feat(uart): update uart driver for esp32s2beta

This commit is contained in:
chenjianqiang 2019-06-14 11:01:30 +08:00
parent 413a98b151
commit 4cc962353c
12 changed files with 367 additions and 222 deletions

View File

@ -21,6 +21,7 @@ extern "C" {
#endif #endif
#include "soc/uart_periph.h" #include "soc/uart_periph.h"
#include "soc/uart_caps.h"
#include "esp_err.h" #include "esp_err.h"
#include "esp_intr_alloc.h" #include "esp_intr_alloc.h"
#include "driver/periph_ctrl.h" #include "driver/periph_ctrl.h"
@ -82,7 +83,9 @@ typedef enum {
typedef enum { typedef enum {
UART_NUM_0 = 0x0, /*!< UART base address 0x3ff40000*/ UART_NUM_0 = 0x0, /*!< UART base address 0x3ff40000*/
UART_NUM_1 = 0x1, /*!< UART base address 0x3ff50000*/ UART_NUM_1 = 0x1, /*!< UART base address 0x3ff50000*/
#if SOC_UART_NUM > 2
UART_NUM_2 = 0x2, /*!< UART base address 0x3ff6e000*/ UART_NUM_2 = 0x2, /*!< UART base address 0x3ff6e000*/
#endif
UART_NUM_MAX, UART_NUM_MAX,
} uart_port_t; } uart_port_t;
@ -674,6 +677,7 @@ esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size);
*/ */
esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num); esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num);
#if CONFIG_IDF_TARGET_ESP32
/** /**
* @brief UART enable pattern detect function. * @brief UART enable pattern detect function.
* Designed for applications like 'AT commands'. * Designed for applications like 'AT commands'.
@ -694,6 +698,28 @@ esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num);
* - ESP_FAIL Parameter error * - ESP_FAIL Parameter error
*/ */
esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle); esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle);
#elif CONFIG_IDF_TARGET_ESP32S2BETA
/**
* @brief UART enable pattern detect function.
* Designed for applications like 'AT commands'.
* When the hardware detect a series of one same character, the interrupt will be triggered.
*
* @param uart_num UART port number.
* @param pattern_chr character of the pattern
* @param chr_num number of the character, 8bit value.
* @param chr_tout timeout of the interval between each pattern characters, 16bit value, unit is baud rate.
* When the duration is more than this value, it will not take this data as at_cmd char
* @param post_idle idle time after the last pattern character, 16bit value, unit is baud rate.
* When the duration is less than this value, it will not take the previous data as the last at_cmd char
* @param pre_idle idle time before the first pattern character, 16bit value, unit is baud rate.
* When the duration is less than this value, it will not take this data as the first at_cmd char
*
* @return
* - ESP_OK Success
* - ESP_FAIL Parameter error
*/
esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle);
#endif
/** /**
* @brief Return the nearest detected pattern position in buffer. * @brief Return the nearest detected pattern position in buffer.

