refactor(spi_slave): replace dma_ll in slave hal layer (part 2.2)

This commit is contained in:
wanlei 2023-12-13 12:51:58 +08:00 committed by Wan Lei
parent 31f4e9c698
commit 67f798b666
15 changed files with 195 additions and 222 deletions

View File

@ -55,6 +55,7 @@ menu "ESP-Driver:SPI Configurations"
default y
select PERIPH_CTRL_FUNC_IN_IRAM
select HAL_SPI_SLAVE_FUNC_IN_IRAM
select GDMA_CTRL_FUNC_IN_IRAM if SOC_GDMA_SUPPORTED
help
Place the SPI slave ISR in to IRAM to avoid possible cache miss.

View File

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2010-2023 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2010-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -25,18 +25,6 @@ extern "C"
{
#endif
#ifdef CONFIG_SPI_MASTER_ISR_IN_IRAM
#define SPI_MASTER_ISR_ATTR IRAM_ATTR
#else
#define SPI_MASTER_ISR_ATTR
#endif
#ifdef CONFIG_SPI_MASTER_IN_IRAM
#define SPI_MASTER_ATTR IRAM_ATTR
#else
#define SPI_MASTER_ATTR
#endif
//NOTE!! If both A and B are not defined, '#if (A==B)' is true, because GCC use 0 stand for undefined symbol
#if SOC_GPSPI_SUPPORTED && defined(SOC_GDMA_BUS_AXI) && (SOC_GDMA_TRIG_PERIPH_SPI2_BUS == SOC_GDMA_BUS_AXI)
#define DMA_DESC_MEM_ALIGN_SIZE 8

View File

@ -315,7 +315,7 @@ esp_err_t spicommon_dma_desc_alloc(spi_dma_ctx_t *dma_ctx, int cfg_max_sz, int *
#define ADDR_CPU_2_DMA(addr) (addr)
#endif
void SPI_MASTER_ISR_ATTR spicommon_dma_desc_setup_link(spi_dma_desc_t *dmadesc, const void *data, int len, bool is_rx)
void IRAM_ATTR spicommon_dma_desc_setup_link(spi_dma_desc_t *dmadesc, const void *data, int len, bool is_rx)
{
dmadesc = ADDR_DMA_2_CPU(dmadesc);
int n = 0;

View File

@ -133,6 +133,27 @@ We have two bits to control the interrupt:
#include "esp_cache.h"
#endif
#ifdef CONFIG_SPI_MASTER_ISR_IN_IRAM
#define SPI_MASTER_ISR_ATTR IRAM_ATTR
#else
#define SPI_MASTER_ISR_ATTR
#endif
#ifdef CONFIG_SPI_MASTER_IN_IRAM
#define SPI_MASTER_ATTR IRAM_ATTR
#else
#define SPI_MASTER_ATTR
#endif
#if SOC_PERIPH_CLK_CTRL_SHARED
#define SPI_MASTER_PERI_CLOCK_ATOMIC() PERIPH_RCC_ATOMIC()
#else
#define SPI_MASTER_PERI_CLOCK_ATOMIC()
#endif
static const char *SPI_TAG = "spi_master";
#define SPI_CHECK(a, str, ret_val) ESP_RETURN_ON_FALSE_ISR(a, ret_val, SPI_TAG, str)
typedef struct spi_device_t spi_device_t;
/// struct to hold private transaction data (like tx and rx buffer for DMA).
@ -210,15 +231,6 @@ struct spi_device_t {
static spi_host_t* bus_driver_ctx[SOC_SPI_PERIPH_NUM] = {};
static const char *SPI_TAG = "spi_master";
#define SPI_CHECK(a, str, ret_val) ESP_RETURN_ON_FALSE_ISR(a, ret_val, SPI_TAG, str)
#if SOC_PERIPH_CLK_CTRL_SHARED
#define SPI_MASTER_PERI_CLOCK_ATOMIC() PERIPH_RCC_ATOMIC()
#else
#define SPI_MASTER_PERI_CLOCK_ATOMIC()
#endif
static void spi_intr(void *arg);
static void spi_bus_intr_enable(void *host);
static void spi_bus_intr_disable(void *host);

