tag_entry_t tmp = s_cache[i];
|
||||
s_cache[i] = s_cache[j];
|
||||
s_cache[j] = tmp;
|
||||
}
|
||||
#endif //BOOTLOADER_BUILD
|
||||
|
||||
inline uint32_t esp_log_early_timestamp()
|
||||
{
|
||||
return xthal_get_ccount() / (CPU_CLK_FREQ_ROM / 1000);
|
||||
}
|
||||
|
||||
#ifndef BOOTLOADER_BUILD
|
||||
|
||||
uint32_t IRAM_ATTR esp_log_timestamp()
|
||||
{
|
||||
if (xTaskGetSchedulerState() == taskSCHEDULER_NOT_STARTED) {
|
||||
return esp_log_early_timestamp();
|
||||
}
|
||||
static uint32_t base = 0;
|
||||
if (base == 0) {
|
||||
base = esp_log_early_timestamp();
|
||||
}
|
||||
return base + xTaskGetTickCount() * configTICK_RATE_HZ;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
uint32_t esp_log_timestamp()
|
||||
{
|
||||
return esp_log_early_timestamp();
|
||||
}
|
||||
|
||||
#endif //BOOTLOADER_BUILD
|
Loading…
x
Reference in New Issue
Block a user