ESP32S2: No assert()/abort() in Memprot API, use esp_err_t instead

JIRA IDF-3634
This commit is contained in:
Martin Vychodil 2021-08-18 13:31:35 +02:00
parent f8f9e545e8
commit 58aed7df98
9 changed files with 1237 additions and 786 deletions

View File

@ -4,7 +4,6 @@
* SPDX-License-Identifier: Apache-2.0 * SPDX-License-Identifier: Apache-2.0
*/ */
/* INTERNAL API /* INTERNAL API
* generic interface to MMU memory protection features * generic interface to MMU memory protection features
*/ */
@ -13,6 +12,7 @@
#include <stdbool.h> #include <stdbool.h>
#include <stdint.h> #include <stdint.h>
#include "esp_attr.h" #include "esp_attr.h"
#include "esp_err.h"
#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
@ -43,6 +43,8 @@ extern "C" {
#define MEMPROT_UNLOCK false #define MEMPROT_UNLOCK false
#define DEF_SPLIT_LINE NULL #define DEF_SPLIT_LINE NULL
#define MEMPROT_INVALID_ADDRESS -1
//memory range types //memory range types
typedef enum { typedef enum {
MEMPROT_NONE = 0x00000000, MEMPROT_NONE = 0x00000000,
@ -69,23 +71,27 @@ typedef enum {
uint32_t *IRAM_ATTR esp_memprot_get_split_addr(mem_type_prot_t mem_type); uint32_t *IRAM_ATTR esp_memprot_get_split_addr(mem_type_prot_t mem_type);
/** /**
* @brief Initializes illegal memory access control (MMU) for required memory section. * @brief Initializes illegal memory access control for required memory section.
* *
* All memory access interrupts share ETS_MEMACCESS_ERR_INUM input channel, it is caller's * All memory access interrupts share ETS_MEMACCESS_ERR_INUM input channel, it is caller's
* responsibility to properly detect actual intr. source as well as possible prioritization in case * responsibility to properly detect actual intr. source as well as possible prioritization in case
* of multiple source reported during one intr.handling routine run * of multiple source reported during one intr.handling routine run
* *
* @param mem_type Memory protection area type (see mem_type_prot_t enum) * @param mem_type Memory protection area type (see mem_type_prot_t enum)\
*
* @return ESP_OK on success, ESP_ERR_INVALID_ARG on failure
*/ */
void esp_memprot_intr_init(mem_type_prot_t mem_type); esp_err_t esp_memprot_intr_init(mem_type_prot_t mem_type);
/** /**
* @brief Enable/disable the memory protection interrupt * @brief Enable/disable the memory protection interrupt
* *
* @param mem_type Memory protection area type (see mem_type_prot_t enum) * @param mem_type Memory protection area type (see mem_type_prot_t enum)
* @param enable enable/disable * @param enable enable/disable
*
* @return ESP_OK on success, ESP_ERR_INVALID_ARG on failure
*/ */
void esp_memprot_intr_ena(mem_type_prot_t mem_type, bool enable); esp_err_t esp_memprot_intr_ena(mem_type_prot_t mem_type, bool enable);
/** /**
* @brief Sets a request for clearing interrupt-on flag for specified memory region (register write) * @brief Sets a request for clearing interrupt-on flag for specified memory region (register write)
@ -94,8 +100,10 @@ void esp_memprot_intr_ena(mem_type_prot_t mem_type, bool enable);
* Should be used only after the real interrupt appears, typically as the last step in interrupt handler's routine. * Should be used only after the real interrupt appears, typically as the last step in interrupt handler's routine.
* *
* @param mem_type Memory protection area type (see mem_type_prot_t enum) * @param mem_type Memory protection area type (see mem_type_prot_t enum)
*
* @return ESP_OK on success, ESP_ERR_INVALID_ARG on failure
*/ */
void esp_memprot_clear_intr(mem_type_prot_t mem_type); esp_err_t esp_memprot_clear_intr(mem_type_prot_t mem_type);
/** /**
* @brief Detects which memory protection interrupt is active * @brief Detects which memory protection interrupt is active
@ -114,10 +122,11 @@ mem_type_prot_t IRAM_ATTR esp_memprot_get_active_intr_memtype(void);
* @brief Gets interrupt status register contents for specified memory region * @brief Gets interrupt status register contents for specified memory region
* *
* @param mem_type Memory protection area type (see mem_type_prot_t enum) * @param mem_type Memory protection area type (see mem_type_prot_t enum)
* @param fault_reg_val Contents of status register
* *
* @return Contents of status register * @return ESP_OK on success, ESP_ERR_INVALID_ARG on failure
*/ */
uint32_t esp_memprot_get_fault_reg(mem_type_prot_t mem_type); esp_err_t esp_memprot_get_fault_reg(mem_type_prot_t mem_type, uint32_t *fault_reg_val);
/** /**
* @brief Get details of given interrupt status * @brief Get details of given interrupt status
@ -130,8 +139,9 @@ uint32_t esp_memprot_get_fault_reg(mem_type_prot_t mem_type);
* @param op_subtype Additional info for op_type [out] * @param op_subtype Additional info for op_type [out]
* IRAM0: 0 - instruction segment access, 1 - data segment access * IRAM0: 0 - instruction segment access, 1 - data segment access
* DRAM0: 0 - non-atomic operation, 1 - atomic operation * DRAM0: 0 - non-atomic operation, 1 - atomic operation
* @return ESP_OK on success, ESP_ERR_INVALID_ARG on failure
*/ */
void IRAM_ATTR esp_memprot_get_fault_status(mem_type_prot_t mem_type, uint32_t **faulting_address, uint32_t *op_type, uint32_t *op_subtype); esp_err_t IRAM_ATTR esp_memprot_get_fault_status(mem_type_prot_t mem_type, uint32_t **faulting_address, uint32_t *op_type, uint32_t *op_subtype);
/** /**
* @brief Gets string representation of required memory region identifier * @brief Gets string representation of required memory region identifier
@ -155,26 +165,30 @@ bool esp_memprot_is_locked_any(void);
* Locks can be unlocked only by digital system reset * Locks can be unlocked only by digital system reset
* *
* @param mem_type Memory protection area type (see mem_type_prot_t enum) * @param mem_type Memory protection area type (see mem_type_prot_t enum)
*
* @return ESP_OK on success, ESP_ERR_INVALID_ARG on failure
*/ */
void esp_memprot_set_lock(mem_type_prot_t mem_type); esp_err_t esp_memprot_set_lock(mem_type_prot_t mem_type);
/** /**
* @brief Gets lock status for required memory region * @brief Gets lock status for required memory region
* *
* @param mem_type Memory protection area type (see mem_type_prot_t enum) * @param mem_type Memory protection area type (see mem_type_prot_t enum)
* @param locked Settings locked: true/false (locked/unlocked)
* *
* @return true/false (locked/unlocked) * @return ESP_OK on success, ESP_ERR_INVALID_ARG on failure
*/ */
bool esp_memprot_get_lock(mem_type_prot_t mem_type); esp_err_t esp_memprot_get_lock(mem_type_prot_t mem_type, bool *locked);
/** /**
* @brief Gets permission control configuration register contents for required memory region * @brief Gets permission control configuration register contents for required memory region
* *
* @param mem_type Memory protection area type (see mem_type_prot_t enum) * @param mem_type Memory protection area type (see mem_type_prot_t enum)
* @param conf_reg_val Permission control register contents
* *
* @return Permission control register contents * @return ESP_OK on success, ESP_ERR_INVALID_ARG on failure
*/ */
uint32_t esp_memprot_get_conf_reg(mem_type_prot_t mem_type); esp_err_t esp_memprot_get_conf_reg(mem_type_prot_t mem_type, uint32_t *conf_reg_val);
/** /**
* @brief Gets interrupt permission settings for unified management block * @brief Gets interrupt permission settings for unified management block
@ -182,21 +196,23 @@ uint32_t esp_memprot_get_conf_reg(mem_type_prot_t mem_type);
* Gets interrupt permission settings register contents for required memory region, returns settings for unified management blocks * Gets interrupt permission settings register contents for required memory region, returns settings for unified management blocks
* *
* @param mem_type Memory protection area type (see mem_type_prot_t enum) * @param mem_type Memory protection area type (see mem_type_prot_t enum)
* @param perm_reg Permission settings register contents
* *
* @return Permission settings register contents * @return ESP_OK on success, ESP_ERR_INVALID_ARG on failure
*/ */
uint32_t esp_memprot_get_perm_uni_reg(mem_type_prot_t mem_type); esp_err_t esp_memprot_get_perm_uni_reg(mem_type_prot_t mem_type, uint32_t *perm_reg);
/** /**
* @brief Gets interrupt permission settings for split management block * @brief Gets interrupt permission settings for split management block
* *
* Gets interrupt permission settings register contents for required memory region, returns settings for split management blocks * Gets interrupt permission settings register contents for required memory region (unified management blocks)
* *
* @param mem_type Memory protection area type (see mem_type_prot_t enum) * @param mem_type Memory protection area type (see mem_type_prot_t enum)
* @return split_reg Unified management settings register contents
* *
* @return Permission settings register contents * @return ESP_OK on success, ESP_ERR_INVALID_ARG on failure
*/ */
uint32_t esp_memprot_get_perm_split_reg(mem_type_prot_t mem_type); esp_err_t esp_memprot_get_perm_split_reg(mem_type_prot_t mem_type, uint32_t *split_reg);
/** /**
* @brief Detects whether any of the memory protection interrupts is enabled * @brief Detects whether any of the memory protection interrupts is enabled
@ -209,28 +225,30 @@ bool esp_memprot_is_intr_ena_any(void);
* @brief Gets interrupt-enabled flag for given memory region * @brief Gets interrupt-enabled flag for given memory region
* *
* @param mem_type Memory protection area type (see mem_type_prot_t enum) * @param mem_type Memory protection area type (see mem_type_prot_t enum)
* @param enable_bit Interrupt-enabled flag
* *
* @return Interrupt-enabled value * @return ESP_OK on success, ESP_ERR_INVALID_ARG on failure
*/ */
uint32_t esp_memprot_get_intr_ena_bit(mem_type_prot_t mem_type); esp_err_t esp_memprot_get_intr_ena_bit(mem_type_prot_t mem_type, uint32_t *enable_bit);
/** /**
* @brief Gets interrupt-active flag for given memory region * @brief Gets interrupt-active flag for given memory region
* *
* @param mem_type Memory protection area type (see mem_type_prot_t enum) * @param mem_type Memory protection area type (see mem_type_prot_t enum)
* @param intr_on_bit Interrupt-active flag
* *
* @return Interrupt-active value * @return ESP_OK on success, ESP_ERR_INVALID_ARG on failure */
*/ esp_err_t esp_memprot_get_intr_on_bit(mem_type_prot_t mem_type, uint32_t *intr_on_bit);
uint32_t esp_memprot_get_intr_on_bit(mem_type_prot_t mem_type);
/** /**
* @brief Gets interrupt-clear request flag for given memory region * @brief Gets interrupt-clear request flag for given memory region
* *
* @param mem_type Memory protection area type (see mem_type_prot_t enum) * @param mem_type Memory protection area type (see mem_type_prot_t enum)
* @param clear_bit Interrupt-clear request flag
* *
* @return Interrupt-clear request value * @return ESP_OK on success, ESP_ERR_INVALID_ARG on failure
*/ */
uint32_t esp_memprot_get_intr_clr_bit(mem_type_prot_t mem_type); esp_err_t esp_memprot_get_intr_clr_bit(mem_type_prot_t mem_type, uint32_t *clear_bit);
/** /**
* @brief Gets read permission value for specified block and memory region * @brief Gets read permission value for specified block and memory region
@ -240,10 +258,11 @@ uint32_t esp_memprot_get_intr_clr_bit(mem_type_prot_t mem_type);
* *
* @param mem_type Memory protection area type (see mem_type_prot_t enum) * @param mem_type Memory protection area type (see mem_type_prot_t enum)
* @param block Memory block identifier (0-3) * @param block Memory block identifier (0-3)
* @param read_bit Read permission value for required block
* *
* @return Read permission value for required block * @return ESP_OK on success, ESP_ERR_INVALID_ARG on failure
*/ */
uint32_t esp_memprot_get_uni_block_read_bit(mem_type_prot_t mem_type, uint32_t block); esp_err_t esp_memprot_get_uni_block_read_bit(mem_type_prot_t mem_type, uint32_t block, uint32_t *read_bit);
/** /**
* @brief Gets write permission value for specified block and memory region * @brief Gets write permission value for specified block and memory region
@ -253,10 +272,11 @@ uint32_t esp_memprot_get_uni_block_read_bit(mem_type_prot_t mem_type, uint32_t b
* *
* @param mem_type Memory protection area type (see mem_type_prot_t enum) * @param mem_type Memory protection area type (see mem_type_prot_t enum)
* @param block Memory block identifier (0-3) * @param block Memory block identifier (0-3)
* @param write_bit Write permission value for required block
* *
* @return Write permission value for required block * @return ESP_OK on success, ESP_ERR_INVALID_ARG on failure
*/ */
uint32_t esp_memprot_get_uni_block_write_bit(mem_type_prot_t mem_type, uint32_t block); esp_err_t esp_memprot_get_uni_block_write_bit(mem_type_prot_t mem_type, uint32_t block, uint32_t *write_bit);
/** /**
* @brief Gets execute permission value for specified block and memory region * @brief Gets execute permission value for specified block and memory region
@ -266,10 +286,11 @@ uint32_t esp_memprot_get_uni_block_write_bit(mem_type_prot_t mem_type, uint32_t
* *
* @param mem_type Memory protection area type (see mem_type_prot_t enum) * @param mem_type Memory protection area type (see mem_type_prot_t enum)
* @param block Memory block identifier (0-3) * @param block Memory block identifier (0-3)
* @param exec_bit Execute permission value for required block
* *
* @return Execute permission value for required block * @return ESP_OK on success, ESP_ERR_INVALID_ARG on failure
*/ */
uint32_t esp_memprot_get_uni_block_exec_bit(mem_type_prot_t mem_type, uint32_t block); esp_err_t esp_memprot_get_uni_block_exec_bit(mem_type_prot_t mem_type, uint32_t block, uint32_t *exec_bit);
/** /**
* @brief Sets permissions for specified block in DRAM region * @brief Sets permissions for specified block in DRAM region
@ -281,8 +302,10 @@ uint32_t esp_memprot_get_uni_block_exec_bit(mem_type_prot_t mem_type, uint32_t b
* @param block Memory block identifier (0-3) * @param block Memory block identifier (0-3)
* @param write_perm Write permission flag * @param write_perm Write permission flag
* @param read_perm Read permission flag * @param read_perm Read permission flag
*
* @return ESP_OK on success, ESP_ERR_INVALID_ARG on failure
*/ */
void esp_memprot_set_uni_block_perm_dram(mem_type_prot_t mem_type, uint32_t block, bool write_perm, bool read_perm); esp_err_t esp_memprot_set_uni_block_perm_dram(mem_type_prot_t mem_type, uint32_t block, bool write_perm, bool read_perm);
/** /**
* @brief Sets permissions for high and low memory segment in DRAM region * @brief Sets permissions for high and low memory segment in DRAM region
@ -297,8 +320,10 @@ void esp_memprot_set_uni_block_perm_dram(mem_type_prot_t mem_type, uint32_t bloc
* @param lr Low segment Read permission flag * @param lr Low segment Read permission flag
* @param hw High segment Write permission flag * @param hw High segment Write permission flag
* @param hr High segment Read permission flag * @param hr High segment Read permission flag
*
* @return ESP_OK on success, ESP_ERR_INVALID_ARG on failure
*/ */
void esp_memprot_set_prot_dram(mem_type_prot_t mem_type, uint32_t *split_addr, bool lw, bool lr, bool hw, bool hr); esp_err_t esp_memprot_set_prot_dram(mem_type_prot_t mem_type, uint32_t *split_addr, bool lw, bool lr, bool hw, bool hr);
/** /**
* @brief Sets permissions for specified block in IRAM region * @brief Sets permissions for specified block in IRAM region
@ -306,12 +331,17 @@ void esp_memprot_set_prot_dram(mem_type_prot_t mem_type, uint32_t *split_addr, b
* Sets Read, Write and Execute permission for specified unified-management block (0-3) in given memory region. * Sets Read, Write and Execute permission for specified unified-management block (0-3) in given memory region.
* Applicable only to IRAM memory types * Applicable only to IRAM memory types
* *
* @param mem_type Memory protection area type (see mem_type_prot_t enum) * @param mem_type Memory protection area type (MEMPROT_IRAM0_SRAM)
* @param block Memory block identifier (0-3) * @param block Memory block identifier (0-3)
* @param write_perm Write permission flag * @param write_perm Write permission flag
* @param read_perm Read permission flag
* @param exec_perm Execute permission flag * @param exec_perm Execute permission flag
*
* @return ESP_OK on success
* ESP_ERR_NOT_SUPPORTED on invalid mem_type
* ESP_ERR_INVALID_ARG on incorrect block number
*/ */
void esp_memprot_set_uni_block_perm_iram(mem_type_prot_t mem_type, uint32_t block, bool write_perm, bool read_perm, bool exec_perm); esp_err_t esp_memprot_set_uni_block_perm_iram(mem_type_prot_t mem_type, uint32_t block, bool write_perm, bool read_perm, bool exec_perm);
/** /**
* @brief Sets permissions for high and low memory segment in IRAM region * @brief Sets permissions for high and low memory segment in IRAM region
@ -328,8 +358,10 @@ void esp_memprot_set_uni_block_perm_iram(mem_type_prot_t mem_type, uint32_t bloc
* @param hw High segment Write permission flag * @param hw High segment Write permission flag
* @param hr High segment Read permission flag * @param hr High segment Read permission flag
* @param hx High segment Execute permission flag * @param hx High segment Execute permission flag
*
* @return ESP_OK on success, ESP_ERR_INVALID_ARG on failure
*/ */
void esp_memprot_set_prot_iram(mem_type_prot_t mem_type, uint32_t *split_addr, bool lw, bool lr, bool lx, bool hw, bool hr, bool hx); esp_err_t esp_memprot_set_prot_iram(mem_type_prot_t mem_type, uint32_t *split_addr, bool lw, bool lr, bool lx, bool hw, bool hr, bool hx);
/** /**
* @brief Activates memory protection for all supported memory region types * @brief Activates memory protection for all supported memory region types
@ -339,8 +371,10 @@ void esp_memprot_set_prot_iram(mem_type_prot_t mem_type, uint32_t *split_addr, b
* @param invoke_panic_handler map mem.prot interrupt to ETS_MEMACCESS_ERR_INUM and thus invokes panic handler when fired ('true' not suitable for testing) * @param invoke_panic_handler map mem.prot interrupt to ETS_MEMACCESS_ERR_INUM and thus invokes panic handler when fired ('true' not suitable for testing)
* @param lock_feature sets LOCK bit, see esp_memprot_set_lock() ('true' not suitable for testing) * @param lock_feature sets LOCK bit, see esp_memprot_set_lock() ('true' not suitable for testing)
* @param mem_type_mask holds a set of required memory protection types (bitmask built of mem_type_prot_t). NULL means default (MEMPROT_ALL in this version) * @param mem_type_mask holds a set of required memory protection types (bitmask built of mem_type_prot_t). NULL means default (MEMPROT_ALL in this version)
*
* @return ESP_OK on success, ESP_ERR_INVALID_ARG on failure
*/ */
void esp_memprot_set_prot(bool invoke_panic_handler, bool lock_feature, uint32_t *mem_type_mask); esp_err_t esp_memprot_set_prot(bool invoke_panic_handler, bool lock_feature, uint32_t *mem_type_mask);
/** /**
* @brief Get permission settings bits for IRAM0 split mgmt. Only IRAM0 memory types allowed * @brief Get permission settings bits for IRAM0 split mgmt. Only IRAM0 memory types allowed
@ -352,8 +386,10 @@ void esp_memprot_set_prot(bool invoke_panic_handler, bool lock_feature, uint32_t
* @param hw High segment Write permission flag * @param hw High segment Write permission flag
* @param hr High segment Read permission flag * @param hr High segment Read permission flag
* @param hx High segment Execute permission flag * @param hx High segment Execute permission flag
*
* @return ESP_OK on success, ESP_ERR_INVALID_ARG on failure
*/ */
void esp_memprot_get_perm_split_bits_iram(mem_type_prot_t mem_type, bool *lw, bool *lr, bool *lx, bool *hw, bool *hr, bool *hx); esp_err_t esp_memprot_get_perm_split_bits_iram(mem_type_prot_t mem_type, bool *lw, bool *lr, bool *lx, bool *hw, bool *hr, bool *hx);
/** /**
* @brief Get permission settings bits for DRAM0 split mgmt. Only DRAM0 memory types allowed * @brief Get permission settings bits for DRAM0 split mgmt. Only DRAM0 memory types allowed
@ -363,8 +399,10 @@ void esp_memprot_get_perm_split_bits_iram(mem_type_prot_t mem_type, bool *lw, bo
* @param lr Low segment Read permission flag * @param lr Low segment Read permission flag
* @param hw High segment Write permission flag * @param hw High segment Write permission flag
* @param hr High segment Read permission flag * @param hr High segment Read permission flag
*
* @return ESP_OK on success, ESP_ERR_INVALID_ARG on failure
*/ */
void esp_memprot_get_perm_split_bits_dram(mem_type_prot_t mem_type, bool *lw, bool *lr, bool *hw, bool *hr); esp_err_t esp_memprot_get_perm_split_bits_dram(mem_type_prot_t mem_type, bool *lw, bool *lr, bool *hw, bool *hr);
/** /**
* @brief Sets permissions for high and low memory segment in PERIBUS1 region * @brief Sets permissions for high and low memory segment in PERIBUS1 region
@ -378,8 +416,10 @@ void esp_memprot_get_perm_split_bits_dram(mem_type_prot_t mem_type, bool *lw, bo
* @param lr Low segment Read permission flag * @param lr Low segment Read permission flag
* @param hw High segment Write permission flag * @param hw High segment Write permission flag
* @param hr High segment Read permission flag * @param hr High segment Read permission flag
*
* @return ESP_OK on success, ESP_ERR_INVALID_ARG on failure
*/ */
void esp_memprot_set_prot_peri1(mem_type_prot_t mem_type, uint32_t *split_addr, bool lw, bool lr, bool hw, bool hr); esp_err_t esp_memprot_set_prot_peri1(mem_type_prot_t mem_type, uint32_t *split_addr, bool lw, bool lr, bool hw, bool hr);
/** /**
* @brief Get permission settings bits for PERIBUS1 split mgmt. Only PERIBUS1 memory types allowed * @brief Get permission settings bits for PERIBUS1 split mgmt. Only PERIBUS1 memory types allowed
@ -389,8 +429,10 @@ void esp_memprot_set_prot_peri1(mem_type_prot_t mem_type, uint32_t *split_addr,
* @param lr Low segment Read permission flag * @param lr Low segment Read permission flag
* @param hw High segment Write permission flag * @param hw High segment Write permission flag
* @param hr High segment Read permission flag * @param hr High segment Read permission flag
*
* @return ESP_OK on success, ESP_ERR_INVALID_ARG on failure
*/ */
void esp_memprot_get_perm_split_bits_peri1(mem_type_prot_t mem_type, bool *lw, bool *lr, bool *hw, bool *hr); esp_err_t esp_memprot_get_perm_split_bits_peri1(mem_type_prot_t mem_type, bool *lw, bool *lr, bool *hw, bool *hr);
/** /**
* @brief Get permission settings bits for PERIBUS2 split mgmt. Only PERIBUS2 memory types allowed * @brief Get permission settings bits for PERIBUS2 split mgmt. Only PERIBUS2 memory types allowed
@ -402,25 +444,32 @@ void esp_memprot_get_perm_split_bits_peri1(mem_type_prot_t mem_type, bool *lw, b
* @param hw High segment Write permission flag * @param hw High segment Write permission flag
* @param hr High segment Read permission flag * @param hr High segment Read permission flag
* @param hx High segment Execute permission flag * @param hx High segment Execute permission flag
*
* @return ESP_OK on success, ESP_ERR_INVALID_ARG on failure
*/ */
void esp_memprot_get_perm_split_bits_peri2(mem_type_prot_t mem_type, bool *lw, bool *lr, bool *lx, bool *hw, bool *hr, bool *hx); esp_err_t esp_memprot_get_perm_split_bits_peri2(mem_type_prot_t mem_type, bool *lw, bool *lr, bool *lx, bool *hw, bool *hr, bool *hx);
/** /**
* @brief Sets permissions for high and low memory segment in PERIBUS2 region * @brief Configures the memory protection for high and low segment in PERIBUS2 region
* *
* Sets Read Write permission for both low and high memory segments given by splitting address. * Sets Read Write permission for both low and high memory segments given by splitting address.
* Applicable only to PERIBUS2 memory types * Applicable only to PERIBUS2 memory types
* *
* @param mem_type Memory protection area type (see mem_type_prot_t enum) * @param mem_type Memory protection area type (MEMPROT_PERI2_RTCSLOW_0, MEMPROT_PERI2_RTCSLOW_1)
* @param split_addr Address to split the memory region to lower and higher segment * @param split_addr Address to split the memory region to lower and higher segment (32bit aligned)
* @param lw Low segment Write permission flag * @param lw Low segment Write permission flag
* @param lr Low segment Read permission flag * @param lr Low segment Read permission flag
* @param lx Low segment Execute permission flag * @param lx Low segment Execute permission flag
* @param hw High segment Write permission flag * @param hw High segment Write permission flag
* @param hr High segment Read permission flag * @param hr High segment Read permission flag
* @param hx High segment Execute permission flag * @param hx High segment Execute permission flag
*
* @return ESP_OK on success
* ESP_ERR_NOT_SUPPORTED on invalid mem_type
* ESP_ERR_INVALID_STATE on splitting address out of PERIBUS2 range
* ESP_ERR_INVALID_SIZE on splitting address not 32-bit aligned
*/ */
void esp_memprot_set_prot_peri2(mem_type_prot_t mem_type, uint32_t *split_addr, bool lw, bool lr, bool lx, bool hw, bool hr, bool hx); esp_err_t esp_memprot_set_prot_peri2(mem_type_prot_t mem_type, uint32_t *split_addr, bool lw, bool lr, bool lx, bool hw, bool hr, bool hx);
/** /**
* @brief Get permissions for specified memory type. Irrelevant bits are ignored * @brief Get permissions for specified memory type. Irrelevant bits are ignored
@ -432,8 +481,12 @@ void esp_memprot_set_prot_peri2(mem_type_prot_t mem_type, uint32_t *split_addr,
* @param hw High segment Write permission flag * @param hw High segment Write permission flag
* @param hr High segment Read permission flag * @param hr High segment Read permission flag
* @param hx High segment Execute permission flag * @param hx High segment Execute permission flag
*
* @return ESP_OK on success
* ESP_ERR_INVALID_ARG on NULL lw/lr/lx/hw/hr/hx args
* ESP_ERR_NOT_SUPPORTED on invalid mem_type
*/ */
void esp_memprot_get_permissions(mem_type_prot_t mem_type, bool *lw, bool *lr, bool *lx, bool *hw, bool *hr, bool *hx); esp_err_t esp_memprot_get_permissions(mem_type_prot_t mem_type, bool *lw, bool *lr, bool *lx, bool *hw, bool *hr, bool *hx);
/** /**
* @brief Get Read permission settings for low and high regions of given memory type * @brief Get Read permission settings for low and high regions of given memory type
@ -441,8 +494,12 @@ void esp_memprot_get_permissions(mem_type_prot_t mem_type, bool *lw, bool *lr, b
* @param mem_type Memory protection area type (see mem_type_prot_t enum) * @param mem_type Memory protection area type (see mem_type_prot_t enum)
* @param lr Low segment Read permission flag * @param lr Low segment Read permission flag
* @param hr High segment Read permission flag * @param hr High segment Read permission flag
*
* @return ESP_OK on success
* ESP_ERR_INVALID_ARG on NULL lr/hr args
* ESP_ERR_NOT_SUPPORTED on invalid mem_type
*/ */
void esp_memprot_get_perm_read(mem_type_prot_t mem_type, bool *lr, bool *hr); esp_err_t esp_memprot_get_perm_read(mem_type_prot_t mem_type, bool *lr, bool *hr);
/** /**
* @brief Get Write permission settings for low and high regions of given memory type * @brief Get Write permission settings for low and high regions of given memory type
@ -450,23 +507,33 @@ void esp_memprot_get_perm_read(mem_type_prot_t mem_type, bool *lr, bool *hr);
* @param mem_type Memory protection area type (see mem_type_prot_t enum) * @param mem_type Memory protection area type (see mem_type_prot_t enum)
* @param lr Low segment Write permission flag * @param lr Low segment Write permission flag
* @param hr High segment Write permission flag * @param hr High segment Write permission flag
*
* @return ESP_OK on success
* ESP_ERR_INVALID_ARG on NULL lw/hw args
* ESP_ERR_NOT_SUPPORTED on invalid mem_type
*/ */
void esp_memprot_get_perm_write(mem_type_prot_t mem_type, bool *lw, bool *hw); esp_err_t esp_memprot_get_perm_write(mem_type_prot_t mem_type, bool *lw, bool *hw);
/** /**
* @brief Get Execute permission settings for low and high regions of given memory type * @brief Get Execute permission settings for low and high regions of given memory type
* Applicable only to IBUS-compatible memory types * Applicable only to IBUS-compatible memory types
* *
* @param mem_type Memory protection area type (see mem_type_prot_t enum) * @param mem_type Memory protection area type (MEMPROT_IRAM0_SRAM, MEMPROT_IRAM0_RTCFAST, MEMPROT_PERI2_RTCSLOW_0, MEMPROT_PERI2_RTCSLOW_1)
* @param lr Low segment Exec permission flag * @param lx Low segment Exec permission flag
* @param hr High segment Exec permission flag * @param hx High segment Exec permission flag
*
* @return ESP_OK on success
* ESP_ERR_INVALID_ARG on NULL lx/hx args
* ESP_ERR_NOT_SUPPORTED on invalid mem_type
*/ */
void esp_memprot_get_perm_exec(mem_type_prot_t mem_type, bool *lx, bool *hx); esp_err_t esp_memprot_get_perm_exec(mem_type_prot_t mem_type, bool *lx, bool *hx);
/** /**
* @brief Returns the lowest address in required memory region * @brief Returns the lowest address in required memory region
* *
* @param mem_type Memory protection area type (see mem_type_prot_t enum) * @param mem_type Memory protection area type (see mem_type_prot_t enum)
*
* @return Required address or MEMPROT_INVALID_ADDRESS for invalid mem_type
*/ */
uint32_t esp_memprot_get_low_limit(mem_type_prot_t mem_type); uint32_t esp_memprot_get_low_limit(mem_type_prot_t mem_type);
@ -474,6 +541,8 @@ uint32_t esp_memprot_get_low_limit(mem_type_prot_t mem_type);
* @brief Returns the highest address in required memory region * @brief Returns the highest address in required memory region
* *
* @param mem_type Memory protection area type (see mem_type_prot_t enum) * @param mem_type Memory protection area type (see mem_type_prot_t enum)
*
* @return Required address or MEMPROT_INVALID_ADDRESS for invalid mem_type
*/ */
uint32_t esp_memprot_get_high_limit(mem_type_prot_t mem_type); uint32_t esp_memprot_get_high_limit(mem_type_prot_t mem_type);
@ -483,8 +552,11 @@ uint32_t esp_memprot_get_high_limit(mem_type_prot_t mem_type);
* @param mem_type Memory protection area type (see mem_type_prot_t enum) * @param mem_type Memory protection area type (see mem_type_prot_t enum)
* @param lr Low segment Read permission flag * @param lr Low segment Read permission flag
* @param hr High segment Read permission flag * @param hr High segment Read permission flag
*
* @return ESP_OK on success
* ESP_ERR_NOT_SUPPORTED on invalid mem_type
*/ */
void esp_memprot_set_read_perm(mem_type_prot_t mem_type, bool lr, bool hr); esp_err_t esp_memprot_set_read_perm(mem_type_prot_t mem_type, bool lr, bool hr);
/** /**
* @brief Sets WRITE permission bit for required memory region * @brief Sets WRITE permission bit for required memory region
@ -492,17 +564,23 @@ void esp_memprot_set_read_perm(mem_type_prot_t mem_type, bool lr, bool hr);
* @param mem_type Memory protection area type (see mem_type_prot_t enum) * @param mem_type Memory protection area type (see mem_type_prot_t enum)
* @param lr Low segment Write permission flag * @param lr Low segment Write permission flag
* @param hr High segment Write permission flag * @param hr High segment Write permission flag
*
* @return ESP_OK on success
* ESP_ERR_NOT_SUPPORTED on invalid mem_type
*/ */
void esp_memprot_set_write_perm(mem_type_prot_t mem_type, bool lw, bool hw); esp_err_t esp_memprot_set_write_perm(mem_type_prot_t mem_type, bool lw, bool hw);
/** /**
* @brief Sets EXECUTE permission bit for required memory region * @brief Sets EXECUTE permission bit for required memory region
* *
* @param mem_type Memory protection area type (see mem_type_prot_t enum) * @param mem_type Memory protection area type (MEMPROT_IRAM0_SRAM, MEMPROT_IRAM0_RTCFAST, MEMPROT_PERI2_RTCSLOW_0, MEMPROT_PERI2_RTCSLOW_1)
* @param lr Low segment Exec permission flag * @param lr Low segment Exec permission flag
* @param hr High segment Exec permission flag * @param hr High segment Exec permission flag
*
* @return ESP_OK on success
* ESP_ERR_NOT_SUPPORTED on invalid mem_type
*/ */
void esp_memprot_set_exec_perm(mem_type_prot_t mem_type, bool lx, bool hx); esp_err_t esp_memprot_set_exec_perm(mem_type_prot_t mem_type, bool lx, bool hx);
#ifdef __cplusplus #ifdef __cplusplus