View File

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -181,14 +181,6 @@ esp_err_t spi_slave_initialize(spi_host_device_t host, const spi_bus_config_t *b
hal->dmadesc_tx = spihost[host]->dma_ctx->dmadesc_tx;
hal->dmadesc_rx = spihost[host]->dma_ctx->dmadesc_rx;
hal->dmadesc_n = spihost[host]->dma_ctx->dma_desc_num;
#if SOC_GDMA_SUPPORTED
//temporary used for gdma_ll alias in hal layer
gdma_get_channel_id(spihost[host]->dma_ctx->tx_dma_chan, (int *)&hal->tx_dma_chan);
gdma_get_channel_id(spihost[host]->dma_ctx->rx_dma_chan, (int *)&hal->rx_dma_chan);
#else
hal->tx_dma_chan = spihost[host]->dma_ctx->tx_dma_chan.chan_id;
hal->rx_dma_chan = spihost[host]->dma_ctx->rx_dma_chan.chan_id;
#endif
#if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE
size_t alignment;
@ -266,8 +258,6 @@ esp_err_t spi_slave_initialize(spi_host_device_t host, const spi_bus_config_t *b
//assign the SPI, RX DMA and TX DMA peripheral registers beginning address
spi_slave_hal_config_t hal_config = {
.host_id = host,
.dma_in = SPI_LL_GET_HW(host),
.dma_out = SPI_LL_GET_HW(host)
};
spi_slave_hal_init(hal, &hal_config);
@ -279,31 +269,7 @@ esp_err_t spi_slave_initialize(spi_host_device_t host, const spi_bus_config_t *b
return ESP_OK;
cleanup:
if (spihost[host]) {
if (spihost[host]->trans_queue) {
vQueueDelete(spihost[host]->trans_queue);
}
if (spihost[host]->ret_queue) {
vQueueDelete(spihost[host]->ret_queue);
}
#ifdef CONFIG_PM_ENABLE
if (spihost[host]->pm_lock) {
esp_pm_lock_release(spihost[host]->pm_lock);
esp_pm_lock_delete(spihost[host]->pm_lock);
}
#endif
}
spi_slave_hal_deinit(&spihost[host]->hal);
if (spihost[host]->dma_enabled) {
free(spihost[host]->dma_ctx->dmadesc_tx);
free(spihost[host]->dma_ctx->dmadesc_rx);
spicommon_dma_chan_free(spihost[host]->dma_ctx);
}
free(spihost[host]);
spihost[host] = NULL;
spicommon_periph_free(host);
spi_slave_free(host);
return ret;
}
@ -325,8 +291,10 @@ esp_err_t spi_slave_free(spi_host_device_t host)
spicommon_bus_free_io_cfg(&spihost[host]->bus_config);
esp_intr_free(spihost[host]->intr);
#ifdef CONFIG_PM_ENABLE
esp_pm_lock_release(spihost[host]->pm_lock);
esp_pm_lock_delete(spihost[host]->pm_lock);
if (spihost[host]->pm_lock) {
esp_pm_lock_release(spihost[host]->pm_lock);
esp_pm_lock_delete(spihost[host]->pm_lock);
}
#endif //CONFIG_PM_ENABLE
free(spihost[host]);
spihost[host] = NULL;
@ -553,6 +521,49 @@ esp_err_t SPI_SLAVE_ATTR spi_slave_transmit(spi_host_device_t host, spi_slave_tr
return ESP_OK;
}
#if SOC_GDMA_SUPPORTED // AHB_DMA_V1 and AXI_DMA
// dma is provided by gdma driver on these targets
#define spi_dma_reset gdma_reset
#define spi_dma_start(chan, addr) gdma_start(chan, (intptr_t)(addr))
#endif
static void SPI_SLAVE_ISR_ATTR s_spi_slave_dma_prepare_data(spi_dma_ctx_t *dma_ctx, spi_slave_hal_context_t *hal)
{
if (hal->rx_buffer) {
spicommon_dma_desc_setup_link(dma_ctx->dmadesc_rx, hal->rx_buffer, ((hal->bitlen + 7) / 8), true);
spi_dma_reset(dma_ctx->rx_dma_chan);
spi_slave_hal_hw_prepare_rx(hal->hw);
spi_dma_start(dma_ctx->rx_dma_chan, dma_ctx->dmadesc_rx);
}
if (hal->tx_buffer) {
spicommon_dma_desc_setup_link(dma_ctx->dmadesc_tx, hal->tx_buffer, (hal->bitlen + 7) / 8, false);
spi_dma_reset(dma_ctx->tx_dma_chan);
spi_slave_hal_hw_prepare_tx(hal->hw);
spi_dma_start(dma_ctx->tx_dma_chan, dma_ctx->dmadesc_tx);
}
}
static void SPI_SLAVE_ISR_ATTR s_spi_slave_prepare_data(spi_slave_t *host)
{
spi_slave_hal_context_t *hal = &host->hal;
if (host->dma_enabled) {
s_spi_slave_dma_prepare_data(host->dma_ctx, &host->hal);
} else {
//No DMA. Copy data to transmit buffers.
spi_slave_hal_push_tx_buffer(hal);
spi_slave_hal_hw_fifo_reset(hal, true, false);
}
spi_slave_hal_set_trans_bitlen(hal);
#ifdef CONFIG_IDF_TARGET_ESP32
//SPI Slave mode on ESP32 requires MOSI/MISO enable
spi_slave_hal_enable_data_line(hal);
#endif
}
#if CONFIG_IDF_TARGET_ESP32
static void SPI_SLAVE_ISR_ATTR spi_slave_restart_after_dmareset(void *arg)
{
@ -654,7 +665,8 @@ static void SPI_SLAVE_ISR_ATTR spi_intr(void *arg)
}
#endif //#if CONFIG_IDF_TARGET_ESP32
spi_slave_hal_prepare_data(hal);
spi_slave_hal_hw_reset(hal);
s_spi_slave_prepare_data(host);
//The slave rx dma get disturbed by unexpected transaction. Only connect the CS when slave is ready.
if (use_dma) {

