mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
bignum: refactored the hardware abstraction of the mpi peripheral
- `<target>/bignum.c` is replaced by mpi_ll.h ll layer. - added the mpi hal layer.
This commit is contained in:
parent
22caec278f
commit
4ae1ea7b9f
@ -1,3 +1,4 @@
|
||||
|
||||
idf_build_get_property(target IDF_TARGET)
|
||||
|
||||
# On Linux, there is currently no HAL, hence this simple component registration
|
||||
@ -117,6 +118,10 @@ if(NOT BOOTLOADER_BUILD)
|
||||
list(APPEND srcs "ecdsa_hal.c")
|
||||
endif()
|
||||
|
||||
if(CONFIG_SOC_MPI_SUPPORTED)
|
||||
list(APPEND srcs "mpi_hal.c")
|
||||
endif()
|
||||
|
||||
if(CONFIG_SOC_SHA_SUPPORTED)
|
||||
list(APPEND srcs "sha_hal.c")
|
||||
endif()
|
||||
|
150
components/hal/esp32/include/hal/mpi_ll.h
Normal file
150
components/hal/esp32/include/hal/mpi_ll.h
Normal file
@ -0,0 +1,150 @@
|
||||
/*
|
||||
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <string.h>
|
||||
#include "hal/assert.h"
|
||||
#include "soc/dport_reg.h"
|
||||
#include "soc/hwcrypto_periph.h"
|
||||
#include "soc/mpi_periph.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/* Round up number of words to nearest
|
||||
512 bit (16 word) block count.
|
||||
*/
|
||||
static inline size_t mpi_ll_calculate_hardware_words(size_t words)
|
||||
{
|
||||
return (words + 0xF) & ~0xF;
|
||||
}
|
||||
|
||||
static inline void mpi_ll_clear_power_control_bit(void)
|
||||
{
|
||||
DPORT_REG_CLR_BIT(DPORT_RSA_PD_CTRL_REG, DPORT_RSA_PD);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_set_power_control_bit(void)
|
||||
{
|
||||
DPORT_REG_SET_BIT(DPORT_RSA_PD_CTRL_REG, DPORT_RSA_PD);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_enable_interrupt(void)
|
||||
{
|
||||
DPORT_REG_WRITE(RSA_INTERRUPT_REG, 1);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_disable_interrupt(void)
|
||||
{
|
||||
DPORT_REG_WRITE(RSA_INTERRUPT_REG, 0);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_clear_interrupt(void)
|
||||
{
|
||||
DPORT_REG_WRITE(RSA_CLEAR_INTERRUPT_REG, 1);
|
||||
}
|
||||
|
||||
static inline bool mpi_ll_check_memory_init_complete(void)
|
||||
{
|
||||
return DPORT_REG_READ(RSA_CLEAN_REG) == 0;
|
||||
}
|
||||
|
||||
static inline void mpi_ll_start_op(mpi_op_t op)
|
||||
{
|
||||
DPORT_REG_WRITE(MPI_LL_OPERATIONS[op], 1);
|
||||
}
|
||||
|
||||
static inline bool mpi_ll_get_int_status(void)
|
||||
{
|
||||
return DPORT_REG_READ(RSA_INTERRUPT_REG) == 0;
|
||||
}
|
||||
|
||||
/* Copy MPI bignum (p) to hardware memory block at 'mem_base'.
|
||||
|
||||
If num_words is higher than the number of words (n) in the bignum then
|
||||
these additional words will be zeroed in the memory buffer.
|
||||
|
||||
*/
|
||||
|
||||
/* Please see detailed note inside the function body below.
|
||||
* Relevant: IDF-6029
|
||||
https://github.com/espressif/esp-idf/issues/8710
|
||||
https://github.com/espressif/esp-idf/issues/10403
|
||||
*/
|
||||
static inline void mpi_ll_write_to_mem_block(mpi_param_t param, size_t offset, const uint32_t* p, size_t n, size_t num_words)
|
||||
{
|
||||
uint32_t mem_base = MPI_LL_BLOCK_BASES[param] + offset;
|
||||
uint32_t copy_words = MIN(num_words, n);
|
||||
|
||||
/* Copy MPI data to memory block registers */
|
||||
for (uint32_t i = 0; i < copy_words; i++) {
|
||||
DPORT_REG_WRITE(mem_base + i * 4, p[i]);
|
||||
}
|
||||
|
||||
/* Zero any remaining memory block data */
|
||||
for (uint32_t i = copy_words; i < num_words; i++) {
|
||||
DPORT_REG_WRITE(mem_base + i * 4, 0);
|
||||
}
|
||||
#if _INTERNAL_DEBUG_PURPOSE
|
||||
/*
|
||||
* With Xtensa GCC 11.2.0 (from ESP-IDF v5.x), it was observed that above zero initialization
|
||||
* loop gets optimized to `memset` call from the ROM library. This was causing an issue that
|
||||
* specific write (store) operation to the MPI peripheral block was getting lost erroneously.
|
||||
* Following data re-verify loop could catch it during runtime.
|
||||
*
|
||||
* As a workaround, we are using DPORT_WRITE_REG (volatile writes) wrappers to write to
|
||||
* the MPI peripheral.
|
||||
*
|
||||
*/
|
||||
|
||||
//for (uint32_t i = copy_words; i < hw_words; i++) { assert(pbase[i] == 0); }
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline void mpi_ll_write_m_prime(uint32_t Mprime)
|
||||
{
|
||||
DPORT_REG_WRITE(RSA_M_DASH_REG, Mprime);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_write_rinv(uint32_t rinv)
|
||||
{
|
||||
DPORT_REG_WRITE(MPI_LL_BLOCK_BASES[MPI_PARAM_Z], rinv);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_write_at_offset(mpi_param_t param, int offset, uint32_t value)
|
||||
{
|
||||
uint32_t mem_base = MPI_LL_BLOCK_BASES[param] + offset;
|
||||
DPORT_REG_WRITE(mem_base, value);
|
||||
}
|
||||
|
||||
/* Read MPI bignum (p) back from hardware memory block.
|
||||
|
||||
Reads z_words words from block.
|
||||
*/
|
||||
static inline void mpi_ll_read_from_mem_block(uint32_t* p, size_t n, size_t num_words)
|
||||
{
|
||||
assert(n >= num_words);
|
||||
uint32_t mem_base = MPI_LL_BLOCK_BASES[MPI_PARAM_Z];
|
||||
/* Copy data from memory block registers */
|
||||
esp_dport_access_read_buffer(p, mem_base, num_words);
|
||||
|
||||
/* Zero any remaining limbs in the bignum, if the buffer is bigger
|
||||
than num_words */
|
||||
for (size_t i = num_words; i < n; i++) {
|
||||
p[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
static inline void mpi_ll_set_mode(size_t length)
|
||||
{
|
||||
DPORT_REG_WRITE(RSA_MULT_MODE_REG, length);
|
||||
}
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
153
components/hal/esp32c3/include/hal/mpi_ll.h
Normal file
153
components/hal/esp32c3/include/hal/mpi_ll.h
Normal file
@ -0,0 +1,153 @@
|
||||
/*
|
||||
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <string.h>
|
||||
#include "hal/assert.h"
|
||||
#include "soc/hwcrypto_periph.h"
|
||||
#include "soc/system_reg.h"
|
||||
#include "soc/mpi_periph.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
static inline size_t mpi_ll_calculate_hardware_words(size_t words)
|
||||
{
|
||||
return words;
|
||||
}
|
||||
|
||||
static inline void mpi_ll_clear_power_control_bit(void)
|
||||
{
|
||||
REG_CLR_BIT(SYSTEM_RSA_PD_CTRL_REG, SYSTEM_RSA_MEM_PD);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_set_power_control_bit(void)
|
||||
{
|
||||
REG_SET_BIT(SYSTEM_RSA_PD_CTRL_REG, SYSTEM_RSA_MEM_PD);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_enable_interrupt(void)
|
||||
{
|
||||
REG_WRITE(RSA_INTERRUPT_REG, 1);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_disable_interrupt(void)
|
||||
{
|
||||
REG_WRITE(RSA_INTERRUPT_REG, 0);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_clear_interrupt(void)
|
||||
{
|
||||
REG_WRITE(RSA_CLEAR_INTERRUPT_REG, 1);
|
||||
}
|
||||
|
||||
static inline bool mpi_ll_check_memory_init_complete(void)
|
||||
{
|
||||
return REG_READ(RSA_QUERY_CLEAN_REG) == 0;
|
||||
}
|
||||
|
||||
static inline void mpi_ll_start_op(mpi_op_t op)
|
||||
{
|
||||
REG_WRITE(MPI_LL_OPERATIONS[op], 1);
|
||||
}
|
||||
|
||||
static inline bool mpi_ll_get_int_status(void)
|
||||
{
|
||||
return REG_READ(RSA_QUERY_INTERRUPT_REG) == 0;
|
||||
}
|
||||
|
||||
/* Copy MPI bignum (p) to hardware memory block at 'mem_base'.
|
||||
|
||||
If num_words is higher than the number of words (n) in the bignum then
|
||||
these additional words will be zeroed in the memory buffer.
|
||||
*/
|
||||
static inline void mpi_ll_write_to_mem_block(mpi_param_t param, size_t offset, const uint32_t* p, size_t n, size_t num_words)
|
||||
{
|
||||
uint32_t mem_base = MPI_LL_BLOCK_BASES[param] + offset;
|
||||
uint32_t* pbase = (uint32_t*) mem_base;
|
||||
uint32_t copy_words = MIN(num_words, n);
|
||||
|
||||
/* Copy MPI data to memory block registers */
|
||||
for (int i = 0; i < copy_words; i++) {
|
||||
pbase[i] = p[i];
|
||||
}
|
||||
|
||||
/* Zero any remaining memory block data */
|
||||
for (int i = copy_words; i < num_words; i++) {
|
||||
pbase[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
static inline void mpi_ll_write_m_prime(uint32_t Mprime)
|
||||
{
|
||||
REG_WRITE(RSA_M_DASH_REG, Mprime);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_write_rinv(uint32_t rinv)
|
||||
{
|
||||
REG_WRITE(MPI_LL_BLOCK_BASES[MPI_PARAM_Z], rinv);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_write_at_offset(mpi_param_t param, int offset, uint32_t value)
|
||||
{
|
||||
uint32_t mem_base = MPI_LL_BLOCK_BASES[param] + offset;
|
||||
REG_WRITE(mem_base, value);
|
||||
}
|
||||
|
||||
/* Read MPI bignum (p) back from hardware memory block.
|
||||
|
||||
Reads z_words words from block.
|
||||
*/
|
||||
static inline void mpi_ll_read_from_mem_block(uint32_t* p, size_t n, size_t num_words)
|
||||
{
|
||||
uint32_t mem_base = MPI_LL_BLOCK_BASES[MPI_PARAM_Z];
|
||||
/* Copy data from memory block registers */
|
||||
const size_t REG_WIDTH = sizeof(uint32_t);
|
||||
for (size_t i = 0; i < num_words; i++) {
|
||||
p[i] = REG_READ(mem_base + (i * REG_WIDTH));
|
||||
}
|
||||
/* Zero any remaining limbs in the bignum, if the buffer is bigger
|
||||
than num_words */
|
||||
for (size_t i = num_words; i < n; i++) {
|
||||
p[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
static inline void mpi_ll_set_mode(size_t length)
|
||||
{
|
||||
REG_WRITE(RSA_LENGTH_REG, length);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_disable_constant_time(void)
|
||||
{
|
||||
REG_WRITE(RSA_CONSTANT_TIME_REG, 0);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_enable_constant_time(void)
|
||||
{
|
||||
REG_WRITE(RSA_CONSTANT_TIME_REG, 1);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_disable_search(void)
|
||||
{
|
||||
REG_WRITE(RSA_SEARCH_ENABLE_REG, 0);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_enable_search(void)
|
||||
{
|
||||
REG_WRITE(RSA_SEARCH_ENABLE_REG, 1);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_set_search_position(size_t pos)
|
||||
{
|
||||
REG_WRITE(RSA_SEARCH_POS_REG, pos);
|
||||
}
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
153
components/hal/esp32c6/include/hal/mpi_ll.h
Normal file
153
components/hal/esp32c6/include/hal/mpi_ll.h
Normal file
@ -0,0 +1,153 @@
|
||||
/*
|
||||
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <string.h>
|
||||
#include "hal/assert.h"
|
||||
#include "soc/pcr_reg.h"
|
||||
#include "soc/rsa_reg.h"
|
||||
#include "soc/mpi_periph.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
static inline size_t mpi_ll_calculate_hardware_words(size_t words)
|
||||
{
|
||||
return words;
|
||||
}
|
||||
|
||||
static inline void mpi_ll_clear_power_control_bit(void)
|
||||
{
|
||||
REG_CLR_BIT(PCR_RSA_PD_CTRL_REG, PCR_RSA_MEM_PD);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_set_power_control_bit(void)
|
||||
{
|
||||
REG_SET_BIT(PCR_RSA_PD_CTRL_REG, PCR_RSA_MEM_PD);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_enable_interrupt(void)
|
||||
{
|
||||
REG_WRITE(RSA_INT_ENA_REG, 1);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_disable_interrupt(void)
|
||||
{
|
||||
REG_WRITE(RSA_INT_ENA_REG, 0);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_clear_interrupt(void)
|
||||
{
|
||||
REG_WRITE(RSA_INT_CLR_REG, 1);
|
||||
}
|
||||
|
||||
static inline bool mpi_ll_check_memory_init_complete(void)
|
||||
{
|
||||
return REG_READ(RSA_QUERY_CLEAN_REG) == 0;
|
||||
}
|
||||
|
||||
static inline void mpi_ll_start_op(mpi_op_t op)
|
||||
{
|
||||
REG_WRITE(MPI_LL_OPERATIONS[op], 1);
|
||||
}
|
||||
|
||||
static inline bool mpi_ll_get_int_status(void)
|
||||
{
|
||||
return REG_READ(RSA_QUERY_IDLE_REG) == 0;
|
||||
}
|
||||
|
||||
/* Copy MPI bignum (p) to hardware memory block at 'mem_base' of mpi_param_t 'param'.
|
||||
|
||||
If num_words is higher than the number of words (n) in the bignum then
|
||||
these additional words will be zeroed in the memory buffer.
|
||||
*/
|
||||
static inline void mpi_ll_write_to_mem_block(mpi_param_t param, size_t offset, const uint32_t* p, size_t n, size_t num_words)
|
||||
{
|
||||
uint32_t mem_base = MPI_LL_BLOCK_BASES[param] + offset;
|
||||
uint32_t* pbase = (uint32_t*) mem_base;
|
||||
uint32_t copy_words = MIN(num_words, n);
|
||||
|
||||
/* Copy MPI data to memory block registers */
|
||||
for (int i = 0; i < copy_words; i++) {
|
||||
pbase[i] = p[i];
|
||||
}
|
||||
|
||||
/* Zero any remaining memory block data */
|
||||
for (int i = copy_words; i < num_words; i++) {
|
||||
pbase[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
static inline void mpi_ll_write_m_prime(uint32_t Mprime)
|
||||
{
|
||||
REG_WRITE(RSA_M_PRIME_REG, Mprime);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_write_rinv(uint32_t rinv)
|
||||
{
|
||||
REG_WRITE(MPI_LL_BLOCK_BASES[MPI_PARAM_Z], rinv);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_write_at_offset(mpi_param_t param, int offset, uint32_t value)
|
||||
{
|
||||
uint32_t mem_base = MPI_LL_BLOCK_BASES[param] + offset;
|
||||
REG_WRITE(mem_base, value);
|
||||
}
|
||||
|
||||
/* Read MPI bignum (p) back from hardware memory block.
|
||||
|
||||
Reads z_words words from block.
