mbedtls: enable RSA support for esp32c6

This commit is contained in:
harshal.patil 2023-02-02 11:37:29 +05:30
parent 5c885a05ff
commit 6206c1e213
5 changed files with 236 additions and 11 deletions

View File

@ -1,7 +0,0 @@
# Documentation: .gitlab/ci/README.md#manifest-file-to-control-the-buildtest-apps
components/mbedtls/test_apps:
disable_test:
- if: IDF_TARGET == "esp32c6"
temporary: true
reason: target esp32c6 is not supported yet

View File

@ -0,0 +1,230 @@
/*
* Multi-precision integer library
* ESP32 C6 hardware accelerated parts based on mbedTLS implementation
*
* SPDX-FileCopyrightText: The Mbed TLS Contributors
*
* SPDX-License-Identifier: Apache-2.0
*
* SPDX-FileContributor: 2023 Espressif Systems (Shanghai) CO LTD
*/
#include <string.h>
#include <sys/param.h>
#include "soc/hwcrypto_periph.h"
#include "esp_private/periph_ctrl.h"
#include "mbedtls/bignum.h"
#include "bignum_impl.h"
#include "soc/pcr_reg.h"
#include "soc/periph_defs.h"
#include "soc/system_reg.h"
#include "esp_crypto_lock.h"
size_t esp_mpi_hardware_words(size_t words)
{
return words;
}
void esp_mpi_enable_hardware_hw_op( void )
{
esp_crypto_mpi_lock_acquire();
/* Enable RSA hardware */
periph_module_enable(PERIPH_RSA_MODULE);
REG_CLR_BIT(PCR_RSA_PD_CTRL_REG, PCR_RSA_MEM_PD);
while (REG_READ(RSA_QUERY_CLEAN_REG) != 1) {
}
// Note: from enabling RSA clock to here takes about 1.3us
REG_WRITE(RSA_INT_ENA_REG, 0);
}
void esp_mpi_disable_hardware_hw_op( void )
{
REG_SET_BIT(PCR_RSA_PD_CTRL_REG, PCR_RSA_MEM_PD);
/* Disable RSA hardware */
periph_module_disable(PERIPH_RSA_MODULE);
esp_crypto_mpi_lock_release();
}
void esp_mpi_interrupt_enable( bool enable )
{
REG_WRITE(RSA_INT_ENA_REG, enable);
}
void esp_mpi_interrupt_clear( void )
{
REG_WRITE(RSA_INT_CLR_REG, 1);
}
/* Copy mbedTLS MPI bignum 'mpi' to hardware memory block at 'mem_base'.
If num_words is higher than the number of words in the bignum then
these additional words will be zeroed in the memory buffer.
*/
static inline void mpi_to_mem_block(uint32_t mem_base, const mbedtls_mpi *mpi, size_t num_words)
{
uint32_t *pbase = (uint32_t *)mem_base;
uint32_t copy_words = MIN(num_words, mpi->MBEDTLS_PRIVATE(n));
/* Copy MPI data to memory block registers */
for (int i = 0; i < copy_words; i++) {
pbase[i] = mpi->MBEDTLS_PRIVATE(p)[i];
}
/* Zero any remaining memory block data */
for (int i = copy_words; i < num_words; i++) {
pbase[i] = 0;
}
}
/* Read mbedTLS MPI bignum back from hardware memory block.
Reads num_words words from block.
*/
static inline void mem_block_to_mpi(mbedtls_mpi *x, uint32_t mem_base, int num_words)
{
/* Copy data from memory block registers */
const size_t REG_WIDTH = sizeof(uint32_t);
for (size_t i = 0; i < num_words; i++) {
x->MBEDTLS_PRIVATE(p)[i] = REG_READ(mem_base + (i * REG_WIDTH));
}
/* Zero any remaining limbs in the bignum, if the buffer is bigger
than num_words */
for (size_t i = num_words; i < x->MBEDTLS_PRIVATE(n); i++) {
x->MBEDTLS_PRIVATE(p)[i] = 0;
}
}
/* Begin an RSA operation. op_reg specifies which 'START' register
to write to.
*/
static inline void start_op(uint32_t op_reg)
{
/* Clear interrupt status */
REG_WRITE(RSA_INT_CLR_REG, 1);
/* Note: above REG_WRITE includes a memw, so we know any writes
to the memory blocks are also complete. */
REG_WRITE(op_reg, 1);
}
/* Wait for an RSA operation to complete.
*/
static inline void wait_op_complete(void)
{
while (REG_READ(RSA_QUERY_IDLE_REG) != 1)
{ }
/* clear the interrupt */
REG_WRITE(RSA_INT_CLR_REG, 1);
}
/* Read result from last MPI operation */
void esp_mpi_read_result_hw_op(mbedtls_mpi *Z, size_t z_words)
{
wait_op_complete();
mem_block_to_mpi(Z, RSA_Z_MEM, z_words);
}
/* Z = (X * Y) mod M
Not an mbedTLS function
*/
void esp_mpi_mul_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t num_words)
{
REG_WRITE(RSA_MODE_REG, (num_words - 1));
/* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
mpi_to_mem_block(RSA_X_MEM, X, num_words);
mpi_to_mem_block(RSA_Y_MEM, Y, num_words);
mpi_to_mem_block(RSA_M_MEM, M, num_words);
mpi_to_mem_block(RSA_Z_MEM, Rinv, num_words);
REG_WRITE(RSA_M_PRIME_REG, Mprime);
start_op(RSA_SET_START_MODMULT_REG);
}
/* Z = (X ^ Y) mod M
*/
void esp_mpi_exp_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t num_words)
{
size_t y_bits = mbedtls_mpi_bitlen(Y);
REG_WRITE(RSA_MODE_REG, (num_words - 1));
/* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
mpi_to_mem_block(RSA_X_MEM, X, num_words);
mpi_to_mem_block(RSA_Y_MEM, Y, num_words);
mpi_to_mem_block(RSA_M_MEM, M, num_words);
mpi_to_mem_block(RSA_Z_MEM, Rinv, num_words);
REG_WRITE(RSA_M_PRIME_REG, Mprime);
/* Enable acceleration options */
REG_WRITE(RSA_CONSTANT_TIME_REG, 0);
REG_WRITE(RSA_SEARCH_ENABLE_REG, 1);
REG_WRITE(RSA_SEARCH_POS_REG, y_bits - 1);
/* Execute first stage montgomery multiplication */
start_op(RSA_SET_START_MODEXP_REG);
REG_WRITE(RSA_SEARCH_ENABLE_REG, 0);
}
/* Z = X * Y */
void esp_mpi_mul_mpi_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
{
/* Copy X (right-extended) & Y (left-extended) to memory block */
mpi_to_mem_block(RSA_X_MEM, X, num_words);
mpi_to_mem_block(RSA_Z_MEM + num_words * 4, Y, num_words);
/* NB: as Y is left-exte, we don't zero the bottom words_mult words of Y block.
This is OK for now bec zeroing is done by hardware when we do esp_mpi_acquire_hardware().
*/
REG_WRITE(RSA_MODE_REG, (num_words * 2 - 1));
start_op(RSA_SET_START_MULT_REG);
}
/**
* @brief Special-case of (X * Y), where we use hardware montgomery mod
multiplication to calculate result where either A or B are >2048 bits so
can't use the standard multiplication method.
*
*/
void esp_mpi_mult_mpi_failover_mod_mult_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
{
/* M = 2^num_words - 1, so block is entirely FF */
for (int i = 0; i < num_words; i++) {
REG_WRITE(RSA_M_MEM + i * 4, UINT32_MAX);
}
/* Mprime = 1 */
REG_WRITE(RSA_M_PRIME_REG, 1);
REG_WRITE(RSA_MODE_REG, num_words - 1);
/* Load X & Y */
mpi_to_mem_block(RSA_X_MEM, X, num_words);
mpi_to_mem_block(RSA_Y_MEM, Y, num_words);
/* Rinv = 1, write first word */
REG_WRITE(RSA_Z_MEM, 1);
/* Zero out rest of the Rinv words */
for (int i = 1; i < num_words; i++) {
REG_WRITE(RSA_Z_MEM + i * 4, 0);
}
start_op(RSA_SET_START_MODMULT_REG);
}