View File

@ -313,7 +313,7 @@ static inline void spi_ll_slave_reset(spi_dev_t *hw)
/**
* Reset SPI CPU TX FIFO
*
* On ESP32C3, this function is not seperated
* On ESP32C3, this function is not separated
*
* @param hw Beginning address of the peripheral registers.
*/
@ -326,7 +326,7 @@ static inline void spi_ll_cpu_tx_fifo_reset(spi_dev_t *hw)
/**
* Reset SPI CPU RX FIFO
*
* On ESP32C3, this function is not seperated
* On ESP32C3, this function is not separated
*
* @param hw Beginning address of the peripheral registers.
*/
@ -711,7 +711,7 @@ static inline void spi_ll_master_set_clock_by_reg(spi_dev_t *hw, const spi_ll_cl
* Get the frequency of given dividers. Don't use in app.
*
* @param fapb APB clock of the system.
* @param pre Pre devider.
* @param pre Pre divider.
* @param n Main divider.
*
* @return Frequency of given dividers.
@ -722,10 +722,10 @@ static inline int spi_ll_freq_for_pre_n(int fapb, int pre, int n)
}
/**
* Calculate the nearest frequency avaliable for master.
* Calculate the nearest frequency available for master.
*
* @param fapb APB clock of the system.
* @param hz Frequncy desired.
* @param hz Frequency desired.
* @param duty_cycle Duty cycle desired.
* @param out_reg Output address to store the calculated clock configurations for the return frequency.
*
@ -805,7 +805,7 @@ typeof(GPSPI2.clock) reg;
*
* @param hw Beginning address of the peripheral registers.
* @param fapb APB clock of the system.
* @param hz Frequncy desired.
* @param hz Frequency desired.
* @param duty_cycle Duty cycle desired.
*
* @return Actual frequency that is used.

View File

@ -315,7 +315,7 @@ static inline void spi_ll_slave_reset(spi_dev_t *hw)
/**
* Reset SPI CPU TX FIFO
*
* On ESP32C3, this function is not seperated
* On ESP32C3, this function is not separated
*
* @param hw Beginning address of the peripheral registers.
*/
@ -328,7 +328,7 @@ static inline void spi_ll_cpu_tx_fifo_reset(spi_dev_t *hw)
/**
* Reset SPI CPU RX FIFO
*
* On ESP32C3, this function is not seperated
* On ESP32C3, this function is not separated
*
* @param hw Beginning address of the peripheral registers.
*/
@ -713,7 +713,7 @@ static inline void spi_ll_master_set_clock_by_reg(spi_dev_t *hw, const spi_ll_cl
* Get the frequency of given dividers. Don't use in app.
*
* @param fapb APB clock of the system.
* @param pre Pre devider.
* @param pre Pre divider.
* @param n Main divider.
*
* @return Frequency of given dividers.
@ -724,10 +724,10 @@ static inline int spi_ll_freq_for_pre_n(int fapb, int pre, int n)
}
/**
* Calculate the nearest frequency avaliable for master.
* Calculate the nearest frequency available for master.
*
* @param fapb APB clock of the system.
* @param hz Frequncy desired.
* @param hz Frequency desired.
* @param duty_cycle Duty cycle desired.
* @param out_reg Output address to store the calculated clock configurations for the return frequency.
*
@ -807,7 +807,7 @@ static inline int spi_ll_master_cal_clock(int fapb, int hz, int duty_cycle, spi_
*
* @param hw Beginning address of the peripheral registers.
* @param fapb APB clock of the system.
* @param hz Frequncy desired.
* @param hz Frequency desired.
* @param duty_cycle Duty cycle desired.
*
* @return Actual frequency that is used.