|
||||
*/
|
||||
static inline void mpi_ll_read_from_mem_block(uint32_t* p, size_t n, size_t num_words)
|
||||
{
|
||||
uint32_t mem_base = MPI_LL_BLOCK_BASES[MPI_PARAM_Z];
|
||||
/* Copy data from memory block registers */
|
||||
const size_t REG_WIDTH = sizeof(uint32_t);
|
||||
for (size_t i = 0; i < num_words; i++) {
|
||||
p[i] = REG_READ(mem_base + (i * REG_WIDTH));
|
||||
}
|
||||
/* Zero any remaining limbs in the bignum, if the buffer is bigger
|
||||
than num_words */
|
||||
for (size_t i = num_words; i < n; i++) {
|
||||
p[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
static inline void mpi_ll_set_mode(size_t length)
|
||||
{
|
||||
REG_WRITE(RSA_MODE_REG, length);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_disable_constant_time(void)
|
||||
{
|
||||
REG_WRITE(RSA_CONSTANT_TIME_REG, 0);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_enable_constant_time(void)
|
||||
{
|
||||
REG_WRITE(RSA_CONSTANT_TIME_REG, 1);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_disable_search(void)
|
||||
{
|
||||
REG_WRITE(RSA_SEARCH_ENABLE_REG, 0);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_enable_search(void)
|
||||
{
|
||||
REG_WRITE(RSA_SEARCH_ENABLE_REG, 1);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_set_search_position(size_t pos)
|
||||
{
|
||||
REG_WRITE(RSA_SEARCH_POS_REG, pos);
|
||||
}
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
153
components/hal/esp32h2/include/hal/mpi_ll.h
Normal file
153
components/hal/esp32h2/include/hal/mpi_ll.h
Normal file
@ -0,0 +1,153 @@
|
||||
/*
|
||||
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <string.h>
|
||||
#include "hal/assert.h"
|
||||
#include "soc/pcr_reg.h"
|
||||
#include "soc/rsa_reg.h"
|
||||
#include "soc/mpi_periph.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
static inline size_t mpi_ll_calculate_hardware_words(size_t words)
|
||||
{
|
||||
return words;
|
||||
}
|
||||
|
||||
static inline void mpi_ll_clear_power_control_bit(void)
|
||||
{
|
||||
REG_CLR_BIT(PCR_RSA_PD_CTRL_REG, PCR_RSA_MEM_PD);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_set_power_control_bit(void)
|
||||
{
|
||||
REG_SET_BIT(PCR_RSA_PD_CTRL_REG, PCR_RSA_MEM_PD);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_enable_interrupt(void)
|
||||
{
|
||||
REG_WRITE(RSA_INT_ENA_REG, 1);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_disable_interrupt(void)
|
||||
{
|
||||
REG_WRITE(RSA_INT_ENA_REG, 0);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_clear_interrupt(void)
|
||||
{
|
||||
REG_WRITE(RSA_INT_CLR_REG, 1);
|
||||
}
|
||||
|
||||
static inline bool mpi_ll_check_memory_init_complete(void)
|
||||
{
|
||||
return REG_READ(RSA_QUERY_CLEAN_REG) == 0;
|
||||
}
|
||||
|
||||
static inline void mpi_ll_start_op(mpi_op_t op)
|
||||
{
|
||||
REG_WRITE(MPI_LL_OPERATIONS[op], 1);
|
||||
}
|
||||
|
||||
static inline bool mpi_ll_get_int_status(void)
|
||||
{
|
||||
return REG_READ(RSA_QUERY_IDLE_REG) == 0;
|
||||
}
|
||||
|
||||
/* Copy MPI bignum (p) to hardware memory block at 'mem_base'.
|
||||
|
||||
If num_words is higher than the number of words (n) in the bignum then
|
||||
these additional words will be zeroed in the memory buffer.
|
||||
*/
|
||||
static inline void mpi_ll_write_to_mem_block(mpi_param_t param, size_t offset, const uint32_t* p, size_t n, size_t num_words)
|
||||
{
|
||||
uint32_t mem_base = MPI_LL_BLOCK_BASES[param] + offset;
|
||||
uint32_t* pbase = (uint32_t*) mem_base;
|
||||
uint32_t copy_words = MIN(num_words, n);
|
||||
|
||||
/* Copy MPI data to memory block registers */
|
||||
for (int i = 0; i < copy_words; i++) {
|
||||
pbase[i] = p[i];
|
||||
}
|
||||
|
||||
/* Zero any remaining memory block data */
|
||||
for (int i = copy_words; i < num_words; i++) {
|
||||
pbase[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
static inline void mpi_ll_write_m_prime(uint32_t Mprime)
|
||||
{
|
||||
REG_WRITE(RSA_M_PRIME_REG, Mprime);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_write_rinv(uint32_t rinv)
|
||||
{
|
||||
REG_WRITE(MPI_LL_BLOCK_BASES[MPI_PARAM_Z], rinv);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_write_at_offset(mpi_param_t param, int offset, uint32_t value)
|
||||
{
|
||||
uint32_t mem_base = MPI_LL_BLOCK_BASES[param] + offset;
|
||||
REG_WRITE(mem_base, value);
|
||||
}
|
||||
|
||||
/* Read MPI bignum (p) back from hardware memory block.
|
||||
|
||||
Reads z_words words from block.
|
||||
*/
|
||||
static inline void mpi_ll_read_from_mem_block(uint32_t* p, size_t n, size_t num_words)
|
||||
{
|
||||
uint32_t mem_base = MPI_LL_BLOCK_BASES[MPI_PARAM_Z];
|
||||
/* Copy data from memory block registers */
|
||||
const size_t REG_WIDTH = sizeof(uint32_t);
|
||||
for (size_t i = 0; i < num_words; i++) {
|
||||
p[i] = REG_READ(mem_base + (i * REG_WIDTH));
|
||||
}
|
||||
/* Zero any remaining limbs in the bignum, if the buffer is bigger
|
||||
than num_words */
|
||||
for (size_t i = num_words; i < n; i++) {
|
||||
p[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
static inline void mpi_ll_set_mode(size_t length)
|
||||
{
|
||||
REG_WRITE(RSA_MODE_REG, length);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_disable_constant_time(void)
|
||||
{
|
||||
REG_WRITE(RSA_CONSTANT_TIME_REG, 0);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_enable_constant_time(void)
|
||||
{
|
||||
REG_WRITE(RSA_CONSTANT_TIME_REG, 1);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_disable_search(void)
|
||||
{
|
||||
REG_WRITE(RSA_SEARCH_ENABLE_REG, 0);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_enable_search(void)
|
||||
{
|
||||
REG_WRITE(RSA_SEARCH_ENABLE_REG, 1);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_set_search_position(size_t pos)
|
||||
{
|
||||
REG_WRITE(RSA_SEARCH_POS_REG, pos);
|
||||
}
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
151
components/hal/esp32s2/include/hal/mpi_ll.h
Normal file
151
components/hal/esp32s2/include/hal/mpi_ll.h
Normal file
@ -0,0 +1,151 @@
|
||||
/*
|
||||
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <string.h>
|
||||
#include "hal/assert.h"
|
||||
#include "soc/hwcrypto_periph.h"
|
||||
#include "soc/dport_reg.h"
|
||||
#include "soc/mpi_periph.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
static inline size_t mpi_ll_calculate_hardware_words(size_t words)
|
||||
{
|
||||
return words;
|
||||
}
|
||||
|
||||
static inline void mpi_ll_clear_power_control_bit(void)
|
||||
{
|
||||
REG_CLR_BIT(DPORT_RSA_PD_CTRL_REG, DPORT_RSA_MEM_PD);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_set_power_control_bit(void)
|
||||
{
|
||||
REG_SET_BIT(DPORT_RSA_PD_CTRL_REG, DPORT_RSA_PD);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_enable_interrupt(void)
|
||||
{
|
||||
REG_WRITE(RSA_INTERRUPT_REG, 1);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_disable_interrupt(void)
|
||||
{
|
||||
REG_WRITE(RSA_INTERRUPT_REG, 0);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_clear_interrupt(void)
|
||||
{
|
||||
REG_WRITE(RSA_CLEAR_INTERRUPT_REG, 1);
|
||||
}
|
||||
|
||||
static inline bool mpi_ll_check_memory_init_complete(void)
|
||||
{
|
||||
return REG_READ(RSA_QUERY_CLEAN_REG) == 0;
|
||||
}
|
||||
|
||||
static inline void mpi_ll_start_op(mpi_op_t op)
|
||||
{
|
||||
REG_WRITE(MPI_LL_OPERATIONS[op], 1);
|
||||
}
|
||||
|
||||
static inline bool mpi_ll_get_int_status(void)
|
||||
{
|
||||
return REG_READ(RSA_QUERY_INTERRUPT_REG) == 0;
|
||||
}
|
||||
|
||||
/* Copy MPI bignum (p) to hardware memory block at 'mem_base'.
|
||||
|
||||
If num_words is higher than the number of words (n) in the bignum then
|
||||
these additional words will be zeroed in the memory buffer.
|
||||
*/
|
||||
static inline void mpi_ll_write_to_mem_block(mpi_param_t param, size_t offset, const uint32_t* p, size_t n, size_t num_words)
|
||||
{
|
||||
uint32_t mem_base = MPI_LL_BLOCK_BASES[param] + offset;
|
||||
uint32_t* pbase = (uint32_t*) mem_base;
|
||||
uint32_t copy_words = MIN(num_words, n);
|
||||
|
||||
/* Copy MPI data to memory block registers */
|
||||
for (int i = 0; i < copy_words; i++) {
|
||||
pbase[i] = p[i];
|
||||
}
|
||||
|
||||
/* Zero any remaining memory block data */
|
||||
for (int i = copy_words; i < num_words; i++) {
|
||||
pbase[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
static inline void mpi_ll_write_m_prime(uint32_t Mprime)
|
||||
{
|
||||
REG_WRITE(RSA_M_DASH_REG, Mprime);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_write_rinv(uint32_t rinv)
|
||||
{
|
||||
REG_WRITE(MPI_LL_BLOCK_BASES[MPI_PARAM_Z], rinv);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_write_at_offset(mpi_param_t param, int offset, uint32_t value)
|
||||
{
|
||||
uint32_t mem_base = MPI_LL_BLOCK_BASES[param] + offset;
|
||||
REG_WRITE(mem_base, value);
|
||||
}
|
||||
|
||||
/* Read MPI bignum (p) back from hardware memory block.
|
||||
|
||||
Reads z_words words from block.
|
||||
*/
|
||||
static inline void mpi_ll_read_from_mem_block(uint32_t* p, size_t n, size_t num_words)
|
||||
{
|
||||
uint32_t mem_base = MPI_LL_BLOCK_BASES[MPI_PARAM_Z];
|
||||
/* Copy data from memory block registers */
|
||||
esp_dport_access_read_buffer(p, mem_base, num_words);
|
||||
|
||||
/* Zero any remaining limbs in the bignum, if the buffer is bigger
|
||||
than num_words */
|
||||
for (size_t i = num_words; i < n; i++) {
|
||||
p[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
static inline void mpi_ll_set_mode(size_t length)
|
||||
{
|
||||
REG_WRITE(RSA_LENGTH_REG, length);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_disable_constant_time(void)
|
||||
{
|
||||
REG_WRITE(RSA_CONSTANT_TIME_REG, 0);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_enable_constant_time(void)
|
||||
{
|
||||
REG_WRITE(RSA_CONSTANT_TIME_REG, 1);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_disable_search(void)
|
||||
{
|
||||
REG_WRITE(RSA_SEARCH_OPEN_REG, 0);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_enable_search(void)
|
||||
{
|
||||
REG_WRITE(RSA_SEARCH_OPEN_REG, 1);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_set_search_position(size_t pos)
|
||||
{
|
||||
REG_WRITE(RSA_SEARCH_POS_REG, pos);
|
||||
}
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
149
components/hal/esp32s3/include/hal/mpi_ll.h
Normal file
149
components/hal/esp32s3/include/hal/mpi_ll.h
Normal file
@ -0,0 +1,149 @@
|
||||
/*
|
||||
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <string.h>
|
||||
#include "hal/assert.h"
|
||||
#include "soc/hwcrypto_periph.h"
|
||||
#include "soc/dport_reg.h"
|
||||
#include "soc/mpi_periph.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
static inline size_t mpi_ll_calculate_hardware_words(size_t words)
|
||||
{
|
||||
return words;
|
||||
}
|
||||
|
||||
static inline void mpi_ll_clear_power_control_bit(void)
|
||||
{
|
||||
REG_CLR_BIT(SYSTEM_RSA_PD_CTRL_REG, SYSTEM_RSA_MEM_PD);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_set_power_control_bit(void)
|
||||
{
|
||||
REG_SET_BIT(SYSTEM_RSA_PD_CTRL_REG, SYSTEM_RSA_MEM_PD);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_enable_interrupt(void)
|
||||
{
|
||||
REG_WRITE(RSA_INTERRUPT_REG, 1);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_disable_interrupt(void)
|
||||
{
|
||||
REG_WRITE(RSA_INTERRUPT_REG, 0);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_clear_interrupt(void)
|
||||
{
|
||||
REG_WRITE(RSA_CLEAR_INTERRUPT_REG, 1);
|
||||
}
|
||||
|
||||
static inline bool mpi_ll_check_memory_init_complete(void)
|
||||
{
|
||||
return REG_READ(RSA_QUERY_CLEAN_REG) == 0;
|
||||
}
|
||||
|
||||
static inline void mpi_ll_start_op(mpi_op_t op)
|
||||
{
|
||||
REG_WRITE(MPI_LL_OPERATIONS[op], 1);
|
||||
}
|
||||
|
||||
static inline bool mpi_ll_get_int_status(void)
|
||||
{
|
||||
return REG_READ(RSA_QUERY_INTERRUPT_REG) == 0;
|
||||
}
|
||||
|
||||
/* Copy MPI bignum (p) to hardware memory block at 'mem_base'.
|
||||
|
||||
If num_words is higher than the number of words (n) in the bignum then
|
||||
these additional words will be zeroed in the memory buffer.
|
||||
*/
|
||||
static inline void mpi_ll_write_to_mem_block(mpi_param_t param, size_t offset, const uint32_t* p, size_t n, size_t num_words)
|
||||
{
|
||||
uint32_t mem_base = MPI_LL_BLOCK_BASES[param] + offset;
|
||||
uint32_t* pbase = (uint32_t*) mem_base;
|
||||
uint32_t copy_words = MIN(num_words, n);
|
||||
|
||||
/* Copy MPI data to memory block registers */
|
||||
for (int i = 0; i < copy_words; i++) {
|
||||
pbase[i] = p[i];
|
||||
}
|
||||
|
||||
/* Zero any remaining memory block data */
|
||||
for (int i = copy_words; i < num_words; i++) {
|
||||
pbase[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
static inline void mpi_ll_write_m_prime(uint32_t Mprime)
|
||||
{
|
||||
REG_WRITE(RSA_M_DASH_REG, Mprime);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_write_rinv(uint32_t rinv)
|
||||
{
|
||||
REG_WRITE(MPI_LL_BLOCK_BASES[MPI_PARAM_Z], rinv);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_write_at_offset(mpi_param_t param, int offset, uint32_t value)
|
||||
{
|
||||
uint32_t mem_base = MPI_LL_BLOCK_BASES[param] + offset;
|
||||
REG_WRITE(mem_base, value);
|
||||
}
|
||||
|
||||
/* Read MPI bignum (p) back from hardware memory block.
|
||||
|
||||
Reads z_words words from block.
|
||||
*/
|
||||
static inline void mpi_ll_read_from_mem_block(uint32_t* p, size_t n, size_t num_words)
|
||||
{
|
||||
uint32_t mem_base = MPI_LL_BLOCK_BASES[MPI_PARAM_Z];
|
||||
esp_dport_access_read_buffer(p, mem_base, num_words);
|
||||
/* Zero any remaining limbs in the bignum, if the buffer is bigger
|
||||
than num_words */
|
||||
for (size_t i = num_words; i < n; i++) {
|
||||
p[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
static inline void mpi_ll_set_mode(size_t length)
|
||||
{
|
||||
REG_WRITE(RSA_LENGTH_REG, length);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_disable_constant_time(void)
|
||||
{
|
||||
REG_WRITE(RSA_CONSTANT_TIME_REG, 0);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_enable_constant_time(void)
|
||||
{
|
||||
REG_WRITE(RSA_CONSTANT_TIME_REG, 1);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_disable_search(void)
|
||||
{
|
||||
REG_WRITE(RSA_SEARCH_OPEN_REG, 0);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_enable_search(void)
|
||||
{
|
||||
REG_WRITE(RSA_SEARCH_OPEN_REG, 1);
|
||||
}
|
||||
|
||||
static inline void mpi_ll_set_search_position(size_t pos)
|
||||
{
|
||||
REG_WRITE(RSA_SEARCH_POS_REG, pos);
|
||||
}
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
146
components/hal/include/hal/mpi_hal.h
Normal file
146
components/hal/include/hal/mpi_hal.h
Normal file
@ -0,0 +1,146 @@
|
||||
/*
|
||||
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
/*******************************************************************************
|
||||
* NOTICE
|
||||
* The HAL is not public api, don't use in application code.
