Merge branch 'bugfix/fix_adc_read_zero_h2_v5.1' into 'release/v5.1'

ADC: fix adc raw data get 0 because of signal delay on ESP32H2(v5.1)

See merge request espressif/esp-idf!26976
This commit is contained in:
morris 2023-11-21 11:08:57 +08:00
commit 64e7343e40
9 changed files with 70 additions and 15 deletions

View File

@ -12,6 +12,7 @@
#include "driver/gpio.h"
#include "driver/rtc_io.h"
#include "test_common_adc.h"
#include "esp_rom_sys.h"
const __attribute__((unused)) static char *TAG = "TEST_ADC";
@ -117,7 +118,43 @@ TEST_CASE("ADC oneshot high/low test", "[adc_oneshot]")
#endif //#if ADC_TEST_ONESHOT_HIGH_LOW_TEST_ADC2
}
TEST_CASE("ADC oneshot stress test that get zero even if convent done", "[adc_oneshot]")
{
//There is a hardware limitation. After ADC get DONE signal, it still need a delay to synchronize ADC raw data or it may get zero even if getting DONE signal.
int test_num = 100;
adc_channel_t channel = ADC1_TEST_CHAN1;
adc_atten_t atten = ADC_ATTEN_DB_12;
adc_unit_t unit_id = ADC_UNIT_1;
adc_oneshot_unit_handle_t adc1_handle;
adc_oneshot_unit_init_cfg_t init_config1 = {
.unit_id = unit_id,
.ulp_mode = ADC_ULP_MODE_DISABLE,
};
adc_oneshot_chan_cfg_t config = {
.bitwidth = SOC_ADC_RTC_MAX_BITWIDTH,
.atten = atten,
};
int raw_data = 0;
srand(199);
for (int i = 0; i < test_num; i++) {
test_adc_set_io_level(unit_id, ADC1_TEST_CHAN1, 1);
TEST_ESP_OK(adc_oneshot_new_unit(&init_config1, &adc1_handle));
TEST_ESP_OK(adc_oneshot_config_channel(adc1_handle, channel, &config));
TEST_ESP_OK(adc_oneshot_read(adc1_handle, channel, &raw_data));
TEST_ASSERT_NOT_EQUAL(0, raw_data);
TEST_ESP_OK(adc_oneshot_del_unit(adc1_handle));
esp_rom_delay_us(rand() % 512);
}
}
#if SOC_ADC_CALIBRATION_V1_SUPPORTED
/*---------------------------------------------------------------