View File

@ -307,7 +307,7 @@ static inline void spi_ll_slave_reset(spi_dev_t *hw)
/**
* Reset SPI CPU TX FIFO
*
* On ESP32C6, this function is not seperated
* On ESP32C6, this function is not separated
*
* @param hw Beginning address of the peripheral registers.
*/
@ -320,7 +320,7 @@ static inline void spi_ll_cpu_tx_fifo_reset(spi_dev_t *hw)
/**
* Reset SPI CPU RX FIFO
*
* On ESP32C6, this function is not seperated
* On ESP32C6, this function is not separated
*
* @param hw Beginning address of the peripheral registers.
*/
@ -705,7 +705,7 @@ static inline void spi_ll_master_set_clock_by_reg(spi_dev_t *hw, const spi_ll_cl
* Get the frequency of given dividers. Don't use in app.
*
* @param fapb APB clock of the system.
* @param pre Pre devider.
* @param pre Pre divider.
* @param n Main divider.
*
* @return Frequency of given dividers.
@ -716,10 +716,10 @@ static inline int spi_ll_freq_for_pre_n(int fapb, int pre, int n)
}
/**
* Calculate the nearest frequency avaliable for master.
* Calculate the nearest frequency available for master.
*
* @param fapb APB clock of the system.
* @param hz Frequncy desired.
* @param hz Frequency desired.
* @param duty_cycle Duty cycle desired.
* @param out_reg Output address to store the calculated clock configurations for the return frequency.
*
@ -799,7 +799,7 @@ static inline int spi_ll_master_cal_clock(int fapb, int hz, int duty_cycle, spi_
*
* @param hw Beginning address of the peripheral registers.
* @param fapb APB clock of the system.
* @param hz Frequncy desired.
* @param hz Frequency desired.
* @param duty_cycle Duty cycle desired.
*
* @return Actual frequency that is used.

View File

@ -306,7 +306,7 @@ static inline void spi_ll_slave_reset(spi_dev_t *hw)
/**
* Reset SPI CPU TX FIFO
*
* On ESP32H2, this function is not seperated
* On ESP32H2, this function is not separated
*
* @param hw Beginning address of the peripheral registers.
*/
@ -319,7 +319,7 @@ static inline void spi_ll_cpu_tx_fifo_reset(spi_dev_t *hw)
/**
* Reset SPI CPU RX FIFO
*
* On ESP32H2, this function is not seperated
* On ESP32H2, this function is not separated
*
* @param hw Beginning address of the peripheral registers.
*/
@ -704,7 +704,7 @@ static inline void spi_ll_master_set_clock_by_reg(spi_dev_t *hw, const spi_ll_cl
* Get the frequency of given dividers. Don't use in app.
*
* @param fapb APB clock of the system.
* @param pre Pre devider.
* @param pre Pre divider.
* @param n Main divider.
*
* @return Frequency of given dividers.
@ -715,10 +715,10 @@ static inline int spi_ll_freq_for_pre_n(int fapb, int pre, int n)
}
/**
* Calculate the nearest frequency avaliable for master.
* Calculate the nearest frequency available for master.
*
* @param fapb APB clock of the system.
* @param hz Frequncy desired.
* @param hz Frequency desired.
* @param duty_cycle Duty cycle desired.
* @param out_reg Output address to store the calculated clock configurations for the return frequency.
*
@ -798,7 +798,7 @@ static inline int spi_ll_master_cal_clock(int fapb, int hz, int duty_cycle, spi_
*
* @param hw Beginning address of the peripheral registers.
* @param fapb APB clock of the system.
* @param hz Frequncy desired.
* @param hz Frequency desired.
* @param duty_cycle Duty cycle desired.
*
* @return Actual frequency that is used.