|
||||
* See readme.md in soc/README.md
|
||||
******************************************************************************/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <sys/param.h>
|
||||
#include "hal/mpi_types.h"
|
||||
|
||||
#include "stdint.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @brief Calculate the number of words needed to represent the input word in hardware.
|
||||
*
|
||||
* @param words The number of words to be represented.
|
||||
* @return size_t Number of words required.
|
||||
*/
|
||||
size_t mpi_hal_calc_hardware_words(size_t words);
|
||||
|
||||
/**
|
||||
* @brief Clear the MPI power control bit and intitialise the MPI hardware.
|
||||
*
|
||||
*/
|
||||
void mpi_hal_enable_hardware_hw_op(void);
|
||||
|
||||
/**
|
||||
* @brief Set the MPI power control bit to disable the MPI hardware.
|
||||
*
|
||||
*/
|
||||
void mpi_hal_disable_hardware_hw_op(void);
|
||||
|
||||
/**
|
||||
* @brief Enable/disables MPI operation complete interrupt.
|
||||
*
|
||||
* @param enable true: enable, false: disable.
|
||||
*/
|
||||
void mpi_hal_interrupt_enable(bool enable);
|
||||
|
||||
/**
|
||||
* @brief Clears the MPI operation complete interrupt status.
|
||||
*
|
||||
*/
|
||||
void mpi_hal_clear_interrupt(void);
|
||||
|
||||
/**
|
||||
* @brief Configure RSA length.
|
||||
*
|
||||
* @param num_words Number of words representing the RSA length.
|
||||
*/
|
||||
void mpi_hal_set_mode(size_t num_words);
|
||||
|
||||
/**
|
||||
* @brief Copy the large number (array of words) representation of the parameter 'param' to hardware memory block.
|
||||
*
|
||||
* @param param Type of parameter (enum).
|
||||
* @param offset Offset to copy in the memory from the base address of the parameter.
|
||||
* @param p Pointer to large number (array of words) representation of the parameter.
|
||||
* @param n Number of words needed to represent the large number as an array of words.
|
||||
* @param num_words Maximum hardware words needed.
|
||||
*/
|
||||
void mpi_hal_write_to_mem_block(mpi_param_t param, size_t offset, const uint32_t* p, size_t n, size_t num_words);
|
||||
|
||||
/**
|
||||
* @brief Write a word-sized value to hardware memory block of a parameter.
|
||||
*
|
||||
* @param param Type of parameter (enum).
|
||||
* @param offset Offset to copy in the memory from the base address of the parameter.
|
||||
* @param value Value to be written in the memory.
|
||||
*/
|
||||
void mpi_hal_write_at_offset(mpi_param_t param, int offset, uint32_t value);
|
||||
|
||||
/**
|
||||
* @brief Write the modular multiplicative inverse of M.
|
||||
*
|
||||
* @param Mprime Modular multiplicative inverse of M.
|
||||
*/
|
||||
void mpi_hal_write_m_prime(uint32_t Mprime);
|
||||
|
||||
/**
|
||||
* @brief Write first word of the parametr Rinv.
|
||||
*
|
||||
* @param rinv Value of first word of rinv.
|
||||
*/
|
||||
void mpi_hal_write_rinv(uint32_t rinv);
|
||||
|
||||
#if !CONFIG_IDF_TARGET_ESP32
|
||||
/**
|
||||
* @brief Enable/Disable constant time acceleration option.
|
||||
*
|
||||
* @param enable true: enable, false: disable.
|
||||
*/
|
||||
void mpi_hal_enable_constant_time(bool enable);
|
||||
|
||||
/**
|
||||
* @brief Enable/Disable search time acceleration option.
|
||||
*
|
||||
* @param enable
|
||||
*/
|
||||
void mpi_hal_enable_search(bool enable);
|
||||
|
||||
/**
|
||||
* @brief Configures the starting address to start search.
|
||||
*
|
||||
* @param position Address to start search.
|
||||
*/
|
||||
void mpi_hal_set_search_position(size_t position);
|
||||
#endif /* !CONFIG_IDF_TARGET_ESP32 */
|
||||
|
||||
/**
|
||||
* @brief Begin an MPI operation.
|
||||
*
|
||||
* @param op Operation type (enum).
|
||||
*/
|
||||
void mpi_hal_start_op(mpi_op_t op);
|
||||
|
||||
/**
|
||||
* @brief Wait for an MPI operation to complete.
|
||||
*
|
||||
*/
|
||||
void mpi_hal_wait_op_complete(void);
|
||||
|
||||
/**
|
||||
* @brief Wait for an MPI operation to complete and Read result from last MPI operation into parameter Z.
|
||||
*
|
||||
* @param p Pointer to large number (array of words) representation of the parameter.
|
||||
* @param n Number of words needed to represent the large number as an array of words.
|
||||
* @param z_words Calculated number of words of parameter Z.
|
||||
*/
|
||||
void mpi_hal_read_result_hw_op(uint32_t* p, size_t n, size_t z_words);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
19
components/hal/include/hal/mpi_types.h
Normal file
19
components/hal/include/hal/mpi_types.h
Normal file
@ -0,0 +1,19 @@
|
||||
/*
|
||||
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
typedef enum {
|
||||
MPI_MULT = 0x0, // (X * Y)
|
||||
MPI_MODMULT, // (X * Y) Mod M
|
||||
MPI_MODEXP, // (X ^ Y) Mod M
|
||||
} mpi_op_t;
|
||||
|
||||
typedef enum {
|
||||
MPI_PARAM_X = 0x0,
|
||||
MPI_PARAM_Y,
|
||||
MPI_PARAM_Z,
|
||||
MPI_PARAM_M,
|
||||
} mpi_param_t;
|
126
components/hal/mpi_hal.c
Normal file
126
components/hal/mpi_hal.c
Normal file
@ -0,0 +1,126 @@
|
||||
/*
|
||||
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
#include "hal/mpi_hal.h"
|
||||
#include "hal/mpi_ll.h"
|
||||
#include "sdkconfig.h"
|
||||
|
||||
|
||||
size_t mpi_hal_calc_hardware_words(size_t words)
|
||||
{
|
||||
return mpi_ll_calculate_hardware_words(words);
|
||||
}
|
||||
|
||||
void mpi_hal_enable_hardware_hw_op(void)
|
||||
{
|
||||
mpi_ll_clear_power_control_bit();
|
||||
while (mpi_ll_check_memory_init_complete()) {
|
||||
}
|
||||
// Note: from enabling RSA clock to here takes about 1.3us
|
||||
|
||||
#if !CONFIG_IDF_TARGET_ESP32
|
||||
mpi_ll_disable_interrupt();
|
||||
#endif
|
||||
}
|
||||
|
||||
void mpi_hal_disable_hardware_hw_op(void)
|
||||
{
|
||||
mpi_ll_set_power_control_bit();
|
||||
}
|
||||
|
||||
void mpi_hal_interrupt_enable(bool enable)
|
||||
{
|
||||
if (enable){
|
||||
mpi_ll_enable_interrupt();
|
||||
}
|
||||
else {
|
||||
mpi_ll_disable_interrupt();
|
||||
}
|
||||
}
|
||||
|
||||
void mpi_hal_clear_interrupt(void)
|
||||
{
|
||||
mpi_ll_clear_interrupt();
|
||||
}
|
||||
|
||||
void mpi_hal_set_mode(size_t num_words)
|
||||
{
|
||||
mpi_ll_set_mode(num_words);
|
||||
}
|
||||
|
||||
void mpi_hal_write_to_mem_block(mpi_param_t param, size_t offset, const uint32_t* p, size_t n, size_t num_words)
|
||||
{
|
||||
mpi_ll_write_to_mem_block(param, offset, p, n, num_words);
|
||||
}
|
||||
|
||||
void mpi_hal_write_at_offset(mpi_param_t param, int offset, uint32_t value)
|
||||
{
|
||||
mpi_ll_write_at_offset(param, offset, value);
|
||||
}
|
||||
|
||||
void mpi_hal_write_m_prime(uint32_t Mprime)
|
||||
{
|
||||
mpi_ll_write_m_prime(Mprime);
|
||||
}
|
||||
|
||||
void mpi_hal_write_rinv(uint32_t rinv)
|
||||
{
|
||||
mpi_ll_write_rinv(rinv);
|
||||
}
|
||||
|
||||
// Acceleration options
|
||||
#if !CONFIG_IDF_TARGET_ESP32
|
||||
void mpi_hal_enable_constant_time(bool enable)
|
||||
{
|
||||
if (enable){
|
||||
mpi_ll_enable_constant_time();
|
||||
}
|
||||
else {
|
||||
mpi_ll_disable_constant_time();
|
||||
}
|
||||
}
|
||||
|
||||
void mpi_hal_enable_search(bool enable)
|
||||
{
|
||||
if (enable){
|
||||
mpi_ll_enable_search();
|
||||
}
|
||||
else {
|
||||
mpi_ll_disable_search();
|
||||
}
|
||||
}
|
||||
|
||||
void mpi_hal_set_search_position(size_t position)
|
||||
{
|
||||
mpi_ll_set_search_position(position);
|
||||
}
|
||||
#endif /* !CONFIG_IDF_TARGET_ESP32 */
|
||||
|
||||
/* Begin an RSA operation.
|
||||
*/
|
||||
void mpi_hal_start_op(mpi_op_t op)
|
||||
{
|
||||
/* Clear interrupt status */
|
||||
mpi_hal_clear_interrupt();
|
||||
mpi_ll_start_op(op);
|
||||
}
|
||||
|
||||
/* Wait for an RSA operation to complete.
|
||||
*/
|
||||
void mpi_hal_wait_op_complete(void)
|
||||
{
|
||||
while (mpi_ll_get_int_status())
|
||||
{ }
|
||||
|
||||
/* Clear interrupt status */
|
||||
mpi_hal_clear_interrupt();
|
||||
}
|
||||
|
||||
void mpi_hal_read_result_hw_op(uint32_t* p, size_t n, size_t z_words)
|
||||
{
|
||||
/* Wait for an RSA operation to complete. */
|
||||
mpi_hal_wait_op_complete();
|
||||
mpi_ll_read_from_mem_block(p, n, z_words);
|
||||
}
|
@ -220,9 +220,8 @@ endif()
|
||||
# The other port-specific files don't override internal mbedTLS functions, they just add new functions.
|
||||
|
||||
if(CONFIG_MBEDTLS_HARDWARE_MPI)
|
||||
target_sources(mbedcrypto PRIVATE "${COMPONENT_DIR}/port/esp_bignum.c"
|
||||
"${COMPONENT_DIR}/port/${idf_target}/bignum.c"
|
||||
)
|
||||
target_sources(mbedcrypto PRIVATE "${COMPONENT_DIR}/port/bignum/esp_bignum.c"
|
||||
"${COMPONENT_DIR}/port/bignum/bignum_alt.c")
|
||||
endif()
|
||||
|
||||
if(CONFIG_MBEDTLS_HARDWARE_SHA)
|
||||
|
242
components/mbedtls/port/bignum/bignum_alt.c
Normal file
242
components/mbedtls/port/bignum/bignum_alt.c
Normal file
@ -0,0 +1,242 @@
|
||||
/*
|
||||
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
#include "esp_private/periph_ctrl.h"
|
||||
#include "bignum_impl.h"
|
||||
#include "mbedtls/bignum.h"
|
||||
|
||||
#if CONFIG_IDF_TARGET_ESP32
|
||||
#include <sys/lock.h>
|
||||
static _lock_t mpi_lock;
|
||||
#else
|
||||
#include "esp_crypto_lock.h"
|
||||
#endif
|
||||
|
||||
#include "hal/mpi_hal.h"
|
||||
|
||||
|
||||
void esp_mpi_enable_hardware_hw_op( void )
|
||||
{
|
||||
#if CONFIG_IDF_TARGET_ESP32
|
||||
/* newlib locks lazy initialize on ESP-IDF */
|
||||
_lock_acquire(&mpi_lock);
|
||||
#else
|
||||
esp_crypto_mpi_lock_acquire();
|
||||
#endif
|
||||
|
||||
/* Enable RSA hardware */
|
||||
periph_module_enable(PERIPH_RSA_MODULE);
|
||||
|
||||
mpi_hal_enable_hardware_hw_op();
|
||||
}
|
||||
|
||||
|
||||
void esp_mpi_disable_hardware_hw_op( void )
|
||||
{
|
||||
mpi_hal_disable_hardware_hw_op();
|
||||
|
||||
/* Disable RSA hardware */
|
||||
periph_module_disable(PERIPH_RSA_MODULE);
|
||||
|
||||
#if CONFIG_IDF_TARGET_ESP32
|
||||
_lock_release(&mpi_lock);
|
||||
#else
|
||||
esp_crypto_mpi_lock_release();
|
||||
#endif
|
||||
}
|
||||
|
||||
size_t esp_mpi_hardware_words(size_t words)
|
||||
{
|
||||
return mpi_hal_calc_hardware_words(words);
|
||||
}
|
||||
|
||||
|
||||
void esp_mpi_interrupt_enable(bool enable)
|
||||
{
|
||||
mpi_hal_interrupt_enable(enable);
|
||||
}
|
||||
|
||||
|
||||
void esp_mpi_interrupt_clear(void)
|
||||
{
|
||||
mpi_hal_clear_interrupt();
|
||||
}
|
||||
|
||||
|
||||
/* Z = (X * Y) mod M */
|
||||
void esp_mpi_mul_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t num_words)
|
||||
{
|
||||
#if CONFIG_IDF_TARGET_ESP32
|
||||
/* "mode" register loaded with number of 512-bit blocks, minus 1 */
|
||||
mpi_hal_set_mode((num_words / 16) - 1);
|
||||
#else
|
||||
mpi_hal_set_mode(num_words - 1);
|
||||
#endif
|
||||
|
||||
/* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
|
||||
mpi_hal_write_to_mem_block(MPI_PARAM_M, 0, M->MBEDTLS_PRIVATE(p), M->MBEDTLS_PRIVATE(n), num_words);
|
||||
mpi_hal_write_to_mem_block(MPI_PARAM_X, 0, X->MBEDTLS_PRIVATE(p), X->MBEDTLS_PRIVATE(n), num_words);
|
||||
|
||||
#if !CONFIG_IDF_TARGET_ESP32
|
||||
mpi_hal_write_to_mem_block(MPI_PARAM_Y, 0, Y->MBEDTLS_PRIVATE(p), Y->MBEDTLS_PRIVATE(n), num_words);
|
||||
#endif
|
||||
|
||||
mpi_hal_write_to_mem_block(MPI_PARAM_Z, 0, Rinv->MBEDTLS_PRIVATE(p), Rinv->MBEDTLS_PRIVATE(n), num_words);
|
||||
mpi_hal_write_m_prime(Mprime);
|
||||
|
||||
#if CONFIG_IDF_TARGET_ESP32
|
||||
mpi_hal_start_op(MPI_MULT);
|
||||
mpi_hal_wait_op_complete();
|
||||
/* execute second stage */
|
||||
/* Load Y to X input memory block, rerun */
|
||||
mpi_hal_write_to_mem_block(MPI_PARAM_X, 0, Y->MBEDTLS_PRIVATE(p), Y->MBEDTLS_PRIVATE(n), num_words);
|
||||
mpi_hal_start_op(MPI_MULT);
|
||||
#else
|
||||
mpi_hal_start_op(MPI_MODMULT);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
|
||||
/* Z = X * Y */
|
||||
void esp_mpi_mul_mpi_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
|
||||
{
|
||||
/* Copy X (right-extended) & Y (left-extended) to memory block */
|
||||
mpi_hal_write_to_mem_block(MPI_PARAM_X, 0, X->MBEDTLS_PRIVATE(p), X->MBEDTLS_PRIVATE(n), num_words);
|
||||
mpi_hal_write_to_mem_block(MPI_PARAM_Z, num_words * 4, Y->MBEDTLS_PRIVATE(p), Y->MBEDTLS_PRIVATE(n), num_words);
|
||||
/* NB: as Y is left-exte, we don't zero the bottom words_mult words of Y block.
