ulp: rename I_SLEEP, redefine I_WAKE, add I_ADC, add tests

This fixes incorrect descriptions of I_END/I_SLEEP instructions and
changes the definition of I_END. New instruction, I_WAKE, is added,
which wakes up the SoC. Macro for ADC instruction is defined, and new
tests are added.
This commit is contained in:
Ivan Grokhotkov 2017-02-22 14:59:15 +08:00
parent 0465528431
commit 5cab04075e
2 changed files with 211 additions and 19 deletions

View File

@ -81,7 +81,7 @@ extern "C" {
#define B_CMP_L 0 /*!< Branch if R0 is less than an immediate */
#define B_CMP_GE 1 /*!< Branch if R0 is greater than or equal to an immediate */
#define OPCODE_END 9 /*!< Stop executing the program (not implemented yet) */
#define OPCODE_END 9 /*!< Stop executing the program */
#define SUB_OPCODE_END 0 /*!< Stop executing the program and optionally wake up the chip */
#define SUB_OPCODE_SLEEP 1 /*!< Stop executing the program and run it again after selected interval */
@ -342,27 +342,56 @@ static inline uint32_t SOC_REG_TO_ULP_PERIPH_SEL(uint32_t reg) {
#define I_WR_REG_BIT(reg, shift, val) I_WR_REG(reg, shift, shift, val)
/**
* End program.
* Wake the SoC from deep sleep.
*
* This instruction halts the coprocessor, and disables the ULP timer.
* If wake == 1, the main CPU is woken up from deep sleep.
* To stop the program but allow it to be restarted by timer, use I_HALT()
* or I_SLEEP() instructions.
* This instruction initiates wake up from deep sleep.
* Use esp_deep_sleep_enable_ulp_wakeup to enable deep sleep wakeup
* triggered by the ULP before going into deep sleep.
* Note that ULP program will still keep running until the I_HALT
* instruction, and it will still be restarted by timer at regular
* intervals, even when the SoC is woken up.
*
* To stop the ULP program, use I_HALT instruction.
*
* To disable the timer which start ULP program, use I_END()
* instruction. I_END instruction clears the
* RTC_CNTL_ULP_CP_SLP_TIMER_EN_S bit of RTC_CNTL_STATE0_REG
* register, which controls the ULP timer.
*/
#define I_END(wake) { .end = { \
.wakeup = wake, \
#define I_WAKE() { .end = { \
.wakeup = 1, \
.unused = 0, \
.sub_opcode = SUB_OPCODE_END, \
.opcode = OPCODE_END } }
/**
* End program and restart it after given amount of time.
* Stop ULP program timer.
*
* Time to restart the program is determined by the value of
* SENS_SLEEP_CYCLES_Sx register, where x == timer_idx.
* There are 5 SENS_SLEEP_CYCLES_Sx registers, so 0 <= timer_idx < 5.
* This is a convenience macro which disables the ULP program timer.
* Once this instruction is used, ULP program will not be restarted
* anymore until ulp_run function is called.
*
* ULP program will continue running after this instruction. To stop
* the currently running program, use I_HALT().
*/
#define I_SLEEP(timer_idx) { .sleep = { \
#define I_END() \
I_WR_REG_BIT(RTC_CNTL_STATE0_REG, RTC_CNTL_ULP_CP_SLP_TIMER_EN_S, 0)
/**
* Select the time interval used to run ULP program.
*
* This instructions selects which of the SENS_SLEEP_CYCLES_Sx
* registers' value is used by the ULP program timer.
* When the ULP program stops at I_HALT instruction, ULP program
* timer start counting. When the counter reaches the value of
* the selected SENS_SLEEP_CYCLES_Sx register, ULP program
* start running again from the start address (passed to the ulp_run
* function).
* There are 5 SENS_SLEEP_CYCLES_Sx registers, so 0 <= timer_idx < 5.
*
* By default, SENS_SLEEP_CYCLES_S0 register is used by the ULP
* program timer.
*/
#define I_SLEEP_CYCLE_SEL(timer_idx) { .sleep = { \
.cycle_sel = timer_idx, \
.unused = 0, \
.sub_opcode = SUB_OPCODE_SLEEP, \
@ -380,6 +409,21 @@ static inline uint32_t SOC_REG_TO_ULP_PERIPH_SEL(uint32_t reg) {
.reserved = 0, \
.opcode = OPCODE_TSENS } }
/**
* Perform ADC measurement and store result in reg_dest.
*
* adc_idx selects ADC (0 or 1).
* pad_idx selects ADC pad (0 - 7).
*/
#define I_ADC(reg_dest, adc_idx, pad_idx) { .adc = {\
.dreg = reg_dest, \
.mux = pad_idx + 1, \
.sar_sel = adc_idx, \
.unused1 = 0, \
.cycles = 0, \
.unused2 = 0, \
.opcode = OPCODE_ADC } }
/**
* Store value from register reg_val into RTC memory.
*