View File

@ -358,7 +358,7 @@ static inline void spi_ll_slave_reset(spi_dev_t *hw)
/**
* Reset SPI CPU TX FIFO
*
* On P4, this function is not seperated
* On P4, this function is not separated
*
* @param hw Beginning address of the peripheral registers.
*/
@ -371,7 +371,7 @@ static inline void spi_ll_cpu_tx_fifo_reset(spi_dev_t *hw)
/**
* Reset SPI CPU RX FIFO
*
* On P4, this function is not seperated
* On P4, this function is not separated
*
* @param hw Beginning address of the peripheral registers.
*/
@ -760,7 +760,7 @@ static inline void spi_ll_master_set_clock_by_reg(spi_dev_t *hw, const spi_ll_cl
* Get the frequency of given dividers. Don't use in app.
*
* @param fapb APB clock of the system.
* @param pre Pre devider.
* @param pre Pre divider.
* @param n Main divider.
*
* @return Frequency of given dividers.
@ -771,10 +771,10 @@ static inline int spi_ll_freq_for_pre_n(int fapb, int pre, int n)
}
/**
* Calculate the nearest frequency avaliable for master.
* Calculate the nearest frequency available for master.
*
* @param fapb APB clock of the system.
* @param hz Frequncy desired.
* @param hz Frequency desired.
* @param duty_cycle Duty cycle desired.
* @param out_reg Output address to store the calculated clock configurations for the return frequency.
*
@ -854,7 +854,7 @@ static inline int spi_ll_master_cal_clock(int fapb, int hz, int duty_cycle, spi_
*
* @param hw Beginning address of the peripheral registers.
* @param fapb APB clock of the system.
* @param hz Frequncy desired.
* @param hz Frequency desired.
* @param duty_cycle Duty cycle desired.
*
* @return Actual frequency that is used.

View File

@ -337,7 +337,7 @@ static inline void spi_ll_cpu_rx_fifo_reset(spi_dev_t *hw)
/**
* Reset SPI DMA TX FIFO
*
* On ESP32S2, this function is not seperated
* On ESP32S2, this function is not separated
*
* @param hw Beginning address of the peripheral registers.
*/
@ -350,7 +350,7 @@ static inline void spi_ll_dma_tx_fifo_reset(spi_dev_t *hw)
/**
* Reset SPI DMA RX FIFO
*
* On ESP32S2, this function is not seperated
* On ESP32S2, this function is not separated
*
* @param hw Beginning address of the peripheral registers.
*/
@ -701,7 +701,7 @@ static inline void spi_ll_master_set_clock_by_reg(spi_dev_t *hw, const spi_ll_cl
* Get the frequency of given dividers. Don't use in app.
*
* @param fapb APB clock of the system.
* @param pre Pre devider.
* @param pre Pre divider.
* @param n main divider.
*
* @return Frequency of given dividers.
@ -712,10 +712,10 @@ static inline int spi_ll_freq_for_pre_n(int fapb, int pre, int n)
}
/**
* Calculate the nearest frequency avaliable for master.
* Calculate the nearest frequency available for master.
*
* @param fapb APB clock of the system.
* @param hz Frequncy desired.
* @param hz Frequency desired.
* @param duty_cycle Duty cycle desired.
* @param out_reg Output address to store the calculated clock configurations for the return frequency.
*
@ -795,7 +795,7 @@ static inline int spi_ll_master_cal_clock(int fapb, int hz, int duty_cycle, spi_
*
* @param hw Beginning address of the peripheral registers.
* @param fapb APB clock of the system.
* @param hz Frequncy desired.
* @param hz Frequency desired.
* @param duty_cycle Duty cycle desired.
*
* @return Actual frequency that is used.
@ -1428,7 +1428,7 @@ static inline void spi_dma_ll_enable_out_auto_wrback(spi_dma_dev_t *dma_out, uin
}
/**
* Get the last outlink descriptor address when DMA produces out_eof intrrupt
* Get the last outlink descriptor address when DMA produces out_eof interrupt
*
* @param dma_out Beginning address of the DMA peripheral registers which transmits the data from RAM to a peripheral.
* @param channel DMA channel, for chip version compatibility, not used.

View File

@ -322,7 +322,7 @@ static inline void spi_ll_slave_reset(spi_dev_t *hw)
/**
* Reset SPI CPU TX FIFO
*
* On ESP32S3, this function is not seperated
* On ESP32S3, this function is not separated
*
* @param hw Beginning address of the peripheral registers.
*/
@ -335,7 +335,7 @@ static inline void spi_ll_cpu_tx_fifo_reset(spi_dev_t *hw)
/**
* Reset SPI CPU RX FIFO
*
* On ESP32S3, this function is not seperated
* On ESP32S3, this function is not separated
*
* @param hw Beginning address of the peripheral registers.
*/
@ -732,7 +732,7 @@ static inline void spi_ll_master_set_clock_by_reg(spi_dev_t *hw, const spi_ll_cl
* Get the frequency of given dividers. Don't use in app.
*
* @param fapb APB clock of the system.
* @param pre Pre devider.
* @param pre Pre divider.
* @param n Main divider.
*
* @return Frequency of given dividers.
@ -743,10 +743,10 @@ static inline int spi_ll_freq_for_pre_n(int fapb, int pre, int n)
}
/**
* Calculate the nearest frequency avaliable for master.
* Calculate the nearest frequency available for master.
*
* @param fapb APB clock of the system.
* @param hz Frequncy desired.
* @param hz Frequency desired.
* @param duty_cycle Duty cycle desired.
* @param out_reg Output address to store the calculated clock configurations for the return frequency.
*
@ -826,7 +826,7 @@ static inline int spi_ll_master_cal_clock(int fapb, int hz, int duty_cycle, spi_
*
* @param hw Beginning address of the peripheral registers.
* @param fapb APB clock of the system.
* @param hz Frequncy desired.
* @param hz Frequency desired.
* @param duty_cycle Duty cycle desired.
*
* @return Actual frequency that is used.