|
||||
This is OK for now bec zeroing is done by hardware when we do esp_mpi_acquire_hardware().
|
||||
*/
|
||||
#if CONFIG_IDF_TARGET_ESP32
|
||||
mpi_hal_write_m_prime(0);
|
||||
/* "mode" register loaded with number of 512-bit blocks in result,
|
||||
plus 7 (for range 9-12). (this is ((N~ / 32) - 1) + 8))
|
||||
*/
|
||||
mpi_hal_set_mode(((num_words * 2) / 16) + 7);
|
||||
#else
|
||||
mpi_hal_set_mode(num_words * 2 - 1);
|
||||
#endif
|
||||
|
||||
mpi_hal_start_op(MPI_MULT);
|
||||
}
|
||||
|
||||
|
||||
/* Special-case of mbedtls_mpi_mult_mpi(), where we use hardware montgomery mod
|
||||
multiplication to calculate an mbedtls_mpi_mult_mpi result where either
|
||||
A or B are >2048 bits so can't use the standard multiplication method.
|
||||
|
||||
Result (number of words, based on A bits + B bits) must still be less than 4096 bits.
|
||||
|
||||
This case is simpler than the general case modulo multiply of
|
||||
esp_mpi_mul_mpi_mod() because we can control the other arguments:
|
||||
|
||||
* Modulus is chosen with M=(2^num_bits - 1) (ie M=R-1), so output
|
||||
* Mprime and Rinv are therefore predictable as follows:
|
||||
isn't actually modulo anything.
|
||||
Mprime 1
|
||||
Rinv 1
|
||||
|
||||
(See RSA Accelerator section in Technical Reference for more about Mprime, Rinv)
|
||||
*/
|
||||
|
||||
void esp_mpi_mult_mpi_failover_mod_mult_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
|
||||
{
|
||||
/* M = 2^num_words - 1, so block is entirely FF */
|
||||
for (int i = 0; i < num_words; i++) {
|
||||
mpi_hal_write_at_offset(MPI_PARAM_M, i * 4, UINT32_MAX);
|
||||
}
|
||||
|
||||
/* Mprime = 1 */
|
||||
mpi_hal_write_m_prime(1);
|
||||
|
||||
#if CONFIG_IDF_TARGET_ESP32
|
||||
/* "mode" register loaded with number of 512-bit blocks, minus 1 */
|
||||
mpi_hal_set_mode((num_words / 16) - 1);
|
||||
#else
|
||||
mpi_hal_set_mode(num_words - 1);
|
||||
#endif
|
||||
|
||||
/* Load X & Y */
|
||||
mpi_hal_write_to_mem_block(MPI_PARAM_X, 0, X->MBEDTLS_PRIVATE(p), X->MBEDTLS_PRIVATE(n), num_words);
|
||||
#if !CONFIG_IDF_TARGET_ESP32
|
||||
mpi_hal_write_to_mem_block(MPI_PARAM_Y, 0, Y->MBEDTLS_PRIVATE(p), Y->MBEDTLS_PRIVATE(n), num_words);
|
||||
#endif
|
||||
/* Rinv = 1, write first word */
|
||||
mpi_hal_write_rinv(1);
|
||||
|
||||
/* Zero out rest of the Rinv words */
|
||||
for (int i = 1; i < num_words; i++) {
|
||||
mpi_hal_write_at_offset(MPI_PARAM_Z, i * 4, 0);
|
||||
}
|
||||
|
||||
#if CONFIG_IDF_TARGET_ESP32
|
||||
mpi_hal_start_op(MPI_MULT);
|
||||
mpi_hal_wait_op_complete();
|
||||
mpi_hal_write_to_mem_block(MPI_PARAM_X, 0, Y->MBEDTLS_PRIVATE(p), Y->MBEDTLS_PRIVATE(n), num_words);
|
||||
mpi_hal_start_op(MPI_MULT);
|
||||
#else
|
||||
mpi_hal_start_op(MPI_MODMULT);
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef ESP_MPI_USE_MONT_EXP
|
||||
int esp_mont_hw_op(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, mbedtls_mpi_uint Mprime, size_t hw_words, bool again)
|
||||
{
|
||||
// Note Z may be the same pointer as X or Y
|
||||
int ret = 0;
|
||||
|
||||
// montgomery mult prepare
|
||||
if (again == false) {
|
||||
mpi_hal_write_to_mem_block(MPI_PARAM_M, 0, M->MBEDTLS_PRIVATE(p), M->MBEDTLS_PRIVATE(n), hw_words);
|
||||
mpi_hal_write_m_prime(Mprime);
|
||||
mpi_hal_set_mode((hw_words / 16) - 1);
|
||||
}
|
||||
|
||||
mpi_hal_write_to_mem_block(MPI_PARAM_X, 0, X->MBEDTLS_PRIVATE(p), X->MBEDTLS_PRIVATE(n), hw_words);
|
||||
mpi_hal_write_to_mem_block(MPI_PARAM_Z, 0, Y->MBEDTLS_PRIVATE(p), Y->MBEDTLS_PRIVATE(n), hw_words);
|
||||
|
||||
mpi_hal_start_op(MPI_MULT);
|
||||
|
||||
Z->MBEDTLS_PRIVATE(s) = 1; // The sign of Z will be = M->s (but M->s is always 1)
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_grow(Z, hw_words) );
|
||||
|
||||
/* Read back the result */
|
||||
mpi_hal_read_result_hw_op(Z->MBEDTLS_PRIVATE(p), Z->MBEDTLS_PRIVATE(n), hw_words);
|
||||
|
||||
/* from HAC 14.36 - 3. If Z >= M then Z = Z - M */
|
||||
if (mbedtls_mpi_cmp_mpi(Z, M) >= 0) {
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(Z, Z, M));
|
||||
}
|
||||
cleanup:
|
||||
return ret;
|
||||
}
|
||||
|
||||
#else
|
||||
/* Z = (X ^ Y) mod M
|
||||
*/
|
||||
void esp_mpi_exp_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t num_words)
|
||||
{
|
||||
size_t y_bits = mbedtls_mpi_bitlen(Y);
|
||||
mpi_hal_set_mode(num_words - 1);
|
||||
|
||||
/* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
|
||||
mpi_hal_write_to_mem_block(MPI_PARAM_X, 0, X->MBEDTLS_PRIVATE(p), X->MBEDTLS_PRIVATE(n), num_words);
|
||||
mpi_hal_write_to_mem_block(MPI_PARAM_Y, 0, Y->MBEDTLS_PRIVATE(p), Y->MBEDTLS_PRIVATE(n), num_words);
|
||||
mpi_hal_write_to_mem_block(MPI_PARAM_M, 0, M->MBEDTLS_PRIVATE(p), M->MBEDTLS_PRIVATE(n), num_words);
|
||||
mpi_hal_write_to_mem_block(MPI_PARAM_Z, 0, Rinv->MBEDTLS_PRIVATE(p), Rinv->MBEDTLS_PRIVATE(n), num_words);
|
||||
|
||||
mpi_hal_write_m_prime(Mprime);
|
||||
|
||||
/* Enable acceleration options */
|
||||
mpi_hal_enable_constant_time(false);
|
||||
mpi_hal_enable_search(true);
|
||||
mpi_hal_set_search_position(y_bits - 1);
|
||||
|
||||
/* Execute first stage montgomery multiplication */
|
||||
mpi_hal_start_op(MPI_MODEXP);
|
||||
|
||||
mpi_hal_enable_search(false);
|
||||
}
|
||||
#endif //ESP_MPI_USE_MONT_EXP
|
@ -6,7 +6,7 @@
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* SPDX-FileContributor: 2016-2022 Espressif Systems (Shanghai) CO LTD
|
||||
* SPDX-FileContributor: 2016-2023 Espressif Systems (Shanghai) CO LTD
|
||||
*/
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
@ -24,17 +24,16 @@
|
||||
#include "esp_pm.h"
|
||||
#endif
|
||||
|
||||
#include "esp_private/periph_ctrl.h"
|
||||
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#include "freertos/semphr.h"
|
||||
|
||||
#include "soc/hwcrypto_periph.h"
|
||||
#include "soc/periph_defs.h"
|
||||
#include "soc/soc_caps.h"
|
||||
|
||||
#include "bignum_impl.h"
|
||||
|
||||
#include <mbedtls/bignum.h>
|
||||
#include "mbedtls/bignum.h"
|
||||
|
||||
#include "hal/mpi_hal.h"
|
||||
|
||||
/* Some implementation notes:
|
||||
*
|
||||
@ -65,7 +64,7 @@ static esp_pm_lock_handle_t s_pm_sleep_lock;
|
||||
static IRAM_ATTR void esp_mpi_complete_isr(void *arg)
|
||||
{
|
||||
BaseType_t higher_woken;
|
||||
esp_mpi_interrupt_clear();
|
||||
mpi_hal_clear_interrupt();
|
||||
|
||||
xSemaphoreGiveFromISR(op_complete_sem, &higher_woken);
|
||||
if (higher_woken) {
|
||||
@ -76,8 +75,8 @@ static IRAM_ATTR void esp_mpi_complete_isr(void *arg)
|
||||
|
||||
static esp_err_t esp_mpi_isr_initialise(void)
|
||||
{
|
||||
esp_mpi_interrupt_clear();
|
||||
esp_mpi_interrupt_enable(true);
|
||||
mpi_hal_clear_interrupt();
|
||||
mpi_hal_interrupt_enable(true);
|
||||
if (op_complete_sem == NULL) {
|
||||
op_complete_sem = xSemaphoreCreateBinary();
|
||||
|
||||
@ -120,7 +119,7 @@ static int esp_mpi_wait_intr(void)
|
||||
esp_pm_lock_release(s_pm_sleep_lock);
|
||||
#endif // CONFIG_PM_ENABLE
|
||||
|
||||
esp_mpi_interrupt_enable(false);
|
||||
mpi_hal_interrupt_enable(false);
|
||||
|
||||
return 0;
|
||||
}
|
||||
@ -208,8 +207,6 @@ cleanup:
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/* Z = (X * Y) mod M
|
||||
|
||||
Not an mbedTLS function
|
||||
@ -226,7 +223,7 @@ int esp_mpi_mul_mpi_mod(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi
|
||||
size_t y_words = bits_to_words(y_bits);
|
||||
size_t m_words = bits_to_words(m_bits);
|
||||
size_t z_words = bits_to_words(z_bits);
|
||||
size_t hw_words = esp_mpi_hardware_words(MAX(x_words, MAX(y_words, m_words))); /* longest operand */
|
||||
size_t hw_words = mpi_hal_calc_hardware_words(MAX(x_words, MAX(y_words, m_words))); /* longest operand */
|
||||
mbedtls_mpi Rinv;
|
||||
mbedtls_mpi_uint Mprime;
|
||||
|
||||
@ -241,7 +238,8 @@ int esp_mpi_mul_mpi_mod(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi
|
||||
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_grow(Z, z_words));
|
||||
|
||||
esp_mpi_read_result_hw_op(Z, z_words);
|
||||
/* Read back the result */
|
||||
mpi_hal_read_result_hw_op(Z->MBEDTLS_PRIVATE(p), Z->MBEDTLS_PRIVATE(n), z_words);
|
||||
Z->MBEDTLS_PRIVATE(s) = X->MBEDTLS_PRIVATE(s) * Y->MBEDTLS_PRIVATE(s);
|
||||
|
||||
cleanup:
|
||||
@ -274,6 +272,7 @@ static size_t mbedtls_mpi_msb( const mbedtls_mpi *X )
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Montgomery exponentiation: Z = X ^ Y mod M (HAC 14.94)
|
||||
*/
|
||||
@ -335,6 +334,7 @@ cleanup2:
|
||||
|
||||
#endif //USE_MONT_EXPONENATIATION
|
||||
|
||||
|
||||
/*
|
||||
* Z = X ^ Y mod M
|
||||
*
|
||||
@ -358,7 +358,7 @@ static int esp_mpi_exp_mod( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_
|
||||
/* "all numbers must be the same length", so choose longest number
|
||||
as cardinal length of operation...
|
||||
*/
|
||||
size_t num_words = esp_mpi_hardware_words(MAX(m_words, MAX(x_words, y_words)));
|
||||
size_t num_words = mpi_hal_calc_hardware_words(MAX(m_words, MAX(x_words, y_words)));
|
||||
|
||||
if (num_words * 32 > SOC_RSA_MAX_BIT_LEN) {
|
||||
return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
|
||||
@ -420,7 +420,9 @@ static int esp_mpi_exp_mod( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_
|
||||
}
|
||||
#endif //CONFIG_MBEDTLS_MPI_USE_INTERRUPT
|
||||
|
||||
esp_mpi_read_result_hw_op(Z, m_words);
|
||||
/* Read back the result */
|
||||
mpi_hal_read_result_hw_op(Z->MBEDTLS_PRIVATE(p), Z->MBEDTLS_PRIVATE(n), m_words);
|
||||
|
||||
esp_mpi_disable_hardware_hw_op();
|
||||
#endif
|
||||
|
||||
@ -479,7 +481,7 @@ int mbedtls_mpi_mul_mpi( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi
|
||||
size_t x_words = bits_to_words(x_bits);
|
||||
size_t y_words = bits_to_words(y_bits);
|
||||
size_t z_words = bits_to_words(x_bits + y_bits);
|
||||
size_t hw_words = esp_mpi_hardware_words(MAX(x_words, y_words)); // length of one operand in hardware
|
||||
size_t hw_words = mpi_hal_calc_hardware_words(MAX(x_words, y_words)); // length of one operand in hardware
|
||||
|
||||
/* Short-circuit eval if either argument is 0 or 1.
|
||||
|
||||
@ -534,7 +536,9 @@ int mbedtls_mpi_mul_mpi( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi
|
||||
esp_mpi_enable_hardware_hw_op();
|
||||
|
||||
esp_mpi_mul_mpi_hw_op(X, Y, hw_words);
|
||||
esp_mpi_read_result_hw_op(Z, z_words);
|
||||
|
||||
/* Read back the result */
|
||||
mpi_hal_read_result_hw_op(Z->MBEDTLS_PRIVATE(p), Z->MBEDTLS_PRIVATE(n), z_words);
|
||||
|
||||
esp_mpi_disable_hardware_hw_op();
|
||||
|
||||
@ -612,34 +616,19 @@ cleanup:
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Special-case of mbedtls_mpi_mult_mpi(), where we use hardware montgomery mod
|
||||
multiplication to calculate an mbedtls_mpi_mult_mpi result where either
|
||||
A or B are >2048 bits so can't use the standard multiplication method.
|
||||
|
||||
Result (number of words, based on A bits + B bits) must still be less than 4096 bits.
|
||||
|
||||
This case is simpler than the general case modulo multiply of
|
||||
esp_mpi_mul_mpi_mod() because we can control the other arguments:
|
||||
|
||||
* Modulus is chosen with M=(2^num_bits - 1) (ie M=R-1), so output
|
||||
* Mprime and Rinv are therefore predictable as follows:
|
||||
isn't actually modulo anything.