View File

@ -34,6 +34,8 @@
#include "esp32s2beta/clk.h" #include "esp32s2beta/clk.h"
#endif #endif
#define UART_NUM SOC_UART_NUM
#define XOFF (char)0x13 #define XOFF (char)0x13
#define XON (char)0x11 #define XON (char)0x11
@ -118,8 +120,20 @@ typedef struct {
static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0}; static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
/* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */ /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {&UART0, &UART1, &UART2}; static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {
static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED}; &UART0,
&UART1,
#if UART_NUM > 2
&UART2
#endif
};
static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {
portMUX_INITIALIZER_UNLOCKED,
portMUX_INITIALIZER_UNLOCKED,
#if UART_NUM > 2
portMUX_INITIALIZER_UNLOCKED
#endif
};
static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED; static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit) esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
@ -145,6 +159,7 @@ esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL); UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
#if UART_NUM > 2
//workaround for hardware bug, when uart stop bit set as 2-bit mode. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
if (stop_bit == UART_STOP_BITS_2) { if (stop_bit == UART_STOP_BITS_2) {
stop_bit = UART_STOP_BITS_1; stop_bit = UART_STOP_BITS_1;
@ -152,6 +167,7 @@ esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
} else { } else {
UART[uart_num]->rs485_conf.dl1_en = 0; UART[uart_num]->rs485_conf.dl1_en = 0;
} }
#endif
UART[uart_num]->conf0.stop_bit_num = stop_bit; UART[uart_num]->conf0.stop_bit_num = stop_bit;
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]); UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ESP_OK; return ESP_OK;
@ -160,12 +176,16 @@ esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit) esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
{ {
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
#if CONFIG_IDF_TARGET_ESP32
//workaround for hardware bug, when uart stop bit set as 2-bit mode. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
if (UART[uart_num]->rs485_conf.dl1_en == 1 && UART[uart_num]->conf0.stop_bit_num == UART_STOP_BITS_1) { if (UART[uart_num]->rs485_conf.dl1_en == 1 && UART[uart_num]->conf0.stop_bit_num == UART_STOP_BITS_1) {
(*stop_bit) = UART_STOP_BITS_2; (*stop_bit) = UART_STOP_BITS_2;
} else { } else {
(*stop_bit) = UART[uart_num]->conf0.stop_bit_num; (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
} }
#elif CONFIG_IDF_TARGET_ESP32S2BETA
(*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
#endif
return ESP_OK; return ESP_OK;
} }
@ -252,10 +272,17 @@ esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_t
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
UART[uart_num]->flow_conf.sw_flow_con_en = enable? 1:0; UART[uart_num]->flow_conf.sw_flow_con_en = enable? 1:0;
UART[uart_num]->flow_conf.xonoff_del = enable?1:0; UART[uart_num]->flow_conf.xonoff_del = enable?1:0;
#if CONFIG_IDF_TARGET_ESP32
UART[uart_num]->swfc_conf.xon_threshold = rx_thresh_xon; UART[uart_num]->swfc_conf.xon_threshold = rx_thresh_xon;
UART[uart_num]->swfc_conf.xoff_threshold = rx_thresh_xoff; UART[uart_num]->swfc_conf.xoff_threshold = rx_thresh_xoff;
UART[uart_num]->swfc_conf.xon_char = XON; UART[uart_num]->swfc_conf.xon_char = XON;
UART[uart_num]->swfc_conf.xoff_char = XOFF; UART[uart_num]->swfc_conf.xoff_char = XOFF;
#elif CONFIG_IDF_TARGET_ESP32S2BETA
UART[uart_num]->swfc_conf1.xon_threshold = rx_thresh_xon;
UART[uart_num]->swfc_conf0.xoff_threshold = rx_thresh_xoff;
UART[uart_num]->swfc_conf1.xon_char = XON;
UART[uart_num]->swfc_conf0.xoff_char = XOFF;
#endif
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]); UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ESP_OK; return ESP_OK;
} }
@ -268,7 +295,11 @@ esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow
UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL); UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
if(flow_ctrl & UART_HW_FLOWCTRL_RTS) { if(flow_ctrl & UART_HW_FLOWCTRL_RTS) {
#if CONFIG_IDF_TARGET_ESP32
UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh; UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
#elif CONFIG_IDF_TARGET_ESP32S2BETA
UART[uart_num]->mem_conf.rx_flow_thrhd = rx_thresh;
#endif
UART[uart_num]->conf1.rx_flow_en = 1; UART[uart_num]->conf1.rx_flow_en = 1;
} else { } else {
UART[uart_num]->conf1.rx_flow_en = 0; UART[uart_num]->conf1.rx_flow_en = 0;
@ -299,11 +330,11 @@ esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flo
static esp_err_t uart_reset_rx_fifo(uart_port_t uart_num) static esp_err_t uart_reset_rx_fifo(uart_port_t uart_num)
{ {
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
#if CONFIG_IDF_TARGET_ESP32
//Due to hardware issue, we can not use fifo_rst to reset uart fifo. //Due to hardware issue, we can not use fifo_rst to reset uart fifo.
//See description about UART_TXFIFO_RST and UART_RXFIFO_RST in <<esp32_technical_reference_manual>> v2.6 or later. //See description about UART_TXFIFO_RST and UART_RXFIFO_RST in <<esp32_technical_reference_manual>> v2.6 or later.
// we read the data out and make `fifo_len == 0 && rd_addr == wr_addr`. // we read the data out and make `fifo_len == 0 && rd_addr == wr_addr`.
#if CONFIG_IDF_TARGET_ESP32
while(UART[uart_num]->status.rxfifo_cnt != 0 || (UART[uart_num]->mem_rx_status.wr_addr != UART[uart_num]->mem_rx_status.rd_addr)) { while(UART[uart_num]->status.rxfifo_cnt != 0 || (UART[uart_num]->mem_rx_status.wr_addr != UART[uart_num]->mem_rx_status.rd_addr)) {
READ_PERI_REG(UART_FIFO_REG(uart_num)); READ_PERI_REG(UART_FIFO_REG(uart_num));
} }
@ -538,9 +569,11 @@ esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg,
case UART_NUM_1: case UART_NUM_1:
ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle); ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
break; break;
#if UART_NUM > 2
case UART_NUM_2: case UART_NUM_2:
ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle); ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
break; break;
#endif
case UART_NUM_0: case UART_NUM_0:
default: default:
ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle); ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
@ -587,7 +620,7 @@ esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int r
rts_sig = U1RTS_OUT_IDX; rts_sig = U1RTS_OUT_IDX;
cts_sig = U1CTS_IN_IDX; cts_sig = U1CTS_IN_IDX;
break; break;
#if CONFIG_IDF_TARGET_ESP32 #if UART_NUM > 2
case UART_NUM_2: case UART_NUM_2:
tx_sig = U2TXD_OUT_IDX; tx_sig = U2TXD_OUT_IDX;
rx_sig = U2RXD_IN_IDX; rx_sig = U2RXD_IN_IDX;
@ -668,11 +701,9 @@ esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_conf
periph_module_enable(PERIPH_UART0_MODULE); periph_module_enable(PERIPH_UART0_MODULE);
} else if(uart_num == UART_NUM_1) { } else if(uart_num == UART_NUM_1) {
periph_module_enable(PERIPH_UART1_MODULE); periph_module_enable(PERIPH_UART1_MODULE);
#if UART_NUM > 2
} else if(uart_num == UART_NUM_2) { } else if(uart_num == UART_NUM_2) {
#if CONFIG_IDF_TARGET_ESP32
periph_module_enable(PERIPH_UART2_MODULE); periph_module_enable(PERIPH_UART2_MODULE);
#else
return ESP_FAIL;
#endif #endif
} }
r = uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh); r = uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
@ -702,6 +733,7 @@ esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
UART[uart_num]->int_clr.val = UART_INTR_MASK; UART[uart_num]->int_clr.val = UART_INTR_MASK;
if(intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) { if(intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
#if CONFIG_IDF_TARGET_ESP32
//Hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times. //Hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times.
//T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH) //T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH)
if(UART[uart_num]->conf0.tick_ref_always_on == 0) { if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
@ -709,6 +741,9 @@ esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_
} else { } else {
UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V); UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
} }
#elif CONFIG_IDF_TARGET_ESP32S2BETA
UART[uart_num]->mem_conf.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
#endif
UART[uart_num]->conf1.rx_tout_en = 1; UART[uart_num]->conf1.rx_tout_en = 1;
} else { } else {
UART[uart_num]->conf1.rx_tout_en = 0; UART[uart_num]->conf1.rx_tout_en = 0;
@ -1480,11 +1515,9 @@ esp_err_t uart_driver_delete(uart_port_t uart_num)
periph_module_disable(PERIPH_UART0_MODULE); periph_module_disable(PERIPH_UART0_MODULE);
} else if(uart_num == UART_NUM_1) { } else if(uart_num == UART_NUM_1) {
periph_module_disable(PERIPH_UART1_MODULE); periph_module_disable(PERIPH_UART1_MODULE);
#if UART_NUM > 2
} else if(uart_num == UART_NUM_2) { } else if(uart_num == UART_NUM_2) {
#if CONFIG_IDF_TARGET_ESP32 periph_module_disable(PERIPH_UART2_MODULE);
periph_module_disable(PERIPH_UART2_MODULE);
#else
return ESP_FAIL;
#endif #endif
} }
} }
@ -1502,6 +1535,7 @@ portMUX_TYPE *uart_get_selectlock()
{ {
return &uart_selectlock; return &uart_selectlock;
} }
// Set UART mode // Set UART mode
esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode) esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
{ {
@ -1570,7 +1604,15 @@ esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
// The tout_thresh = 1, defines TOUT interrupt timeout equal to // The tout_thresh = 1, defines TOUT interrupt timeout equal to
// transmission time of one symbol (~11 bit) on current baudrate // transmission time of one symbol (~11 bit) on current baudrate
if (tout_thresh > 0) { if (tout_thresh > 0) {
UART[uart_num]->conf1.rx_tout_thrhd = (tout_thresh & UART_RX_TOUT_THRHD_V); #if CONFIG_IDF_TARGET_ESP32
if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
UART[uart_num]->conf1.rx_tout_thrhd = ((tout_thresh * UART_TOUT_REF_FACTOR_DEFAULT) & UART_RX_TOUT_THRHD_V);
} else {
UART[uart_num]->conf1.rx_tout_thrhd = ((tout_thresh) & UART_RX_TOUT_THRHD_V);
}
#elif CONFIG_IDF_TARGET_ESP32S2BETA
UART[uart_num]->mem_conf.rx_tout_thrhd = ((tout_thresh) & UART_RX_TOUT_THRHD_V);
#endif
UART[uart_num]->conf1.rx_tout_en = 1; UART[uart_num]->conf1.rx_tout_en = 1;
} else { } else {
UART[uart_num]->conf1.rx_tout_en = 0; UART[uart_num]->conf1.rx_tout_en = 0;