View File

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -52,8 +52,6 @@ typedef dma_descriptor_align8_t spi_dma_desc_t;
typedef struct {
/* configured by driver at initialization, don't touch */
spi_dev_t *hw; ///< Beginning address of the peripheral registers.
spi_dma_dev_t *dma_in; ///< Address of the DMA peripheral registers which stores the data received from a peripheral into RAM.
spi_dma_dev_t *dma_out; ///< Address of the DMA peripheral registers which transmits the data from RAM to a peripheral.
/* should be configured by driver at initialization */
spi_dma_desc_t *dmadesc_rx; /**< Array of DMA descriptor used by the TX DMA.
* The amount should be larger than dmadesc_n. The driver should ensure that
@ -64,8 +62,6 @@ typedef struct {
* the data to be sent is shorter than the descriptors can hold.
*/
int dmadesc_n; ///< The amount of descriptors of both ``dmadesc_tx`` and ``dmadesc_rx`` that the HAL can use.
uint32_t tx_dma_chan; ///< TX DMA channel
uint32_t rx_dma_chan; ///< RX DMA channel
/*
* configurations to be filled after ``spi_slave_hal_init``. Updated to
@ -92,8 +88,6 @@ typedef struct {
typedef struct {
uint32_t host_id; ///< SPI controller ID
spi_dma_dev_t *dma_in; ///< Input DMA(DMA -> RAM) peripheral register address
spi_dma_dev_t *dma_out; ///< Output DMA(RAM -> DMA) peripheral register address
} spi_slave_hal_config_t;
/**
@ -119,11 +113,53 @@ void spi_slave_hal_deinit(spi_slave_hal_context_t *hal);
void spi_slave_hal_setup_device(const spi_slave_hal_context_t *hal);
/**
* Prepare the data for the current transaction.
* Prepare rx hardware for a new DMA trans
*
* @param hw Beginning address of the peripheral registers.
*/
void spi_slave_hal_hw_prepare_rx(spi_dev_t *hw);
/**
* Prepare tx hardware for a new DMA trans
*
* @param hw Beginning address of the peripheral registers.
*/
void spi_slave_hal_hw_prepare_tx(spi_dev_t *hw);
/**
* Rest peripheral registers to default value
*
* @param hal Context of the HAL layer.
*/
void spi_slave_hal_prepare_data(const spi_slave_hal_context_t *hal);
void spi_slave_hal_hw_reset(spi_slave_hal_context_t *hal);
/**
* Rest hw fifo in peripheral, for a CPU controlled trans
*
* @param hal Context of the HAL layer.
*/
void spi_slave_hal_hw_fifo_reset(spi_slave_hal_context_t *hal, bool tx_rst, bool rx_rst);
/**
* Push data needed to be transmit into hw fifo
*
* @param hal Context of the HAL layer.
*/
void spi_slave_hal_push_tx_buffer(spi_slave_hal_context_t *hal);
/**
* Config transaction bit length for slave
*
* @param hal Context of the HAL layer.
*/
void spi_slave_hal_set_trans_bitlen(spi_slave_hal_context_t *hal);
/**
* Enable/Disable miso/mosi signals in peripheral
*
* @param hal Context of the HAL layer.
*/
void spi_slave_hal_enable_data_line(spi_slave_hal_context_t *hal);
/**
* Trigger start a user-defined transaction.
@ -140,7 +176,7 @@ void spi_slave_hal_user_start(const spi_slave_hal_context_t *hal);
bool spi_slave_hal_usr_is_done(spi_slave_hal_context_t* hal);
/**
* Post transaction operations, fetch data from the buffer and recored the length.
* Post transaction operations, fetch data from the buffer and recorded the length.
*
* @param hal Context of the HAL layer.
*/