File diff suppressed because it is too large Load Diff

View File

@ -76,7 +76,7 @@ void panic_print_registers(const void *f, int core)
&& ((core == 0 && frame->exccause == PANIC_RSN_INTWDT_CPU0) || && ((core == 0 && frame->exccause == PANIC_RSN_INTWDT_CPU0) ||
(core == 1 && frame->exccause == PANIC_RSN_INTWDT_CPU1)) (core == 1 && frame->exccause == PANIC_RSN_INTWDT_CPU1))
#endif //!CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE #endif //!CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
) { ) {
panic_print_str("\r\n"); panic_print_str("\r\n");
@ -264,27 +264,46 @@ static inline void print_cache_err_details(const void *f)
} }
#if CONFIG_ESP_SYSTEM_MEMPROT_FEATURE #if CONFIG_ESP_SYSTEM_MEMPROT_FEATURE
#define MEMPROT_OP_INVALID 0xFFFFFFFF
static inline void print_memprot_err_details(const void *f) static inline void print_memprot_err_details(const void *f)
{ {
uint32_t *fault_addr; uint32_t *fault_addr;
uint32_t op_type, op_subtype; uint32_t op_type, op_subtype;
mem_type_prot_t mem_type = esp_memprot_get_active_intr_memtype(); char *operation_type;
esp_memprot_get_fault_status( mem_type, &fault_addr, &op_type, &op_subtype );
char *operation_type = "Write"; mem_type_prot_t mem_type = esp_memprot_get_active_intr_memtype();
if ( op_type == 0 ) { if (mem_type != MEMPROT_NONE) {
operation_type = (mem_type == MEMPROT_IRAM0_SRAM && op_subtype == 0) ? "Instruction fetch" : "Read"; #if CONFIG_IDF_TARGET_ESP32S2 //specific for ESP32S2 unless IDF-3024 is merged
if (esp_memprot_get_fault_status(mem_type, &fault_addr, &op_type, &op_subtype) != ESP_OK) {
op_type = MEMPROT_OP_INVALID;
}
#else
esp_memprot_get_fault_status(mem_type, &fault_addr, &op_type, &op_subtype);
#endif
} }
panic_print_str( operation_type ); if (op_type == MEMPROT_OP_INVALID) {
panic_print_str( " operation at address 0x" ); operation_type = "Unknown";
panic_print_hex( (uint32_t)fault_addr ); fault_addr = (uint32_t *)MEMPROT_OP_INVALID;
panic_print_str(" not permitted.\r\n"); } else {
if (op_type == 0) {
operation_type = (mem_type == MEMPROT_IRAM0_SRAM && op_subtype == 0) ? "Instruction fetch" : "Read";
} else {
operation_type = "Write";
}
}
panic_print_str(operation_type);
panic_print_str(" operation at address 0x");
panic_print_hex((uint32_t)fault_addr);
panic_print_str(" not permitted (");
panic_print_str(esp_memprot_type_to_str(mem_type));
panic_print_str(")\r\n");
} }
#endif #endif
#elif CONFIG_IDF_TARGET_ESP32S3 #elif CONFIG_IDF_TARGET_ESP32S3
static inline void print_cache_err_details(const void* f) static inline void print_cache_err_details(const void *f)
{ {
uint32_t vaddr = 0, size = 0; uint32_t vaddr = 0, size = 0;
uint32_t status; uint32_t status;
@ -355,7 +374,7 @@ static inline void print_cache_err_details(const void* f)
void panic_arch_fill_info(void *f, panic_info_t *info) void panic_arch_fill_info(void *f, panic_info_t *info)
{ {
XtExcFrame *frame = (XtExcFrame*) f; XtExcFrame *frame = (XtExcFrame *) f;
static const char *reason[] = { static const char *reason[] = {
"IllegalInstruction", "Syscall", "InstructionFetchError", "LoadStoreError", "IllegalInstruction", "Syscall", "InstructionFetchError", "LoadStoreError",
"Level1Interrupt", "Alloca", "IntegerDivideByZero", "PCValue", "Level1Interrupt", "Alloca", "IntegerDivideByZero", "PCValue",
@ -388,7 +407,7 @@ void panic_soc_fill_info(void *f, panic_info_t *info)
{ {
// [refactor-todo] this should be in the common port panic_handler.c, once // [refactor-todo] this should be in the common port panic_handler.c, once
// these special exceptions are supported in there. // these special exceptions are supported in there.
XtExcFrame *frame = (XtExcFrame*) f; XtExcFrame *frame = (XtExcFrame *) f;
if (frame->exccause == PANIC_RSN_INTWDT_CPU0) { if (frame->exccause == PANIC_RSN_INTWDT_CPU0) {
info->core = 0; info->core = 0;
info->exception = PANIC_EXCEPTION_IWDT; info->exception = PANIC_EXCEPTION_IWDT;
@ -442,19 +461,19 @@ void panic_soc_fill_info(void *f, panic_info_t *info)
#endif #endif
} }
uint32_t panic_get_address(const void* f) uint32_t panic_get_address(const void *f)
{ {
return ((XtExcFrame*)f)->pc; return ((XtExcFrame *)f)->pc;
} }
uint32_t panic_get_cause(const void* f) uint32_t panic_get_cause(const void *f)
{ {
return ((XtExcFrame*)f)->exccause; return ((XtExcFrame *)f)->exccause;
} }
void panic_set_address(void *f, uint32_t addr) void panic_set_address(void *f, uint32_t addr)
{ {
((XtExcFrame*)f)->pc = addr; ((XtExcFrame *)f)->pc = addr;
} }
void panic_print_backtrace(const void *f, int core) void panic_print_backtrace(const void *f, int core)