View File

@ -22,10 +22,10 @@
#define MB_CONTROLLER_PRIORITY (CONFIG_FMB_SERIAL_TASK_PRIO - 1) // priority of MB controller task #define MB_CONTROLLER_PRIORITY (CONFIG_FMB_SERIAL_TASK_PRIO - 1) // priority of MB controller task
// Default port defines // Default port defines
#define MB_DEVICE_ADDRESS (1) // Default slave device address in Modbus #define MB_DEVICE_ADDRESS (1) // Default slave device address in Modbus
#define MB_DEVICE_SPEED (115200) // Default Modbus speed for now hard defined #define MB_DEVICE_SPEED (115200) // Default Modbus speed for now hard defined
#define MB_UART_PORT (UART_NUM_2) // Default UART port number #define MB_UART_PORT (UART_NUM_MAX - 1) // Default UART port number
#define MB_PAR_INFO_TOUT (10) // Timeout for get parameter info #define MB_PAR_INFO_TOUT (10) // Timeout for get parameter info
#define MB_PARITY_NONE (UART_PARITY_DISABLE) #define MB_PARITY_NONE (UART_PARITY_DISABLE)
// The Macros below handle the endianness while transfer N byte data into buffer // The Macros below handle the endianness while transfer N byte data into buffer

View File

@ -78,7 +78,7 @@ static TaskHandle_t xMbTaskHandle;
static const CHAR *TAG = "MB_SERIAL"; static const CHAR *TAG = "MB_SERIAL";
// The UART hardware port number // The UART hardware port number
static UCHAR ucUartNumber = UART_NUM_2; static UCHAR ucUartNumber = UART_NUM_MAX - 1;
static BOOL bRxStateEnabled = FALSE; // Receiver enabled flag static BOOL bRxStateEnabled = FALSE; // Receiver enabled flag
static BOOL bTxStateEnabled = FALSE; // Transmitter enabled flag static BOOL bTxStateEnabled = FALSE; // Transmitter enabled flag

View File

@ -73,7 +73,7 @@ static QueueHandle_t xMbUartQueue;
static TaskHandle_t xMbTaskHandle; static TaskHandle_t xMbTaskHandle;
// The UART hardware port number // The UART hardware port number
static UCHAR ucUartNumber = UART_NUM_2; static UCHAR ucUartNumber = UART_NUM_MAX - 1;
static BOOL bRxStateEnabled = FALSE; // Receiver enabled flag static BOOL bRxStateEnabled = FALSE; // Receiver enabled flag
static BOOL bTxStateEnabled = FALSE; // Transmitter enabled flag static BOOL bTxStateEnabled = FALSE; // Transmitter enabled flag

View File

@ -83,7 +83,7 @@ static esp_err_t mbc_serial_master_setup(void* comm_info)
MB_MASTER_CHECK(((comm_info_ptr->mode == MB_MODE_RTU) || (comm_info_ptr->mode == MB_MODE_ASCII)), MB_MASTER_CHECK(((comm_info_ptr->mode == MB_MODE_RTU) || (comm_info_ptr->mode == MB_MODE_ASCII)),
ESP_ERR_INVALID_ARG, "mb incorrect mode = (0x%x).", ESP_ERR_INVALID_ARG, "mb incorrect mode = (0x%x).",
(uint32_t)comm_info_ptr->mode); (uint32_t)comm_info_ptr->mode);
MB_MASTER_CHECK((comm_info_ptr->port <= UART_NUM_2), ESP_ERR_INVALID_ARG, MB_MASTER_CHECK((comm_info_ptr->port < UART_NUM_MAX), ESP_ERR_INVALID_ARG,
"mb wrong port to set = (0x%x).", (uint32_t)comm_info_ptr->port); "mb wrong port to set = (0x%x).", (uint32_t)comm_info_ptr->port);
MB_MASTER_CHECK((comm_info_ptr->parity <= UART_PARITY_EVEN), ESP_ERR_INVALID_ARG, MB_MASTER_CHECK((comm_info_ptr->parity <= UART_PARITY_EVEN), ESP_ERR_INVALID_ARG,
"mb wrong parity option = (0x%x).", (uint32_t)comm_info_ptr->parity); "mb wrong parity option = (0x%x).", (uint32_t)comm_info_ptr->parity);

View File

@ -69,7 +69,7 @@ static esp_err_t mbc_serial_slave_setup(void* comm_info)
MB_SLAVE_CHECK((comm_settings->slave_addr <= MB_ADDRESS_MAX), MB_SLAVE_CHECK((comm_settings->slave_addr <= MB_ADDRESS_MAX),
ESP_ERR_INVALID_ARG, "mb wrong slave address = (0x%x).", ESP_ERR_INVALID_ARG, "mb wrong slave address = (0x%x).",
(uint32_t)comm_settings->slave_addr); (uint32_t)comm_settings->slave_addr);
MB_SLAVE_CHECK((comm_settings->port <= UART_NUM_2), ESP_ERR_INVALID_ARG, MB_SLAVE_CHECK((comm_settings->port < UART_NUM_MAX), ESP_ERR_INVALID_ARG,
"mb wrong port to set = (0x%x).", (uint32_t)comm_settings->port); "mb wrong port to set = (0x%x).", (uint32_t)comm_settings->port);
MB_SLAVE_CHECK((comm_settings->parity <= UART_PARITY_EVEN), ESP_ERR_INVALID_ARG, MB_SLAVE_CHECK((comm_settings->parity <= UART_PARITY_EVEN), ESP_ERR_INVALID_ARG,
"mb wrong parity option = (0x%x).", (uint32_t)comm_settings->parity); "mb wrong parity option = (0x%x).", (uint32_t)comm_settings->parity);

View File

@ -0,0 +1,26 @@
// Copyright 2017-2018 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _SOC_UART_CAPS_H_
#define _SOC_UART_CAPS_H_
#ifdef __cplusplus
extern "C" {
#endif
#define SOC_UART_NUM 3
#ifdef __cplusplus
}
#endif
#endif /* _SOC_UART_CAPS_H_ */

View File

@ -0,0 +1,26 @@
// Copyright 2017-2018 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _SOC_UART_CAPS_H_
#define _SOC_UART_CAPS_H_
#ifdef __cplusplus
extern "C" {
#endif
#define SOC_UART_NUM 2
#ifdef __cplusplus
}
#endif
#endif /* _SOC_UART_CAPS_H_ */