View File

@ -4,10 +4,7 @@
void spi_slave_hal_init(spi_slave_hal_context_t *hal, const spi_slave_hal_config_t *hal_config)
{
spi_dev_t *hw = SPI_LL_GET_HW(hal_config->host_id);
hal->hw = hw;
hal->dma_in = hal_config->dma_in;
hal->dma_out = hal_config->dma_out;
hal->hw = SPI_LL_GET_HW(hal_config->host_id);
spi_ll_slave_init(hal->hw);

View File

@ -1,39 +1,7 @@
#include "hal/spi_slave_hal.h"
#include "hal/spi_ll.h"
#include "soc/ext_mem_defs.h"
#include "soc/soc_caps.h"
//This GDMA related part will be introduced by GDMA dedicated APIs in the future. Here we temporarily use macros.
#if SOC_GDMA_SUPPORTED
#if (SOC_GDMA_TRIG_PERIPH_SPI2_BUS == SOC_GDMA_BUS_AHB) && (SOC_AHB_GDMA_VERSION == 1)
#include "soc/gdma_struct.h"
#include "hal/gdma_ll.h"
#define spi_dma_ll_rx_reset(dev, chan) gdma_ll_rx_reset_channel(&GDMA, chan)
#define spi_dma_ll_tx_reset(dev, chan) gdma_ll_tx_reset_channel(&GDMA, chan);
#define spi_dma_ll_rx_start(dev, chan, addr) do {\
gdma_ll_rx_set_desc_addr(&GDMA, chan, (uint32_t)addr);\
gdma_ll_rx_start(&GDMA, chan);\
} while (0)
#define spi_dma_ll_tx_start(dev, chan, addr) do {\
gdma_ll_tx_set_desc_addr(&GDMA, chan, (uint32_t)addr);\
gdma_ll_tx_start(&GDMA, chan);\
} while (0)
#elif (SOC_GDMA_TRIG_PERIPH_SPI2_BUS == SOC_GDMA_BUS_AXI) //TODO: IDF-6152, refactor spi hal layer
#include "hal/axi_dma_ll.h"
#define spi_dma_ll_rx_reset(dev, chan) axi_dma_ll_rx_reset_channel(&AXI_DMA, chan)
#define spi_dma_ll_tx_reset(dev, chan) axi_dma_ll_tx_reset_channel(&AXI_DMA, chan);
#define spi_dma_ll_rx_start(dev, chan, addr) do {\
axi_dma_ll_rx_set_desc_addr(&AXI_DMA, chan, (uint32_t)addr);\
axi_dma_ll_rx_start(&AXI_DMA, chan);\
} while (0)
#define spi_dma_ll_tx_start(dev, chan, addr) do {\
axi_dma_ll_tx_set_desc_addr(&AXI_DMA, chan, (uint32_t)addr);\
axi_dma_ll_tx_start(&AXI_DMA, chan);\
} while (0)
#endif
#endif //SOC_GDMA_SUPPORTED
bool spi_slave_hal_usr_is_done(spi_slave_hal_context_t* hal)
{
return spi_ll_usr_is_done(hal->hw);
@ -45,89 +13,48 @@ void spi_slave_hal_user_start(const spi_slave_hal_context_t *hal)
spi_ll_user_start(hal->hw);
}
#if SOC_NON_CACHEABLE_OFFSET
#define ADDR_DMA_2_CPU(addr) ((typeof(addr))((uint32_t)(addr) + SOC_NON_CACHEABLE_OFFSET))
#define ADDR_CPU_2_DMA(addr) ((typeof(addr))((uint32_t)(addr) - SOC_NON_CACHEABLE_OFFSET))
#else
#define ADDR_DMA_2_CPU(addr) (addr)
#define ADDR_CPU_2_DMA(addr) (addr)
#endif
static void s_spi_slave_hal_dma_desc_setup_link(spi_dma_desc_t *dmadesc, const void *data, int len, bool is_rx)
void spi_slave_hal_hw_prepare_rx(spi_dev_t *hw)
{
dmadesc = ADDR_DMA_2_CPU(dmadesc);
int n = 0;
while (len) {
int dmachunklen = len;
if (dmachunklen > DMA_DESCRIPTOR_BUFFER_MAX_SIZE_4B_ALIGNED) {
dmachunklen = DMA_DESCRIPTOR_BUFFER_MAX_SIZE_4B_ALIGNED;
}
if (is_rx) {
//Receive needs DMA length rounded to next 32-bit boundary
dmadesc[n].dw0.size = (dmachunklen + 3) & (~3);
} else {
dmadesc[n].dw0.size = dmachunklen;