View File

@ -305,7 +305,7 @@ void IRAM_ATTR call_start_cpu0(void)
// from panic handler we can be reset by RWDT or TG0WDT // from panic handler we can be reset by RWDT or TG0WDT
if (rst_reas[0] == RESET_REASON_CORE_RTC_WDT || rst_reas[0] == RESET_REASON_CORE_MWDT0 if (rst_reas[0] == RESET_REASON_CORE_RTC_WDT || rst_reas[0] == RESET_REASON_CORE_MWDT0
#if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE #if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
|| rst_reas[1] == RESET_REASON_CORE_RTC_WDT || rst_reas[1] == RESET_REASON_CORE_MWDT0 || rst_reas[1] == RESET_REASON_CORE_RTC_WDT || rst_reas[1] == RESET_REASON_CORE_MWDT0
#endif #endif
) { ) {
wdt_hal_context_t rtc_wdt_ctx = {.inst = WDT_RWDT, .rwdt_dev = &RTCCNTL}; wdt_hal_context_t rtc_wdt_ctx = {.inst = WDT_RWDT, .rwdt_dev = &RTCCNTL};
@ -513,15 +513,28 @@ void IRAM_ATTR call_start_cpu0(void)
#if CONFIG_ESP_SYSTEM_MEMPROT_FEATURE #if CONFIG_ESP_SYSTEM_MEMPROT_FEATURE
// Memprot cannot be locked during OS startup as the lock-on prevents any PMS changes until a next reboot // Memprot cannot be locked during OS startup as the lock-on prevents any PMS changes until a next reboot
// If such a situation appears, it is likely an malicious attempt to bypass the system safety setup -> print error & reset // If such a situation appears, it is likely an malicious attempt to bypass the system safety setup -> print error & reset
if ( esp_memprot_is_locked_any() ) { if (esp_memprot_is_locked_any()) {
ESP_EARLY_LOGE(TAG, "Memprot feature locked after the system reset! Potential safety corruption, rebooting."); ESP_EARLY_LOGE(TAG, "Memprot feature locked after the system reset! Potential safety corruption, rebooting.");
esp_restart_noos_dig(); esp_restart_noos_dig();
} }
esp_err_t memp_err = ESP_OK;
#if CONFIG_ESP_SYSTEM_MEMPROT_FEATURE_LOCK #if CONFIG_ESP_SYSTEM_MEMPROT_FEATURE_LOCK
#if CONFIG_IDF_TARGET_ESP32S2 //specific for ESP32S2 unless IDF-3024 is merged
memp_err = esp_memprot_set_prot(true, true, NULL);
#else
esp_memprot_set_prot(true, true, NULL); esp_memprot_set_prot(true, true, NULL);
#endif
#else
#if CONFIG_IDF_TARGET_ESP32S2 //specific for ESP32S2 unless IDF-3024 is merged
memp_err = esp_memprot_set_prot(true, false, NULL);
#else #else
esp_memprot_set_prot(true, false, NULL); esp_memprot_set_prot(true, false, NULL);
#endif #endif
#endif
if (memp_err != ESP_OK) {
ESP_EARLY_LOGE(TAG, "Failed to set Memprot feature (error 0x%08X), rebooting.", memp_err);
esp_restart_noos_dig();
}
#endif #endif
bootloader_flash_update_id(); bootloader_flash_update_id();