View File

@ -112,7 +112,9 @@ TEST_CASE("ulp wakeup test", "[ulp][ignore]")
I_MOVI(R2, 42),
I_MOVI(R3, 15),
I_ST(R2, R3, 0),
I_END(1)
I_WAKE(),
I_END(),
I_HALT()
};
size_t size = sizeof(program)/sizeof(ulp_insn_t);
ulp_process_macros_and_load(0, program, &size);
@ -145,7 +147,8 @@ TEST_CASE("ulp can write and read peripheral registers", "[ulp]")
I_LD(R0, R1, 4),
I_ADDI(R0, R0, 1),
I_ST(R0, R1, 4),
I_END(0)
I_END(),
I_HALT()
};
size_t size = sizeof(program)/sizeof(ulp_insn_t);
TEST_ESP_OK(ulp_process_macros_and_load(0, program, &size));
@ -198,7 +201,7 @@ TEST_CASE("ULP I_WR_REG instruction test", "[ulp]")
test_items[i].low,
test_items[i].low + test_items[i].width - 1,
0xff & ((1 << test_items[i].width) - 1)),
I_END(0),
I_END(),
I_HALT()
};
size_t size = sizeof(program)/sizeof(ulp_insn_t);
@ -242,7 +245,9 @@ TEST_CASE("ulp controls RTC_IO", "[ulp][ignore]")
M_LABEL(5),
M_BX(4),
M_LABEL(6),
I_END(1) // wake up the SoC
I_WAKE(), // wake up the SoC
I_END(), // stop ULP program timer
I_HALT()
};
const gpio_num_t led_gpios[] = {
GPIO_NUM_2,
@ -261,6 +266,72 @@ TEST_CASE("ulp controls RTC_IO", "[ulp][ignore]")
esp_deep_sleep_start();
}
TEST_CASE("ulp power consumption in deep sleep", "[ulp]")
{
assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 4 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
ulp_insn_t insn = I_HALT();
RTC_SLOW_MEM[0] = *(uint32_t*) &insn;
REG_WRITE(SENS_ULP_CP_SLEEP_CYC0_REG, 0x8000);
ulp_run(0);
esp_deep_sleep_enable_ulp_wakeup();
esp_deep_sleep_enable_timer_wakeup(10 * 1000000);
esp_deep_sleep_start();
}
TEST_CASE("ulp timer setting", "[ulp]")
{
/*
* Run a simple ULP program which increments the counter, for one second.
* Program calls I_HALT each time and gets restarted by the timer.
* Compare the expected number of times the program runs with the actual.
*/
assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 32 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
const int offset = 6;
const ulp_insn_t program[] = {
I_MOVI(R1, offset), // r1 <- offset
I_LD(R2, R1, 0), // load counter
I_ADDI(R2, R2, 1), // counter += 1
I_ST(R2, R1, 0), // save counter
I_HALT(),
};
size_t size = sizeof(program)/sizeof(ulp_insn_t);
TEST_ESP_OK(ulp_process_macros_and_load(0, program, &size));
assert(offset >= size && "data offset needs to be greater or equal to program size");
TEST_ESP_OK(ulp_run(0));
// disable the ULP program timer — we will enable it later
CLEAR_PERI_REG_MASK(RTC_CNTL_STATE0_REG, RTC_CNTL_ULP_CP_SLP_TIMER_EN);
const uint32_t cycles_to_test[] = {0x80, 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000};
const size_t tests_count = sizeof(cycles_to_test) / sizeof(cycles_to_test[0]);
for (size_t i = 0; i < tests_count; ++i) {
// zero out the counter
RTC_SLOW_MEM[offset] = 0;
// set the number of slow clock cycles
REG_WRITE(SENS_ULP_CP_SLEEP_CYC0_REG, cycles_to_test[i]);
// enable the timer and wait for a second
SET_PERI_REG_MASK(RTC_CNTL_STATE0_REG, RTC_CNTL_ULP_CP_SLP_TIMER_EN);
vTaskDelay(1000 / portTICK_PERIOD_MS);
// get the counter value and stop the timer
uint32_t counter = RTC_SLOW_MEM[offset] & 0xffff;
CLEAR_PERI_REG_MASK(RTC_CNTL_STATE0_REG, RTC_CNTL_ULP_CP_SLP_TIMER_EN);
// compare the actual and expected numbers of iterations of ULP program
float expected_period = (cycles_to_test[i] + 16) / (float) RTC_CNTL_SLOWCLK_FREQ + 5 / 8e6f;
float error = 1.0f - counter * expected_period;