|
||||
Mprime 1
|
||||
Rinv 1
|
||||
|
||||
(See RSA Accelerator section in Technical Reference for more about Mprime, Rinv)
|
||||
*/
|
||||
|
||||
static int mpi_mult_mpi_failover_mod_mult( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t z_words)
|
||||
{
|
||||
int ret;
|
||||
size_t hw_words = esp_mpi_hardware_words(z_words);
|
||||
size_t hw_words = mpi_hal_calc_hardware_words(z_words);
|
||||
|
||||
esp_mpi_enable_hardware_hw_op();
|
||||
|
||||
esp_mpi_mult_mpi_failover_mod_mult_hw_op(X, Y, hw_words );
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_grow(Z, hw_words) );
|
||||
esp_mpi_read_result_hw_op(Z, hw_words);
|
||||
|
||||
/* Read back the result */
|
||||
mpi_hal_read_result_hw_op(Z->MBEDTLS_PRIVATE(p), Z->MBEDTLS_PRIVATE(n), hw_words);
|
||||
|
||||
Z->MBEDTLS_PRIVATE(s) = X->MBEDTLS_PRIVATE(s) * Y->MBEDTLS_PRIVATE(s);
|
||||
/*
|
@ -1,296 +0,0 @@
|
||||
/*
|
||||
* Multi-precision integer library
|
||||
* ESP32 hardware accelerated parts based on mbedTLS implementation
|
||||
*
|
||||
* SPDX-FileCopyrightText: The Mbed TLS Contributors
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* SPDX-FileContributor: 2016-2022 Espressif Systems (Shanghai) CO LTD
|
||||
*/
|
||||
#include "soc/hwcrypto_periph.h"
|
||||
#include "soc/dport_reg.h"
|
||||
#include "esp_private/periph_ctrl.h"
|
||||
#include <mbedtls/bignum.h>
|
||||
#include "bignum_impl.h"
|
||||
#include <sys/param.h>
|
||||
#include <sys/lock.h>
|
||||
|
||||
static _lock_t mpi_lock;
|
||||
|
||||
/* Round up number of words to nearest
|
||||
512 bit (16 word) block count.
|
||||
*/
|
||||
size_t esp_mpi_hardware_words(size_t words)
|
||||
{
|
||||
return (words + 0xF) & ~0xF;
|
||||
}
|
||||
|
||||
void esp_mpi_enable_hardware_hw_op( void )
|
||||
{
|
||||
/* newlib locks lazy initialize on ESP-IDF */
|
||||
_lock_acquire(&mpi_lock);
|
||||
|
||||
/* Enable RSA hardware */
|
||||
periph_module_enable(PERIPH_RSA_MODULE);
|
||||
DPORT_REG_CLR_BIT(DPORT_RSA_PD_CTRL_REG, DPORT_RSA_PD);
|
||||
|
||||
while (DPORT_REG_READ(RSA_CLEAN_REG) != 1)
|
||||
{ }
|
||||
// Note: from enabling RSA clock to here takes about 1.3us
|
||||
}
|
||||
|
||||
void esp_mpi_disable_hardware_hw_op( void )
|
||||
{
|
||||
DPORT_REG_SET_BIT(DPORT_RSA_PD_CTRL_REG, DPORT_RSA_PD);
|
||||
|
||||
/* Disable RSA hardware */
|
||||
periph_module_disable(PERIPH_RSA_MODULE);
|
||||
|
||||
_lock_release(&mpi_lock);
|
||||
}
|
||||
|
||||
|
||||
void esp_mpi_interrupt_enable( bool enable )
|
||||
{
|
||||
DPORT_REG_WRITE(RSA_INTERRUPT_REG, enable);
|
||||
}
|
||||
|
||||
void esp_mpi_interrupt_clear( void )
|
||||
{
|
||||
DPORT_REG_WRITE(RSA_CLEAR_INTERRUPT_REG, 1);
|
||||
}
|
||||
|
||||
/* Copy mbedTLS MPI bignum 'mpi' to hardware memory block at 'mem_base'.
|
||||
|
||||
If hw_words is higher than the number of words in the bignum then
|
||||
these additional words will be zeroed in the memory buffer.
|
||||
|
||||
*/
|
||||
|
||||
/* Please see detailed note inside the function body below.
|
||||
* Relevant: IDF-6029
|
||||
https://github.com/espressif/esp-idf/issues/8710
|
||||
https://github.com/espressif/esp-idf/issues/10403
|
||||
*/
|
||||
static inline void mpi_to_mem_block(uint32_t mem_base, const mbedtls_mpi *mpi, size_t hw_words)
|
||||
{
|
||||
uint32_t copy_words = MIN(hw_words, mpi->MBEDTLS_PRIVATE(n));
|
||||
|
||||
/* Copy MPI data to memory block registers */
|
||||
for (uint32_t i = 0; i < copy_words; i++) {
|
||||
DPORT_REG_WRITE(mem_base + i * 4, mpi->MBEDTLS_PRIVATE(p[i]));
|
||||
}
|
||||
|
||||
/* Zero any remaining memory block data */
|
||||
for (uint32_t i = copy_words; i < hw_words; i++) {
|
||||
DPORT_REG_WRITE(mem_base + i * 4, 0);
|
||||
}
|
||||
|
||||
#if _INTERNAL_DEBUG_PURPOSE
|
||||
/*
|
||||
* With Xtensa GCC 11.2.0 (from ESP-IDF v5.x), it was observed that above zero initialization
|
||||
* loop gets optimized to `memset` call from the ROM library. This was causing an issue that
|
||||
* specific write (store) operation to the MPI peripheral block was getting lost erroneously.
|
||||
* Following data re-verify loop could catch it during runtime.
|
||||
*
|
||||
* As a workaround, we are using DPORT_WRITE_REG (volatile writes) wrappers to write to
|
||||
* the MPI peripheral.
|
||||
*
|
||||
*/
|
||||
|
||||
//for (uint32_t i = copy_words; i < hw_words; i++) { assert(pbase[i] == 0); }
|
||||
#endif
|
||||
}
|
||||
|
||||
/* Read mbedTLS MPI bignum back from hardware memory block.
|
||||
|
||||
Reads num_words words from block.
|
||||
|
||||
Bignum 'x' should already be grown to at least num_words by caller (can be done while
|
||||
calculation is in progress, to save some cycles)
|
||||
*/
|
||||
static inline void mem_block_to_mpi(mbedtls_mpi *x, uint32_t mem_base, size_t num_words)
|
||||
{
|
||||
assert(x->MBEDTLS_PRIVATE(n) >= num_words);
|
||||
|
||||
/* Copy data from memory block registers */
|
||||
esp_dport_access_read_buffer(x->MBEDTLS_PRIVATE(p), mem_base, num_words);
|
||||
|
||||
/* Zero any remaining limbs in the bignum, if the buffer is bigger
|
||||
than num_words */
|
||||
for (size_t i = num_words; i < x->MBEDTLS_PRIVATE(n); i++) {
|
||||
x->MBEDTLS_PRIVATE(p[i]) = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* Begin an RSA operation. op_reg specifies which 'START' register
|
||||
to write to.
|
||||
*/
|
||||
static inline void start_op(uint32_t op_reg)
|
||||
{
|
||||
/* Clear interrupt status */
|
||||
DPORT_REG_WRITE(RSA_INTERRUPT_REG, 1);
|
||||
|
||||
/* Note: above REG_WRITE includes a memw, so we know any writes
|
||||
to the memory blocks are also complete. */
|
||||
|
||||
DPORT_REG_WRITE(op_reg, 1);
|
||||
}
|
||||
|
||||
/* Wait for an RSA operation to complete.
|
||||
*/
|
||||
static inline void wait_op_complete(void)
|
||||
{
|
||||
while (DPORT_REG_READ(RSA_INTERRUPT_REG) != 1)
|
||||
{ }
|
||||
|
||||
/* clear the interrupt */
|
||||
DPORT_REG_WRITE(RSA_INTERRUPT_REG, 1);
|
||||
}
|
||||
|
||||
/* Read result from last MPI operation */
|
||||
void esp_mpi_read_result_hw_op(mbedtls_mpi *Z, size_t z_words)
|
||||
{
|
||||
wait_op_complete();
|
||||
mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, z_words);
|
||||
}
|
||||
|
||||
/* Z = (X * Y) mod M */
|
||||
void esp_mpi_mul_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t hw_words)
|
||||
{
|
||||
/* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
|
||||
mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, hw_words);
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, hw_words);
|
||||
mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, Rinv, hw_words);
|
||||
DPORT_REG_WRITE(RSA_M_DASH_REG, (uint32_t)Mprime);
|
||||
|
||||
/* "mode" register loaded with number of 512-bit blocks, minus 1 */
|
||||
DPORT_REG_WRITE(RSA_MULT_MODE_REG, (hw_words / 16) - 1);
|
||||
|
||||
/* Execute first stage montgomery multiplication */
|
||||
start_op(RSA_MULT_START_REG);
|
||||
|
||||
wait_op_complete();
|
||||
|
||||
/* execute second stage */
|
||||
/* Load Y to X input memory block, rerun */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, Y, hw_words);
|
||||
|
||||
start_op(RSA_MULT_START_REG);
|
||||
}
|
||||
|
||||
/* Z = X * Y */
|
||||
void esp_mpi_mul_mpi_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t hw_words)
|
||||
{
|
||||
/* Copy X (right-extended) & Y (left-extended) to memory block */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, hw_words);
|
||||
mpi_to_mem_block(RSA_MEM_Z_BLOCK_BASE + hw_words * 4, Y, hw_words);
|
||||
/* NB: as Y is left-extended, we don't zero the bottom words_mult words of Y block.
|
||||
This is OK for now because zeroing is done by hardware when we do esp_mpi_acquire_hardware().
|
||||
*/
|
||||
|
||||
DPORT_REG_WRITE(RSA_M_DASH_REG, 0);
|
||||
|
||||
/* "mode" register loaded with number of 512-bit blocks in result,
|
||||
plus 7 (for range 9-12). (this is ((N~ / 32) - 1) + 8))
|
||||
*/
|
||||
DPORT_REG_WRITE(RSA_MULT_MODE_REG, ((hw_words * 2) / 16) + 7);
|
||||
|
||||
start_op(RSA_MULT_START_REG);
|
||||
|
||||
}
|
||||
|
||||
|
||||
int esp_mont_hw_op(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M,
|
||||
mbedtls_mpi_uint Mprime,
|
||||
size_t hw_words,
|
||||
bool again)
|
||||
{
|
||||
// Note Z may be the same pointer as X or Y
|
||||
int ret = 0;
|
||||
|
||||
// montgomery mult prepare
|
||||
if (again == false) {
|
||||
mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, hw_words);
|
||||
DPORT_REG_WRITE(RSA_M_DASH_REG, Mprime);
|
||||
DPORT_REG_WRITE(RSA_MULT_MODE_REG, hw_words / 16 - 1);
|
||||
}
|
||||
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, hw_words);
|
||||
mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, Y, hw_words);
|
||||
|
||||
start_op(RSA_MULT_START_REG);
|
||||
Z->MBEDTLS_PRIVATE(s) = 1; // The sign of Z will be = M->s (but M->s is always 1)
|
||||
MBEDTLS_MPI_CHK( mbedtls_mpi_grow(Z, hw_words) );
|
||||
|
||||
wait_op_complete();
|
||||
|
||||
/* Read back the result */
|
||||
mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, hw_words);
|
||||
|
||||
|
||||
/* from HAC 14.36 - 3. If Z >= M then Z = Z - M */
|
||||
if (mbedtls_mpi_cmp_mpi(Z, M) >= 0) {
|
||||
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(Z, Z, M));
|
||||
}
|
||||
cleanup:
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* Special-case of mbedtls_mpi_mult_mpi(), where we use hardware montgomery mod
|
||||
multiplication to calculate an mbedtls_mpi_mult_mpi result where either
|
||||
A or B are >2048 bits so can't use the standard multiplication method.
|
||||
|
||||
Result (z_words, based on A bits + B bits) must still be less than 4096 bits.
|
||||
|
||||
This case is simpler than the general case modulo multiply of
|
||||
esp_mpi_mul_mpi_mod() because we can control the other arguments:
|
||||
|
||||
* Modulus is chosen with M=(2^num_bits - 1) (ie M=R-1), so output
|
||||
isn't actually modulo anything.
|
||||
* Mprime and Rinv are therefore predictable as follows:
|
||||
Mprime = 1
|
||||
Rinv = 1
|
||||
|
||||
(See RSA Accelerator section in Technical Reference for more about Mprime, Rinv)
|
||||
*/
|
||||
void esp_mpi_mult_mpi_failover_mod_mult_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
|
||||
{
|
||||
size_t hw_words = num_words;
|
||||
|
||||
/* M = 2^num_words - 1, so block is entirely FF */
|
||||
for (size_t i = 0; i < hw_words; i++) {
|
||||
DPORT_REG_WRITE(RSA_MEM_M_BLOCK_BASE + i * 4, UINT32_MAX);
|
||||
}
|
||||
/* Mprime = 1 */
|
||||
DPORT_REG_WRITE(RSA_M_DASH_REG, 1);
|
||||
|
||||
/* "mode" register loaded with number of 512-bit blocks, minus 1 */
|
||||
DPORT_REG_WRITE(RSA_MULT_MODE_REG, (hw_words / 16) - 1);
|
||||
|
||||
/* Load X */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, hw_words);
|
||||
|
||||
/* Rinv = 1, write first word */
|
||||
DPORT_REG_WRITE(RSA_MEM_RB_BLOCK_BASE, 1);
|
||||
|
||||
/* Zero out rest of the Rinv words */
|
||||
for (size_t i = 1; i < hw_words; i++) {
|
||||
DPORT_REG_WRITE(RSA_MEM_RB_BLOCK_BASE + i * 4, 0);
|
||||
}
|
||||
|
||||
start_op(RSA_MULT_START_REG);
|
||||
|
||||
wait_op_complete();
|
||||
|
||||
/* finish the modular multiplication */
|
||||
/* Load Y to X input memory block, rerun */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, Y, hw_words);
|
||||
|
||||
start_op(RSA_MULT_START_REG);
|
||||
|
||||
}
|
@ -1,229 +0,0 @@
|
||||
/*
|
||||
* Multi-precision integer library
|
||||
* ESP32 C3 hardware accelerated parts based on mbedTLS implementation
|
||||
*
|
||||
* SPDX-FileCopyrightText: The Mbed TLS Contributors
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* SPDX-FileContributor: 2016-2022 Espressif Systems (Shanghai) CO LTD
|
||||
*/
|
||||
#include <string.h>
|
||||
#include <sys/param.h>
|
||||
#include "soc/hwcrypto_periph.h"
|
||||
#include "esp_private/periph_ctrl.h"
|
||||
#include "mbedtls/bignum.h"
|
||||
#include "bignum_impl.h"
|
||||
#include "soc/system_reg.h"
|
||||
#include "soc/periph_defs.h"
|
||||
#include "esp_crypto_lock.h"
|
||||
|
||||
|
||||
size_t esp_mpi_hardware_words(size_t words)
|
||||
{
|
||||
return words;
|
||||
}
|
||||
|
||||
void esp_mpi_enable_hardware_hw_op( void )
|
||||
{
|
||||
esp_crypto_mpi_lock_acquire();
|
||||
|
||||
/* Enable RSA hardware */
|
||||
periph_module_enable(PERIPH_RSA_MODULE);
|
||||
|
||||
REG_CLR_BIT(SYSTEM_RSA_PD_CTRL_REG, SYSTEM_RSA_MEM_PD);
|
||||
|
||||
while (REG_READ(RSA_QUERY_CLEAN_REG) != 1) {
|
||||
}
|
||||
// Note: from enabling RSA clock to here takes about 1.3us
|
||||
|
||||
REG_WRITE(RSA_INTERRUPT_REG, 0);
|
||||
}
|
||||
|
||||
void esp_mpi_disable_hardware_hw_op( void )
|
||||
{
|
||||
REG_SET_BIT(SYSTEM_RSA_PD_CTRL_REG, SYSTEM_RSA_MEM_PD);
|
||||
|
||||
/* Disable RSA hardware */
|
||||
periph_module_disable(PERIPH_RSA_MODULE);
|
||||
|
||||
esp_crypto_mpi_lock_release();
|
||||
}
|
||||
|
||||
void esp_mpi_interrupt_enable( bool enable )
|
||||
{
|
||||
REG_WRITE(RSA_INTERRUPT_REG, enable);
|
||||
}
|
||||
|
||||
void esp_mpi_interrupt_clear( void )
|
||||
{
|
||||
REG_WRITE(RSA_CLEAR_INTERRUPT_REG, 1);
|
||||
}
|
||||
|
||||
/* Copy mbedTLS MPI bignum 'mpi' to hardware memory block at 'mem_base'.