View File

@ -14,7 +14,9 @@
#pragma once #pragma once
#include "hal/assert.h" #include <stdbool.h>
#include "soc/memprot_defs.h"
#include "hal/memprot_types.h"
#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
@ -25,23 +27,18 @@ extern "C" {
* === IRAM0 common * === IRAM0 common
* ======================================================================================== * ========================================================================================
*/ */
//IRAM0 interrupt status bitmasks static inline void memprot_ll_iram0_clear_intr(void)
#define IRAM0_INTR_ST_OP_TYPE_BIT BIT(1) //instruction: 0, data: 1
#define IRAM0_INTR_ST_OP_RW_BIT BIT(0) //read: 0, write: 1
#define CONF_REG_ADDRESS_SHIFT 2
static inline void esp_memprot_iram0_clear_intr(void)
{ {
DPORT_SET_PERI_REG_MASK(DPORT_PMS_PRO_IRAM0_4_REG, DPORT_PMS_PRO_IRAM0_ILG_CLR); DPORT_SET_PERI_REG_MASK(DPORT_PMS_PRO_IRAM0_4_REG, DPORT_PMS_PRO_IRAM0_ILG_CLR);
DPORT_CLEAR_PERI_REG_MASK(DPORT_PMS_PRO_IRAM0_4_REG, DPORT_PMS_PRO_IRAM0_ILG_CLR); DPORT_CLEAR_PERI_REG_MASK(DPORT_PMS_PRO_IRAM0_4_REG, DPORT_PMS_PRO_IRAM0_ILG_CLR);
} }
static inline uint32_t esp_memprot_iram0_get_intr_source_num(void) static inline uint32_t memprot_ll_iram0_get_intr_source_num(void)
{ {
return ETS_PMS_PRO_IRAM0_ILG_INTR_SOURCE; return ETS_PMS_PRO_IRAM0_ILG_INTR_SOURCE;
} }
static inline void esp_memprot_iram0_intr_ena(bool enable) static inline void memprot_ll_iram0_intr_ena(bool enable)
{ {
if (enable) { if (enable) {
DPORT_SET_PERI_REG_MASK(DPORT_PMS_PRO_IRAM0_4_REG, DPORT_PMS_PRO_IRAM0_ILG_EN); DPORT_SET_PERI_REG_MASK(DPORT_PMS_PRO_IRAM0_4_REG, DPORT_PMS_PRO_IRAM0_ILG_EN);
@ -50,55 +47,55 @@ static inline void esp_memprot_iram0_intr_ena(bool enable)
} }
} }
static inline uint32_t esp_memprot_iram0_get_conf_reg(void) static inline uint32_t memprot_ll_iram0_get_conf_reg(void)
{ {
return DPORT_READ_PERI_REG(DPORT_PMS_PRO_IRAM0_4_REG); return DPORT_READ_PERI_REG(DPORT_PMS_PRO_IRAM0_4_REG);
} }
static inline uint32_t esp_memprot_iram0_get_fault_reg(void) static inline uint32_t memprot_ll_iram0_get_fault_reg(void)
{ {
return DPORT_READ_PERI_REG(DPORT_PMS_PRO_IRAM0_5_REG); return DPORT_READ_PERI_REG(DPORT_PMS_PRO_IRAM0_5_REG);
} }
static inline void esp_memprot_iram0_get_fault_op_type(uint32_t *op_type, uint32_t *op_subtype) static inline void memprot_ll_iram0_get_fault_op_type(uint32_t *op_type, uint32_t *op_subtype)
{ {
uint32_t status_bits = esp_memprot_iram0_get_fault_reg(); uint32_t status_bits = memprot_ll_iram0_get_fault_reg();
*op_type = (uint32_t)status_bits & IRAM0_INTR_ST_OP_RW_BIT; *op_type = (uint32_t)status_bits & IRAM0_INTR_ST_OP_RW_BIT;
*op_subtype = (uint32_t)status_bits & IRAM0_INTR_ST_OP_TYPE_BIT; *op_subtype = (uint32_t)status_bits & IRAM0_INTR_ST_OP_TYPE_BIT;
} }
static inline bool esp_memprot_iram0_is_assoc_intr(void) static inline bool memprot_ll_iram0_is_assoc_intr(void)
{ {
return DPORT_GET_PERI_REG_MASK(DPORT_PMS_PRO_IRAM0_4_REG, DPORT_PMS_PRO_IRAM0_ILG_INTR) > 0; return DPORT_GET_PERI_REG_MASK(DPORT_PMS_PRO_IRAM0_4_REG, DPORT_PMS_PRO_IRAM0_ILG_INTR) > 0;
} }
static inline uint32_t esp_memprot_iram0_get_intr_ena_bit(void) static inline uint32_t memprot_ll_iram0_get_intr_ena_bit(void)
{ {
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_4_REG, DPORT_PMS_PRO_IRAM0_ILG_EN); return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_4_REG, DPORT_PMS_PRO_IRAM0_ILG_EN);
} }
static inline uint32_t esp_memprot_iram0_get_intr_on_bit(void) static inline uint32_t memprot_ll_iram0_get_intr_on_bit(void)
{ {
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_4_REG, DPORT_PMS_PRO_IRAM0_ILG_INTR); return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_4_REG, DPORT_PMS_PRO_IRAM0_ILG_INTR);
} }
static inline uint32_t esp_memprot_iram0_get_intr_clr_bit(void) static inline uint32_t memprot_ll_iram0_get_intr_clr_bit(void)
{ {
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_4_REG, DPORT_PMS_PRO_IRAM0_ILG_CLR); return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_4_REG, DPORT_PMS_PRO_IRAM0_ILG_CLR);
} }
//resets automatically on CPU restart //resets automatically on CPU restart
static inline void esp_memprot_iram0_set_lock(void) static inline void memprot_ll_iram0_set_lock(void)
{ {
DPORT_WRITE_PERI_REG( DPORT_PMS_PRO_IRAM0_0_REG, DPORT_PMS_PRO_IRAM0_LOCK); DPORT_WRITE_PERI_REG( DPORT_PMS_PRO_IRAM0_0_REG, DPORT_PMS_PRO_IRAM0_LOCK);
} }
static inline uint32_t esp_memprot_iram0_get_lock_reg(void) static inline uint32_t memprot_ll_iram0_get_lock_reg(void)
{ {
return DPORT_READ_PERI_REG(DPORT_PMS_PRO_IRAM0_0_REG); return DPORT_READ_PERI_REG(DPORT_PMS_PRO_IRAM0_0_REG);
} }
static inline uint32_t esp_memprot_iram0_get_lock_bit(void) static inline uint32_t memprot_ll_iram0_get_lock_bit(void)
{ {
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_0_REG, DPORT_PMS_PRO_IRAM0_LOCK); return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_0_REG, DPORT_PMS_PRO_IRAM0_LOCK);
} }
@ -108,52 +105,26 @@ static inline uint32_t esp_memprot_iram0_get_lock_bit(void)
* === IRAM0 SRAM * === IRAM0 SRAM
* ======================================================================================== * ========================================================================================
*/ */
#define IRAM0_SRAM_BASE_ADDRESS 0x40000000 static inline intptr_t memprot_ll_iram0_sram_get_fault_address(void)
#define IRAM0_SRAM_ADDRESS_LOW 0x40020000
#define IRAM0_SRAM_ADDRESS_HIGH 0x4006FFFF
#define IRAM0_SRAM_TOTAL_UNI_BLOCKS 4
#define IRAM0_SRAM_UNI_BLOCK_0 0
#define IRAM0_SRAM_UNI_BLOCK_1 1
#define IRAM0_SRAM_UNI_BLOCK_2 2
#define IRAM0_SRAM_UNI_BLOCK_3 3
//unified management (SRAM blocks 0-3)
#define IRAM0_SRAM_UNI_BLOCK_0_LOW 0x40020000
#define IRAM0_SRAM_UNI_BLOCK_1_LOW 0x40022000
#define IRAM0_SRAM_UNI_BLOCK_2_LOW 0x40024000
#define IRAM0_SRAM_UNI_BLOCK_3_LOW 0x40026000
//split management (SRAM blocks 4-21)
#define IRAM0_SRAM_SPL_BLOCK_LOW 0x40028000 //block 4 low
#define IRAM0_SRAM_SPL_BLOCK_HIGH 0x4006FFFF //block 21 high
#define IRAM0_INTR_ST_FAULTADDR_M 0x003FFFFC //bits 21:6 in the reg, as well as in real address
#define IRAM0_SRAM_INTR_ST_FAULTADDR_HI 0x40000000 //high nonsignificant bits 31:22 of the faulting address - constant
#define IRAM0_SRAM_ADDR_TO_CONF_REG(addr) (((addr >> CONF_REG_ADDRESS_SHIFT) & DPORT_PMS_PRO_IRAM0_SRAM_4_SPLTADDR) << DPORT_PMS_PRO_IRAM0_SRAM_4_SPLTADDR_S)
static inline uint32_t *esp_memprot_iram0_sram_get_fault_address(void)
{ {
uint32_t status_bits = esp_memprot_iram0_get_fault_reg(); uint32_t status_bits = memprot_ll_iram0_get_fault_reg();
return (uint32_t *)((status_bits & IRAM0_INTR_ST_FAULTADDR_M) | IRAM0_SRAM_INTR_ST_FAULTADDR_HI); return (intptr_t)((status_bits & IRAM0_INTR_ST_FAULTADDR_M) | IRAM0_SRAM_INTR_ST_FAULTADDR_HI);
} }
static inline bool esp_memprot_iram0_sram_is_intr_mine(void) static inline bool memprot_ll_iram0_sram_is_intr_mine(void)
{ {
if (esp_memprot_iram0_is_assoc_intr()) { if (memprot_ll_iram0_is_assoc_intr()) {
uint32_t *faulting_address = esp_memprot_iram0_sram_get_fault_address(); uint32_t faulting_address = (uint32_t)memprot_ll_iram0_sram_get_fault_address();
return (uint32_t)faulting_address >= IRAM0_SRAM_ADDRESS_LOW && (uint32_t)faulting_address <= IRAM0_SRAM_ADDRESS_HIGH; return faulting_address >= IRAM0_SRAM_ADDRESS_LOW && faulting_address <= IRAM0_SRAM_ADDRESS_HIGH;
} }
return false; return false;
} }
//block 0-3 //block 0-3
static inline void esp_memprot_iram0_sram_set_uni_block_perm(uint32_t block, bool write_perm, bool read_perm, bool exec_perm) static inline bool memprot_ll_iram0_sram_set_uni_block_perm(uint32_t block, bool write_perm, bool read_perm, bool exec_perm)
{ {
HAL_ASSERT(block < IRAM0_SRAM_TOTAL_UNI_BLOCKS);
uint32_t write_bit, read_bit, exec_bit; uint32_t write_bit, read_bit, exec_bit;
switch (block) { switch (block) {
case IRAM0_SRAM_UNI_BLOCK_0: case IRAM0_SRAM_UNI_BLOCK_0:
write_bit = DPORT_PMS_PRO_IRAM0_SRAM_0_W; write_bit = DPORT_PMS_PRO_IRAM0_SRAM_0_W;
@ -176,7 +147,7 @@ static inline void esp_memprot_iram0_sram_set_uni_block_perm(uint32_t block, boo
exec_bit = DPORT_PMS_PRO_IRAM0_SRAM_3_F; exec_bit = DPORT_PMS_PRO_IRAM0_SRAM_3_F;
break; break;
default: default:
abort(); return false;
} }
if (write_perm) { if (write_perm) {
@ -196,66 +167,78 @@ static inline void esp_memprot_iram0_sram_set_uni_block_perm(uint32_t block, boo
} else { } else {
DPORT_CLEAR_PERI_REG_MASK(DPORT_PMS_PRO_IRAM0_1_REG, exec_bit); DPORT_CLEAR_PERI_REG_MASK(DPORT_PMS_PRO_IRAM0_1_REG, exec_bit);
} }
return true;
} }
static inline uint32_t esp_memprot_iram0_sram_get_uni_block_read_bit(uint32_t block) static inline bool memprot_ll_iram0_sram_get_uni_block_read_bit(uint32_t block, uint32_t *read_bit)
{ {
HAL_ASSERT(block < IRAM0_SRAM_TOTAL_UNI_BLOCKS);
switch (block) { switch (block) {
case IRAM0_SRAM_UNI_BLOCK_0: case IRAM0_SRAM_UNI_BLOCK_0:
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_1_REG, DPORT_PMS_PRO_IRAM0_SRAM_0_R); *read_bit = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_1_REG, DPORT_PMS_PRO_IRAM0_SRAM_0_R);
break;
case IRAM0_SRAM_UNI_BLOCK_1: case IRAM0_SRAM_UNI_BLOCK_1:
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_1_REG, DPORT_PMS_PRO_IRAM0_SRAM_1_R); *read_bit = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_1_REG, DPORT_PMS_PRO_IRAM0_SRAM_1_R);
break;
case IRAM0_SRAM_UNI_BLOCK_2: case IRAM0_SRAM_UNI_BLOCK_2:
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_1_REG, DPORT_PMS_PRO_IRAM0_SRAM_2_R); *read_bit = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_1_REG, DPORT_PMS_PRO_IRAM0_SRAM_2_R);
break;
case IRAM0_SRAM_UNI_BLOCK_3: case IRAM0_SRAM_UNI_BLOCK_3:
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_1_REG, DPORT_PMS_PRO_IRAM0_SRAM_3_R); *read_bit = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_1_REG, DPORT_PMS_PRO_IRAM0_SRAM_3_R);
break;
default: default:
abort(); return false;
} }
return true;
} }
static inline uint32_t esp_memprot_iram0_sram_get_uni_block_write_bit(uint32_t block) static inline bool memprot_ll_iram0_sram_get_uni_block_write_bit(uint32_t block, uint32_t *write_bit)
{ {
HAL_ASSERT(block < IRAM0_SRAM_TOTAL_UNI_BLOCKS);
switch (block) { switch (block) {
case IRAM0_SRAM_UNI_BLOCK_0: case IRAM0_SRAM_UNI_BLOCK_0:
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_1_REG, DPORT_PMS_PRO_IRAM0_SRAM_0_W); *write_bit = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_1_REG, DPORT_PMS_PRO_IRAM0_SRAM_0_W);
break;
case IRAM0_SRAM_UNI_BLOCK_1: case IRAM0_SRAM_UNI_BLOCK_1:
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_1_REG, DPORT_PMS_PRO_IRAM0_SRAM_1_W); *write_bit = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_1_REG, DPORT_PMS_PRO_IRAM0_SRAM_1_W);
break;
case IRAM0_SRAM_UNI_BLOCK_2: case IRAM0_SRAM_UNI_BLOCK_2:
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_1_REG, DPORT_PMS_PRO_IRAM0_SRAM_2_W); *write_bit = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_1_REG, DPORT_PMS_PRO_IRAM0_SRAM_2_W);
break;
case IRAM0_SRAM_UNI_BLOCK_3: case IRAM0_SRAM_UNI_BLOCK_3:
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_1_REG, DPORT_PMS_PRO_IRAM0_SRAM_3_W); *write_bit = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_1_REG, DPORT_PMS_PRO_IRAM0_SRAM_3_W);
break;
default: default:
abort(); return false;
} }
return true;
} }
static inline uint32_t esp_memprot_iram0_sram_get_uni_block_exec_bit(uint32_t block) static inline bool memprot_ll_iram0_sram_get_uni_block_exec_bit(uint32_t block, uint32_t *exec_bit)
{ {
HAL_ASSERT(block < IRAM0_SRAM_TOTAL_UNI_BLOCKS);
switch (block) { switch (block) {
case IRAM0_SRAM_UNI_BLOCK_0: case IRAM0_SRAM_UNI_BLOCK_0:
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_1_REG, DPORT_PMS_PRO_IRAM0_SRAM_0_F); *exec_bit = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_1_REG, DPORT_PMS_PRO_IRAM0_SRAM_0_F);
break;
case IRAM0_SRAM_UNI_BLOCK_1: case IRAM0_SRAM_UNI_BLOCK_1:
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_1_REG, DPORT_PMS_PRO_IRAM0_SRAM_1_F); *exec_bit = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_1_REG, DPORT_PMS_PRO_IRAM0_SRAM_1_F);
break;
case IRAM0_SRAM_UNI_BLOCK_2: case IRAM0_SRAM_UNI_BLOCK_2:
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_1_REG, DPORT_PMS_PRO_IRAM0_SRAM_2_F); *exec_bit = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_1_REG, DPORT_PMS_PRO_IRAM0_SRAM_2_F);
break;
case IRAM0_SRAM_UNI_BLOCK_3: case IRAM0_SRAM_UNI_BLOCK_3:
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_1_REG, DPORT_PMS_PRO_IRAM0_SRAM_3_F); *exec_bit = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_1_REG, DPORT_PMS_PRO_IRAM0_SRAM_3_F);
break;
default: default:
abort(); return false;
} }
return true;
} }
static inline void esp_memprot_iram0_sram_get_uni_block_sgnf_bits(uint32_t block, uint32_t *write_bit, uint32_t *read_bit, uint32_t *exec_bit) static inline bool memprot_ll_iram0_sram_get_uni_block_sgnf_bits(uint32_t block, uint32_t *write_bit, uint32_t *read_bit, uint32_t *exec_bit)
{ {
HAL_ASSERT(block < IRAM0_SRAM_TOTAL_UNI_BLOCKS);
switch (block) { switch (block) {
case IRAM0_SRAM_UNI_BLOCK_0: case IRAM0_SRAM_UNI_BLOCK_0:
*write_bit = DPORT_PMS_PRO_IRAM0_SRAM_0_W; *write_bit = DPORT_PMS_PRO_IRAM0_SRAM_0_W;
@ -278,25 +261,33 @@ static inline void esp_memprot_iram0_sram_get_uni_block_sgnf_bits(uint32_t block
*exec_bit = DPORT_PMS_PRO_IRAM0_SRAM_3_F; *exec_bit = DPORT_PMS_PRO_IRAM0_SRAM_3_F;
break; break;
default: default:
abort(); return false;
} }
return true;
} }
static inline uint32_t esp_memprot_iram0_sram_get_perm_uni_reg(void) static inline uint32_t memprot_ll_iram0_sram_get_perm_uni_reg(void)
{ {
return DPORT_READ_PERI_REG(DPORT_PMS_PRO_IRAM0_1_REG); return DPORT_READ_PERI_REG(DPORT_PMS_PRO_IRAM0_1_REG);
} }
static inline uint32_t esp_memprot_iram0_sram_get_perm_split_reg(void) static inline uint32_t memprot_ll_iram0_sram_get_perm_split_reg(void)
{ {
return DPORT_READ_PERI_REG(DPORT_PMS_PRO_IRAM0_2_REG); return DPORT_READ_PERI_REG(DPORT_PMS_PRO_IRAM0_2_REG);
} }
static inline void esp_memprot_iram0_sram_set_prot(uint32_t *split_addr, bool lw, bool lr, bool lx, bool hw, bool hr, bool hx) static inline memprot_ll_err_t memprot_ll_iram0_sram_set_prot(uint32_t *split_addr, bool lw, bool lr, bool lx, bool hw, bool hr, bool hx)
{ {
uint32_t addr = (uint32_t)split_addr; uint32_t addr = (uint32_t)split_addr;
HAL_ASSERT(addr <= IRAM0_SRAM_SPL_BLOCK_HIGH);
HAL_ASSERT(addr % 0x4 == 0); //sanity check: split address required above unified mgmt region & 32bit aligned
if (addr > IRAM0_SRAM_SPL_BLOCK_HIGH) {
return MEMP_LL_ERR_SPLIT_ADDR_INVALID;
}
if (addr % 0x4 != 0) {
return MEMP_LL_ERR_SPLIT_ADDR_UNALIGNED;
}
//find possible split.address in low region blocks //find possible split.address in low region blocks
int uni_blocks_low = -1; int uni_blocks_low = -1;
@ -318,7 +309,9 @@ static inline void esp_memprot_iram0_sram_set_prot(uint32_t *split_addr, bool lw
uint32_t uni_block_perm = 0; uint32_t uni_block_perm = 0;
for (int x = 0; x < IRAM0_SRAM_TOTAL_UNI_BLOCKS; x++) { for (int x = 0; x < IRAM0_SRAM_TOTAL_UNI_BLOCKS; x++) {
esp_memprot_iram0_sram_get_uni_block_sgnf_bits(x, &write_bit, &read_bit, &exec_bit); if (!memprot_ll_iram0_sram_get_uni_block_sgnf_bits(x, &write_bit, &read_bit, &exec_bit)) {
return MEMP_LL_ERR_UNI_BLOCK_INVALID;
}