printf("%u\t%u\t%.01f\t%.04f\n", cycles_to_test[i], counter, 1.0f / expected_period, error);
// Should be within 15%
TEST_ASSERT_INT_WITHIN(15, 0, (int) error * 100);
// Note: currently RTC_CNTL_SLOWCLK_FREQ is ballpark value — we need to determine it
// Precisely by running calibration similar to the one done in deep sleep.
// This may cause the test to fail on some chips which have the slow clock frequency
// way off.
}
}
TEST_CASE("ulp can use TSENS in deep sleep", "[ulp][ignore]")
{
@ -297,10 +368,87 @@ TEST_CASE("ulp can use TSENS in deep sleep", "[ulp][ignore]")
I_ST(R0, R2, offset + 4),
I_ADDI(R2, R2, 1), // counter += 1
I_ST(R2, R1, 1), // save counter
I_SLEEP(0), // enter sleep
I_HALT(), // enter sleep
M_LABEL(1), // done with measurements
I_END(), // stop ULP timer
I_WAKE(), // initiate wakeup
I_HALT()
};
size_t size = sizeof(program)/sizeof(ulp_insn_t);
TEST_ESP_OK(ulp_process_macros_and_load(0, program, &size));
assert(offset >= size);
TEST_ESP_OK(ulp_run(0));
esp_deep_sleep_enable_timer_wakeup(4000000);
esp_deep_sleep_enable_ulp_wakeup();
esp_deep_sleep_start();
}
TEST_CASE("can use ADC in deep sleep", "[ulp][ignore]")
{
assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
hexdump(RTC_SLOW_MEM, CONFIG_ULP_COPROC_RESERVE_MEM / 4);
printf("\n\n");
memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
SET_PERI_REG_BITS(SENS_SAR_START_FORCE_REG, SENS_SAR1_BIT_WIDTH, 3, SENS_SAR1_BIT_WIDTH_S);
SET_PERI_REG_BITS(SENS_SAR_START_FORCE_REG, SENS_SAR2_BIT_WIDTH, 3, SENS_SAR2_BIT_WIDTH_S);
SET_PERI_REG_BITS(SENS_SAR_READ_CTRL_REG, SENS_SAR1_SAMPLE_BIT, 0x3, SENS_SAR1_SAMPLE_BIT_S);
SET_PERI_REG_BITS(SENS_SAR_READ_CTRL2_REG, SENS_SAR2_SAMPLE_BIT, 0x3, SENS_SAR2_SAMPLE_BIT_S);
CLEAR_PERI_REG_MASK(SENS_SAR_MEAS_START2_REG, SENS_MEAS2_START_FORCE);
CLEAR_PERI_REG_MASK(SENS_SAR_MEAS_START1_REG, SENS_MEAS1_START_FORCE);
SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_SAR, 0, SENS_FORCE_XPD_SAR_S);
SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_AMP, 2, SENS_FORCE_XPD_AMP_S);
// SAR1 invert result
SET_PERI_REG_MASK(SENS_SAR_READ_CTRL_REG, SENS_SAR1_DATA_INV);
SET_PERI_REG_MASK(SENS_SAR_READ_CTRL_REG, SENS_SAR2_DATA_INV);
// const int adc = 1;
// const int channel = 1;
// const int atten = 3;
// const int gpio_num = 0;
const int adc = 0;
const int channel = 0;
const int atten = 0;
const int gpio_num = 36;
rtc_gpio_init(gpio_num);
CLEAR_PERI_REG_MASK(SENS_SAR_MEAS_START1_REG, SENS_SAR1_EN_PAD_FORCE_M);
CLEAR_PERI_REG_MASK(SENS_SAR_MEAS_START2_REG, SENS_SAR2_EN_PAD_FORCE_M);
SET_PERI_REG_BITS(SENS_SAR_ATTEN1_REG, 3, atten, 2 * channel); //set SAR1 attenuation
SET_PERI_REG_BITS(SENS_SAR_ATTEN2_REG, 3, atten, 2 * channel); //set SAR2 attenuation
// data start offset
size_t offset = 20;
// number of samples to collect
RTC_SLOW_MEM[offset] = (CONFIG_ULP_COPROC_RESERVE_MEM) / 4 - offset - 8;
// sample counter
RTC_SLOW_MEM[offset + 1] = 0;
const ulp_insn_t program[] = {
I_MOVI(R1, offset), // r1 <- offset
I_LD(R2, R1, 1), // r2 <- counter
I_LD(R3, R1, 0), // r3 <- length
I_SUBI(R3, R3, 1), // end = length - 1
I_SUBR(R3, R3, R2), // r3 = length - counter
M_BXF(1), // if overflow goto 1:
I_ADC(R0, adc, channel), // r0 <- ADC
I_ST(R0, R2, offset + 4),
I_ADDI(R2, R2, 1), // counter += 1
I_ST(R2, R1, 1), // save counter
I_HALT(),
M_LABEL(1), // done with measurements
I_END(0), // stop ULP timer
I_END(), // stop ULP program timer
I_HALT()
};