|
||||
|
||||
If num_words is higher than the number of words in the bignum then
|
||||
these additional words will be zeroed in the memory buffer.
|
||||
*/
|
||||
static inline void mpi_to_mem_block(uint32_t mem_base, const mbedtls_mpi *mpi, size_t num_words)
|
||||
{
|
||||
uint32_t *pbase = (uint32_t *)mem_base;
|
||||
uint32_t copy_words = MIN(num_words, mpi->MBEDTLS_PRIVATE(n));
|
||||
|
||||
/* Copy MPI data to memory block registers */
|
||||
for (int i = 0; i < copy_words; i++) {
|
||||
pbase[i] = mpi->MBEDTLS_PRIVATE(p)[i];
|
||||
}
|
||||
|
||||
/* Zero any remaining memory block data */
|
||||
for (int i = copy_words; i < num_words; i++) {
|
||||
pbase[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* Read mbedTLS MPI bignum back from hardware memory block.
|
||||
|
||||
Reads num_words words from block.
|
||||
*/
|
||||
static inline void mem_block_to_mpi(mbedtls_mpi *x, uint32_t mem_base, int num_words)
|
||||
{
|
||||
|
||||
/* Copy data from memory block registers */
|
||||
const size_t REG_WIDTH = sizeof(uint32_t);
|
||||
for (size_t i = 0; i < num_words; i++) {
|
||||
x->MBEDTLS_PRIVATE(p)[i] = REG_READ(mem_base + (i * REG_WIDTH));
|
||||
}
|
||||
/* Zero any remaining limbs in the bignum, if the buffer is bigger
|
||||
than num_words */
|
||||
for (size_t i = num_words; i < x->MBEDTLS_PRIVATE(n); i++) {
|
||||
x->MBEDTLS_PRIVATE(p)[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* Begin an RSA operation. op_reg specifies which 'START' register
|
||||
to write to.
|
||||
*/
|
||||
static inline void start_op(uint32_t op_reg)
|
||||
{
|
||||
/* Clear interrupt status */
|
||||
REG_WRITE(RSA_CLEAR_INTERRUPT_REG, 1);
|
||||
|
||||
/* Note: above REG_WRITE includes a memw, so we know any writes
|
||||
to the memory blocks are also complete. */
|
||||
|
||||
REG_WRITE(op_reg, 1);
|
||||
}
|
||||
|
||||
/* Wait for an RSA operation to complete.
|
||||
*/
|
||||
static inline void wait_op_complete(void)
|
||||
{
|
||||
while (REG_READ(RSA_QUERY_INTERRUPT_REG) != 1)
|
||||
{ }
|
||||
|
||||
/* clear the interrupt */
|
||||
REG_WRITE(RSA_CLEAR_INTERRUPT_REG, 1);
|
||||
}
|
||||
|
||||
|
||||
/* Read result from last MPI operation */
|
||||
void esp_mpi_read_result_hw_op(mbedtls_mpi *Z, size_t z_words)
|
||||
{
|
||||
wait_op_complete();
|
||||
mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, z_words);
|
||||
}
|
||||
|
||||
|
||||
/* Z = (X * Y) mod M
|
||||
|
||||
Not an mbedTLS function
|
||||
*/
|
||||
void esp_mpi_mul_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t num_words)
|
||||
{
|
||||
REG_WRITE(RSA_LENGTH_REG, (num_words - 1));
|
||||
|
||||
/* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_Y_BLOCK_BASE, Y, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, Rinv, num_words);
|
||||
REG_WRITE(RSA_M_DASH_REG, Mprime);
|
||||
|
||||
start_op(RSA_MOD_MULT_START_REG);
|
||||
}
|
||||
|
||||
/* Z = (X ^ Y) mod M
|
||||
*/
|
||||
void esp_mpi_exp_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t num_words)
|
||||
{
|
||||
size_t y_bits = mbedtls_mpi_bitlen(Y);
|
||||
|
||||
REG_WRITE(RSA_LENGTH_REG, (num_words - 1));
|
||||
|
||||
/* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_Y_BLOCK_BASE, Y, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, Rinv, num_words);
|
||||
REG_WRITE(RSA_M_DASH_REG, Mprime);
|
||||
|
||||
/* Enable acceleration options */
|
||||
REG_WRITE(RSA_CONSTANT_TIME_REG, 0);
|
||||
REG_WRITE(RSA_SEARCH_ENABLE_REG, 1);
|
||||
REG_WRITE(RSA_SEARCH_POS_REG, y_bits - 1);
|
||||
|
||||
/* Execute first stage montgomery multiplication */
|
||||
start_op(RSA_MODEXP_START_REG);
|
||||
|
||||
REG_WRITE(RSA_SEARCH_ENABLE_REG, 0);
|
||||
}
|
||||
|
||||
|
||||
/* Z = X * Y */
|
||||
void esp_mpi_mul_mpi_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
|
||||
{
|
||||
/* Copy X (right-extended) & Y (left-extended) to memory block */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_Z_BLOCK_BASE + num_words * 4, Y, num_words);
|
||||
/* NB: as Y is left-extended, we don't zero the bottom words_mult words of Y block.
|
||||
This is OK for now because zeroing is done by hardware when we do esp_mpi_acquire_hardware().
|
||||
*/
|
||||
REG_WRITE(RSA_LENGTH_REG, (num_words * 2 - 1));
|
||||
start_op(RSA_MULT_START_REG);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief Special-case of (X * Y), where we use hardware montgomery mod
|
||||
multiplication to calculate result where either A or B are >2048 bits so
|
||||
can't use the standard multiplication method.
|
||||
*
|
||||
*/
|
||||
void esp_mpi_mult_mpi_failover_mod_mult_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
|
||||
{
|
||||
/* M = 2^num_words - 1, so block is entirely FF */
|
||||
for (int i = 0; i < num_words; i++) {
|
||||
REG_WRITE(RSA_MEM_M_BLOCK_BASE + i * 4, UINT32_MAX);
|
||||
}
|
||||
|
||||
/* Mprime = 1 */
|
||||
REG_WRITE(RSA_M_DASH_REG, 1);
|
||||
REG_WRITE(RSA_LENGTH_REG, num_words - 1);
|
||||
|
||||
/* Load X & Y */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_Y_BLOCK_BASE, Y, num_words);
|
||||
|
||||
/* Rinv = 1, write first word */
|
||||
REG_WRITE(RSA_MEM_RB_BLOCK_BASE, 1);
|
||||
|
||||
/* Zero out rest of the Rinv words */
|
||||
for (int i = 1; i < num_words; i++) {
|
||||
REG_WRITE(RSA_MEM_RB_BLOCK_BASE + i * 4, 0);
|
||||
}
|
||||
|
||||
start_op(RSA_MOD_MULT_START_REG);
|
||||
}
|
@ -1,230 +0,0 @@
|
||||
/*
|
||||
* Multi-precision integer library
|
||||
* ESP32 C6 hardware accelerated parts based on mbedTLS implementation
|
||||
*
|
||||
* SPDX-FileCopyrightText: The Mbed TLS Contributors
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* SPDX-FileContributor: 2023 Espressif Systems (Shanghai) CO LTD
|
||||
*/
|
||||
#include <string.h>
|
||||
#include <sys/param.h>
|
||||
#include "soc/hwcrypto_periph.h"
|
||||
#include "esp_private/periph_ctrl.h"
|
||||
#include "mbedtls/bignum.h"
|
||||
#include "bignum_impl.h"
|
||||
#include "soc/pcr_reg.h"
|
||||
#include "soc/periph_defs.h"
|
||||
#include "soc/system_reg.h"
|
||||
#include "esp_crypto_lock.h"
|
||||
|
||||
|
||||
size_t esp_mpi_hardware_words(size_t words)
|
||||
{
|
||||
return words;
|
||||
}
|
||||
|
||||
void esp_mpi_enable_hardware_hw_op( void )
|
||||
{
|
||||
esp_crypto_mpi_lock_acquire();
|
||||
|
||||
/* Enable RSA hardware */
|
||||
periph_module_enable(PERIPH_RSA_MODULE);
|
||||
|
||||
REG_CLR_BIT(PCR_RSA_PD_CTRL_REG, PCR_RSA_MEM_PD);
|
||||
|
||||
while (REG_READ(RSA_QUERY_CLEAN_REG) != 1) {
|
||||
}
|
||||
// Note: from enabling RSA clock to here takes about 1.3us
|
||||
|
||||
REG_WRITE(RSA_INT_ENA_REG, 0);
|
||||
}
|
||||
|
||||
void esp_mpi_disable_hardware_hw_op( void )
|
||||
{
|
||||
REG_SET_BIT(PCR_RSA_PD_CTRL_REG, PCR_RSA_MEM_PD);
|
||||
|
||||
/* Disable RSA hardware */
|
||||
periph_module_disable(PERIPH_RSA_MODULE);
|
||||
|
||||
esp_crypto_mpi_lock_release();
|
||||
}
|
||||
|
||||
void esp_mpi_interrupt_enable( bool enable )
|
||||
{
|
||||
REG_WRITE(RSA_INT_ENA_REG, enable);
|
||||
}
|
||||
|
||||
void esp_mpi_interrupt_clear( void )
|
||||
{
|
||||
REG_WRITE(RSA_INT_CLR_REG, 1);
|
||||
}
|
||||
|
||||
/* Copy mbedTLS MPI bignum 'mpi' to hardware memory block at 'mem_base'.
|
||||
|
||||
If num_words is higher than the number of words in the bignum then
|
||||
these additional words will be zeroed in the memory buffer.
|
||||
*/
|
||||
static inline void mpi_to_mem_block(uint32_t mem_base, const mbedtls_mpi *mpi, size_t num_words)
|
||||
{
|
||||
uint32_t *pbase = (uint32_t *)mem_base;
|
||||
uint32_t copy_words = MIN(num_words, mpi->MBEDTLS_PRIVATE(n));
|
||||
|
||||
/* Copy MPI data to memory block registers */
|
||||
for (int i = 0; i < copy_words; i++) {
|
||||
pbase[i] = mpi->MBEDTLS_PRIVATE(p)[i];
|
||||
}
|
||||
|
||||
/* Zero any remaining memory block data */
|
||||
for (int i = copy_words; i < num_words; i++) {
|
||||
pbase[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* Read mbedTLS MPI bignum back from hardware memory block.
|
||||
|
||||
Reads num_words words from block.
|
||||
*/
|
||||
static inline void mem_block_to_mpi(mbedtls_mpi *x, uint32_t mem_base, int num_words)
|
||||
{
|
||||
|
||||
/* Copy data from memory block registers */
|
||||
const size_t REG_WIDTH = sizeof(uint32_t);
|
||||
for (size_t i = 0; i < num_words; i++) {
|
||||
x->MBEDTLS_PRIVATE(p)[i] = REG_READ(mem_base + (i * REG_WIDTH));
|
||||
}
|
||||
/* Zero any remaining limbs in the bignum, if the buffer is bigger
|
||||
than num_words */
|
||||
for (size_t i = num_words; i < x->MBEDTLS_PRIVATE(n); i++) {
|
||||
x->MBEDTLS_PRIVATE(p)[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* Begin an RSA operation. op_reg specifies which 'START' register
|
||||
to write to.
|
||||
*/
|
||||
static inline void start_op(uint32_t op_reg)
|
||||
{
|
||||
/* Clear interrupt status */
|
||||
REG_WRITE(RSA_INT_CLR_REG, 1);
|
||||
|
||||
/* Note: above REG_WRITE includes a memw, so we know any writes
|
||||
to the memory blocks are also complete. */
|
||||
|
||||
REG_WRITE(op_reg, 1);
|
||||
}
|
||||
|
||||
/* Wait for an RSA operation to complete.
|
||||
*/
|
||||
static inline void wait_op_complete(void)
|
||||
{
|
||||
while (REG_READ(RSA_QUERY_IDLE_REG) != 1)
|
||||
{ }
|
||||
|
||||
/* clear the interrupt */
|
||||
REG_WRITE(RSA_INT_CLR_REG, 1);
|
||||
}
|
||||
|
||||
|
||||
/* Read result from last MPI operation */
|
||||
void esp_mpi_read_result_hw_op(mbedtls_mpi *Z, size_t z_words)
|
||||
{
|
||||
wait_op_complete();
|
||||
mem_block_to_mpi(Z, RSA_Z_MEM, z_words);
|
||||
}
|
||||
|
||||
|
||||
/* Z = (X * Y) mod M
|
||||
|
||||
Not an mbedTLS function
|
||||
*/
|
||||
void esp_mpi_mul_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t num_words)
|
||||
{
|
||||
REG_WRITE(RSA_MODE_REG, (num_words - 1));
|
||||
|
||||
/* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
|
||||
mpi_to_mem_block(RSA_X_MEM, X, num_words);
|
||||
mpi_to_mem_block(RSA_Y_MEM, Y, num_words);
|
||||
mpi_to_mem_block(RSA_M_MEM, M, num_words);
|
||||
mpi_to_mem_block(RSA_Z_MEM, Rinv, num_words);
|
||||
REG_WRITE(RSA_M_PRIME_REG, Mprime);
|
||||
|
||||
start_op(RSA_SET_START_MODMULT_REG);
|
||||
}
|
||||
|
||||
/* Z = (X ^ Y) mod M
|
||||
*/
|
||||
void esp_mpi_exp_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t num_words)
|
||||
{
|
||||
size_t y_bits = mbedtls_mpi_bitlen(Y);
|
||||
|
||||
REG_WRITE(RSA_MODE_REG, (num_words - 1));
|
||||
|
||||
/* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
|
||||
mpi_to_mem_block(RSA_X_MEM, X, num_words);
|
||||
mpi_to_mem_block(RSA_Y_MEM, Y, num_words);
|
||||
mpi_to_mem_block(RSA_M_MEM, M, num_words);
|
||||
mpi_to_mem_block(RSA_Z_MEM, Rinv, num_words);
|
||||
REG_WRITE(RSA_M_PRIME_REG, Mprime);
|
||||
|
||||
/* Enable acceleration options */
|
||||
REG_WRITE(RSA_CONSTANT_TIME_REG, 0);
|
||||
REG_WRITE(RSA_SEARCH_ENABLE_REG, 1);
|
||||
REG_WRITE(RSA_SEARCH_POS_REG, y_bits - 1);
|
||||
|
||||
/* Execute first stage montgomery multiplication */
|
||||
start_op(RSA_SET_START_MODEXP_REG);
|
||||
|
||||
REG_WRITE(RSA_SEARCH_ENABLE_REG, 0);
|
||||
}
|
||||
|
||||
|
||||
/* Z = X * Y */
|
||||
void esp_mpi_mul_mpi_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
|
||||
{
|
||||
/* Copy X (right-extended) & Y (left-extended) to memory block */
|
||||
mpi_to_mem_block(RSA_X_MEM, X, num_words);
|
||||
mpi_to_mem_block(RSA_Z_MEM + num_words * 4, Y, num_words);
|
||||
/* NB: as Y is left-exte, we don't zero the bottom words_mult words of Y block.
|
||||
This is OK for now bec zeroing is done by hardware when we do esp_mpi_acquire_hardware().
|
||||
*/
|
||||
REG_WRITE(RSA_MODE_REG, (num_words * 2 - 1));
|
||||
start_op(RSA_SET_START_MULT_REG);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief Special-case of (X * Y), where we use hardware montgomery mod
|
||||
multiplication to calculate result where either A or B are >2048 bits so
|
||||
can't use the standard multiplication method.