if (x <= uni_blocks_low) { if (x <= uni_blocks_low) {
if (lw) { if (lw) {
uni_block_perm |= write_bit; uni_block_perm |= write_bit;
@ -346,7 +339,7 @@ static inline void esp_memprot_iram0_sram_set_prot(uint32_t *split_addr, bool lw
uint32_t reg_split_addr = 0; uint32_t reg_split_addr = 0;
if (addr >= IRAM0_SRAM_SPL_BLOCK_LOW) { if (addr >= IRAM0_SRAM_SPL_BLOCK_LOW) {
reg_split_addr = IRAM0_SRAM_ADDR_TO_CONF_REG( addr ); //cfg reg - [16:0] reg_split_addr = IRAM0_SRAM_ADDR_TO_CONF_REG(addr); //cfg reg - [16:0]
} }
//prepare high & low permission mask (bits: [22:20] high range, [19:17] low range) //prepare high & low permission mask (bits: [22:20] high range, [19:17] low range)
@ -373,9 +366,11 @@ static inline void esp_memprot_iram0_sram_set_prot(uint32_t *split_addr, bool lw
//write IRAM SRAM uni & splt cfg. registers //write IRAM SRAM uni & splt cfg. registers
DPORT_WRITE_PERI_REG(DPORT_PMS_PRO_IRAM0_1_REG, uni_block_perm); DPORT_WRITE_PERI_REG(DPORT_PMS_PRO_IRAM0_1_REG, uni_block_perm);
DPORT_WRITE_PERI_REG(DPORT_PMS_PRO_IRAM0_2_REG, (uint32_t)(reg_split_addr | permission_mask)); DPORT_WRITE_PERI_REG(DPORT_PMS_PRO_IRAM0_2_REG, (uint32_t)(reg_split_addr | permission_mask));
return MEMP_LL_OK;
} }
static inline void esp_memprot_iram0_sram_get_split_sgnf_bits(bool *lw, bool *lr, bool *lx, bool *hw, bool *hr, bool *hx) static inline void memprot_ll_iram0_sram_get_split_sgnf_bits(bool *lw, bool *lr, bool *lx, bool *hw, bool *hr, bool *hx)
{ {
*lw = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_2_REG, DPORT_PMS_PRO_IRAM0_SRAM_4_L_W); *lw = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_2_REG, DPORT_PMS_PRO_IRAM0_SRAM_4_L_W);
*lr = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_2_REG, DPORT_PMS_PRO_IRAM0_SRAM_4_L_R); *lr = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_2_REG, DPORT_PMS_PRO_IRAM0_SRAM_4_L_R);
@ -385,19 +380,19 @@ static inline void esp_memprot_iram0_sram_get_split_sgnf_bits(bool *lw, bool *lr
*hx = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_2_REG, DPORT_PMS_PRO_IRAM0_SRAM_4_H_F); *hx = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_2_REG, DPORT_PMS_PRO_IRAM0_SRAM_4_H_F);
} }
static inline void esp_memprot_iram0_sram_set_read_perm(bool lr, bool hr) static inline void memprot_ll_iram0_sram_set_read_perm(bool lr, bool hr)
{ {
DPORT_REG_SET_FIELD(DPORT_PMS_PRO_IRAM0_2_REG, DPORT_PMS_PRO_IRAM0_SRAM_4_L_R, lr ? 1 : 0); DPORT_REG_SET_FIELD(DPORT_PMS_PRO_IRAM0_2_REG, DPORT_PMS_PRO_IRAM0_SRAM_4_L_R, lr ? 1 : 0);
DPORT_REG_SET_FIELD(DPORT_PMS_PRO_IRAM0_2_REG, DPORT_PMS_PRO_IRAM0_SRAM_4_H_R, hr ? 1 : 0); DPORT_REG_SET_FIELD(DPORT_PMS_PRO_IRAM0_2_REG, DPORT_PMS_PRO_IRAM0_SRAM_4_H_R, hr ? 1 : 0);
} }
static inline void esp_memprot_iram0_sram_set_write_perm(bool lw, bool hw) static inline void memprot_ll_iram0_sram_set_write_perm(bool lw, bool hw)
{ {
DPORT_REG_SET_FIELD(DPORT_PMS_PRO_IRAM0_2_REG, DPORT_PMS_PRO_IRAM0_SRAM_4_L_W, lw ? 1 : 0); DPORT_REG_SET_FIELD(DPORT_PMS_PRO_IRAM0_2_REG, DPORT_PMS_PRO_IRAM0_SRAM_4_L_W, lw ? 1 : 0);
DPORT_REG_SET_FIELD(DPORT_PMS_PRO_IRAM0_2_REG, DPORT_PMS_PRO_IRAM0_SRAM_4_H_W, hw ? 1 : 0); DPORT_REG_SET_FIELD(DPORT_PMS_PRO_IRAM0_2_REG, DPORT_PMS_PRO_IRAM0_SRAM_4_H_W, hw ? 1 : 0);
} }
static inline void esp_memprot_iram0_sram_set_exec_perm(bool lx, bool hx) static inline void memprot_ll_iram0_sram_set_exec_perm(bool lx, bool hx)
{ {
DPORT_REG_SET_FIELD(DPORT_PMS_PRO_IRAM0_2_REG, DPORT_PMS_PRO_IRAM0_SRAM_4_L_F, lx ? 1 : 0); DPORT_REG_SET_FIELD(DPORT_PMS_PRO_IRAM0_2_REG, DPORT_PMS_PRO_IRAM0_SRAM_4_L_F, lx ? 1 : 0);
DPORT_REG_SET_FIELD(DPORT_PMS_PRO_IRAM0_2_REG, DPORT_PMS_PRO_IRAM0_SRAM_4_H_F, hx ? 1 : 0); DPORT_REG_SET_FIELD(DPORT_PMS_PRO_IRAM0_2_REG, DPORT_PMS_PRO_IRAM0_SRAM_4_H_F, hx ? 1 : 0);
@ -409,37 +404,37 @@ static inline void esp_memprot_iram0_sram_set_exec_perm(bool lx, bool hx)
* === IRAM0 RTC FAST * === IRAM0 RTC FAST
* ======================================================================================== * ========================================================================================
*/ */
#define IRAM0_RTCFAST_ADDRESS_LOW 0x40070000 static inline intptr_t memprot_ll_iram0_rtcfast_get_fault_address(void)
#define IRAM0_RTCFAST_ADDRESS_HIGH 0x40071FFF
#define IRAM0_RTCFAST_INTR_ST_FAULTADDR_HI 0x40070000 //RTCFAST faulting address high bits (31:22, constant)
#define IRAM0_RTCFAST_ADDR_TO_CONF_REG(addr) (((addr >> CONF_REG_ADDRESS_SHIFT) & DPORT_PMS_PRO_IRAM0_RTCFAST_SPLTADDR) << DPORT_PMS_PRO_IRAM0_RTCFAST_SPLTADDR_S)
static inline uint32_t *esp_memprot_iram0_rtcfast_get_fault_address(void)
{ {
uint32_t status_bits = esp_memprot_iram0_get_fault_reg(); uint32_t status_bits = memprot_ll_iram0_get_fault_reg();
return (uint32_t *)((status_bits & IRAM0_INTR_ST_FAULTADDR_M) | IRAM0_RTCFAST_INTR_ST_FAULTADDR_HI); return (intptr_t)((status_bits & IRAM0_INTR_ST_FAULTADDR_M) | IRAM0_RTCFAST_INTR_ST_FAULTADDR_HI);
} }
static inline bool esp_memprot_iram0_rtcfast_is_intr_mine(void) static inline bool memprot_ll_iram0_rtcfast_is_intr_mine(void)
{ {
if (esp_memprot_iram0_is_assoc_intr()) { if (memprot_ll_iram0_is_assoc_intr()) {
uint32_t *faulting_address = esp_memprot_iram0_rtcfast_get_fault_address(); uint32_t faulting_address = (uint32_t)memprot_ll_iram0_rtcfast_get_fault_address();
return (uint32_t)faulting_address >= IRAM0_RTCFAST_ADDRESS_LOW && (uint32_t)faulting_address <= IRAM0_RTCFAST_ADDRESS_HIGH; return faulting_address >= IRAM0_RTCFAST_ADDRESS_LOW && faulting_address <= IRAM0_RTCFAST_ADDRESS_HIGH;
} }
return false; return false;
} }
static inline uint32_t esp_memprot_iram0_rtcfast_get_perm_split_reg(void) static inline uint32_t memprot_ll_iram0_rtcfast_get_perm_split_reg(void)
{ {
return DPORT_READ_PERI_REG(DPORT_PMS_PRO_IRAM0_3_REG); return DPORT_READ_PERI_REG(DPORT_PMS_PRO_IRAM0_3_REG);
} }
static inline void esp_memprot_iram0_rtcfast_set_prot(uint32_t *split_addr, bool lw, bool lr, bool lx, bool hw, bool hr, bool hx) static inline memprot_ll_err_t memprot_ll_iram0_rtcfast_set_prot(uint32_t *split_addr, bool lw, bool lr, bool lx, bool hw, bool hr, bool hx)
{ {
uint32_t addr = (uint32_t)split_addr; uint32_t addr = (uint32_t)split_addr;
HAL_ASSERT(addr % 0x4 == 0);
//32bit aligned
if (addr < IRAM0_RTCFAST_ADDRESS_LOW || addr > IRAM0_RTCFAST_ADDRESS_HIGH) {
return MEMP_LL_ERR_SPLIT_ADDR_INVALID;
}
if (addr % 0x4 != 0) {
return MEMP_LL_ERR_SPLIT_ADDR_UNALIGNED;
}
//conf reg [10:0] //conf reg [10:0]
uint32_t reg_split_addr = IRAM0_RTCFAST_ADDR_TO_CONF_REG(addr); uint32_t reg_split_addr = IRAM0_RTCFAST_ADDR_TO_CONF_REG(addr);
@ -467,9 +462,11 @@ static inline void esp_memprot_iram0_rtcfast_set_prot(uint32_t *split_addr, bool
//write IRAM0 RTCFAST cfg register //write IRAM0 RTCFAST cfg register
DPORT_WRITE_PERI_REG(DPORT_PMS_PRO_IRAM0_3_REG, reg_split_addr | permission_mask); DPORT_WRITE_PERI_REG(DPORT_PMS_PRO_IRAM0_3_REG, reg_split_addr | permission_mask);
return MEMP_LL_OK;
} }
static inline void esp_memprot_iram0_rtcfast_get_split_sgnf_bits(bool *lw, bool *lr, bool *lx, bool *hw, bool *hr, bool *hx) static inline void memprot_ll_iram0_rtcfast_get_split_sgnf_bits(bool *lw, bool *lr, bool *lx, bool *hw, bool *hr, bool *hx)
{ {
*lw = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_3_REG, DPORT_PMS_PRO_IRAM0_RTCFAST_L_W); *lw = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_3_REG, DPORT_PMS_PRO_IRAM0_RTCFAST_L_W);
*lr = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_3_REG, DPORT_PMS_PRO_IRAM0_RTCFAST_L_R); *lr = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_3_REG, DPORT_PMS_PRO_IRAM0_RTCFAST_L_R);
@ -479,19 +476,19 @@ static inline void esp_memprot_iram0_rtcfast_get_split_sgnf_bits(bool *lw, bool
*hx = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_3_REG, DPORT_PMS_PRO_IRAM0_RTCFAST_H_F); *hx = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_3_REG, DPORT_PMS_PRO_IRAM0_RTCFAST_H_F);
} }
static inline void esp_memprot_iram0_rtcfast_set_read_perm(bool lr, bool hr) static inline void memprot_ll_iram0_rtcfast_set_read_perm(bool lr, bool hr)
{ {
DPORT_REG_SET_FIELD(DPORT_PMS_PRO_IRAM0_3_REG, DPORT_PMS_PRO_IRAM0_RTCFAST_L_R, lr ? 1 : 0); DPORT_REG_SET_FIELD(DPORT_PMS_PRO_IRAM0_3_REG, DPORT_PMS_PRO_IRAM0_RTCFAST_L_R, lr ? 1 : 0);
DPORT_REG_SET_FIELD(DPORT_PMS_PRO_IRAM0_3_REG, DPORT_PMS_PRO_IRAM0_RTCFAST_H_R, hr ? 1 : 0); DPORT_REG_SET_FIELD(DPORT_PMS_PRO_IRAM0_3_REG, DPORT_PMS_PRO_IRAM0_RTCFAST_H_R, hr ? 1 : 0);
} }
static inline void esp_memprot_iram0_rtcfast_set_write_perm(bool lw, bool hw) static inline void memprot_ll_iram0_rtcfast_set_write_perm(bool lw, bool hw)
{ {
DPORT_REG_SET_FIELD(DPORT_PMS_PRO_IRAM0_3_REG, DPORT_PMS_PRO_IRAM0_RTCFAST_L_W, lw ? 1 : 0); DPORT_REG_SET_FIELD(DPORT_PMS_PRO_IRAM0_3_REG, DPORT_PMS_PRO_IRAM0_RTCFAST_L_W, lw ? 1 : 0);
DPORT_REG_SET_FIELD(DPORT_PMS_PRO_IRAM0_3_REG, DPORT_PMS_PRO_IRAM0_RTCFAST_H_W, hw ? 1 : 0); DPORT_REG_SET_FIELD(DPORT_PMS_PRO_IRAM0_3_REG, DPORT_PMS_PRO_IRAM0_RTCFAST_H_W, hw ? 1 : 0);
} }
static inline void esp_memprot_iram0_rtcfast_set_exec_perm(bool lx, bool hx) static inline void memprot_ll_iram0_rtcfast_set_exec_perm(bool lx, bool hx)
{ {
DPORT_REG_SET_FIELD(DPORT_PMS_PRO_IRAM0_3_REG, DPORT_PMS_PRO_IRAM0_RTCFAST_L_F, lx ? 1 : 0); DPORT_REG_SET_FIELD(DPORT_PMS_PRO_IRAM0_3_REG, DPORT_PMS_PRO_IRAM0_RTCFAST_L_F, lx ? 1 : 0);
DPORT_REG_SET_FIELD(DPORT_PMS_PRO_IRAM0_3_REG, DPORT_PMS_PRO_IRAM0_RTCFAST_H_F, hx ? 1 : 0); DPORT_REG_SET_FIELD(DPORT_PMS_PRO_IRAM0_3_REG, DPORT_PMS_PRO_IRAM0_RTCFAST_H_F, hx ? 1 : 0);
@ -503,19 +500,12 @@ static inline void esp_memprot_iram0_rtcfast_set_exec_perm(bool lx, bool hx)
* === DRAM0 common * === DRAM0 common
* ======================================================================================== * ========================================================================================
*/ */
//DRAM0 interrupt status bitmasks static inline uint32_t memprot_ll_dram0_get_intr_source_num(void)
#define DRAM0_INTR_ST_FAULTADDR_M 0x03FFFFC0 //(bits 25:6 in the reg)
#define DRAM0_INTR_ST_FAULTADDR_S 0x4 //(bits 21:2 of real address)
#define DRAM0_INTR_ST_OP_RW_BIT BIT(4) //read: 0, write: 1
#define DRAM0_INTR_ST_OP_ATOMIC_BIT BIT(5) //non-atomic: 0, atomic: 1
static inline uint32_t esp_memprot_dram0_get_intr_source_num(void)
{ {
return ETS_PMS_PRO_DRAM0_ILG_INTR_SOURCE; return ETS_PMS_PRO_DRAM0_ILG_INTR_SOURCE;
} }
static inline void esp_memprot_dram0_intr_ena(bool enable) static inline void memprot_ll_dram0_intr_ena(bool enable)
{ {
if (enable) { if (enable) {
DPORT_SET_PERI_REG_MASK(DPORT_PMS_PRO_DRAM0_3_REG, DPORT_PMS_PRO_DRAM0_ILG_EN); DPORT_SET_PERI_REG_MASK(DPORT_PMS_PRO_DRAM0_3_REG, DPORT_PMS_PRO_DRAM0_ILG_EN);
@ -524,112 +514,87 @@ static inline void esp_memprot_dram0_intr_ena(bool enable)
} }
} }
static inline bool esp_memprot_dram0_is_assoc_intr(void) static inline bool memprot_ll_dram0_is_assoc_intr(void)
{ {
return DPORT_GET_PERI_REG_MASK(DPORT_PMS_PRO_DRAM0_3_REG, DPORT_PMS_PRO_DRAM0_ILG_INTR) > 0; return DPORT_GET_PERI_REG_MASK(DPORT_PMS_PRO_DRAM0_3_REG, DPORT_PMS_PRO_DRAM0_ILG_INTR) > 0;
} }
static inline void esp_memprot_dram0_clear_intr(void) static inline void memprot_ll_dram0_clear_intr(void)
{ {
DPORT_SET_PERI_REG_MASK(DPORT_PMS_PRO_DRAM0_3_REG, DPORT_PMS_PRO_DRAM0_ILG_CLR); DPORT_SET_PERI_REG_MASK(DPORT_PMS_PRO_DRAM0_3_REG, DPORT_PMS_PRO_DRAM0_ILG_CLR);
DPORT_CLEAR_PERI_REG_MASK(DPORT_PMS_PRO_DRAM0_3_REG, DPORT_PMS_PRO_DRAM0_ILG_CLR); DPORT_CLEAR_PERI_REG_MASK(DPORT_PMS_PRO_DRAM0_3_REG, DPORT_PMS_PRO_DRAM0_ILG_CLR);
} }
static inline uint32_t esp_memprot_dram0_get_intr_ena_bit(void) static inline uint32_t memprot_ll_dram0_get_intr_ena_bit(void)
{ {
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_3_REG, DPORT_PMS_PRO_DRAM0_ILG_EN); return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_3_REG, DPORT_PMS_PRO_DRAM0_ILG_EN);
} }
static inline uint32_t esp_memprot_dram0_get_intr_on_bit(void) static inline uint32_t memprot_ll_dram0_get_intr_on_bit(void)
{ {
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_3_REG, DPORT_PMS_PRO_DRAM0_ILG_INTR); return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_3_REG, DPORT_PMS_PRO_DRAM0_ILG_INTR);
} }
static inline uint32_t esp_memprot_dram0_get_intr_clr_bit(void) static inline uint32_t memprot_ll_dram0_get_intr_clr_bit(void)
{ {
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_3_REG, DPORT_PMS_PRO_DRAM0_ILG_CLR); return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_3_REG, DPORT_PMS_PRO_DRAM0_ILG_CLR);
} }
//lock resets automatically on CPU restart //lock resets automatically on CPU restart
static inline void esp_memprot_dram0_set_lock(void) static inline void memprot_ll_dram0_set_lock(void)
{ {
DPORT_WRITE_PERI_REG(DPORT_PMS_PRO_DRAM0_0_REG, DPORT_PMS_PRO_DRAM0_LOCK); DPORT_WRITE_PERI_REG(DPORT_PMS_PRO_DRAM0_0_REG, DPORT_PMS_PRO_DRAM0_LOCK);
} }
static inline uint32_t esp_memprot_dram0_get_lock_reg(void) static inline uint32_t memprot_ll_dram0_get_lock_reg(void)
{ {
return DPORT_READ_PERI_REG(DPORT_PMS_PRO_DRAM0_0_REG); return DPORT_READ_PERI_REG(DPORT_PMS_PRO_DRAM0_0_REG);
} }
static inline uint32_t esp_memprot_dram0_get_lock_bit(void) static inline uint32_t memprot_ll_dram0_get_lock_bit(void)
{ {
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_0_REG, DPORT_PMS_PRO_DRAM0_LOCK); return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_0_REG, DPORT_PMS_PRO_DRAM0_LOCK);
} }
static inline uint32_t esp_memprot_dram0_get_conf_reg(void) static inline uint32_t memprot_ll_dram0_get_conf_reg(void)
{ {
return DPORT_READ_PERI_REG(DPORT_PMS_PRO_DRAM0_3_REG); return DPORT_READ_PERI_REG(DPORT_PMS_PRO_DRAM0_3_REG);
} }
static inline uint32_t esp_memprot_dram0_get_fault_reg(void) static inline uint32_t memprot_ll_dram0_get_fault_reg(void)
{ {
return DPORT_READ_PERI_REG(DPORT_PMS_PRO_DRAM0_4_REG); return DPORT_READ_PERI_REG(DPORT_PMS_PRO_DRAM0_4_REG);
} }
static inline void esp_memprot_dram0_get_fault_op_type(uint32_t *op_type, uint32_t *op_subtype) static inline void memprot_ll_dram0_get_fault_op_type(uint32_t *op_type, uint32_t *op_subtype)
{ {
uint32_t status_bits = esp_memprot_dram0_get_fault_reg(); uint32_t status_bits = memprot_ll_dram0_get_fault_reg();
*op_type = status_bits & DRAM0_INTR_ST_OP_RW_BIT; *op_type = status_bits & DRAM0_INTR_ST_OP_RW_BIT;
*op_subtype = status_bits & DRAM0_INTR_ST_OP_ATOMIC_BIT; *op_subtype = status_bits & DRAM0_INTR_ST_OP_ATOMIC_BIT;
} }
/** /**
* ======================================================================================== * ========================================================================================
* === DRAM0 SRAM * === DRAM0 SRAM
* ======================================================================================== * ========================================================================================
*/ */
#define DRAM0_SRAM_ADDRESS_LOW 0x3FFB0000 static inline intptr_t memprot_ll_dram0_sram_get_fault_address(void)
#define DRAM0_SRAM_ADDRESS_HIGH 0x3FFFFFFF
#define DRAM0_SRAM_TOTAL_UNI_BLOCKS 4
#define DRAM0_SRAM_UNI_BLOCK_0 0
#define DRAM0_SRAM_UNI_BLOCK_1 1
#define DRAM0_SRAM_UNI_BLOCK_2 2
#define DRAM0_SRAM_UNI_BLOCK_3 3
//unified management (SRAM blocks 0-3)
#define DRAM0_SRAM_UNI_BLOCK_0_LOW 0x3FFB0000
#define DRAM0_SRAM_UNI_BLOCK_1_LOW 0x3FFB2000
#define DRAM0_SRAM_UNI_BLOCK_2_LOW 0x3FFB4000