View File

@ -20,354 +20,353 @@ extern "C" {
typedef volatile struct { typedef volatile struct {
union { union {
struct { struct {
uint8_t rw_byte; /*This register stores one byte data read by rx fifo.*/ uint8_t rw_byte;
uint8_t reserved[3]; uint8_t reserved[3];
}; };
uint32_t val; uint32_t val;
} ahb_fifo; } ahb_fifo;
union { union {
struct { struct {
uint32_t rxfifo_full: 1; /*This interrupt raw bit turns to high level when receiver receives more data than (rx_flow_thrhd_h3 rx_flow_thrhd).*/ uint32_t rxfifo_full: 1;
uint32_t txfifo_empty: 1; /*This interrupt raw bit turns to high level when the amount of data in transmitter's fifo is less than ((tx_mem_cnttxfifo_cnt) .*/ uint32_t txfifo_empty: 1;
uint32_t parity_err: 1; /*This interrupt raw bit turns to high level when receiver detects the parity error of data.*/ uint32_t parity_err: 1;
uint32_t frm_err: 1; /*This interrupt raw bit turns to high level when receiver detects data's frame error .*/ uint32_t frm_err: 1;
uint32_t rxfifo_ovf: 1; /*This interrupt raw bit turns to high level when receiver receives more data than the fifo can store.*/ uint32_t rxfifo_ovf: 1;
uint32_t dsr_chg: 1; /*This interrupt raw bit turns to high level when receiver detects the edge change of dsrn signal.*/ uint32_t dsr_chg: 1;
uint32_t cts_chg: 1; /*This interrupt raw bit turns to high level when receiver detects the edge change of ctsn signal.*/ uint32_t cts_chg: 1;
uint32_t brk_det: 1; /*This interrupt raw bit turns to high level when receiver detects the 0 after the stop bit.*/ uint32_t brk_det: 1;
uint32_t rxfifo_tout: 1; /*This interrupt raw bit turns to high level when receiver takes more time than rx_tout_thrhd to receive a byte.*/ uint32_t rxfifo_tout: 1;
uint32_t sw_xon: 1; /*This interrupt raw bit turns to high level when receiver receives xoff char with uart_sw_flow_con_en is set to 1.*/ uint32_t sw_xon: 1;
uint32_t sw_xoff: 1; /*This interrupt raw bit turns to high level when receiver receives xon char with uart_sw_flow_con_en is set to 1.*/ uint32_t sw_xoff: 1;
uint32_t glitch_det: 1; /*This interrupt raw bit turns to high level when receiver detects the start bit.*/ uint32_t glitch_det: 1;
uint32_t tx_brk_done: 1; /*This interrupt raw bit turns to high level when transmitter completes sending 0 after all the data in transmitter's fifo are send.*/ uint32_t tx_brk_done: 1;
uint32_t tx_brk_idle_done: 1; /*This interrupt raw bit turns to high level when transmitter has kept the shortest duration after the last data has been send.*/ uint32_t tx_brk_idle_done: 1;
uint32_t tx_done: 1; /*This interrupt raw bit turns to high level when transmitter has send all the data in fifo.*/ uint32_t tx_done: 1;
uint32_t rs485_parity_err: 1; /*This interrupt raw bit turns to high level when rs485 detects the parity error.*/ uint32_t rs485_parity_err: 1;
uint32_t rs485_frm_err: 1; /*This interrupt raw bit turns to high level when rs485 detects the data frame error.*/ uint32_t rs485_frm_err: 1;
uint32_t rs485_clash: 1; /*This interrupt raw bit turns to high level when rs485 detects the clash between transmitter and receiver.*/ uint32_t rs485_clash: 1;
uint32_t at_cmd_char_det: 1; /*This interrupt raw bit turns to high level when receiver detects the configured at_cmd chars.*/ uint32_t at_cmd_char_det: 1;
uint32_t reserved19: 13; uint32_t wakeup: 1;
uint32_t reserved20: 12;
}; };
uint32_t val; uint32_t val;
} int_raw; } int_raw;
union { union {
struct { struct {
uint32_t rxfifo_full: 1; /*This is the status bit for rxfifo_full_int_raw when rxfifo_full_int_ena is set to 1.*/ uint32_t rxfifo_full: 1;
uint32_t txfifo_empty: 1; /*This is the status bit for txfifo_empty_int_raw when txfifo_empty_int_ena is set to 1.*/ uint32_t txfifo_empty: 1;
uint32_t parity_err: 1; /*This is the status bit for parity_err_int_raw when parity_err_int_ena is set to 1.*/ uint32_t parity_err: 1;
uint32_t frm_err: 1; /*This is the status bit for frm_err_int_raw when fm_err_int_ena is set to 1.*/ uint32_t frm_err: 1;
uint32_t rxfifo_ovf: 1; /*This is the status bit for rxfifo_ovf_int_raw when rxfifo_ovf_int_ena is set to 1.*/ uint32_t rxfifo_ovf: 1;
uint32_t dsr_chg: 1; /*This is the status bit for dsr_chg_int_raw when dsr_chg_int_ena is set to 1.*/ uint32_t dsr_chg: 1;
uint32_t cts_chg: 1; /*This is the status bit for cts_chg_int_raw when cts_chg_int_ena is set to 1.*/ uint32_t cts_chg: 1;
uint32_t brk_det: 1; /*This is the status bit for brk_det_int_raw when brk_det_int_ena is set to 1.*/ uint32_t brk_det: 1;
uint32_t rxfifo_tout: 1; /*This is the status bit for rxfifo_tout_int_raw when rxfifo_tout_int_ena is set to 1.*/ uint32_t rxfifo_tout: 1;
uint32_t sw_xon: 1; /*This is the status bit for sw_xon_int_raw when sw_xon_int_ena is set to 1.*/ uint32_t sw_xon: 1;
uint32_t sw_xoff: 1; /*This is the status bit for sw_xoff_int_raw when sw_xoff_int_ena is set to 1.*/ uint32_t sw_xoff: 1;
uint32_t glitch_det: 1; /*This is the status bit for glitch_det_int_raw when glitch_det_int_ena is set to 1.*/ uint32_t glitch_det: 1;
uint32_t tx_brk_done: 1; /*This is the status bit for tx_brk_done_int_raw when tx_brk_done_int_ena is set to 1.*/ uint32_t tx_brk_done: 1;
uint32_t tx_brk_idle_done: 1; /*This is the status bit for tx_brk_idle_done_int_raw when tx_brk_idle_done_int_ena is set to 1.*/ uint32_t tx_brk_idle_done: 1;
uint32_t tx_done: 1; /*This is the status bit for tx_done_int_raw when tx_done_int_ena is set to 1.*/ uint32_t tx_done: 1;
uint32_t rs485_parity_err: 1; /*This is the status bit for rs485_parity_err_int_raw when rs485_parity_int_ena is set to 1.*/ uint32_t rs485_parity_err: 1;
uint32_t rs485_frm_err: 1; /*This is the status bit for rs485_fm_err_int_raw when rs485_fm_err_int_ena is set to 1.*/ uint32_t rs485_frm_err: 1;
uint32_t rs485_clash: 1; /*This is the status bit for rs485_clash_int_raw when rs485_clash_int_ena is set to 1.*/ uint32_t rs485_clash: 1;
uint32_t at_cmd_char_det: 1; /*This is the status bit for at_cmd_det_int_raw when at_cmd_char_det_int_ena is set to 1.*/ uint32_t at_cmd_char_det: 1;
uint32_t reserved19: 13; uint32_t wakeup: 1;
uint32_t reserved20: 12;
}; };
uint32_t val; uint32_t val;
} int_st; } int_st;
union { union {
struct { struct {
uint32_t rxfifo_full: 1; /*This is the enable bit for rxfifo_full_int_st register.*/ uint32_t rxfifo_full: 1;
uint32_t txfifo_empty: 1; /*This is the enable bit for rxfifo_full_int_st register.*/ uint32_t txfifo_empty: 1;
uint32_t parity_err: 1; /*This is the enable bit for parity_err_int_st register.*/ uint32_t parity_err: 1;