|
||||
*
|
||||
*/
|
||||
void esp_mpi_mult_mpi_failover_mod_mult_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
|
||||
{
|
||||
/* M = 2^num_words - 1, so block is entirely FF */
|
||||
for (int i = 0; i < num_words; i++) {
|
||||
REG_WRITE(RSA_M_MEM + i * 4, UINT32_MAX);
|
||||
}
|
||||
|
||||
/* Mprime = 1 */
|
||||
REG_WRITE(RSA_M_PRIME_REG, 1);
|
||||
REG_WRITE(RSA_MODE_REG, num_words - 1);
|
||||
|
||||
/* Load X & Y */
|
||||
mpi_to_mem_block(RSA_X_MEM, X, num_words);
|
||||
mpi_to_mem_block(RSA_Y_MEM, Y, num_words);
|
||||
|
||||
/* Rinv = 1, write first word */
|
||||
REG_WRITE(RSA_Z_MEM, 1);
|
||||
|
||||
/* Zero out rest of the Rinv words */
|
||||
for (int i = 1; i < num_words; i++) {
|
||||
REG_WRITE(RSA_Z_MEM + i * 4, 0);
|
||||
}
|
||||
|
||||
start_op(RSA_SET_START_MODMULT_REG);
|
||||
}
|
@ -1,230 +0,0 @@
|
||||
/*
|
||||
* Multi-precision integer library
|
||||
* ESP32 H2 hardware accelerated parts based on mbedTLS implementation
|
||||
*
|
||||
* SPDX-FileCopyrightText: The Mbed TLS Contributors
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* SPDX-FileContributor: 2023 Espressif Systems (Shanghai) CO LTD
|
||||
*/
|
||||
#include <string.h>
|
||||
#include <sys/param.h>
|
||||
#include "soc/hwcrypto_periph.h"
|
||||
#include "esp_private/periph_ctrl.h"
|
||||
#include "mbedtls/bignum.h"
|
||||
#include "bignum_impl.h"
|
||||
#include "soc/pcr_reg.h"
|
||||
#include "soc/periph_defs.h"
|
||||
#include "soc/system_reg.h"
|
||||
#include "esp_crypto_lock.h"
|
||||
|
||||
|
||||
size_t esp_mpi_hardware_words(size_t words)
|
||||
{
|
||||
return words;
|
||||
}
|
||||
|
||||
void esp_mpi_enable_hardware_hw_op( void )
|
||||
{
|
||||
esp_crypto_mpi_lock_acquire();
|
||||
|
||||
/* Enable RSA hardware */
|
||||
periph_module_enable(PERIPH_RSA_MODULE);
|
||||
|
||||
REG_CLR_BIT(PCR_RSA_PD_CTRL_REG, PCR_RSA_MEM_PD);
|
||||
|
||||
while (REG_READ(RSA_QUERY_CLEAN_REG) != 1) {
|
||||
}
|
||||
// Note: from enabling RSA clock to here takes about 1.3us
|
||||
|
||||
REG_WRITE(RSA_INT_ENA_REG, 0);
|
||||
}
|
||||
|
||||
void esp_mpi_disable_hardware_hw_op( void )
|
||||
{
|
||||
REG_SET_BIT(PCR_RSA_PD_CTRL_REG, PCR_RSA_MEM_PD);
|
||||
|
||||
/* Disable RSA hardware */
|
||||
periph_module_disable(PERIPH_RSA_MODULE);
|
||||
|
||||
esp_crypto_mpi_lock_release();
|
||||
}
|
||||
|
||||
void esp_mpi_interrupt_enable( bool enable )
|
||||
{
|
||||
REG_WRITE(RSA_INT_ENA_REG, enable);
|
||||
}
|
||||
|
||||
void esp_mpi_interrupt_clear( void )
|
||||
{
|
||||
REG_WRITE(RSA_INT_CLR_REG, 1);
|
||||
}
|
||||
|
||||
/* Copy mbedTLS MPI bignum 'mpi' to hardware memory block at 'mem_base'.
|
||||
|
||||
If num_words is higher than the number of words in the bignum then
|
||||
these additional words will be zeroed in the memory buffer.
|
||||
*/
|
||||
static inline void mpi_to_mem_block(uint32_t mem_base, const mbedtls_mpi *mpi, size_t num_words)
|
||||
{
|
||||
uint32_t *pbase = (uint32_t *)mem_base;
|
||||
uint32_t copy_words = MIN(num_words, mpi->MBEDTLS_PRIVATE(n));
|
||||
|
||||
/* Copy MPI data to memory block registers */
|
||||
for (int i = 0; i < copy_words; i++) {
|
||||
pbase[i] = mpi->MBEDTLS_PRIVATE(p)[i];
|
||||
}
|
||||
|
||||
/* Zero any remaining memory block data */
|
||||
for (int i = copy_words; i < num_words; i++) {
|
||||
pbase[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* Read mbedTLS MPI bignum back from hardware memory block.
|
||||
|
||||
Reads num_words words from block.
|
||||
*/
|
||||
static inline void mem_block_to_mpi(mbedtls_mpi *x, uint32_t mem_base, int num_words)
|
||||
{
|
||||
|
||||
/* Copy data from memory block registers */
|
||||
const size_t REG_WIDTH = sizeof(uint32_t);
|
||||
for (size_t i = 0; i < num_words; i++) {
|
||||
x->MBEDTLS_PRIVATE(p)[i] = REG_READ(mem_base + (i * REG_WIDTH));
|
||||
}
|
||||
/* Zero any remaining limbs in the bignum, if the buffer is bigger
|
||||
than num_words */
|
||||
for (size_t i = num_words; i < x->MBEDTLS_PRIVATE(n); i++) {
|
||||
x->MBEDTLS_PRIVATE(p)[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* Begin an RSA operation. op_reg specifies which 'START' register
|
||||
to write to.
|
||||
*/
|
||||
static inline void start_op(uint32_t op_reg)
|
||||
{
|
||||
/* Clear interrupt status */
|
||||
REG_WRITE(RSA_INT_CLR_REG, 1);
|
||||
|
||||
/* Note: above REG_WRITE includes a memw, so we know any writes
|
||||
to the memory blocks are also complete. */
|
||||
|
||||
REG_WRITE(op_reg, 1);
|
||||
}
|
||||
|
||||
/* Wait for an RSA operation to complete.
|
||||
*/
|
||||
static inline void wait_op_complete(void)
|
||||
{
|
||||
while (REG_READ(RSA_QUERY_IDLE_REG) != 1)
|
||||
{ }
|
||||
|
||||
/* clear the interrupt */
|
||||
REG_WRITE(RSA_INT_CLR_REG, 1);
|
||||
}
|
||||
|
||||
|
||||
/* Read result from last MPI operation */
|
||||
void esp_mpi_read_result_hw_op(mbedtls_mpi *Z, size_t z_words)
|
||||
{
|
||||
wait_op_complete();
|
||||
mem_block_to_mpi(Z, RSA_Z_MEM_REG, z_words);
|
||||
}
|
||||
|
||||
|
||||
/* Z = (X * Y) mod M
|
||||
|
||||
Not an mbedTLS function
|
||||
*/
|
||||
void esp_mpi_mul_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t num_words)
|
||||
{
|
||||
REG_WRITE(RSA_MODE_REG, (num_words - 1));
|
||||
|
||||
/* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
|
||||
mpi_to_mem_block(RSA_X_MEM_REG, X, num_words);
|
||||
mpi_to_mem_block(RSA_Y_MEM_REG, Y, num_words);
|
||||
mpi_to_mem_block(RSA_M_MEM_REG, M, num_words);
|
||||
mpi_to_mem_block(RSA_Z_MEM_REG, Rinv, num_words);
|
||||
REG_WRITE(RSA_M_PRIME_REG, Mprime);
|
||||
|
||||
start_op(RSA_SET_START_MODMULT_REG);
|
||||
}
|
||||
|
||||
/* Z = (X ^ Y) mod M
|
||||
*/
|
||||
void esp_mpi_exp_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t num_words)
|
||||
{
|
||||
size_t y_bits = mbedtls_mpi_bitlen(Y);
|
||||
|
||||
REG_WRITE(RSA_MODE_REG, (num_words - 1));
|
||||
|
||||
/* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
|
||||
mpi_to_mem_block(RSA_X_MEM_REG, X, num_words);
|
||||
mpi_to_mem_block(RSA_Y_MEM_REG, Y, num_words);
|
||||
mpi_to_mem_block(RSA_M_MEM_REG, M, num_words);
|
||||
mpi_to_mem_block(RSA_Z_MEM_REG, Rinv, num_words);
|
||||
REG_WRITE(RSA_M_PRIME_REG, Mprime);
|
||||
|
||||
/* Enable acceleration options */
|
||||
REG_WRITE(RSA_CONSTANT_TIME_REG, 0);
|
||||
REG_WRITE(RSA_SEARCH_ENABLE_REG, 1);
|
||||
REG_WRITE(RSA_SEARCH_POS_REG, y_bits - 1);
|
||||
|
||||
/* Execute first stage montgomery multiplication */
|
||||
start_op(RSA_SET_START_MODEXP_REG);
|
||||
|
||||
REG_WRITE(RSA_SEARCH_ENABLE_REG, 0);
|
||||
}
|
||||
|
||||
|
||||
/* Z = X * Y */
|
||||
void esp_mpi_mul_mpi_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
|
||||
{
|
||||
/* Copy X (right-extended) & Y (left-extended) to memory block */
|
||||
mpi_to_mem_block(RSA_X_MEM_REG, X, num_words);
|
||||
mpi_to_mem_block(RSA_Z_MEM_REG + num_words * 4, Y, num_words);
|
||||
/* NB: as Y is left-exte, we don't zero the bottom words_mult words of Y block.
|
||||
This is OK for now bec zeroing is done by hardware when we do esp_mpi_acquire_hardware().
|
||||
*/
|
||||
REG_WRITE(RSA_MODE_REG, (num_words * 2 - 1));
|
||||
start_op(RSA_SET_START_MULT_REG);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief Special-case of (X * Y), where we use hardware montgomery mod
|
||||
multiplication to calculate result where either A or B are >2048 bits so
|
||||
can't use the standard multiplication method.
|
||||
*
|
||||
*/
|
||||
void esp_mpi_mult_mpi_failover_mod_mult_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
|
||||
{
|
||||
/* M = 2^num_words - 1, so block is entirely FF */
|
||||
for (int i = 0; i < num_words; i++) {
|
||||
REG_WRITE(RSA_M_MEM_REG + i * 4, UINT32_MAX);
|
||||
}
|
||||
|
||||
/* Mprime = 1 */
|
||||
REG_WRITE(RSA_M_PRIME_REG, 1);
|
||||
REG_WRITE(RSA_MODE_REG, num_words - 1);
|
||||
|
||||
/* Load X & Y */
|
||||
mpi_to_mem_block(RSA_X_MEM_REG, X, num_words);
|
||||
mpi_to_mem_block(RSA_Y_MEM_REG, Y, num_words);
|
||||
|
||||
/* Rinv = 1, write first word */
|
||||
REG_WRITE(RSA_Z_MEM_REG, 1);
|
||||
|
||||
/* Zero out rest of the Rinv words */
|
||||
for (int i = 1; i < num_words; i++) {
|
||||
REG_WRITE(RSA_Z_MEM_REG + i * 4, 0);
|
||||
}
|
||||
|
||||
start_op(RSA_SET_START_MODMULT_REG);
|
||||
}
|
@ -1,229 +0,0 @@
|
||||
/*
|
||||
* Multi-precision integer library
|
||||
* ESP32 H4 hardware accelerated parts based on mbedTLS implementation
|
||||
*
|
||||
* SPDX-FileCopyrightText: The Mbed TLS Contributors
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* SPDX-FileContributor: 2016-2022 Espressif Systems (Shanghai) CO LTD
|
||||
*/
|
||||
#include <string.h>
|
||||
#include <sys/param.h>
|
||||
#include "soc/hwcrypto_periph.h"
|
||||
#include "esp_private/periph_ctrl.h"
|
||||
#include "mbedtls/bignum.h"
|
||||
#include "bignum_impl.h"
|
||||
#include "soc/system_reg.h"
|
||||
#include "soc/periph_defs.h"
|
||||
#include "esp_crypto_lock.h"
|
||||
|
||||
|
||||
size_t esp_mpi_hardware_words(size_t words)
|
||||
{
|
||||
return words;
|
||||
}
|
||||
|
||||
void esp_mpi_enable_hardware_hw_op( void )
|
||||
{
|
||||
esp_crypto_mpi_lock_acquire();
|
||||
|
||||
/* Enable RSA hardware */
|
||||
periph_module_enable(PERIPH_RSA_MODULE);
|
||||
|
||||
REG_CLR_BIT(SYSTEM_RSA_PD_CTRL_REG, SYSTEM_RSA_MEM_PD);
|
||||
|
||||
while (REG_READ(RSA_QUERY_CLEAN_REG) != 1) {
|
||||
}
|
||||
// Note: from enabling RSA clock to here takes about 1.3us
|
||||
|
||||
REG_WRITE(RSA_INTERRUPT_REG, 0);
|
||||
}
|
||||
|
||||
void esp_mpi_disable_hardware_hw_op( void )
|
||||
{
|
||||
REG_SET_BIT(SYSTEM_RSA_PD_CTRL_REG, SYSTEM_RSA_MEM_PD);
|
||||
|
||||
/* Disable RSA hardware */
|
||||
periph_module_disable(PERIPH_RSA_MODULE);
|
||||
|
||||
esp_crypto_mpi_lock_release();
|
||||
}
|
||||
|
||||
void esp_mpi_interrupt_enable( bool enable )
|
||||
{
|
||||
REG_WRITE(RSA_INTERRUPT_REG, enable);
|
||||
}
|
||||
|
||||
void esp_mpi_interrupt_clear( void )
|
||||
{
|
||||
REG_WRITE(RSA_CLEAR_INTERRUPT_REG, 1);
|
||||
}
|
||||
|
||||
/* Copy mbedTLS MPI bignum 'mpi' to hardware memory block at 'mem_base'.
|
||||
|
||||
If num_words is higher than the number of words in the bignum then
|
||||
these additional words will be zeroed in the memory buffer.
|
||||
*/
|
||||
static inline void mpi_to_mem_block(uint32_t mem_base, const mbedtls_mpi *mpi, size_t num_words)
|
||||
{
|
||||
uint32_t *pbase = (uint32_t *)mem_base;
|
||||
uint32_t copy_words = MIN(num_words, mpi->MBEDTLS_PRIVATE(n));
|
||||
|
||||
/* Copy MPI data to memory block registers */
|
||||
for (int i = 0; i < copy_words; i++) {
|
||||
pbase[i] = mpi->MBEDTLS_PRIVATE(p)[i];
|
||||
}
|
||||
|
||||
/* Zero any remaining memory block data */
|
||||
for (int i = copy_words; i < num_words; i++) {
|
||||
pbase[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* Read mbedTLS MPI bignum back from hardware memory block.
|
||||
|
||||
Reads num_words words from block.
|
||||
*/
|
||||
static inline void mem_block_to_mpi(mbedtls_mpi *x, uint32_t mem_base, int num_words)
|
||||
{
|
||||
|
||||
/* Copy data from memory block registers */
|
||||
const size_t REG_WIDTH = sizeof(uint32_t);
|
||||
for (size_t i = 0; i < num_words; i++) {
|
||||
x->MBEDTLS_PRIVATE(p)[i] = REG_READ(mem_base + (i * REG_WIDTH));
|
||||
}
|
||||
/* Zero any remaining limbs in the bignum, if the buffer is bigger
|
||||
than num_words */
|
||||
for (size_t i = num_words; i < x->MBEDTLS_PRIVATE(n); i++) {
|
||||
x->MBEDTLS_PRIVATE(p)[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* Begin an RSA operation. op_reg specifies which 'START' register
|
||||
to write to.
|
||||
*/
|
||||
static inline void start_op(uint32_t op_reg)
|
||||
{
|
||||
/* Clear interrupt status */
|
||||
REG_WRITE(RSA_CLEAR_INTERRUPT_REG, 1);
|
||||
|
||||
/* Note: above REG_WRITE includes a memw, so we know any writes
|
||||
to the memory blocks are also complete. */
|
||||
|
||||
REG_WRITE(op_reg, 1);
|
||||
}
|
||||
|
||||
/* Wait for an RSA operation to complete.