#define DRAM0_SRAM_UNI_BLOCK_3_LOW 0x3FFB6000
//split management (SRAM blocks 4-21)
#define DRAM0_SRAM_SPL_BLOCK_HIGH 0x3FFFFFFF //block 21 high
#define DRAM0_SRAM_INTR_ST_FAULTADDR_HI 0x3FF00000 //SRAM high bits 31:22 of the faulting address - constant
#define DRAM0_SRAM_ADDR_TO_CONF_REG(addr) (((addr >> CONF_REG_ADDRESS_SHIFT) & DPORT_PMS_PRO_DRAM0_SRAM_4_SPLTADDR) << DPORT_PMS_PRO_DRAM0_SRAM_4_SPLTADDR_S)
static inline uint32_t *esp_memprot_dram0_sram_get_fault_address(void)
{ {
uint32_t status_bits = esp_memprot_dram0_get_fault_reg(); uint32_t status_bits = memprot_ll_dram0_get_fault_reg();
return (uint32_t *)(((status_bits & DRAM0_INTR_ST_FAULTADDR_M) >> DRAM0_INTR_ST_FAULTADDR_S) | DRAM0_SRAM_INTR_ST_FAULTADDR_HI); return (intptr_t)(((status_bits & DRAM0_INTR_ST_FAULTADDR_M) >> DRAM0_INTR_ST_FAULTADDR_S) | DRAM0_SRAM_INTR_ST_FAULTADDR_HI);
} }
static inline bool esp_memprot_dram0_sram_is_intr_mine(void) static inline bool memprot_ll_dram0_sram_is_intr_mine(void)
{ {
if (esp_memprot_dram0_is_assoc_intr()) { if (memprot_ll_dram0_is_assoc_intr()) {
uint32_t *faulting_address = esp_memprot_dram0_sram_get_fault_address(); uint32_t faulting_address = (uint32_t)memprot_ll_dram0_sram_get_fault_address();
return (uint32_t)faulting_address >= DRAM0_SRAM_ADDRESS_LOW && (uint32_t)faulting_address <= DRAM0_SRAM_ADDRESS_HIGH; return faulting_address >= DRAM0_SRAM_ADDRESS_LOW && faulting_address <= DRAM0_SRAM_ADDRESS_HIGH;
} }
return false; return false;
} }
static inline void esp_memprot_dram0_sram_get_uni_block_sgnf_bits(uint32_t block, uint32_t *write_bit, uint32_t *read_bit) static inline bool memprot_ll_dram0_sram_get_uni_block_sgnf_bits(uint32_t block, uint32_t *write_bit, uint32_t *read_bit)
{ {
HAL_ASSERT(block < DRAM0_SRAM_TOTAL_UNI_BLOCKS);
switch (block) { switch (block) {
case DRAM0_SRAM_UNI_BLOCK_0: case DRAM0_SRAM_UNI_BLOCK_0:
*write_bit = DPORT_PMS_PRO_DRAM0_SRAM_0_W; *write_bit = DPORT_PMS_PRO_DRAM0_SRAM_0_W;
@ -648,79 +613,97 @@ static inline void esp_memprot_dram0_sram_get_uni_block_sgnf_bits(uint32_t block
*read_bit = DPORT_PMS_PRO_DRAM0_SRAM_3_R; *read_bit = DPORT_PMS_PRO_DRAM0_SRAM_3_R;
break; break;
default: default:
abort(); return false;
} }
return true;
} }
static inline void esp_memprot_dram0_sram_set_uni_block_perm(uint32_t block, bool write_perm, bool read_perm) static inline memprot_ll_err_t memprot_ll_dram0_sram_set_uni_block_perm(uint32_t block, bool write_perm, bool read_perm)
{ {
HAL_ASSERT(block < DRAM0_SRAM_TOTAL_UNI_BLOCKS); //get block-specific WR flags offset within the conf.register
uint32_t write_bit_offset, read_bit_offset;
uint32_t write_bit, read_bit; if (!memprot_ll_dram0_sram_get_uni_block_sgnf_bits(block, &write_bit_offset, &read_bit_offset)) {
esp_memprot_dram0_sram_get_uni_block_sgnf_bits(block, &write_bit, &read_bit); return MEMP_LL_ERR_UNI_BLOCK_INVALID;
}
//set/reset required flags
if (write_perm) { if (write_perm) {
DPORT_SET_PERI_REG_MASK(DPORT_PMS_PRO_DRAM0_1_REG, write_bit); DPORT_SET_PERI_REG_MASK(DPORT_PMS_PRO_DRAM0_1_REG, write_bit_offset);
} else { } else {
DPORT_CLEAR_PERI_REG_MASK(DPORT_PMS_PRO_DRAM0_1_REG, write_bit); DPORT_CLEAR_PERI_REG_MASK(DPORT_PMS_PRO_DRAM0_1_REG, write_bit_offset);
} }
if (read_perm) { if (read_perm) {
DPORT_SET_PERI_REG_MASK(DPORT_PMS_PRO_DRAM0_1_REG, read_bit); DPORT_SET_PERI_REG_MASK(DPORT_PMS_PRO_DRAM0_1_REG, read_bit_offset);
} else { } else {
DPORT_CLEAR_PERI_REG_MASK(DPORT_PMS_PRO_DRAM0_1_REG, read_bit); DPORT_CLEAR_PERI_REG_MASK(DPORT_PMS_PRO_DRAM0_1_REG, read_bit_offset);
} }
return MEMP_LL_OK;
} }
static inline uint32_t esp_memprot_dram0_sram_get_uni_block_read_bit(uint32_t block) static inline bool memprot_ll_dram0_sram_get_uni_block_read_bit(uint32_t block, uint32_t *read_bit)
{ {
HAL_ASSERT(block < DRAM0_SRAM_TOTAL_UNI_BLOCKS);
switch (block) { switch (block) {
case DRAM0_SRAM_UNI_BLOCK_0: case DRAM0_SRAM_UNI_BLOCK_0:
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_0_R); *read_bit = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_0_R);
break;
case DRAM0_SRAM_UNI_BLOCK_1: case DRAM0_SRAM_UNI_BLOCK_1:
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_1_R); *read_bit = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_1_R);
break;
case DRAM0_SRAM_UNI_BLOCK_2: case DRAM0_SRAM_UNI_BLOCK_2:
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_2_R); *read_bit = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_2_R);
break;
case DRAM0_SRAM_UNI_BLOCK_3: case DRAM0_SRAM_UNI_BLOCK_3:
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_3_R); *read_bit = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_3_R);
break;
default: default:
abort(); return false;
} }
return true;
} }
static inline uint32_t esp_memprot_dram0_sram_get_uni_block_write_bit(uint32_t block) static inline bool memprot_ll_dram0_sram_get_uni_block_write_bit(uint32_t block, uint32_t *write_bit)
{ {
HAL_ASSERT(block < DRAM0_SRAM_TOTAL_UNI_BLOCKS);
switch (block) { switch (block) {
case DRAM0_SRAM_UNI_BLOCK_0: case DRAM0_SRAM_UNI_BLOCK_0:
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_0_W); *write_bit = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_0_W);
break;
case DRAM0_SRAM_UNI_BLOCK_1: case DRAM0_SRAM_UNI_BLOCK_1:
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_1_W); *write_bit = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_1_W);
break;
case DRAM0_SRAM_UNI_BLOCK_2: case DRAM0_SRAM_UNI_BLOCK_2:
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_2_W); *write_bit = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_2_W);
break;
case DRAM0_SRAM_UNI_BLOCK_3: case DRAM0_SRAM_UNI_BLOCK_3:
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_3_W); *write_bit = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_3_W);
break;
default: default:
abort(); return false;
} }
return true;
} }
//DRAM0 has both unified blocks and split address configured in 1 register //DRAM0 has both unified blocks and split address configured in 1 register
static inline uint32_t esp_memprot_dram0_sram_get_perm_reg(void) static inline uint32_t memprot_ll_dram0_sram_get_perm_reg(void)
{ {
return DPORT_READ_PERI_REG(DPORT_PMS_PRO_DRAM0_1_REG); return DPORT_READ_PERI_REG(DPORT_PMS_PRO_DRAM0_1_REG);
} }
static inline void esp_memprot_dram0_sram_set_prot(uint32_t *split_addr, bool lw, bool lr, bool hw, bool hr) static inline memprot_ll_err_t memprot_ll_dram0_sram_set_prot(uint32_t *split_addr, bool lw, bool lr, bool hw, bool hr)
{ {
uint32_t addr = (uint32_t)split_addr; uint32_t addr = (uint32_t)split_addr;
//low boundary check provided by LD script. see comment in esp_memprot_iram0_sram_set_prot() //low boundary check provided by LD script. see comment in memprot_ll_iram0_sram_set_prot()
HAL_ASSERT(addr <= DRAM0_SRAM_SPL_BLOCK_HIGH); if (addr > DRAM0_SRAM_SPL_BLOCK_HIGH) {
HAL_ASSERT(addr % 0x4 == 0 ); return MEMP_LL_ERR_SPLIT_ADDR_INVALID;
}
if (addr % 0x4 != 0) {
return MEMP_LL_ERR_SPLIT_ADDR_UNALIGNED;
}
//set low region //set low region
int uni_blocks_low = -1; int uni_blocks_low = -1;
@ -740,7 +723,9 @@ static inline void esp_memprot_dram0_sram_set_prot(uint32_t *split_addr, bool lw
//set unified mgmt region //set unified mgmt region
uint32_t write_bit, read_bit, uni_block_perm = 0; uint32_t write_bit, read_bit, uni_block_perm = 0;
for (int x = 0; x < DRAM0_SRAM_TOTAL_UNI_BLOCKS; x++) { for (int x = 0; x < DRAM0_SRAM_TOTAL_UNI_BLOCKS; x++) {
esp_memprot_dram0_sram_get_uni_block_sgnf_bits(x, &write_bit, &read_bit); if (!memprot_ll_dram0_sram_get_uni_block_sgnf_bits(x, &write_bit, &read_bit)) {
return MEMP_LL_ERR_UNI_BLOCK_INVALID;
}
if (x <= uni_blocks_low) { if (x <= uni_blocks_low) {
if (lw) { if (lw) {
uni_block_perm |= write_bit; uni_block_perm |= write_bit;
@ -778,9 +763,11 @@ static inline void esp_memprot_dram0_sram_set_prot(uint32_t *split_addr, bool lw
//write DRAM0 SRAM cfg register //write DRAM0 SRAM cfg register
DPORT_WRITE_PERI_REG(DPORT_PMS_PRO_DRAM0_1_REG, reg_split_addr | permission_mask | uni_block_perm); DPORT_WRITE_PERI_REG(DPORT_PMS_PRO_DRAM0_1_REG, reg_split_addr | permission_mask | uni_block_perm);
return MEMP_LL_OK;
} }
static inline void esp_memprot_dram0_sram_get_split_sgnf_bits(bool *lw, bool *lr, bool *hw, bool *hr) static inline void memprot_ll_dram0_sram_get_split_sgnf_bits(bool *lw, bool *lr, bool *hw, bool *hr)
{ {
*lw = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_4_L_W); *lw = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_4_L_W);
*lr = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_4_L_R); *lr = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_4_L_R);
@ -788,13 +775,13 @@ static inline void esp_memprot_dram0_sram_get_split_sgnf_bits(bool *lw, bool *lr
*hr = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_4_H_R); *hr = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_4_H_R);
} }
static inline void esp_memprot_dram0_sram_set_read_perm(bool lr, bool hr) static inline void memprot_ll_dram0_sram_set_read_perm(bool lr, bool hr)
{ {
DPORT_REG_SET_FIELD(DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_4_L_R, lr ? 1 : 0); DPORT_REG_SET_FIELD(DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_4_L_R, lr ? 1 : 0);
DPORT_REG_SET_FIELD(DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_4_H_R, hr ? 1 : 0); DPORT_REG_SET_FIELD(DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_4_H_R, hr ? 1 : 0);
} }
static inline void esp_memprot_dram0_sram_set_write_perm(bool lw, bool hw) static inline void memprot_ll_dram0_sram_set_write_perm(bool lw, bool hw)
{ {
DPORT_REG_SET_FIELD(DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_4_L_W, lw ? 1 : 0); DPORT_REG_SET_FIELD(DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_4_L_W, lw ? 1 : 0);
DPORT_REG_SET_FIELD(DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_4_H_W, hw ? 1 : 0); DPORT_REG_SET_FIELD(DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_4_H_W, hw ? 1 : 0);
@ -806,34 +793,35 @@ static inline void esp_memprot_dram0_sram_set_write_perm(bool lw, bool hw)
* === DRAM0 RTC FAST * === DRAM0 RTC FAST
* ======================================================================================== * ========================================================================================
*/ */
#define DRAM0_RTCFAST_ADDRESS_LOW 0x3FF9E000 static inline intptr_t memprot_ll_dram0_rtcfast_get_fault_address(void)
#define DRAM0_RTCFAST_ADDRESS_HIGH 0x3FF9FFFF
#define DRAM0_RTCFAST_INTR_ST_FAULTADDR_HI 0x3FF00000 //RTCFAST high bits 31:22 of the faulting address - constant
#define DRAM0_RTCFAST_ADDR_TO_CONF_REG(addr) (((addr >> CONF_REG_ADDRESS_SHIFT) & DPORT_PMS_PRO_DRAM0_RTCFAST_SPLTADDR) << DPORT_PMS_PRO_DRAM0_RTCFAST_SPLTADDR_S)
static inline uint32_t *esp_memprot_dram0_rtcfast_get_fault_address(void)
{ {
uint32_t status_bits = esp_memprot_dram0_get_fault_reg(); uint32_t status_bits = memprot_ll_dram0_get_fault_reg();
return (uint32_t *)(((status_bits & DRAM0_INTR_ST_FAULTADDR_M) >> DRAM0_INTR_ST_FAULTADDR_S) | DRAM0_RTCFAST_INTR_ST_FAULTADDR_HI); return (intptr_t)(((status_bits & DRAM0_INTR_ST_FAULTADDR_M) >> DRAM0_INTR_ST_FAULTADDR_S) | DRAM0_RTCFAST_INTR_ST_FAULTADDR_HI);
} }
static inline bool esp_memprot_dram0_rtcfast_is_intr_mine(void) static inline bool memprot_ll_dram0_rtcfast_is_intr_mine(void)
{ {
if (esp_memprot_dram0_is_assoc_intr()) { if (memprot_ll_dram0_is_assoc_intr()) {
uint32_t *faulting_address = esp_memprot_dram0_rtcfast_get_fault_address(); uint32_t faulting_address = (uint32_t)memprot_ll_dram0_rtcfast_get_fault_address();
return (uint32_t)faulting_address >= DRAM0_RTCFAST_ADDRESS_LOW && (uint32_t)faulting_address <= DRAM0_RTCFAST_ADDRESS_HIGH; return faulting_address >= DRAM0_RTCFAST_ADDRESS_LOW && faulting_address <= DRAM0_RTCFAST_ADDRESS_HIGH;
} }
return false; return false;
} }
static inline void esp_memprot_dram0_rtcfast_set_prot(uint32_t *split_addr, bool lw, bool lr, bool hw, bool hr) static inline memprot_ll_err_t memprot_ll_dram0_rtcfast_set_prot(uint32_t *split_addr, bool lw, bool lr, bool hw, bool hr)
{ {
uint32_t addr = (uint32_t)split_addr; uint32_t addr = (uint32_t)split_addr;
HAL_ASSERT(addr % 0x4 == 0);
//addr: 32bit aligned, inside corresponding range
if (addr < DRAM0_RTCFAST_ADDRESS_LOW || addr > DRAM0_RTCFAST_ADDRESS_HIGH) {
return MEMP_LL_ERR_SPLIT_ADDR_INVALID;
}
if (addr % 0x4 != 0) {
return MEMP_LL_ERR_SPLIT_ADDR_UNALIGNED;
}
//conf reg [10:0] //conf reg [10:0]
uint32_t reg_split_addr = DRAM0_RTCFAST_ADDR_TO_CONF_REG( addr ); uint32_t reg_split_addr = DRAM0_RTCFAST_ADDR_TO_CONF_REG(addr);
//prepare high & low permission mask //prepare high & low permission mask
uint32_t permission_mask = 0; uint32_t permission_mask = 0;
@ -852,9 +840,11 @@ static inline void esp_memprot_dram0_rtcfast_set_prot(uint32_t *split_addr, bool
//write DRAM0 RTC FAST cfg register //write DRAM0 RTC FAST cfg register
DPORT_WRITE_PERI_REG(DPORT_PMS_PRO_DRAM0_2_REG, reg_split_addr | permission_mask); DPORT_WRITE_PERI_REG(DPORT_PMS_PRO_DRAM0_2_REG, reg_split_addr | permission_mask);
return MEMP_LL_OK;
} }
static inline void esp_memprot_dram0_rtcfast_get_split_sgnf_bits(bool *lw, bool *lr, bool *hw, bool *hr) static inline void memprot_ll_dram0_rtcfast_get_split_sgnf_bits(bool *lw, bool *lr, bool *hw, bool *hr)
{ {
*lw = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_2_REG, DPORT_PMS_PRO_DRAM0_RTCFAST_L_W); *lw = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_2_REG, DPORT_PMS_PRO_DRAM0_RTCFAST_L_W);
*lr = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_2_REG, DPORT_PMS_PRO_DRAM0_RTCFAST_L_R); *lr = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_2_REG, DPORT_PMS_PRO_DRAM0_RTCFAST_L_R);
@ -862,18 +852,18 @@ static inline void esp_memprot_dram0_rtcfast_get_split_sgnf_bits(bool *lw, bool
*hr = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_2_REG, DPORT_PMS_PRO_DRAM0_RTCFAST_H_R); *hr = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_2_REG, DPORT_PMS_PRO_DRAM0_RTCFAST_H_R);
} }
static inline uint32_t esp_memprot_dram0_rtcfast_get_perm_split_reg(void) static inline uint32_t memprot_ll_dram0_rtcfast_get_perm_split_reg(void)
{ {
return DPORT_READ_PERI_REG(DPORT_PMS_PRO_DRAM0_2_REG); return DPORT_READ_PERI_REG(DPORT_PMS_PRO_DRAM0_2_REG);
} }
static inline void esp_memprot_dram0_rtcfast_set_read_perm(bool lr, bool hr) static inline void memprot_ll_dram0_rtcfast_set_read_perm(bool lr, bool hr)
{ {
DPORT_REG_SET_FIELD(DPORT_PMS_PRO_DRAM0_2_REG, DPORT_PMS_PRO_DRAM0_RTCFAST_L_R, lr ? 1 : 0); DPORT_REG_SET_FIELD(DPORT_PMS_PRO_DRAM0_2_REG, DPORT_PMS_PRO_DRAM0_RTCFAST_L_R, lr ? 1 : 0);
DPORT_REG_SET_FIELD(DPORT_PMS_PRO_DRAM0_2_REG, DPORT_PMS_PRO_DRAM0_RTCFAST_H_R, hr ? 1 : 0); DPORT_REG_SET_FIELD(DPORT_PMS_PRO_DRAM0_2_REG, DPORT_PMS_PRO_DRAM0_RTCFAST_H_R, hr ? 1 : 0);
} }
static inline void esp_memprot_dram0_rtcfast_set_write_perm(bool lw, bool hw) static inline void memprot_ll_dram0_rtcfast_set_write_perm(bool lw, bool hw)
{ {
DPORT_REG_SET_FIELD(DPORT_PMS_PRO_DRAM0_2_REG, DPORT_PMS_PRO_DRAM0_RTCFAST_L_W, lw ? 1 : 0); DPORT_REG_SET_FIELD(DPORT_PMS_PRO_DRAM0_2_REG, DPORT_PMS_PRO_DRAM0_RTCFAST_L_W, lw ? 1 : 0);
DPORT_REG_SET_FIELD(DPORT_PMS_PRO_DRAM0_2_REG, DPORT_PMS_PRO_DRAM0_RTCFAST_H_W, hw ? 1 : 0); DPORT_REG_SET_FIELD(DPORT_PMS_PRO_DRAM0_2_REG, DPORT_PMS_PRO_DRAM0_RTCFAST_H_W, hw ? 1 : 0);