dmadesc[n].dw0.length = dmachunklen;
}
dmadesc[n].buffer = (uint8_t *)data;
dmadesc[n].dw0.suc_eof = 0;
dmadesc[n].dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_DMA;
dmadesc[n].next = ADDR_CPU_2_DMA(&dmadesc[n + 1]);
len -= dmachunklen;
data += dmachunklen;
n++;
}
dmadesc[n - 1].dw0.suc_eof = 1; //Mark last DMA desc as end of stream.
dmadesc[n - 1].next = NULL;
spi_ll_dma_rx_fifo_reset(hw);
spi_ll_infifo_full_clr(hw);
spi_ll_dma_rx_enable(hw, 1);
}
void spi_slave_hal_prepare_data(const spi_slave_hal_context_t *hal)
void spi_slave_hal_hw_prepare_tx(spi_dev_t *hw)
{
if (hal->use_dma) {
spi_ll_dma_tx_fifo_reset(hw);
spi_ll_outfifo_empty_clr(hw);
spi_ll_dma_tx_enable(hw, 1);
}
//Fill DMA descriptors
if (hal->rx_buffer) {
s_spi_slave_hal_dma_desc_setup_link(hal->dmadesc_rx, hal->rx_buffer, ((hal->bitlen + 7) / 8), true);
void spi_slave_hal_hw_reset(spi_slave_hal_context_t *hal)
{
spi_ll_slave_reset(hal->hw);
}
//reset dma inlink, this should be reset before spi related reset
spi_dma_ll_rx_reset(hal->dma_in, hal->rx_dma_chan);
spi_ll_dma_rx_fifo_reset(hal->dma_in);
spi_ll_slave_reset(hal->hw);
spi_ll_infifo_full_clr(hal->hw);
void spi_slave_hal_hw_fifo_reset(spi_slave_hal_context_t *hal, bool tx_rst, bool rx_rst)
{
tx_rst ? spi_ll_cpu_tx_fifo_reset(hal->hw) : 0;
rx_rst ? spi_ll_cpu_rx_fifo_reset(hal->hw) : 0;
}
spi_ll_dma_rx_enable(hal->hw, 1);
spi_dma_ll_rx_start(hal->dma_in, hal->rx_dma_chan, (lldesc_t *)hal->dmadesc_rx);
}
if (hal->tx_buffer) {
s_spi_slave_hal_dma_desc_setup_link(hal->dmadesc_tx, hal->tx_buffer, (hal->bitlen + 7) / 8, false);
//reset dma outlink, this should be reset before spi related reset
spi_dma_ll_tx_reset(hal->dma_out, hal->tx_dma_chan);
spi_ll_dma_tx_fifo_reset(hal->dma_out);
spi_ll_slave_reset(hal->hw);
spi_ll_outfifo_empty_clr(hal->hw);
spi_ll_dma_tx_enable(hal->hw, 1);
spi_dma_ll_tx_start(hal->dma_out, hal->tx_dma_chan, (lldesc_t *)hal->dmadesc_tx);
}
} else {
//No DMA. Turn off SPI and copy data to transmit buffers.
if (hal->tx_buffer) {
spi_ll_slave_reset(hal->hw);
spi_ll_write_buffer(hal->hw, hal->tx_buffer, hal->bitlen);
}
spi_ll_cpu_tx_fifo_reset(hal->hw);
void spi_slave_hal_push_tx_buffer(spi_slave_hal_context_t *hal)
{
if (hal->tx_buffer) {
spi_ll_write_buffer(hal->hw, hal->tx_buffer, hal->bitlen);
}
}
void spi_slave_hal_set_trans_bitlen(spi_slave_hal_context_t *hal)
{
spi_ll_slave_set_rx_bitlen(hal->hw, hal->bitlen);
spi_ll_slave_set_tx_bitlen(hal->hw, hal->bitlen);
}
#ifdef CONFIG_IDF_TARGET_ESP32
//SPI Slave mode on ESP32 requires MOSI/MISO enable
spi_ll_enable_mosi(hal->hw, (hal->rx_buffer == NULL) ? 0 : 1);
spi_ll_enable_miso(hal->hw, (hal->tx_buffer == NULL) ? 0 : 1);
#endif
void spi_slave_hal_enable_data_line(spi_slave_hal_context_t *hal)
{
spi_ll_enable_mosi(hal->hw, (hal->rx_buffer != NULL));
spi_ll_enable_miso(hal->hw, (hal->tx_buffer != NULL));
}
void spi_slave_hal_store_result(spi_slave_hal_context_t *hal)