uint32_t frm_err: 1; /*This is the enable bit for frm_err_int_st register.*/ uint32_t frm_err: 1;
uint32_t rxfifo_ovf: 1; /*This is the enable bit for rxfifo_ovf_int_st register.*/ uint32_t rxfifo_ovf: 1;
uint32_t dsr_chg: 1; /*This is the enable bit for dsr_chg_int_st register.*/ uint32_t dsr_chg: 1;
uint32_t cts_chg: 1; /*This is the enable bit for cts_chg_int_st register.*/ uint32_t cts_chg: 1;
uint32_t brk_det: 1; /*This is the enable bit for brk_det_int_st register.*/ uint32_t brk_det: 1;
uint32_t rxfifo_tout: 1; /*This is the enable bit for rxfifo_tout_int_st register.*/ uint32_t rxfifo_tout: 1;
uint32_t sw_xon: 1; /*This is the enable bit for sw_xon_int_st register.*/ uint32_t sw_xon: 1;
uint32_t sw_xoff: 1; /*This is the enable bit for sw_xoff_int_st register.*/ uint32_t sw_xoff: 1;
uint32_t glitch_det: 1; /*This is the enable bit for glitch_det_int_st register.*/ uint32_t glitch_det: 1;
uint32_t tx_brk_done: 1; /*This is the enable bit for tx_brk_done_int_st register.*/ uint32_t tx_brk_done: 1;
uint32_t tx_brk_idle_done: 1; /*This is the enable bit for tx_brk_idle_done_int_st register.*/ uint32_t tx_brk_idle_done: 1;
uint32_t tx_done: 1; /*This is the enable bit for tx_done_int_st register.*/ uint32_t tx_done: 1;
uint32_t rs485_parity_err: 1; /*This is the enable bit for rs485_parity_err_int_st register.*/ uint32_t rs485_parity_err: 1;
uint32_t rs485_frm_err: 1; /*This is the enable bit for rs485_parity_err_int_st register.*/ uint32_t rs485_frm_err: 1;
uint32_t rs485_clash: 1; /*This is the enable bit for rs485_clash_int_st register.*/ uint32_t rs485_clash: 1;
uint32_t at_cmd_char_det: 1; /*This is the enable bit for at_cmd_char_det_int_st register.*/ uint32_t at_cmd_char_det: 1;
uint32_t reserved19: 13; uint32_t wakeup: 1;
uint32_t reserved20: 12;
}; };
uint32_t val; uint32_t val;
} int_ena; } int_ena;
union { union {
struct { struct {
uint32_t rxfifo_full: 1; /*Set this bit to clear the rxfifo_full_int_raw interrupt.*/ uint32_t rxfifo_full: 1;
uint32_t txfifo_empty: 1; /*Set this bit to clear txfifo_empty_int_raw interrupt.*/ uint32_t txfifo_empty: 1;
uint32_t parity_err: 1; /*Set this bit to clear parity_err_int_raw interrupt.*/ uint32_t parity_err: 1;
uint32_t frm_err: 1; /*Set this bit to clear frm_err_int_raw interrupt.*/ uint32_t frm_err: 1;
uint32_t rxfifo_ovf: 1; /*Set this bit to clear rxfifo_ovf_int_raw interrupt.*/ uint32_t rxfifo_ovf: 1;
uint32_t dsr_chg: 1; /*Set this bit to clear the dsr_chg_int_raw interrupt.*/ uint32_t dsr_chg: 1;
uint32_t cts_chg: 1; /*Set this bit to clear the cts_chg_int_raw interrupt.*/ uint32_t cts_chg: 1;
uint32_t brk_det: 1; /*Set this bit to clear the brk_det_int_raw interrupt.*/ uint32_t brk_det: 1;
uint32_t rxfifo_tout: 1; /*Set this bit to clear the rxfifo_tout_int_raw interrupt.*/ uint32_t rxfifo_tout: 1;
uint32_t sw_xon: 1; /*Set this bit to clear the sw_xon_int_raw interrupt.*/ uint32_t sw_xon: 1;
uint32_t sw_xoff: 1; /*Set this bit to clear the sw_xon_int_raw interrupt.*/ uint32_t sw_xoff: 1;
uint32_t glitch_det: 1; /*Set this bit to clear the glitch_det_int_raw interrupt.*/ uint32_t glitch_det: 1;
uint32_t tx_brk_done: 1; /*Set this bit to clear the tx_brk_done_int_raw interrupt..*/ uint32_t tx_brk_done: 1;
uint32_t tx_brk_idle_done: 1; /*Set this bit to clear the tx_brk_idle_done_int_raw interrupt.*/ uint32_t tx_brk_idle_done: 1;
uint32_t tx_done: 1; /*Set this bit to clear the tx_done_int_raw interrupt.*/ uint32_t tx_done: 1;
uint32_t rs485_parity_err: 1; /*Set this bit to clear the rs485_parity_err_int_raw interrupt.*/ uint32_t rs485_parity_err: 1;
uint32_t rs485_frm_err: 1; /*Set this bit to clear the rs485_frm_err_int_raw interrupt.*/ uint32_t rs485_frm_err: 1;
uint32_t rs485_clash: 1; /*Set this bit to clear the rs485_clash_int_raw interrupt.*/ uint32_t rs485_clash: 1;
uint32_t at_cmd_char_det: 1; /*Set this bit to clear the at_cmd_char_det_int_raw interrupt.*/ uint32_t at_cmd_char_det: 1;
uint32_t reserved19: 13; uint32_t wakeup: 1;
uint32_t reserved20: 12;
}; };
uint32_t val; uint32_t val;
} int_clr; } int_clr;
union { union {
struct { struct {
uint32_t div_int: 20; /*The register value is the integer part of the frequency divider's factor.*/ uint32_t div_int: 20;
uint32_t div_frag: 4; /*The register value is the decimal part of the frequency divider's factor.*/ uint32_t div_frag: 4;
uint32_t reserved24: 8; uint32_t reserved24: 8;
}; };
uint32_t val; uint32_t val;
} clk_div; } clk_div;
union { union {
struct { struct {
uint32_t en: 1; /*This is the enable bit for detecting baudrate.*/ uint32_t en: 1;
uint32_t reserved1: 7; uint32_t reserved1: 7;
uint32_t glitch_filt: 8; /*when input pulse width is lower then this value ignore this pulse.this register is used in auto-baud detect process.*/ uint32_t glitch_filt: 8;
uint32_t reserved16: 16; uint32_t reserved16: 16;
}; };
uint32_t val; uint32_t val;
} auto_baud; } auto_baud;
union { union {
struct { struct {
uint32_t rxfifo_cnt: 8; /*(rx_mem_cnt rxfifo_cnt) stores the byte number of valid data in receiver's fifo. rx_mem_cnt register stores the 3 most significant bits rxfifo_cnt stores the 8 least significant bits.*/ uint32_t rxfifo_cnt:10;
uint32_t st_urx_out: 4; /*This register stores the value of receiver's finite state machine. 0:RX_IDLE 1:RX_STRT 2:RX_DAT0 3:RX_DAT1 4:RX_DAT2 5:RX_DAT3 6:RX_DAT4 7:RX_DAT5 8:RX_DAT6 9:RX_DAT7 10:RX_PRTY 11:RX_STP1 12:RX_STP2 13:RX_DL1*/ uint32_t reserved10: 3;
uint32_t reserved12: 1; uint32_t dsrn: 1;
uint32_t dsrn: 1; /*This register stores the level value of the internal uart dsr signal.*/ uint32_t ctsn: 1;
uint32_t ctsn: 1; /*This register stores the level value of the internal uart cts signal.*/ uint32_t rxd: 1;
uint32_t rxd: 1; /*This register stores the level value of the internal uart rxd signal.*/ uint32_t txfifo_cnt:10;
uint32_t txfifo_cnt: 8; /*(tx_mem_cnt txfifo_cnt) stores the byte number of valid data in transmitter's fifo.tx_mem_cnt stores the 3 most significant bits txfifo_cnt stores the 8 least significant bits.*/ uint32_t reserved26: 3;
uint32_t st_utx_out: 4; /*This register stores the value of transmitter's finite state machine. 0:TX_IDLE 1:TX_STRT 2:TX_DAT0 3:TX_DAT1 4:TX_DAT2 5:TX_DAT3 6:TX_DAT4 7:TX_DAT5 8:TX_DAT6 9:TX_DAT7 10:TX_PRTY 11:TX_STP1 12:TX_STP2 13:TX_DL0 14:TX_DL1*/ uint32_t dtrn: 1;
uint32_t reserved28: 1; uint32_t rtsn: 1;
uint32_t dtrn: 1; /*The register represent the level value of the internal uart dsr signal.*/ uint32_t txd: 1;