View File

@ -14,38 +14,31 @@
#pragma once #pragma once
#include "hal/assert.h" #include <stdbool.h>
#include "soc/memprot_defs.h"
#include "hal/memprot_types.h"
#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
#endif #endif
#define RTCSLOW_MEMORY_SIZE 0x00002000
/** /**
* ======================================================================================== * ========================================================================================
* === PeriBus1 common * === PeriBus1 common
* ======================================================================================== * ========================================================================================
*/ */
//PeriBus1 interrupt status bitmasks static inline void memprot_ll_peri1_clear_intr(void)
#define PERI1_INTR_ST_OP_TYPE_BIT BIT(4) //0: non-atomic, 1: atomic
#define PERI1_INTR_ST_OP_HIGH_BITS BIT(5) //0: high bits = unchanged, 1: high bits = 0x03F40000
#define PERI1_INTR_ST_FAULTADDR_M 0x03FFFFC0 //(bits 25:6 in the reg)
#define PERI1_INTR_ST_FAULTADDR_S 0x4 //(bits 21:2 of real address)
static inline void esp_memprot_peri1_clear_intr(void)
{ {
DPORT_SET_PERI_REG_MASK(DPORT_PMS_PRO_DPORT_6_REG, DPORT_PMS_PRO_DPORT_ILG_CLR); DPORT_SET_PERI_REG_MASK(DPORT_PMS_PRO_DPORT_6_REG, DPORT_PMS_PRO_DPORT_ILG_CLR);
DPORT_CLEAR_PERI_REG_MASK(DPORT_PMS_PRO_DPORT_6_REG, DPORT_PMS_PRO_DPORT_ILG_CLR); DPORT_CLEAR_PERI_REG_MASK(DPORT_PMS_PRO_DPORT_6_REG, DPORT_PMS_PRO_DPORT_ILG_CLR);
} }
static inline uint32_t esp_memprot_peri1_get_intr_source_num(void) static inline uint32_t memprot_ll_peri1_get_intr_source_num(void)
{ {
return ETS_PMS_PRO_DPORT_ILG_INTR_SOURCE; return ETS_PMS_PRO_DPORT_ILG_INTR_SOURCE;
} }
static inline void esp_memprot_peri1_intr_ena(bool enable) static inline void memprot_ll_peri1_intr_ena(bool enable)
{ {
if (enable) { if (enable) {
DPORT_SET_PERI_REG_MASK(DPORT_PMS_PRO_DPORT_6_REG, DPORT_PMS_PRO_DPORT_ILG_EN); DPORT_SET_PERI_REG_MASK(DPORT_PMS_PRO_DPORT_6_REG, DPORT_PMS_PRO_DPORT_ILG_EN);
@ -54,95 +47,94 @@ static inline void esp_memprot_peri1_intr_ena(bool enable)
} }
} }
static inline uint32_t esp_memprot_peri1_get_ctrl_reg(void) static inline uint32_t memprot_ll_peri1_get_ctrl_reg(void)
{ {
return DPORT_READ_PERI_REG(DPORT_PMS_PRO_DPORT_6_REG); return DPORT_READ_PERI_REG(DPORT_PMS_PRO_DPORT_6_REG);
} }
static inline uint32_t esp_memprot_peri1_get_fault_reg(void) static inline uint32_t memprot_ll_peri1_get_fault_reg(void)
{ {
return DPORT_READ_PERI_REG(DPORT_PMS_PRO_DPORT_7_REG); return DPORT_READ_PERI_REG(DPORT_PMS_PRO_DPORT_7_REG);
} }
static inline void esp_memprot_peri1_get_fault_op_type(uint32_t *op_type, uint32_t *op_subtype) static inline void memprot_ll_peri1_get_fault_op_type(uint32_t *op_type, uint32_t *op_subtype)
{ {
uint32_t status_bits = esp_memprot_peri1_get_fault_reg(); uint32_t status_bits = memprot_ll_peri1_get_fault_reg();
//*op_type = (uint32_t)status_bits & PERI1_INTR_ST_OP_RW_BIT; //*op_type = (uint32_t)status_bits & PERI1_INTR_ST_OP_RW_BIT;
*op_type = 0; *op_type = 0;
//! DPORT_PMS_PRO_DPORT_7_REG is missing op_type bit //! DPORT_PMS_PRO_DPORT_7_REG is missing op_type bit
*op_subtype = (uint32_t)status_bits & PERI1_INTR_ST_OP_TYPE_BIT; *op_subtype = (uint32_t)status_bits & PERI1_INTR_ST_OP_TYPE_BIT;
} }
static inline bool esp_memprot_peri1_is_assoc_intr(void) static inline bool memprot_ll_peri1_is_assoc_intr(void)
{ {
return DPORT_GET_PERI_REG_MASK(DPORT_PMS_PRO_DPORT_7_REG, DPORT_PMS_PRO_DPORT_ILG_INTR) > 0; return DPORT_GET_PERI_REG_MASK(DPORT_PMS_PRO_DPORT_7_REG, DPORT_PMS_PRO_DPORT_ILG_INTR) > 0;
} }
static inline uint32_t esp_memprot_peri1_get_intr_ena_bit(void) static inline uint32_t memprot_ll_peri1_get_intr_ena_bit(void)
{ {
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DPORT_6_REG, DPORT_PMS_PRO_DPORT_ILG_EN); return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DPORT_6_REG, DPORT_PMS_PRO_DPORT_ILG_EN);
} }
static inline uint32_t esp_memprot_peri1_get_intr_on_bit(void) static inline uint32_t memprot_ll_peri1_get_intr_on_bit(void)
{ {
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DPORT_6_REG, DPORT_PMS_PRO_DPORT_ILG_INTR); return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DPORT_6_REG, DPORT_PMS_PRO_DPORT_ILG_INTR);
} }
static inline uint32_t esp_memprot_peri1_get_intr_clr_bit(void) static inline uint32_t memprot_ll_peri1_get_intr_clr_bit(void)
{ {
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DPORT_6_REG, DPORT_PMS_PRO_DPORT_ILG_CLR); return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DPORT_6_REG, DPORT_PMS_PRO_DPORT_ILG_CLR);
} }
static inline uint32_t esp_memprot_peri1_get_lock_reg(void) static inline uint32_t memprot_ll_peri1_get_lock_reg(void)
{ {
return DPORT_READ_PERI_REG(DPORT_PMS_PRO_DPORT_0_REG); return DPORT_READ_PERI_REG(DPORT_PMS_PRO_DPORT_0_REG);
} }
//resets automatically on CPU restart //resets automatically on CPU restart
static inline void esp_memprot_peri1_set_lock(void) static inline void memprot_ll_peri1_set_lock(void)
{ {
DPORT_WRITE_PERI_REG(DPORT_PMS_PRO_DPORT_0_REG, DPORT_PMS_PRO_DPORT_LOCK); DPORT_WRITE_PERI_REG(DPORT_PMS_PRO_DPORT_0_REG, DPORT_PMS_PRO_DPORT_LOCK);
} }
static inline uint32_t esp_memprot_peri1_get_lock_bit(void) static inline uint32_t memprot_ll_peri1_get_lock_bit(void)
{ {
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DPORT_0_REG, DPORT_PMS_PRO_DPORT_LOCK); return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DPORT_0_REG, DPORT_PMS_PRO_DPORT_LOCK);
} }
/** /**
* ======================================================================================== * ========================================================================================
* === PeriBus1 RTC SLOW * === PeriBus1 RTC SLOW
* ======================================================================================== * ========================================================================================
*/ */
#define PERI1_RTCSLOW_ADDRESS_BASE 0x3F421000 static inline intptr_t memprot_ll_peri1_rtcslow_get_fault_address(void)
#define PERI1_RTCSLOW_ADDRESS_LOW PERI1_RTCSLOW_ADDRESS_BASE
#define PERI1_RTCSLOW_ADDRESS_HIGH PERI1_RTCSLOW_ADDRESS_LOW + RTCSLOW_MEMORY_SIZE
#define PERI1_RTCSLOW_INTR_ST_FAULTADDR_HI_0 0x3F400000
#define PERI1_RTCSLOW_ADDR_TO_CONF_REG(addr) (((addr >> CONF_REG_ADDRESS_SHIFT) & DPORT_PMS_PRO_DPORT_RTCSLOW_SPLTADDR) << DPORT_PMS_PRO_DPORT_RTCSLOW_SPLTADDR_S)
static inline uint32_t *esp_memprot_peri1_rtcslow_get_fault_address(void)
{ {
uint32_t status_bits = esp_memprot_peri1_get_fault_reg(); uint32_t status_bits = memprot_ll_peri1_get_fault_reg();
uint32_t fault_address = (status_bits & PERI1_INTR_ST_FAULTADDR_M) >> PERI1_INTR_ST_FAULTADDR_S; uint32_t fault_address = (status_bits & PERI1_INTR_ST_FAULTADDR_M) >> PERI1_INTR_ST_FAULTADDR_S;
uint32_t high_bits = (status_bits & PERI1_INTR_ST_OP_HIGH_BITS) ? PERI1_RTCSLOW_INTR_ST_FAULTADDR_HI_0 : 0; uint32_t high_bits = (status_bits & PERI1_INTR_ST_OP_HIGH_BITS) ? PERI1_RTCSLOW_INTR_ST_FAULTADDR_HI_0 : 0;
return (uint32_t *)(fault_address | high_bits); return (intptr_t)(fault_address | high_bits);
} }
static inline bool esp_memprot_peri1_rtcslow_is_intr_mine(void) static inline bool memprot_ll_peri1_rtcslow_is_intr_mine(void)
{ {
if (esp_memprot_dram0_is_assoc_intr()) { if (memprot_ll_dram0_is_assoc_intr()) {
uint32_t *faulting_address = esp_memprot_peri1_rtcslow_get_fault_address(); uint32_t faulting_address = (uint32_t)memprot_ll_peri1_rtcslow_get_fault_address();
return (uint32_t)faulting_address >= PERI1_RTCSLOW_ADDRESS_LOW && (uint32_t)faulting_address <= PERI1_RTCSLOW_ADDRESS_HIGH; return faulting_address >= PERI1_RTCSLOW_ADDRESS_LOW && faulting_address <= PERI1_RTCSLOW_ADDRESS_HIGH;
} }
return false; return false;
} }
static inline void esp_memprot_peri1_rtcslow_set_prot(uint32_t *split_addr, bool lw, bool lr, bool hw, bool hr) static inline memprot_ll_err_t memprot_ll_peri1_rtcslow_set_prot(uint32_t *split_addr, bool lw, bool lr, bool hw, bool hr)
{ {
uint32_t addr = (uint32_t)split_addr; uint32_t addr = (uint32_t)split_addr;
HAL_ASSERT(addr % 0x4 == 0);
//check corresponding range fit & aligment to 32bit boundaries
if (addr < PERI1_RTCSLOW_ADDRESS_LOW || addr > PERI1_RTCSLOW_ADDRESS_HIGH) {
return MEMP_LL_ERR_SPLIT_ADDR_INVALID;
}
if (addr % 0x4 != 0) {
return MEMP_LL_ERR_SPLIT_ADDR_UNALIGNED;
}
uint32_t reg_split_addr = PERI1_RTCSLOW_ADDR_TO_CONF_REG(addr); uint32_t reg_split_addr = PERI1_RTCSLOW_ADDR_TO_CONF_REG(addr);
@ -163,9 +155,11 @@ static inline void esp_memprot_peri1_rtcslow_set_prot(uint32_t *split_addr, bool
//write PERIBUS1 RTC SLOW cfg register //write PERIBUS1 RTC SLOW cfg register
DPORT_WRITE_PERI_REG(DPORT_PMS_PRO_DPORT_1_REG, reg_split_addr | permission_mask); DPORT_WRITE_PERI_REG(DPORT_PMS_PRO_DPORT_1_REG, reg_split_addr | permission_mask);
return MEMP_LL_OK;
} }
static inline void esp_memprot_peri1_rtcslow_get_split_sgnf_bits(bool *lw, bool *lr, bool *hw, bool *hr) static inline void memprot_ll_peri1_rtcslow_get_split_sgnf_bits(bool *lw, bool *lr, bool *hw, bool *hr)
{ {
*lw = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DPORT_1_REG, DPORT_PMS_PRO_DPORT_RTCSLOW_L_W); *lw = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DPORT_1_REG, DPORT_PMS_PRO_DPORT_RTCSLOW_L_W);
*lr = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DPORT_1_REG, DPORT_PMS_PRO_DPORT_RTCSLOW_L_R); *lr = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DPORT_1_REG, DPORT_PMS_PRO_DPORT_RTCSLOW_L_R);
@ -173,46 +167,40 @@ static inline void esp_memprot_peri1_rtcslow_get_split_sgnf_bits(bool *lw, bool
*hr = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DPORT_1_REG, DPORT_PMS_PRO_DPORT_RTCSLOW_H_R); *hr = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DPORT_1_REG, DPORT_PMS_PRO_DPORT_RTCSLOW_H_R);
} }
static inline void esp_memprot_peri1_rtcslow_set_read_perm(bool lr, bool hr) static inline void memprot_ll_peri1_rtcslow_set_read_perm(bool lr, bool hr)
{ {
DPORT_REG_SET_FIELD(DPORT_PMS_PRO_DPORT_1_REG, DPORT_PMS_PRO_DPORT_RTCSLOW_L_R, lr ? 1 : 0); DPORT_REG_SET_FIELD(DPORT_PMS_PRO_DPORT_1_REG, DPORT_PMS_PRO_DPORT_RTCSLOW_L_R, lr ? 1 : 0);
DPORT_REG_SET_FIELD(DPORT_PMS_PRO_DPORT_1_REG, DPORT_PMS_PRO_DPORT_RTCSLOW_H_R, hr ? 1 : 0); DPORT_REG_SET_FIELD(DPORT_PMS_PRO_DPORT_1_REG, DPORT_PMS_PRO_DPORT_RTCSLOW_H_R, hr ? 1 : 0);
} }
static inline void esp_memprot_peri1_rtcslow_set_write_perm(bool lw, bool hw) static inline void memprot_ll_peri1_rtcslow_set_write_perm(bool lw, bool hw)
{ {
DPORT_REG_SET_FIELD(DPORT_PMS_PRO_DPORT_1_REG, DPORT_PMS_PRO_DPORT_RTCSLOW_L_W, lw ? 1 : 0); DPORT_REG_SET_FIELD(DPORT_PMS_PRO_DPORT_1_REG, DPORT_PMS_PRO_DPORT_RTCSLOW_L_W, lw ? 1 : 0);
DPORT_REG_SET_FIELD(DPORT_PMS_PRO_DPORT_1_REG, DPORT_PMS_PRO_DPORT_RTCSLOW_H_W, hw ? 1 : 0); DPORT_REG_SET_FIELD(DPORT_PMS_PRO_DPORT_1_REG, DPORT_PMS_PRO_DPORT_RTCSLOW_H_W, hw ? 1 : 0);
} }
static inline uint32_t esp_memprot_peri1_rtcslow_get_conf_reg(void) static inline uint32_t memprot_ll_peri1_rtcslow_get_conf_reg(void)
{ {
return DPORT_READ_PERI_REG(DPORT_PMS_PRO_DPORT_1_REG); return DPORT_READ_PERI_REG(DPORT_PMS_PRO_DPORT_1_REG);
} }
/** /**
* ======================================================================================== * ========================================================================================
* === PeriBus2 common * === PeriBus2 common
* ======================================================================================== * ========================================================================================
*/ */
//PeriBus2 interrupt status bitmasks static inline void memprot_ll_peri2_clear_intr(void)
#define PERI2_INTR_ST_OP_TYPE_BIT BIT(1) //instruction: 0, data: 1
#define PERI2_INTR_ST_OP_RW_BIT BIT(0) //read: 0, write: 1
#define PERI2_INTR_ST_FAULTADDR_M 0xFFFFFFFC //(bits 31:2 in the reg)
static inline void esp_memprot_peri2_clear_intr(void)
{ {
DPORT_SET_PERI_REG_MASK(DPORT_PMS_PRO_AHB_3_REG, DPORT_PMS_PRO_AHB_ILG_CLR); DPORT_SET_PERI_REG_MASK(DPORT_PMS_PRO_AHB_3_REG, DPORT_PMS_PRO_AHB_ILG_CLR);
DPORT_CLEAR_PERI_REG_MASK(DPORT_PMS_PRO_AHB_3_REG, DPORT_PMS_PRO_AHB_ILG_CLR); DPORT_CLEAR_PERI_REG_MASK(DPORT_PMS_PRO_AHB_3_REG, DPORT_PMS_PRO_AHB_ILG_CLR);
} }
static inline uint32_t esp_memprot_peri2_get_intr_source_num(void) static inline uint32_t memprot_ll_peri2_get_intr_source_num(void)
{ {
return ETS_PMS_PRO_AHB_ILG_INTR_SOURCE; return ETS_PMS_PRO_AHB_ILG_INTR_SOURCE;
} }
static inline void esp_memprot_peri2_intr_ena(bool enable) static inline void memprot_ll_peri2_intr_ena(bool enable)
{ {
if (enable) { if (enable) {
DPORT_SET_PERI_REG_MASK(DPORT_PMS_PRO_AHB_3_REG, DPORT_PMS_PRO_AHB_ILG_EN); DPORT_SET_PERI_REG_MASK(DPORT_PMS_PRO_AHB_3_REG, DPORT_PMS_PRO_AHB_ILG_EN);
@ -221,90 +209,90 @@ static inline void esp_memprot_peri2_intr_ena(bool enable)
} }
} }
static inline uint32_t esp_memprot_peri2_get_ctrl_reg(void) static inline uint32_t memprot_ll_peri2_get_ctrl_reg(void)
{ {
return DPORT_READ_PERI_REG(DPORT_PMS_PRO_AHB_3_REG); return DPORT_READ_PERI_REG(DPORT_PMS_PRO_AHB_3_REG);
} }
static inline uint32_t esp_memprot_peri2_get_fault_reg(void) static inline uint32_t memprot_ll_peri2_get_fault_reg(void)
{ {
return DPORT_READ_PERI_REG(DPORT_PMS_PRO_AHB_4_REG); return DPORT_READ_PERI_REG(DPORT_PMS_PRO_AHB_4_REG);
} }
static inline void esp_memprot_peri2_get_fault_op_type(uint32_t *op_type, uint32_t *op_subtype) static inline void memprot_ll_peri2_get_fault_op_type(uint32_t *op_type, uint32_t *op_subtype)
{ {
uint32_t status_bits = esp_memprot_peri2_get_fault_reg(); uint32_t status_bits = memprot_ll_peri2_get_fault_reg();
*op_type = (uint32_t)status_bits & PERI2_INTR_ST_OP_RW_BIT; *op_type = (uint32_t)status_bits & PERI2_INTR_ST_OP_RW_BIT;
*op_subtype = (uint32_t)status_bits & PERI2_INTR_ST_OP_TYPE_BIT; *op_subtype = (uint32_t)status_bits & PERI2_INTR_ST_OP_TYPE_BIT;
} }
static inline bool esp_memprot_peri2_is_assoc_intr(void) static inline bool memprot_ll_peri2_is_assoc_intr(void)
{ {
return DPORT_GET_PERI_REG_MASK(DPORT_PMS_PRO_AHB_3_REG, DPORT_PMS_PRO_AHB_ILG_INTR) > 0; return DPORT_GET_PERI_REG_MASK(DPORT_PMS_PRO_AHB_3_REG, DPORT_PMS_PRO_AHB_ILG_INTR) > 0;
} }
static inline uint32_t esp_memprot_peri2_get_intr_ena_bit(void) static inline uint32_t memprot_ll_peri2_get_intr_ena_bit(void)
{ {
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_AHB_3_REG, DPORT_PMS_PRO_AHB_ILG_EN); return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_AHB_3_REG, DPORT_PMS_PRO_AHB_ILG_EN);
} }
static inline uint32_t esp_memprot_peri2_get_intr_on_bit(void) static inline uint32_t memprot_ll_peri2_get_intr_on_bit(void)
{ {
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_AHB_3_REG, DPORT_PMS_PRO_AHB_ILG_INTR); return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_AHB_3_REG, DPORT_PMS_PRO_AHB_ILG_INTR);
} }
static inline uint32_t esp_memprot_peri2_get_intr_clr_bit(void) static inline uint32_t memprot_ll_peri2_get_intr_clr_bit(void)
{ {
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_AHB_3_REG, DPORT_PMS_PRO_AHB_ILG_CLR); return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_AHB_3_REG, DPORT_PMS_PRO_AHB_ILG_CLR);
} }
static inline uint32_t esp_memprot_peri2_get_lock_reg(void) static inline uint32_t memprot_ll_peri2_get_lock_reg(void)
{ {
return DPORT_READ_PERI_REG(DPORT_PMS_PRO_AHB_0_REG); return DPORT_READ_PERI_REG(DPORT_PMS_PRO_AHB_0_REG);
} }
//resets automatically on CPU restart //resets automatically on CPU restart
static inline void esp_memprot_peri2_set_lock(void) static inline void memprot_ll_peri2_set_lock(void)
{ {
DPORT_WRITE_PERI_REG(DPORT_PMS_PRO_AHB_0_REG, DPORT_PMS_PRO_AHB_LOCK); DPORT_WRITE_PERI_REG(DPORT_PMS_PRO_AHB_0_REG, DPORT_PMS_PRO_AHB_LOCK);
} }
static inline uint32_t esp_memprot_peri2_get_lock_bit(void) static inline uint32_t memprot_ll_peri2_get_lock_bit(void)
{ {
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_AHB_0_REG, DPORT_PMS_PRO_AHB_LOCK); return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_AHB_0_REG, DPORT_PMS_PRO_AHB_LOCK);
} }
static inline uint32_t *esp_memprot_peri2_rtcslow_get_fault_address(void) static inline intptr_t memprot_ll_peri2_rtcslow_get_fault_address(void)
{ {
uint32_t status_bits = esp_memprot_peri2_get_fault_reg(); uint32_t status_bits = memprot_ll_peri2_get_fault_reg();
return (uint32_t *)(status_bits & PERI2_INTR_ST_FAULTADDR_M); return (intptr_t)(status_bits & PERI2_INTR_ST_FAULTADDR_M);
} }
/** /**
* ======================================================================================== * ========================================================================================
* === PeriBus2 RTC SLOW 0 (AHB0) * === PeriBus2 RTC SLOW 0 (AHB0)
* ======================================================================================== * ========================================================================================
*/ */
#define PERI2_RTCSLOW_0_ADDRESS_BASE 0x50000000 static inline bool memprot_ll_peri2_rtcslow_0_is_intr_mine(void)
#define PERI2_RTCSLOW_0_ADDRESS_LOW PERI2_RTCSLOW_0_ADDRESS_BASE
#define PERI2_RTCSLOW_0_ADDRESS_HIGH PERI2_RTCSLOW_0_ADDRESS_LOW + RTCSLOW_MEMORY_SIZE
#define PERI2_RTCSLOW_0_ADDR_TO_CONF_REG(addr) (((addr >> CONF_REG_ADDRESS_SHIFT) & DPORT_PMS_PRO_AHB_RTCSLOW_0_SPLTADDR) << DPORT_PMS_PRO_AHB_RTCSLOW_0_SPLTADDR_S)
static inline bool esp_memprot_peri2_rtcslow_0_is_intr_mine(void)
{ {
if (esp_memprot_peri2_is_assoc_intr()) { if (memprot_ll_peri2_is_assoc_intr()) {
uint32_t *faulting_address = esp_memprot_peri2_rtcslow_get_fault_address(); uint32_t faulting_address = (uint32_t)memprot_ll_peri2_rtcslow_get_fault_address();
return (uint32_t)faulting_address >= PERI2_RTCSLOW_0_ADDRESS_LOW && (uint32_t)faulting_address <= PERI2_RTCSLOW_0_ADDRESS_HIGH; return faulting_address >= PERI2_RTCSLOW_0_ADDRESS_LOW && faulting_address <= PERI2_RTCSLOW_0_ADDRESS_HIGH;
} }
return false; return false;
} }
static inline void esp_memprot_peri2_rtcslow_0_set_prot(uint32_t *split_addr, bool lw, bool lr, bool lx, bool hw, bool hr, bool hx) static inline memprot_ll_err_t memprot_ll_peri2_rtcslow_0_set_prot(uint32_t *split_addr, bool lw, bool lr, bool lx, bool hw, bool hr, bool hx)
{ {
uint32_t addr = (uint32_t)split_addr; uint32_t addr = (uint32_t)split_addr;
HAL_ASSERT(addr % 0x4 == 0);
//check corresponding range fit & aligment to 32bit boundaries
if (addr < PERI2_RTCSLOW_0_ADDRESS_LOW || addr > PERI2_RTCSLOW_0_ADDRESS_HIGH) {
return MEMP_LL_ERR_SPLIT_ADDR_INVALID;
}
if (addr % 0x4 != 0) {
return MEMP_LL_ERR_SPLIT_ADDR_UNALIGNED;
}
uint32_t reg_split_addr = PERI2_RTCSLOW_0_ADDR_TO_CONF_REG(addr); uint32_t reg_split_addr = PERI2_RTCSLOW_0_ADDR_TO_CONF_REG(addr);
@ -331,9 +319,11 @@ static inline void esp_memprot_peri2_rtcslow_0_set_prot(uint32_t *split_addr, bo
//write PERIBUS1 RTC SLOW cfg register //write PERIBUS1 RTC SLOW cfg register
DPORT_WRITE_PERI_REG(DPORT_PMS_PRO_AHB_1_REG, reg_split_addr | permission_mask); DPORT_WRITE_PERI_REG(DPORT_PMS_PRO_AHB_1_REG, reg_split_addr | permission_mask);
return MEMP_LL_OK;
} }
static inline void esp_memprot_peri2_rtcslow_0_get_split_sgnf_bits(bool *lw, bool *lr, bool *lx, bool *hw, bool *hr, bool *hx) static inline void memprot_ll_peri2_rtcslow_0_get_split_sgnf_bits(bool *lw, bool *lr, bool *lx, bool *hw, bool *hr, bool *hx)
{ {
*lw = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_AHB_1_REG, DPORT_PMS_PRO_AHB_RTCSLOW_0_L_W); *lw = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_AHB_1_REG, DPORT_PMS_PRO_AHB_RTCSLOW_0_L_W);
*lr = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_AHB_1_REG, DPORT_PMS_PRO_AHB_RTCSLOW_0_L_R); *lr = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_AHB_1_REG, DPORT_PMS_PRO_AHB_RTCSLOW_0_L_R);
@ -343,25 +333,25 @@ static inline void esp_memprot_peri2_rtcslow_0_get_split_sgnf_bits(bool *lw, boo
*hx = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_AHB_1_REG, DPORT_PMS_PRO_AHB_RTCSLOW_0_H_F); *hx = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_AHB_1_REG, DPORT_PMS_PRO_AHB_RTCSLOW_0_H_F);
} }
static inline void esp_memprot_peri2_rtcslow_0_set_read_perm(bool lr, bool hr) static inline void memprot_ll_peri2_rtcslow_0_set_read_perm(bool lr, bool hr)
{ {
DPORT_REG_SET_FIELD(DPORT_PMS_PRO_AHB_1_REG, DPORT_PMS_PRO_AHB_RTCSLOW_0_L_R, lr ? 1 : 0); DPORT_REG_SET_FIELD(DPORT_PMS_PRO_AHB_1_REG, DPORT_PMS_PRO_AHB_RTCSLOW_0_L_R, lr ? 1 : 0);
DPORT_REG_SET_FIELD(DPORT_PMS_PRO_AHB_1_REG, DPORT_PMS_PRO_AHB_RTCSLOW_0_H_R, hr ? 1 : 0); DPORT_REG_SET_FIELD(DPORT_PMS_PRO_AHB_1_REG, DPORT_PMS_PRO_AHB_RTCSLOW_0_H_R, hr ? 1 : 0);
} }
static inline void esp_memprot_peri2_rtcslow_0_set_write_perm(bool lw, bool hw) static inline void memprot_ll_peri2_rtcslow_0_set_write_perm(bool lw, bool hw)
{ {
DPORT_REG_SET_FIELD(DPORT_PMS_PRO_AHB_1_REG, DPORT_PMS_PRO_AHB_RTCSLOW_0_L_W, lw ? 1 : 0); DPORT_REG_SET_FIELD(DPORT_PMS_PRO_AHB_1_REG, DPORT_PMS_PRO_AHB_RTCSLOW_0_L_W, lw ? 1 : 0);
DPORT_REG_SET_FIELD(DPORT_PMS_PRO_AHB_1_REG, DPORT_PMS_PRO_AHB_RTCSLOW_0_H_W, hw ? 1 : 0); DPORT_REG_SET_FIELD(DPORT_PMS_PRO_AHB_1_REG, DPORT_PMS_PRO_AHB_RTCSLOW_0_H_W, hw ? 1 : 0);
} }
static inline void esp_memprot_peri2_rtcslow_0_set_exec_perm(bool lx, bool hx) static inline void memprot_ll_peri2_rtcslow_0_set_exec_perm(bool lx, bool hx)
{ {
DPORT_REG_SET_FIELD(DPORT_PMS_PRO_AHB_1_REG, DPORT_PMS_PRO_AHB_RTCSLOW_0_L_F, lx ? 1 : 0); DPORT_REG_SET_FIELD(DPORT_PMS_PRO_AHB_1_REG, DPORT_PMS_PRO_AHB_RTCSLOW_0_L_F, lx ? 1 : 0);
DPORT_REG_SET_FIELD(DPORT_PMS_PRO_AHB_1_REG, DPORT_PMS_PRO_AHB_RTCSLOW_0_H_F, hx ? 1 : 0); DPORT_REG_SET_FIELD(DPORT_PMS_PRO_AHB_1_REG, DPORT_PMS_PRO_AHB_RTCSLOW_0_H_F, hx ? 1 : 0);
} }
static inline uint32_t esp_memprot_peri2_rtcslow_0_get_conf_reg(void) static inline uint32_t memprot_ll_peri2_rtcslow_0_get_conf_reg(void)
{ {
return DPORT_READ_PERI_REG(DPORT_PMS_PRO_DPORT_1_REG); return DPORT_READ_PERI_REG(DPORT_PMS_PRO_DPORT_1_REG);
} }
@ -371,25 +361,26 @@ static inline uint32_t esp_memprot_peri2_rtcslow_0_get_conf_reg(void)
* === PeriBus2 RTC SLOW 1 (AHB1) * === PeriBus2 RTC SLOW 1 (AHB1)
* ======================================================================================== * ========================================================================================
*/ */
#define PERI2_RTCSLOW_1_ADDRESS_BASE 0x60021000 static inline bool memprot_ll_peri2_rtcslow_1_is_intr_mine(void)
#define PERI2_RTCSLOW_1_ADDRESS_LOW PERI2_RTCSLOW_1_ADDRESS_BASE
#define PERI2_RTCSLOW_1_ADDRESS_HIGH PERI2_RTCSLOW_1_ADDRESS_LOW + RTCSLOW_MEMORY_SIZE
#define PERI2_RTCSLOW_1_ADDR_TO_CONF_REG(addr) (((addr >> CONF_REG_ADDRESS_SHIFT) & DPORT_PMS_PRO_AHB_RTCSLOW_1_SPLTADDR) << DPORT_PMS_PRO_AHB_RTCSLOW_1_SPLTADDR_S)
static inline bool esp_memprot_peri2_rtcslow_1_is_intr_mine(void)
{ {
if (esp_memprot_peri2_is_assoc_intr()) { if (memprot_ll_peri2_is_assoc_intr()) {
uint32_t *faulting_address = esp_memprot_peri2_rtcslow_get_fault_address(); uint32_t faulting_address = (uint32_t)memprot_ll_peri2_rtcslow_get_fault_address();
return (uint32_t)faulting_address >= PERI2_RTCSLOW_1_ADDRESS_LOW && (uint32_t)faulting_address <= PERI2_RTCSLOW_1_ADDRESS_HIGH; return faulting_address >= PERI2_RTCSLOW_1_ADDRESS_LOW && faulting_address <= PERI2_RTCSLOW_1_ADDRESS_HIGH;
} }
return false; return false;
} }
static inline void esp_memprot_peri2_rtcslow_1_set_prot(uint32_t *split_addr, bool lw, bool lr, bool lx, bool hw, bool hr, bool hx) static inline memprot_ll_err_t memprot_ll_peri2_rtcslow_1_set_prot(uint32_t *split_addr, bool lw, bool lr, bool lx, bool hw, bool hr, bool hx)
{ {
uint32_t addr = (uint32_t)split_addr; uint32_t addr = (uint32_t)split_addr;
HAL_ASSERT(addr % 0x4 == 0);
//check corresponding range fit & aligment to 32bit boundaries
if (addr < PERI2_RTCSLOW_1_ADDRESS_LOW || addr > PERI2_RTCSLOW_1_ADDRESS_HIGH) {
return MEMP_LL_ERR_SPLIT_ADDR_INVALID;
}
if (addr % 0x4 != 0) {
return MEMP_LL_ERR_SPLIT_ADDR_UNALIGNED;
}
uint32_t reg_split_addr = PERI2_RTCSLOW_1_ADDR_TO_CONF_REG(addr); uint32_t reg_split_addr = PERI2_RTCSLOW_1_ADDR_TO_CONF_REG(addr);
@ -416,9 +407,11 @@ static inline void esp_memprot_peri2_rtcslow_1_set_prot(uint32_t *split_addr, bo
//write PERIBUS1 RTC SLOW cfg register //write PERIBUS1 RTC SLOW cfg register
DPORT_WRITE_PERI_REG(DPORT_PMS_PRO_AHB_2_REG, reg_split_addr | permission_mask); DPORT_WRITE_PERI_REG(DPORT_PMS_PRO_AHB_2_REG, reg_split_addr | permission_mask);
return MEMP_LL_OK;
} }
static inline void esp_memprot_peri2_rtcslow_1_get_split_sgnf_bits(bool *lw, bool *lr, bool *lx, bool *hw, bool *hr, bool *hx) static inline void memprot_ll_peri2_rtcslow_1_get_split_sgnf_bits(bool *lw, bool *lr, bool *lx, bool *hw, bool *hr, bool *hx)
{ {
*lw = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_AHB_2_REG, DPORT_PMS_PRO_AHB_RTCSLOW_1_L_W); *lw = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_AHB_2_REG, DPORT_PMS_PRO_AHB_RTCSLOW_1_L_W);
*lr = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_AHB_2_REG, DPORT_PMS_PRO_AHB_RTCSLOW_1_L_R); *lr = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_AHB_2_REG, DPORT_PMS_PRO_AHB_RTCSLOW_1_L_R);
@ -428,25 +421,25 @@ static inline void esp_memprot_peri2_rtcslow_1_get_split_sgnf_bits(bool *lw, boo
*hx = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_AHB_2_REG, DPORT_PMS_PRO_AHB_RTCSLOW_1_H_F); *hx = DPORT_REG_GET_FIELD(DPORT_PMS_PRO_AHB_2_REG, DPORT_PMS_PRO_AHB_RTCSLOW_1_H_F);
} }
static inline void esp_memprot_peri2_rtcslow_1_set_read_perm(bool lr, bool hr) static inline void memprot_ll_peri2_rtcslow_1_set_read_perm(bool lr, bool hr)
{ {
DPORT_REG_SET_FIELD(DPORT_PMS_PRO_AHB_2_REG, DPORT_PMS_PRO_AHB_RTCSLOW_1_L_R, lr ? 1 : 0); DPORT_REG_SET_FIELD(DPORT_PMS_PRO_AHB_2_REG, DPORT_PMS_PRO_AHB_RTCSLOW_1_L_R, lr ? 1 : 0);
DPORT_REG_SET_FIELD(DPORT_PMS_PRO_AHB_2_REG, DPORT_PMS_PRO_AHB_RTCSLOW_1_H_R, hr ? 1 : 0); DPORT_REG_SET_FIELD(DPORT_PMS_PRO_AHB_2_REG, DPORT_PMS_PRO_AHB_RTCSLOW_1_H_R, hr ? 1 : 0);
} }
static inline void esp_memprot_peri2_rtcslow_1_set_write_perm(bool lw, bool hw) static inline void memprot_ll_peri2_rtcslow_1_set_write_perm(bool lw, bool hw)
{ {
DPORT_REG_SET_FIELD(DPORT_PMS_PRO_AHB_2_REG, DPORT_PMS_PRO_AHB_RTCSLOW_1_L_W, lw ? 1 : 0); DPORT_REG_SET_FIELD(DPORT_PMS_PRO_AHB_2_REG, DPORT_PMS_PRO_AHB_RTCSLOW_1_L_W, lw ? 1 : 0);
DPORT_REG_SET_FIELD(DPORT_PMS_PRO_AHB_2_REG, DPORT_PMS_PRO_AHB_RTCSLOW_1_H_W, hw ? 1 : 0); DPORT_REG_SET_FIELD(DPORT_PMS_PRO_AHB_2_REG, DPORT_PMS_PRO_AHB_RTCSLOW_1_H_W, hw ? 1 : 0);
} }
static inline void esp_memprot_peri2_rtcslow_1_set_exec_perm(bool lx, bool hx) static inline void memprot_ll_peri2_rtcslow_1_set_exec_perm(bool lx, bool hx)
{ {
DPORT_REG_SET_FIELD(DPORT_PMS_PRO_AHB_2_REG, DPORT_PMS_PRO_AHB_RTCSLOW_1_L_F, lx ? 1 : 0); DPORT_REG_SET_FIELD(DPORT_PMS_PRO_AHB_2_REG, DPORT_PMS_PRO_AHB_RTCSLOW_1_L_F, lx ? 1 : 0);
DPORT_REG_SET_FIELD(DPORT_PMS_PRO_AHB_2_REG, DPORT_PMS_PRO_AHB_RTCSLOW_1_H_F, hx ? 1 : 0); DPORT_REG_SET_FIELD(DPORT_PMS_PRO_AHB_2_REG, DPORT_PMS_PRO_AHB_RTCSLOW_1_H_F, hx ? 1 : 0);
} }
static inline uint32_t esp_memprot_peri2_rtcslow_1_get_conf_reg(void) static inline uint32_t memprot_ll_peri2_rtcslow_1_get_conf_reg(void)
{ {
return DPORT_READ_PERI_REG(DPORT_PMS_PRO_DPORT_2_REG); return DPORT_READ_PERI_REG(DPORT_PMS_PRO_DPORT_2_REG);
} }

