Merge branch 'bugfix/fix_uart_wait_done_bug_v3.3' into 'release/v3.3'

bugfix(UART): fixed two UART issues for release/v3.3

See merge request espressif/esp-idf!5481
This commit is contained in:
Angus Gratton 2019-07-11 14:56:14 +08:00
commit 630ffde6bb

View File

@ -691,9 +691,9 @@ esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_
//Hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times.
//T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH)
if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh * UART_TOUT_REF_FACTOR_DEFAULT) & UART_RX_TOUT_THRHD_V);
UART[uart_num]->conf1.rx_tout_thrhd = (intr_conf->rx_timeout_thresh * UART_TOUT_REF_FACTOR_DEFAULT);
} else {
UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
UART[uart_num]->conf1.rx_tout_thrhd = intr_conf->rx_timeout_thresh;
}
UART[uart_num]->conf1.rx_tout_en = 1;
} else {
@ -734,14 +734,19 @@ static void uart_rx_intr_handler_default(void *param)
uart_obj_t *p_uart = (uart_obj_t*) param;
uint8_t uart_num = p_uart->uart_num;
uart_dev_t* uart_reg = UART[uart_num];
int rx_fifo_len = uart_reg->status.rxfifo_cnt;
int rx_fifo_len = 0;
uint8_t buf_idx = 0;
uint32_t uart_intr_status = UART[uart_num]->int_st.val;
uint32_t uart_intr_status = 0;
uart_event_t uart_event;
portBASE_TYPE HPTaskAwoken = 0;
static uint8_t pat_flg = 0;
while(uart_intr_status != 0x0) {
buf_idx = 0;
while(1) {
uart_intr_status = uart_reg->int_st.val;
// The `continue statement` may cause the interrupt to loop infinitely
// we exit the interrupt here
if(uart_intr_status == 0) {
break;
}
uart_event.type = UART_EVENT_MAX;
if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
@ -753,15 +758,12 @@ static void uart_rx_intr_handler_default(void *param)
if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
p_uart->tx_waiting_fifo = false;
xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
if(HPTaskAwoken == pdTRUE) {
portYIELD_FROM_ISR();
}
} else {
//We don't use TX ring buffer, because the size is zero.
if(p_uart->tx_buf_size == 0) {
continue;
}
int tx_fifo_rem = UART_FIFO_LEN - UART[uart_num]->status.txfifo_cnt;
int tx_fifo_rem = UART_FIFO_LEN - uart_reg->status.txfifo_cnt;
bool en_tx_flg = false;
//We need to put a loop here, in case all the buffer items are very short.
//That would cause a watch_dog reset because empty interrupt happens so often.
@ -782,9 +784,6 @@ static void uart_rx_intr_handler_default(void *param)
}
//We have saved the data description from the 1st item, return buffer.
vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
if(HPTaskAwoken == pdTRUE) {
portYIELD_FROM_ISR();
}
}else if(p_uart->tx_ptr == NULL) {
//Update the TX item pointer, we will need this to return item to buffer.
p_uart->tx_ptr = (uint8_t*) p_uart->tx_head;
@ -817,9 +816,6 @@ static void uart_rx_intr_handler_default(void *param)
if (p_uart->tx_len_cur == 0) {
//Return item to ring buffer.
vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
if(HPTaskAwoken == pdTRUE) {
portYIELD_FROM_ISR();
}
p_uart->tx_head = NULL;
p_uart->tx_ptr = NULL;
//Sending item done, now we need to send break if there is a record.
@ -862,8 +858,8 @@ static void uart_rx_intr_handler_default(void *param)
}
if (p_uart->rx_buffer_full_flg == false) {
//We have to read out all data in RX FIFO to clear the interrupt signal
while (buf_idx < rx_fifo_len) {
p_uart->rx_data_buf[buf_idx++] = uart_reg->fifo.rw_byte;
for(buf_idx = 0; buf_idx < rx_fifo_len; buf_idx++) {
p_uart->rx_data_buf[buf_idx] = uart_reg->fifo.rw_byte;
}
uint8_t pat_chr = uart_reg->at_cmd_char.data;
int pat_num = uart_reg->at_cmd_char.char_num;
@ -923,9 +919,6 @@ static void uart_rx_intr_handler_default(void *param)
p_uart->rx_buffered_len += p_uart->rx_stash_len;
UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
}
if(HPTaskAwoken == pdTRUE) {
portYIELD_FROM_ISR();
}
} else {
uart_disable_intr_mask_from_isr(uart_num, UART_RXFIFO_FULL_INT_ENA_M | UART_RXFIFO_TOUT_INT_ENA_M);
uart_clear_intr_status(uart_num, UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M);
@ -981,9 +974,6 @@ static void uart_rx_intr_handler_default(void *param)
p_uart->tx_waiting_brk = 0;
} else {
xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
if(HPTaskAwoken == pdTRUE) {
portYIELD_FROM_ISR();
}
}
} else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
uart_disable_intr_mask_from_isr(uart_num, UART_TX_BRK_IDLE_DONE_INT_ENA_M);
@ -1014,9 +1004,6 @@ static void uart_rx_intr_handler_default(void *param)
UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
}
xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
if (HPTaskAwoken == pdTRUE) {
portYIELD_FROM_ISR();
}
} else {
uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
uart_event.type = UART_EVENT_MAX;
@ -1026,11 +1013,10 @@ static void uart_rx_intr_handler_default(void *param)
if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
}
if(HPTaskAwoken == pdTRUE) {
portYIELD_FROM_ISR();
}
}
uart_intr_status = uart_reg->int_st.val;
}
if(HPTaskAwoken == pdTRUE) {
portYIELD_FROM_ISR();
}
}
@ -1040,20 +1026,27 @@ esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
BaseType_t res;
portTickType ticks_end = xTaskGetTickCount() + ticks_to_wait;
portTickType ticks_start = xTaskGetTickCount();
//Take tx_mux
res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
if(res == pdFALSE) {
return ESP_ERR_TIMEOUT;
}
ticks_to_wait = ticks_end - xTaskGetTickCount();
xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
ticks_to_wait = ticks_end - xTaskGetTickCount();
if(UART[uart_num]->status.txfifo_cnt == 0) {
typeof(UART0.status) status = UART[uart_num]->status;
//Wait txfifo_cnt = 0, and the transmitter state machine is in idle state.
if(status.txfifo_cnt == 0 && status.st_utx_out == 0) {
xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
return ESP_OK;
}
uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
TickType_t ticks_end = xTaskGetTickCount();
if (ticks_end - ticks_start > ticks_to_wait) {
ticks_to_wait = 0;
} else {
ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start);
}
//take 2nd tx_done_sem, wait given from ISR
res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
if(res == pdFALSE) {
@ -1543,7 +1536,13 @@ esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
// The tout_thresh = 1, defines TOUT interrupt timeout equal to
// transmission time of one symbol (~11 bit) on current baudrate
if (tout_thresh > 0) {
UART[uart_num]->conf1.rx_tout_thrhd = (tout_thresh & UART_RX_TOUT_THRHD_V);
//Hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times.
//T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH)
if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
UART[uart_num]->conf1.rx_tout_thrhd = tout_thresh * UART_TOUT_REF_FACTOR_DEFAULT;
} else {
UART[uart_num]->conf1.rx_tout_thrhd = tout_thresh;
}
UART[uart_num]->conf1.rx_tout_en = 1;
} else {
UART[uart_num]->conf1.rx_tout_en = 0;