uint32_t rtsn: 1; /*This register represent the level value of the internal uart cts signal.*/
uint32_t txd: 1; /*This register represent the level value of the internal uart rxd signal.*/
}; };
uint32_t val; uint32_t val;
} status; } status;
union { union {
struct { struct {
uint32_t parity: 1; /*This register is used to configure the parity check mode. 0:even 1:odd*/ uint32_t parity: 1;
uint32_t parity_en: 1; /*Set this bit to enable uart parity check.*/ uint32_t parity_en: 1;
uint32_t bit_num: 2; /*This register is used to set the length of data: 0:5bits 1:6bits 2:7bits 3:8bits*/ uint32_t bit_num: 2;
uint32_t stop_bit_num: 2; /*This register is used to set the length of stop bit. 1:1bit 2:1.5bits 3:2bits*/ uint32_t stop_bit_num: 2;
uint32_t sw_rts: 1; /*This register is used to configure the software rts signal which is used in software flow control.*/ uint32_t sw_rts: 1;
uint32_t sw_dtr: 1; /*This register is used to configure the software dtr signal which is used in software flow control..*/ uint32_t sw_dtr: 1;
uint32_t txd_brk: 1; /*Set this bit to enable transmitter to send 0 when the process of sending data is done.*/ uint32_t txd_brk: 1;
uint32_t irda_dplx: 1; /*Set this bit to enable irda loop-back mode.*/ uint32_t irda_dplx: 1;
uint32_t irda_tx_en: 1; /*This is the start enable bit for irda transmitter.*/ uint32_t irda_tx_en: 1;
uint32_t irda_wctl: 1; /*1the irda transmitter's 11th bit is the same to the 10th bit. 0set irda transmitter's 11th bit to 0.*/ uint32_t irda_wctl: 1;
uint32_t irda_tx_inv: 1; /*Set this bit to inverse the level value of irda transmitter's level.*/ uint32_t irda_tx_inv: 1;
uint32_t irda_rx_inv: 1; /*Set this bit to inverse the level value of irda receiver's level.*/ uint32_t irda_rx_inv: 1;
uint32_t loopback: 1; /*Set this bit to enable uart loop-back test mode.*/ uint32_t loopback: 1;
uint32_t tx_flow_en: 1; /*Set this bit to enable transmitter's flow control function.*/ uint32_t tx_flow_en: 1;
uint32_t irda_en: 1; /*Set this bit to enable irda protocol.*/ uint32_t irda_en: 1;
uint32_t rxfifo_rst: 1; /*Set this bit to reset uart receiver's fifo.*/ uint32_t rxfifo_rst: 1;
uint32_t txfifo_rst: 1; /*Set this bit to reset uart transmitter's fifo.*/ uint32_t txfifo_rst: 1;
uint32_t rxd_inv: 1; /*Set this bit to inverse the level value of uart rxd signal.*/ uint32_t rxd_inv: 1;
uint32_t cts_inv: 1; /*Set this bit to inverse the level value of uart cts signal.*/ uint32_t cts_inv: 1;
uint32_t dsr_inv: 1; /*Set this bit to inverse the level value of uart dsr signal.*/ uint32_t dsr_inv: 1;
uint32_t txd_inv: 1; /*Set this bit to inverse the level value of uart txd signal.*/ uint32_t txd_inv: 1;
uint32_t rts_inv: 1; /*Set this bit to inverse the level value of uart rts signal.*/ uint32_t rts_inv: 1;
uint32_t dtr_inv: 1; /*Set this bit to inverse the level value of uart dtr signal.*/ uint32_t dtr_inv: 1;
uint32_t clk_en: 1; /*1force clock on for registerssupport clock only when write registers*/ uint32_t clk_en: 1;
uint32_t err_wr_mask: 1; /*1receiver stops storing data int fifo when data is wrong. 0receiver stores the data even if the received data is wrong.*/ uint32_t err_wr_mask: 1;
uint32_t tick_ref_always_on: 1; /*This register is used to select the clock.1apb clockref_tick*/ uint32_t tick_ref_always_on: 1;
uint32_t reserved28: 4; uint32_t reserved28: 4;
}; };
uint32_t val; uint32_t val;
} conf0; } conf0;
union { union {
struct { struct {
uint32_t rxfifo_full_thrhd: 7; uint32_t rxfifo_full_thrhd: 9;
uint32_t reserved7: 1; uint32_t txfifo_empty_thrhd: 9;
uint32_t txfifo_empty_thrhd: 7; uint32_t reserved18: 11;
uint32_t rx_tout_flow_dis: 1; uint32_t rx_tout_flow_dis: 1;
uint32_t rx_flow_thrhd: 7;
uint32_t rx_flow_en: 1; uint32_t rx_flow_en: 1;
uint32_t rx_tout_thrhd: 7;
uint32_t rx_tout_en: 1; uint32_t rx_tout_en: 1;
}; };
uint32_t val; uint32_t val;
} conf1; } conf1;
union { union {
struct { struct {
uint32_t min_cnt: 20; /*This register stores the value of the minimum duration time for the low level pulse it is used in baudrate-detect process.*/ uint32_t min_cnt: 20;
uint32_t reserved20: 12; uint32_t reserved20: 12;
}; };
uint32_t val; uint32_t val;
} lowpulse; } lowpulse;
union { union {
struct { struct {
uint32_t min_cnt: 20; /*This register stores the value of the maximum duration time for the high level pulse it is used in baudrate-detect process.*/ uint32_t min_cnt: 20;
uint32_t reserved20: 12; uint32_t reserved20: 12;
}; };
uint32_t val; uint32_t val;
} highpulse; } highpulse;
union { union {
struct { struct {
uint32_t edge_cnt: 10; /*This register stores the count of rxd edge change it is used in baudrate-detect process.*/ uint32_t edge_cnt: 10;
uint32_t reserved10: 22; uint32_t reserved10: 22;
}; };
uint32_t val; uint32_t val;
} rxd_cnt; } rxd_cnt;
union { union {
struct { struct {
uint32_t sw_flow_con_en: 1; /*Set this bit to enable software flow control. it is used with register sw_xon or sw_xoff .*/ uint32_t sw_flow_con_en: 1;
uint32_t xonoff_del: 1; /*Set this bit to remove flow control char from the received data.*/ uint32_t xonoff_del: 1;
uint32_t force_xon: 1; /*Set this bit to clear ctsn to stop the transmitter from sending data.*/ uint32_t force_xon: 1;
uint32_t force_xoff: 1; /*Set this bit to set ctsn to enable the transmitter to go on sending data.*/ uint32_t force_xoff: 1;
uint32_t send_xon: 1; /*Set this bit to send xon char it is cleared by hardware automatically.*/ uint32_t send_xon: 1;
uint32_t send_xoff: 1; /*Set this bit to send xoff char it is cleared by hardware automatically.*/ uint32_t send_xoff: 1;
uint32_t reserved6: 26; uint32_t reserved6: 26;
}; };
uint32_t val; uint32_t val;
} flow_conf; } flow_conf;
union { union {
struct { struct {
uint32_t active_threshold:10; /*When the input rxd edge changes more than this register value the uart is active from light sleeping mode.*/ uint32_t active_threshold:10;
uint32_t reserved10: 22; uint32_t reserved10: 22;
}; };
uint32_t val; uint32_t val;
} sleep_conf; } sleep_conf;
union { union {
struct { struct {
uint32_t xon_threshold: 8; /*when the data amount in receiver's fifo is more than this register value it will send a xoff char with uart_sw_flow_con_en set to 1.*/ uint32_t xoff_threshold: 9;
uint32_t xoff_threshold: 8; /*When the data amount in receiver's fifo is less than this register value it will send a xon char with uart_sw_flow_con_en set to 1.*/ uint32_t xoff_char: 8;
uint32_t xon_char: 8; /*This register stores the xon flow control char.*/ uint32_t reserved17: 15;