View File

@ -0,0 +1,35 @@
// Copyright 2015-2021 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Memprot LL error codes
*
*/
typedef enum {
MEMP_LL_OK = 0,
MEMP_LL_FAIL = 1,
MEMP_LL_ERR_SPLIT_ADDR_INVALID = 2,
MEMP_LL_ERR_SPLIT_ADDR_UNALIGNED = 3,
MEMP_LL_ERR_UNI_BLOCK_INVALID = 4
} memprot_ll_err_t;
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,131 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "soc/soc.h"
#include "soc/sensitive_reg.h"
#ifdef __cplusplus
extern "C" {
#endif
//IRAM0 interrupt status bitmasks
#define IRAM0_INTR_ST_OP_TYPE_BIT BIT(1) //instruction: 0, data: 1
#define IRAM0_INTR_ST_OP_RW_BIT BIT(0) //read: 0, write: 1
#define CONF_REG_ADDRESS_SHIFT 2
//IRAM0 range
#define IRAM0_SRAM_BASE_ADDRESS 0x40000000
#define IRAM0_SRAM_ADDRESS_LOW 0x40020000
#define IRAM0_SRAM_ADDRESS_HIGH 0x4006FFFF
//IRAM0 unified managemnt blocks
#define IRAM0_SRAM_TOTAL_UNI_BLOCKS 4
#define IRAM0_SRAM_UNI_BLOCK_0 0
#define IRAM0_SRAM_UNI_BLOCK_1 1
#define IRAM0_SRAM_UNI_BLOCK_2 2
#define IRAM0_SRAM_UNI_BLOCK_3 3
//unified management addr range (blocks 0-3)
#define IRAM0_SRAM_UNI_BLOCK_0_LOW 0x40020000
#define IRAM0_SRAM_UNI_BLOCK_1_LOW 0x40022000
#define IRAM0_SRAM_UNI_BLOCK_2_LOW 0x40024000
#define IRAM0_SRAM_UNI_BLOCK_3_LOW 0x40026000
//split management addr range (blocks 4-21)
#define IRAM0_SRAM_SPL_BLOCK_LOW 0x40028000 //block 4 low
#define IRAM0_SRAM_SPL_BLOCK_HIGH 0x4006FFFF //block 21 high
#define IRAM0_INTR_ST_FAULTADDR_M 0x003FFFFC //bits 21:6 in the reg, as well as in real address
#define IRAM0_SRAM_INTR_ST_FAULTADDR_HI 0x40000000 //high nonsignificant bits 31:22 of the faulting address - constant
#define IRAM0_SRAM_ADDR_TO_CONF_REG(addr) (((addr >> CONF_REG_ADDRESS_SHIFT) & DPORT_PMS_PRO_IRAM0_SRAM_4_SPLTADDR) << DPORT_PMS_PRO_IRAM0_SRAM_4_SPLTADDR_S)
//IRAM0 RTCFAST
#define IRAM0_RTCFAST_ADDRESS_LOW 0x40070000
#define IRAM0_RTCFAST_ADDRESS_HIGH 0x40071FFF
#define IRAM0_RTCFAST_INTR_ST_FAULTADDR_HI 0x40070000 //RTCFAST faulting address high bits (31:22, constant)
#define IRAM0_RTCFAST_ADDR_TO_CONF_REG(addr) (((addr >> CONF_REG_ADDRESS_SHIFT) & DPORT_PMS_PRO_IRAM0_RTCFAST_SPLTADDR) << DPORT_PMS_PRO_IRAM0_RTCFAST_SPLTADDR_S)
//DRAM0 interrupt status bitmasks
#define DRAM0_INTR_ST_FAULTADDR_M 0x03FFFFC0 //(bits 25:6 in the reg)
#define DRAM0_INTR_ST_FAULTADDR_S 0x4 //(bits 21:2 of real address)
#define DRAM0_INTR_ST_OP_RW_BIT BIT(4) //read: 0, write: 1
#define DRAM0_INTR_ST_OP_ATOMIC_BIT BIT(5) //non-atomic: 0, atomic: 1
#define DRAM0_SRAM_ADDRESS_LOW 0x3FFB0000
#define DRAM0_SRAM_ADDRESS_HIGH 0x3FFFFFFF
#define DRAM0_SRAM_TOTAL_UNI_BLOCKS 4
#define DRAM0_SRAM_UNI_BLOCK_0 0
#define DRAM0_SRAM_UNI_BLOCK_1 1
#define DRAM0_SRAM_UNI_BLOCK_2 2
#define DRAM0_SRAM_UNI_BLOCK_3 3
//unified management (SRAM blocks 0-3)
#define DRAM0_SRAM_UNI_BLOCK_0_LOW 0x3FFB0000
#define DRAM0_SRAM_UNI_BLOCK_1_LOW 0x3FFB2000
#define DRAM0_SRAM_UNI_BLOCK_2_LOW 0x3FFB4000
#define DRAM0_SRAM_UNI_BLOCK_3_LOW 0x3FFB6000
//split management (SRAM blocks 4-21)
#define DRAM0_SRAM_SPL_BLOCK_HIGH 0x3FFFFFFF //block 21 high
#define DRAM0_SRAM_INTR_ST_FAULTADDR_HI 0x3FF00000 //SRAM high bits 31:22 of the faulting address - constant
#define DRAM0_SRAM_ADDR_TO_CONF_REG(addr) (((addr >> CONF_REG_ADDRESS_SHIFT) & DPORT_PMS_PRO_DRAM0_SRAM_4_SPLTADDR) << DPORT_PMS_PRO_DRAM0_SRAM_4_SPLTADDR_S)
//DRAM0 RTCFAST
#define DRAM0_RTCFAST_ADDRESS_LOW 0x3FF9E000
#define DRAM0_RTCFAST_ADDRESS_HIGH 0x3FF9FFFF
#define DRAM0_RTCFAST_INTR_ST_FAULTADDR_HI 0x3FF00000 //RTCFAST high bits 31:22 of the faulting address - constant
#define DRAM0_RTCFAST_ADDR_TO_CONF_REG(addr) (((addr >> CONF_REG_ADDRESS_SHIFT) & DPORT_PMS_PRO_DRAM0_RTCFAST_SPLTADDR) << DPORT_PMS_PRO_DRAM0_RTCFAST_SPLTADDR_S)
//RTCSLOW
#define RTCSLOW_MEMORY_SIZE 0x00002000
//PeriBus1 interrupt status bitmasks
#define PERI1_INTR_ST_OP_TYPE_BIT BIT(4) //0: non-atomic, 1: atomic
#define PERI1_INTR_ST_OP_HIGH_BITS BIT(5) //0: high bits = unchanged, 1: high bits = 0x03F40000
#define PERI1_INTR_ST_FAULTADDR_M 0x03FFFFC0 //(bits 25:6 in the reg)
#define PERI1_INTR_ST_FAULTADDR_S 0x4 //(bits 21:2 of real address)
#define PERI1_RTCSLOW_ADDRESS_BASE 0x3F421000
#define PERI1_RTCSLOW_ADDRESS_LOW PERI1_RTCSLOW_ADDRESS_BASE
#define PERI1_RTCSLOW_ADDRESS_HIGH PERI1_RTCSLOW_ADDRESS_LOW + RTCSLOW_MEMORY_SIZE
#define PERI1_RTCSLOW_INTR_ST_FAULTADDR_HI_0 0x3F400000
#define PERI1_RTCSLOW_ADDR_TO_CONF_REG(addr) (((addr >> CONF_REG_ADDRESS_SHIFT) & DPORT_PMS_PRO_DPORT_RTCSLOW_SPLTADDR) << DPORT_PMS_PRO_DPORT_RTCSLOW_SPLTADDR_S)
//PeriBus2 interrupt status bitmasks
#define PERI2_INTR_ST_OP_TYPE_BIT BIT(1) //instruction: 0, data: 1
#define PERI2_INTR_ST_OP_RW_BIT BIT(0) //read: 0, write: 1
#define PERI2_INTR_ST_FAULTADDR_M 0xFFFFFFFC //(bits 31:2 in the reg)
#define PERI2_RTCSLOW_0_ADDRESS_BASE 0x50000000
#define PERI2_RTCSLOW_0_ADDRESS_LOW PERI2_RTCSLOW_0_ADDRESS_BASE
#define PERI2_RTCSLOW_0_ADDRESS_HIGH PERI2_RTCSLOW_0_ADDRESS_LOW + RTCSLOW_MEMORY_SIZE
#define PERI2_RTCSLOW_0_ADDR_TO_CONF_REG(addr) (((addr >> CONF_REG_ADDRESS_SHIFT) & DPORT_PMS_PRO_AHB_RTCSLOW_0_SPLTADDR) << DPORT_PMS_PRO_AHB_RTCSLOW_0_SPLTADDR_S)
#define PERI2_RTCSLOW_1_ADDRESS_BASE 0x60021000
#define PERI2_RTCSLOW_1_ADDRESS_LOW PERI2_RTCSLOW_1_ADDRESS_BASE
#define PERI2_RTCSLOW_1_ADDRESS_HIGH PERI2_RTCSLOW_1_ADDRESS_LOW + RTCSLOW_MEMORY_SIZE
#define PERI2_RTCSLOW_1_ADDR_TO_CONF_REG(addr) (((addr >> CONF_REG_ADDRESS_SHIFT) & DPORT_PMS_PRO_AHB_RTCSLOW_1_SPLTADDR) << DPORT_PMS_PRO_AHB_RTCSLOW_1_SPLTADDR_S)
#ifdef __cplusplus
}
#endif

View File

@ -313,13 +313,23 @@ static void __attribute__((unused)) dump_bus_permissions(mem_type_prot_t mem_typ
static void __attribute__((unused)) dump_status_register(mem_type_prot_t mem_type) static void __attribute__((unused)) dump_status_register(mem_type_prot_t mem_type)
{ {
uint32_t *faulting_address, op_type, op_subtype; uint32_t *faulting_address, op_type, op_subtype;
esp_memprot_get_fault_status(mem_type, &faulting_address, &op_type, &op_subtype); esp_err_t res = esp_memprot_get_fault_status(mem_type, &faulting_address, &op_type, &op_subtype);
esp_rom_printf( if ( res == ESP_OK ) {
" FAULT [split addr: 0x%08X, fault addr: 0x%08X, fault status: 0x%08X]\n", uint32_t fault_reg;
(uint32_t)test_memprot_get_split_addr(mem_type), res = esp_memprot_get_fault_reg(mem_type, &fault_reg);
(uint32_t)faulting_address, esp_rom_printf(
esp_memprot_get_fault_reg(mem_type) " FAULT [split addr: 0x%08X, fault addr: 0x%08X, fault status: ",
); (uint32_t) test_memprot_get_split_addr(mem_type),
(uint32_t) faulting_address
);
if ( res == ESP_OK ) {
esp_rom_printf("0x%08X]\n", fault_reg );
} else {
esp_rom_printf("<failed, err: 0x%08X>]\n", res );
}
} else {
esp_rom_printf(" FAULT [failed to get fault details, error 0x%08X]\n", res);
}
} }
@ -328,13 +338,17 @@ static void __attribute__((unused)) dump_status_register(mem_type_prot_t mem_typ
*/ */
static void check_test_result(mem_type_prot_t mem_type, bool expected_status) static void check_test_result(mem_type_prot_t mem_type, bool expected_status)
{ {
uint32_t fault = esp_memprot_get_fault_reg(mem_type); uint32_t fault;
esp_err_t res = esp_memprot_get_fault_reg(mem_type, &fault);
bool test_result = expected_status ? fault == 0 : fault != 0; if ( res == ESP_OK ) {
if ( test_result ) { bool test_result = expected_status ? fault == 0 : fault != 0;
esp_rom_printf("OK\n"); if (test_result) {
esp_rom_printf("OK\n");
} else {
dump_status_register(mem_type);
}
} else { } else {
dump_status_register(mem_type); esp_rom_printf(" FAULT [failed to get test results, error 0x%08X]\n", res);
} }
} }