View File

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2019-2021 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2019-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -81,43 +81,52 @@ void adc_oneshot_hal_setup(adc_oneshot_hal_ctx_t *hal, adc_channel_t chan)
#endif //#if SOC_ADC_ARBITER_SUPPORTED
}
static void adc_hal_onetime_start(adc_unit_t unit, uint32_t clk_src_freq_hz)
static void adc_hal_onetime_start(adc_unit_t unit, uint32_t clk_src_freq_hz, uint32_t *read_delay_us)
{
#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
(void)unit;
uint32_t delay = 0;
/**
* There is a hardware limitation. If the APB clock frequency is high, the step of this reg signal: ``onetime_start`` may not be captured by the
* ADC digital controller (when its clock frequency is too slow). A rough estimate for this step should be at least 3 ADC digital controller
* clock cycle.
*/
uint32_t digi_clk = clk_src_freq_hz / (ADC_LL_CLKM_DIV_NUM_DEFAULT + ADC_LL_CLKM_DIV_A_DEFAULT / ADC_LL_CLKM_DIV_B_DEFAULT + 1);
uint32_t adc_ctrl_clk = clk_src_freq_hz / (ADC_LL_CLKM_DIV_NUM_DEFAULT + ADC_LL_CLKM_DIV_A_DEFAULT / ADC_LL_CLKM_DIV_B_DEFAULT + 1);
//Convert frequency to time (us). Since decimals are removed by this division operation. Add 1 here in case of the fact that delay is not enough.
delay = (1000 * 1000) / digi_clk + 1;
//3 ADC digital controller clock cycle
delay = delay * 3;
HAL_EARLY_LOGD("adc_hal", "clk_src_freq_hz: %d, digi_clk: %d, delay: %d", clk_src_freq_hz, digi_clk, delay);
uint32_t sample_delay_us = ((1000 * 1000) / adc_ctrl_clk + 1) * 3;
HAL_EARLY_LOGD("adc_hal", "clk_src_freq_hz: %"PRIu32", adc_ctrl_clk: %"PRIu32", sample_delay_us: %"PRIu32"", clk_src_freq_hz, adc_ctrl_clk, sample_delay_us);
//This coefficient (8) is got from test, and verified from DT. When digi_clk is not smaller than ``APB_CLK_FREQ/8``, no delay is needed.
if (digi_clk >= APB_CLK_FREQ/8) {
delay = 0;
if (adc_ctrl_clk >= APB_CLK_FREQ/8) {
sample_delay_us = 0;
}
HAL_EARLY_LOGD("adc_hal", "delay: %d", delay);
HAL_EARLY_LOGD("adc_hal", "delay for `onetime_start` signal captured: %"PRIu32"", sample_delay_us);
adc_oneshot_ll_start(false);
esp_rom_delay_us(delay);
esp_rom_delay_us(sample_delay_us);
adc_oneshot_ll_start(true);
//No need to delay here. Becuase if the start signal is not seen, there won't be a done intr.
#if ADC_LL_DELAY_CYCLE_AFTER_DONE_SIGNAL
/**
* There is a hardware limitation.
* After ADC get DONE signal, it still need a delay to synchronize ADC raw data or it may get zero.
* A rough estimate for this step should be at least ADC_LL_DELAY_CYCLE_AFTER_DONE_SIGNAL ADC sar clock cycle.
*/
uint32_t sar_clk = adc_ctrl_clk / ADC_LL_DIGI_SAR_CLK_DIV_DEFAULT;
*read_delay_us = ((1000 * 1000) / sar_clk + 1) * ADC_LL_DELAY_CYCLE_AFTER_DONE_SIGNAL;
HAL_EARLY_LOGD("adc_hal", "clk_src_freq_hz: %"PRIu32", sar_clk: %"PRIu32", read_delay_us: %"PRIu32"", clk_src_freq_hz, sar_clk, read_delay_us);
#endif //ADC_LL_DELAY_CYCLE_AFTER_DONE_SIGNAL
#else
adc_oneshot_ll_start(unit);
#endif
#endif // SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED
}
bool adc_oneshot_hal_convert(adc_oneshot_hal_ctx_t *hal, int *out_raw)
{
bool valid = true;
uint32_t event = 0;
uint32_t read_delay_us = 0;
if (hal->unit == ADC_UNIT_1) {
event = ADC_LL_EVENT_ADC1_ONESHOT_DONE;
} else {
@ -128,10 +137,11 @@ bool adc_oneshot_hal_convert(adc_oneshot_hal_ctx_t *hal, int *out_raw)
adc_oneshot_ll_disable_all_unit();
adc_oneshot_ll_enable(hal->unit);
adc_hal_onetime_start(hal->unit, hal->clk_src_freq_hz);
adc_hal_onetime_start(hal->unit, hal->clk_src_freq_hz, &read_delay_us);
while (!adc_oneshot_ll_get_event(event)) {
;
}
esp_rom_delay_us(read_delay_us);
*out_raw = adc_oneshot_ll_get_raw_result(hal->unit);
#if (SOC_ADC_PERIPH_NUM == 2)
if (hal->unit == ADC_UNIT_2) {
@ -146,6 +156,7 @@ bool adc_oneshot_hal_convert(adc_oneshot_hal_ctx_t *hal, int *out_raw)
return valid;
}
/*---------------------------------------------------------------
Workarounds
---------------------------------------------------------------*/

View File

@ -30,6 +30,7 @@ extern "C" {
---------------------------------------------------------------*/
#define ADC_LL_DATA_INVERT_DEFAULT(PERIPH_NUM) (1)
#define ADC_LL_SAR_CLK_DIV_DEFAULT(PERIPH_NUM) (1)
#define ADC_LL_DELAY_CYCLE_AFTER_DONE_SIGNAL (0)
/*---------------------------------------------------------------
DMA

View File

@ -33,6 +33,7 @@ extern "C" {
Oneshot
---------------------------------------------------------------*/
#define ADC_LL_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
#define ADC_LL_DELAY_CYCLE_AFTER_DONE_SIGNAL (0)
/*---------------------------------------------------------------
DMA

View File

@ -38,6 +38,7 @@ extern "C" {
Oneshot
---------------------------------------------------------------*/
#define ADC_LL_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
#define ADC_LL_DELAY_CYCLE_AFTER_DONE_SIGNAL (0)
/*---------------------------------------------------------------
DMA

View File

@ -39,6 +39,7 @@ extern "C" {
Oneshot
---------------------------------------------------------------*/
#define ADC_LL_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
#define ADC_LL_DELAY_CYCLE_AFTER_DONE_SIGNAL (0)
/*---------------------------------------------------------------
DMA

View File

@ -39,6 +39,7 @@ extern "C" {
Oneshot
---------------------------------------------------------------*/
#define ADC_LL_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
#define ADC_LL_DELAY_CYCLE_AFTER_DONE_SIGNAL (5)
/*---------------------------------------------------------------
DMA

View File

@ -35,6 +35,7 @@ extern "C" {
---------------------------------------------------------------*/
#define ADC_LL_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
#define ADC_LL_SAR_CLK_DIV_DEFAULT(PERIPH_NUM) (1)
#define ADC_LL_DELAY_CYCLE_AFTER_DONE_SIGNAL (0)
/*---------------------------------------------------------------
DMA

View File

@ -35,6 +35,7 @@ extern "C" {
---------------------------------------------------------------*/
#define ADC_LL_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
#define ADC_LL_SAR_CLK_DIV_DEFAULT(PERIPH_NUM) (1)
#define ADC_LL_DELAY_CYCLE_AFTER_DONE_SIGNAL (0)
/*---------------------------------------------------------------
DMA