uint32_t xoff_char: 8; /*This register stores the xoff flow control char.*/
}; };
uint32_t val; uint32_t val;
} swfc_conf; } swfc_conf0;
union { union {
struct { struct {
uint32_t rx_idle_thrhd:10; /*when receiver takes more time than this register value to receive a byte data it will produce frame end signal for uhci to stop receiving data.*/ uint32_t xon_threshold: 9;
uint32_t tx_idle_num: 10; /*This register is used to configure the duration time between transfers.*/ uint32_t xon_char: 8;
uint32_t tx_brk_num: 8; /*This register is used to configure the number of 0 send after the process of sending data is done. it is active when txd_brk is set to 1.*/ uint32_t reserved17: 15;
};
uint32_t val;
} swfc_conf1;
union {
struct {
uint32_t rx_idle_thrhd:10;
uint32_t tx_idle_num: 10;
uint32_t tx_brk_num: 8;
uint32_t reserved28: 4; uint32_t reserved28: 4;
}; };
uint32_t val; uint32_t val;
} idle_conf; } idle_conf;
union { union {
struct { struct {
uint32_t en: 1; /*Set this bit to choose rs485 mode.*/ uint32_t en: 1;
uint32_t dl0_en: 1; /*Set this bit to delay the stop bit by 1 bit.*/ uint32_t dl0_en: 1;
uint32_t dl1_en: 1; /*Set this bit to delay the stop bit by 1 bit.*/ uint32_t dl1_en: 1;
uint32_t tx_rx_en: 1; /*Set this bit to enable loop-back transmitter's output data signal to receiver's input data signal.*/ uint32_t tx_rx_en: 1;
uint32_t rx_busy_tx_en: 1; /*1: enable rs485's transmitter to send data when rs485's receiver is busy. 0:rs485's transmitter should not send data when its receiver is busy.*/ uint32_t rx_busy_tx_en: 1;
uint32_t rx_dly_num: 1; /*This register is used to delay the receiver's internal data signal.*/ uint32_t rx_dly_num: 1;
uint32_t tx_dly_num: 4; /*This register is used to delay the transmitter's internal data signal.*/ uint32_t tx_dly_num: 4;
uint32_t reserved10: 22; uint32_t reserved10: 22;
}; };
uint32_t val; uint32_t val;
} rs485_conf; } rs485_conf;
union { union {
struct { struct {
uint32_t pre_idle_num:24; /*This register is used to configure the idle duration time before the first at_cmd is received by receiver when the the duration is less than this register value it will not take the next data received as at_cmd char.*/ uint32_t pre_idle_num:16;
uint32_t reserved24: 8; uint32_t reserved16: 16;
}; };
uint32_t val; uint32_t val;
} at_cmd_precnt; } at_cmd_precnt;
union { union {
struct { struct {
uint32_t post_idle_num:24; /*This register is used to configure the duration time between the last at_cmd and the next data when the duration is less than this register value it will not take the previous data as at_cmd char.*/ uint32_t post_idle_num:16;
uint32_t reserved24: 8; uint32_t reserved16: 16;
}; };
uint32_t val; uint32_t val;
} at_cmd_postcnt; } at_cmd_postcnt;
union { union {
struct { struct {
uint32_t rx_gap_tout:24; /*This register is used to configure the duration time between the at_cmd chars when the duration time is less than this register value it will not take the data as continous at_cmd chars.*/ uint32_t rx_gap_tout:16;
uint32_t reserved24: 8; uint32_t reserved16: 16;
}; };
uint32_t val; uint32_t val;
} at_cmd_gaptout; } at_cmd_gaptout;
union { union {
struct { struct {
uint32_t data: 8; /*This register is used to configure the content of at_cmd char.*/ uint32_t data: 8;
uint32_t char_num: 8; /*This register is used to configure the number of continuous at_cmd chars received by receiver.*/ uint32_t char_num: 8;
uint32_t reserved16: 16; uint32_t reserved16: 16;
}; };
uint32_t val; uint32_t val;
} at_cmd_char; } at_cmd_char;
union { union {
struct { struct {
uint32_t mem_pd: 1; /*Set this bit to power down memorywhen reg_mem_pd registers in the 3 uarts are all set to 1 memory will enter low power mode.*/ uint32_t mem_pd: 1;
uint32_t reserved1: 1; uint32_t rx_size: 3;
uint32_t reserved2: 1; uint32_t tx_size: 3;
uint32_t rx_size: 4; /*This register is used to configure the amount of mem allocated to receiver's fifo. the default byte num is 128.*/ uint32_t rx_flow_thrhd: 9;
uint32_t tx_size: 4; /*This register is used to configure the amount of mem allocated to transmitter's fifo.the default byte num is 128.*/ uint32_t rx_tout_thrhd:10;
uint32_t reserved11: 4; uint32_t reserved26: 6;
uint32_t rx_flow_thrhd_h3: 3; /*refer to the rx_flow_thrhd's description.*/
uint32_t rx_tout_thrhd_h3: 3; /*refer to the rx_tout_thrhd's description.*/
uint32_t xon_threshold_h2: 2; /*refer to the uart_xon_threshold's description.*/
uint32_t xoff_threshold_h2: 2; /*refer to the uart_xoff_threshold's description.*/
uint32_t rx_mem_full_thrhd: 3; /*refer to the rxfifo_full_thrhd's description.*/
uint32_t tx_mem_empty_thrhd: 3; /*refer to txfifo_empty_thrhd 's description.*/
uint32_t reserved31: 1;
}; };
uint32_t val; uint32_t val;
} mem_conf; } mem_conf;
union { union {
struct { struct {
uint32_t apb_tx_waddr:11; uint32_t apb_tx_waddr:10;
uint32_t tx_raddr: 11; uint32_t reserved10: 1;
uint32_t reserved22: 10; uint32_t tx_raddr: 10;
uint32_t reserved21: 11;
}; };
uint32_t val; uint32_t val;
} mem_tx_status; } mem_tx_status;
union { union {
struct { struct {
uint32_t apb_rx_raddr:11; uint32_t apb_rx_raddr:10;
uint32_t rx_waddr: 11; uint32_t reserved10: 1;
uint32_t reserved22: 10; uint32_t rx_waddr: 10;
uint32_t reserved21: 11;
}; };
uint32_t val; uint32_t val;
} mem_rx_status; } mem_rx_status;
union { union {
struct { struct {
uint32_t rx_cnt: 3; /*refer to the rxfifo_cnt's description.*/ uint32_t st_urx_out: 4;
uint32_t tx_cnt: 3; /*refer to the txfifo_cnt's description.*/ uint32_t st_utx_out: 4;
uint32_t reserved6: 26; uint32_t reserved8: 24;
}; };
uint32_t val; uint32_t val;
} mem_cnt_status; } fsm_status;
union { union {
struct { struct {
uint32_t min_cnt: 20; /*This register stores the count of rxd pos-edge edge it is used in baudrate-detect process.*/ uint32_t min_cnt: 20;
uint32_t reserved20: 12; uint32_t reserved20: 12;
}; };
uint32_t val; uint32_t val;
} pospulse; } pospulse;
union { union {
struct { struct {
uint32_t min_cnt: 20; /*This register stores the count of rxd neg-edge edge it is used in baudrate-detect process.*/ uint32_t min_cnt: 20;
uint32_t reserved20: 12; uint32_t reserved20: 12;
}; };
uint32_t val; uint32_t val;
} negpulse; } negpulse;
uint32_t reserved_70; uint32_t date; /**/
uint32_t reserved_74; uint32_t id; /**/
uint32_t date; /**/
uint32_t id; /**/
} uart_dev_t; } uart_dev_t;
extern uart_dev_t UART0; extern uart_dev_t UART0;
extern uart_dev_t UART1; extern uart_dev_t UART1;
extern uart_dev_t UART2;
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif

View File

@ -32,7 +32,7 @@
#endif #endif
// TODO: make the number of UARTs chip dependent // TODO: make the number of UARTs chip dependent
#define UART_NUM 3 #define UART_NUM SOC_UART_NUM
// Token signifying that no character is available // Token signifying that no character is available
#define NONE -1 #define NONE -1
@ -51,12 +51,27 @@ static void uart_tx_char_via_driver(int fd, int c);
static int uart_rx_char_via_driver(int fd); static int uart_rx_char_via_driver(int fd);
// Pointers to UART peripherals // Pointers to UART peripherals
static uart_dev_t* s_uarts[UART_NUM] = {&UART0, &UART1, &UART2}; static uart_dev_t* s_uarts[UART_NUM] = {
&UART0,
&UART1,
#if UART_NUM > 2
&UART2
#endif
};
// One-character buffer used for newline conversion code, per UART
static int s_peek_char[UART_NUM] = {
NONE,
NONE,
#if UART_NUM > 2
NONE
#endif
};
// per-UART locks, lazily initialized // per-UART locks, lazily initialized
static _lock_t s_uart_read_locks[UART_NUM]; static _lock_t s_uart_read_locks[UART_NUM];
static _lock_t s_uart_write_locks[UART_NUM]; static _lock_t s_uart_write_locks[UART_NUM];
// One-character buffer used for newline conversion code, per UART
static int s_peek_char[UART_NUM] = { NONE, NONE, NONE };
// Per-UART non-blocking flag. Note: default implementation does not honor this // Per-UART non-blocking flag. Note: default implementation does not honor this
// flag, all reads are non-blocking. This option becomes effective if UART // flag, all reads are non-blocking. This option becomes effective if UART
// driver is used. // driver is used.
@ -98,15 +113,22 @@ static void uart_end_select();
// Functions used to write bytes to UART. Default to "basic" functions. // Functions used to write bytes to UART. Default to "basic" functions.
static tx_func_t s_uart_tx_func[UART_NUM] = { static tx_func_t s_uart_tx_func[UART_NUM] = {
&uart_tx_char, &uart_tx_char, &uart_tx_char &uart_tx_char,
&uart_tx_char,
#if UART_NUM > 2
&uart_tx_char
#endif
}; };
// Functions used to read bytes from UART. Default to "basic" functions. // Functions used to read bytes from UART. Default to "basic" functions.
static rx_func_t s_uart_rx_func[UART_NUM] = { static rx_func_t s_uart_rx_func[UART_NUM] = {
&uart_rx_char, &uart_rx_char, &uart_rx_char &uart_rx_char,
&uart_rx_char,
#if UART_NUM > 2
&uart_rx_char
#endif
}; };
static int uart_open(const char * path, int flags, int mode) static int uart_open(const char * path, int flags, int mode)
{ {
// this is fairly primitive, we should check if file is opened read only, // this is fairly primitive, we should check if file is opened read only,

View File

@ -140,7 +140,11 @@ void app_main()
uart_driver_install(EX_UART_NUM, BUF_SIZE * 2, BUF_SIZE * 2, 20, &uart0_queue, 0); uart_driver_install(EX_UART_NUM, BUF_SIZE * 2, BUF_SIZE * 2, 20, &uart0_queue, 0);
//Set uart pattern detect function. //Set uart pattern detect function.
#if CONFIG_IDF_TARGET_ESP32
uart_enable_pattern_det_intr(EX_UART_NUM, '+', PATTERN_CHR_NUM, 10000, 10, 10); uart_enable_pattern_det_intr(EX_UART_NUM, '+', PATTERN_CHR_NUM, 10000, 10, 10);
#elif CONFIG_IDF_TARGET_ESP32S2BETA
uart_enable_pattern_det_intr(EX_UART_NUM, '+', PATTERN_CHR_NUM, 9, 0, 0);
#endif
//Reset the pattern queue length to record at most 20 pattern positions. //Reset the pattern queue length to record at most 20 pattern positions.
uart_pattern_queue_reset(EX_UART_NUM, 20); uart_pattern_queue_reset(EX_UART_NUM, 20);