View File

@ -1,4 +1,4 @@
# SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD
# SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD
# SPDX-License-Identifier: CC0-1.0
import pytest
@ -6,7 +6,6 @@ from pytest_embedded import Dut
@pytest.mark.supported_targets
@pytest.mark.temp_skip_ci(targets=['esp32c6'], reason='test failed')
@pytest.mark.generic
def test_mbedtls(dut: Dut) -> None:
dut.expect_exact('Press ENTER to see the list of tests')

View File

@ -111,6 +111,10 @@ config SOC_AES_SUPPORTED
bool
default y
config SOC_MPI_SUPPORTED
bool
default y
config SOC_SHA_SUPPORTED
bool
default y

View File

@ -53,7 +53,7 @@
#define SOC_SYSTIMER_SUPPORTED 1
#define SOC_SUPPORT_COEXISTENCE 1
#define SOC_AES_SUPPORTED 1
// #define SOC_MPI_SUPPORTED 1
#define SOC_MPI_SUPPORTED 1
#define SOC_SHA_SUPPORTED 1
#define SOC_HMAC_SUPPORTED 1
#define SOC_DIG_SIGN_SUPPORTED 1
@ -283,7 +283,6 @@
#define SOC_MCPWM_CLK_SUPPORT_PLL160M (1) ///< Support PLL160M as clock source
#define SOC_MCPWM_CLK_SUPPORT_XTAL (1) ///< Support XTAL as clock source
// TODO: IDF-5359 (Copy from esp32c3, need check)
/*--------------------------- RSA CAPS ---------------------------------------*/
#define SOC_RSA_MAX_BIT_LEN (3072)