|
||||
*/
|
||||
static inline void wait_op_complete(void)
|
||||
{
|
||||
while (REG_READ(RSA_QUERY_INTERRUPT_REG) != 1)
|
||||
{ }
|
||||
|
||||
/* clear the interrupt */
|
||||
REG_WRITE(RSA_CLEAR_INTERRUPT_REG, 1);
|
||||
}
|
||||
|
||||
|
||||
/* Read result from last MPI operation */
|
||||
void esp_mpi_read_result_hw_op(mbedtls_mpi *Z, size_t z_words)
|
||||
{
|
||||
wait_op_complete();
|
||||
mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, z_words);
|
||||
}
|
||||
|
||||
|
||||
/* Z = (X * Y) mod M
|
||||
|
||||
Not an mbedTLS function
|
||||
*/
|
||||
void esp_mpi_mul_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t num_words)
|
||||
{
|
||||
REG_WRITE(RSA_LENGTH_REG, (num_words - 1));
|
||||
|
||||
/* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_Y_BLOCK_BASE, Y, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, Rinv, num_words);
|
||||
REG_WRITE(RSA_M_DASH_REG, Mprime);
|
||||
|
||||
start_op(RSA_MOD_MULT_START_REG);
|
||||
}
|
||||
|
||||
/* Z = (X ^ Y) mod M
|
||||
*/
|
||||
void esp_mpi_exp_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t num_words)
|
||||
{
|
||||
size_t y_bits = mbedtls_mpi_bitlen(Y);
|
||||
|
||||
REG_WRITE(RSA_LENGTH_REG, (num_words - 1));
|
||||
|
||||
/* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_Y_BLOCK_BASE, Y, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, Rinv, num_words);
|
||||
REG_WRITE(RSA_M_DASH_REG, Mprime);
|
||||
|
||||
/* Enable acceleration options */
|
||||
REG_WRITE(RSA_CONSTANT_TIME_REG, 0);
|
||||
REG_WRITE(RSA_SEARCH_ENABLE_REG, 1);
|
||||
REG_WRITE(RSA_SEARCH_POS_REG, y_bits - 1);
|
||||
|
||||
/* Execute first stage montgomery multiplication */
|
||||
start_op(RSA_MODEXP_START_REG);
|
||||
|
||||
REG_WRITE(RSA_SEARCH_ENABLE_REG, 0);
|
||||
}
|
||||
|
||||
|
||||
/* Z = X * Y */
|
||||
void esp_mpi_mul_mpi_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
|
||||
{
|
||||
/* Copy X (right-extended) & Y (left-extended) to memory block */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_Z_BLOCK_BASE + num_words * 4, Y, num_words);
|
||||
/* NB: as Y is left-extended, we don't zero the bottom words_mult words of Y block.
|
||||
This is OK for now because zeroing is done by hardware when we do esp_mpi_acquire_hardware().
|
||||
*/
|
||||
REG_WRITE(RSA_LENGTH_REG, (num_words * 2 - 1));
|
||||
start_op(RSA_MULT_START_REG);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief Special-case of (X * Y), where we use hardware montgomery mod
|
||||
multiplication to calculate result where either A or B are >2048 bits so
|
||||
can't use the standard multiplication method.
|
||||
*
|
||||
*/
|
||||
void esp_mpi_mult_mpi_failover_mod_mult_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
|
||||
{
|
||||
/* M = 2^num_words - 1, so block is entirely FF */
|
||||
for (int i = 0; i < num_words; i++) {
|
||||
REG_WRITE(RSA_MEM_M_BLOCK_BASE + i * 4, UINT32_MAX);
|
||||
}
|
||||
|
||||
/* Mprime = 1 */
|
||||
REG_WRITE(RSA_M_DASH_REG, 1);
|
||||
REG_WRITE(RSA_LENGTH_REG, num_words - 1);
|
||||
|
||||
/* Load X & Y */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_Y_BLOCK_BASE, Y, num_words);
|
||||
|
||||
/* Rinv = 1, write first word */
|
||||
REG_WRITE(RSA_MEM_RB_BLOCK_BASE, 1);
|
||||
|
||||
/* Zero out rest of the Rinv words */
|
||||
for (int i = 1; i < num_words; i++) {
|
||||
REG_WRITE(RSA_MEM_RB_BLOCK_BASE + i * 4, 0);
|
||||
}
|
||||
|
||||
start_op(RSA_MOD_MULT_START_REG);
|
||||
}
|
@ -1,224 +0,0 @@
|
||||
/*
|
||||
* Multi-precision integer library
|
||||
* ESP32 S2 hardware accelerated parts based on mbedTLS implementation
|
||||
*
|
||||
* SPDX-FileCopyrightText: The Mbed TLS Contributors
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* SPDX-FileContributor: 2016-2022 Espressif Systems (Shanghai) CO LTD
|
||||
*/
|
||||
#include "soc/hwcrypto_periph.h"
|
||||
#include "esp_private/periph_ctrl.h"
|
||||
#include <mbedtls/bignum.h>
|
||||
#include "bignum_impl.h"
|
||||
#include "soc/dport_reg.h"
|
||||
#include "soc/periph_defs.h"
|
||||
#include <sys/param.h>
|
||||
#include "esp_crypto_lock.h"
|
||||
|
||||
size_t esp_mpi_hardware_words(size_t words)
|
||||
{
|
||||
return words;
|
||||
}
|
||||
|
||||
void esp_mpi_enable_hardware_hw_op( void )
|
||||
{
|
||||
esp_crypto_mpi_lock_acquire();
|
||||
|
||||
/* Enable RSA hardware */
|
||||
periph_module_enable(PERIPH_RSA_MODULE);
|
||||
|
||||
DPORT_REG_CLR_BIT(DPORT_RSA_PD_CTRL_REG, DPORT_RSA_MEM_PD);
|
||||
|
||||
while (DPORT_REG_READ(RSA_QUERY_CLEAN_REG) != 1) {
|
||||
}
|
||||
// Note: from enabling RSA clock to here takes about 1.3us
|
||||
|
||||
REG_WRITE(RSA_INTERRUPT_REG, 0);
|
||||
}
|
||||
|
||||
void esp_mpi_disable_hardware_hw_op( void )
|
||||
{
|
||||
DPORT_REG_SET_BIT(DPORT_RSA_PD_CTRL_REG, DPORT_RSA_PD);
|
||||
|
||||
/* Disable RSA hardware */
|
||||
periph_module_disable(PERIPH_RSA_MODULE);
|
||||
|
||||
esp_crypto_mpi_lock_release();
|
||||
}
|
||||
|
||||
void esp_mpi_interrupt_enable( bool enable )
|
||||
{
|
||||
REG_WRITE(RSA_INTERRUPT_REG, enable);
|
||||
}
|
||||
|
||||
void esp_mpi_interrupt_clear( void )
|
||||
{
|
||||
REG_WRITE(RSA_CLEAR_INTERRUPT_REG, 1);
|
||||
}
|
||||
|
||||
/* Copy mbedTLS MPI bignum 'mpi' to hardware memory block at 'mem_base'.
|
||||
|
||||
If num_words is higher than the number of words in the bignum then
|
||||
these additional words will be zeroed in the memory buffer.
|
||||
*/
|
||||
static inline void mpi_to_mem_block(uint32_t mem_base, const mbedtls_mpi *mpi, size_t num_words)
|
||||
{
|
||||
uint32_t *pbase = (uint32_t *)mem_base;
|
||||
uint32_t copy_words = MIN(num_words, mpi->MBEDTLS_PRIVATE(n));
|
||||
|
||||
/* Copy MPI data to memory block registers */
|
||||
for (uint32_t i = 0; i < copy_words; i++) {
|
||||
pbase[i] = mpi->MBEDTLS_PRIVATE(p)[i];
|
||||
}
|
||||
|
||||
/* Zero any remaining memory block data */
|
||||
for (uint32_t i = copy_words; i < num_words; i++) {
|
||||
pbase[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* Read mbedTLS MPI bignum back from hardware memory block.
|
||||
|
||||
Reads num_words words from block.
|
||||
*/
|
||||
static inline void mem_block_to_mpi(mbedtls_mpi *x, uint32_t mem_base, int num_words)
|
||||
{
|
||||
|
||||
/* Copy data from memory block registers */
|
||||
esp_dport_access_read_buffer(x->MBEDTLS_PRIVATE(p), mem_base, num_words);
|
||||
/* Zero any remaining limbs in the bignum, if the buffer is bigger
|
||||
than num_words */
|
||||
for (size_t i = num_words; i < x->MBEDTLS_PRIVATE(n); i++) {
|
||||
x->MBEDTLS_PRIVATE(p)[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* Begin an RSA operation. op_reg specifies which 'START' register
|
||||
to write to.
|
||||
*/
|
||||
static inline void start_op(uint32_t op_reg)
|
||||
{
|
||||
/* Clear interrupt status */
|
||||
DPORT_REG_WRITE(RSA_CLEAR_INTERRUPT_REG, 1);
|
||||
|
||||
/* Note: above REG_WRITE includes a memw, so we know any writes
|
||||
to the memory blocks are also complete. */
|
||||
|
||||
DPORT_REG_WRITE(op_reg, 1);
|
||||
}
|
||||
|
||||
/* Wait for an RSA operation to complete.
|
||||
*/
|
||||
static inline void wait_op_complete(void)
|
||||
{
|
||||
while (DPORT_REG_READ(RSA_QUERY_INTERRUPT_REG) != 1)
|
||||
{ }
|
||||
|
||||
/* clear the interrupt */
|
||||
DPORT_REG_WRITE(RSA_CLEAR_INTERRUPT_REG, 1);
|
||||
}
|
||||
|
||||
|
||||
/* Read result from last MPI operation */
|
||||
void esp_mpi_read_result_hw_op(mbedtls_mpi *Z, size_t z_words)
|
||||
{
|
||||
wait_op_complete();
|
||||
mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, z_words);
|
||||
}
|
||||
|
||||
|
||||
/* Z = (X * Y) mod M
|
||||
|
||||
Not an mbedTLS function
|
||||
*/
|
||||
void esp_mpi_mul_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t num_words)
|
||||
{
|
||||
DPORT_REG_WRITE(RSA_LENGTH_REG, (num_words - 1));
|
||||
|
||||
/* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_Y_BLOCK_BASE, Y, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, Rinv, num_words);
|
||||
DPORT_REG_WRITE(RSA_M_DASH_REG, Mprime);
|
||||
|
||||
start_op(RSA_MOD_MULT_START_REG);
|
||||
}
|
||||
|
||||
/* Z = (X ^ Y) mod M
|
||||
*/
|
||||
void esp_mpi_exp_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t num_words)
|
||||
{
|
||||
size_t y_bits = mbedtls_mpi_bitlen(Y);
|
||||
|
||||
DPORT_REG_WRITE(RSA_LENGTH_REG, (num_words - 1));
|
||||
|
||||
/* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_Y_BLOCK_BASE, Y, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, Rinv, num_words);
|
||||
DPORT_REG_WRITE(RSA_M_DASH_REG, Mprime);
|
||||
|
||||
/* Enable acceleration options */
|
||||
DPORT_REG_WRITE(RSA_CONSTANT_TIME_REG, 0);
|
||||
DPORT_REG_WRITE(RSA_SEARCH_OPEN_REG, 1);
|
||||
DPORT_REG_WRITE(RSA_SEARCH_POS_REG, y_bits - 1);
|
||||
|
||||
/* Execute first stage montgomery multiplication */
|
||||
start_op(RSA_MODEXP_START_REG);
|
||||
|
||||
DPORT_REG_WRITE(RSA_SEARCH_OPEN_REG, 0);
|
||||
}
|
||||
|
||||
|
||||
/* Z = X * Y */
|
||||
void esp_mpi_mul_mpi_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
|
||||
{
|
||||
/* Copy X (right-extended) & Y (left-extended) to memory block */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_Z_BLOCK_BASE + num_words * 4, Y, num_words);
|
||||
/* NB: as Y is left-extended, we don't zero the bottom words_mult words of Y block.
|
||||
This is OK for now because zeroing is done by hardware when we do esp_mpi_acquire_hardware().
|
||||
*/
|
||||
DPORT_REG_WRITE(RSA_LENGTH_REG, (num_words * 2 - 1));
|
||||
start_op(RSA_MULT_START_REG);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief Special-case of (X * Y), where we use hardware montgomery mod
|
||||
multiplication to calculate result where either A or B are >2048 bits so
|
||||
can't use the standard multiplication method.
|
||||
*
|
||||
*/
|
||||
void esp_mpi_mult_mpi_failover_mod_mult_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
|
||||
{
|
||||
/* M = 2^num_words - 1, so block is entirely FF */
|
||||
for (size_t i = 0; i < num_words; i++) {
|
||||
DPORT_REG_WRITE(RSA_MEM_M_BLOCK_BASE + i * 4, UINT32_MAX);
|
||||
}
|
||||
|
||||
/* Mprime = 1 */
|
||||
DPORT_REG_WRITE(RSA_M_DASH_REG, 1);
|
||||
DPORT_REG_WRITE(RSA_LENGTH_REG, num_words - 1);
|
||||
|
||||
/* Load X & Y */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_Y_BLOCK_BASE, Y, num_words);
|
||||
|
||||
/* Rinv = 1, write first word */
|
||||
DPORT_REG_WRITE(RSA_MEM_RB_BLOCK_BASE, 1);
|
||||
|
||||
/* Zero out rest of the Rinv words */
|
||||
for (size_t i = 1; i < num_words; i++) {
|
||||
DPORT_REG_WRITE(RSA_MEM_RB_BLOCK_BASE + i * 4, 0);
|
||||
}
|
||||
|
||||
start_op(RSA_MOD_MULT_START_REG);
|
||||
}
|
@ -1,226 +0,0 @@
|
||||
/*
|
||||
* Multi-precision integer library
|
||||
* ESP32 S3 hardware accelerated parts based on mbedTLS implementation
|
||||
*
|
||||
* SPDX-FileCopyrightText: The Mbed TLS Contributors
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* SPDX-FileContributor: 2016-2022 Espressif Systems (Shanghai) CO LTD
|
||||
*/
|
||||
#include "soc/hwcrypto_periph.h"
|
||||
#include "esp_private/periph_ctrl.h"
|
||||
#include <mbedtls/bignum.h>
|
||||
#include "bignum_impl.h"
|
||||
#include "soc/dport_reg.h"
|
||||
#include "soc/system_reg.h"
|
||||
#include "soc/periph_defs.h"
|
||||
#include <sys/param.h>
|
||||
#include "esp_crypto_lock.h"
|
||||
|
||||
size_t esp_mpi_hardware_words(size_t words)
|
||||
{
|
||||
return words;
|
||||
}
|
||||
|
||||
void esp_mpi_enable_hardware_hw_op( void )
|
||||
{
|
||||
esp_crypto_mpi_lock_acquire();
|
||||
|
||||
/* Enable RSA hardware */
|
||||
periph_module_enable(PERIPH_RSA_MODULE);
|
||||
|
||||
REG_CLR_BIT(SYSTEM_RSA_PD_CTRL_REG, SYSTEM_RSA_MEM_PD);
|
||||
|
||||
while (DPORT_REG_READ(RSA_QUERY_CLEAN_REG) != 1) {
|
||||
}
|
||||
// Note: from enabling RSA clock to here takes about 1.3us
|
||||
|
||||
REG_WRITE(RSA_INTERRUPT_REG, 0);
|
||||
|
||||
}
|
||||
|
||||
void esp_mpi_disable_hardware_hw_op( void )
|
||||
{
|
||||
REG_SET_BIT(SYSTEM_RSA_PD_CTRL_REG, SYSTEM_RSA_MEM_PD);
|
||||
|
||||
/* Disable RSA hardware */
|
||||
periph_module_disable(PERIPH_RSA_MODULE);
|
||||
|
||||
esp_crypto_mpi_lock_release();
|
||||
}
|
||||
|
||||
void esp_mpi_interrupt_enable( bool enable )
|
||||
{
|
||||
REG_WRITE(RSA_INTERRUPT_REG, enable);
|
||||
}
|
||||
|
||||
void esp_mpi_interrupt_clear( void )
|
||||
{
|
||||
REG_WRITE(RSA_CLEAR_INTERRUPT_REG, 1);
|
||||
}
|
||||
|
||||
/* Copy mbedTLS MPI bignum 'mpi' to hardware memory block at 'mem_base'.
|
||||
|
||||
If num_words is higher than the number of words in the bignum then
|
||||
these additional words will be zeroed in the memory buffer.
|
||||
*/
|
||||
static inline void mpi_to_mem_block(uint32_t mem_base, const mbedtls_mpi *mpi, size_t num_words)
|
||||
{
|
||||
uint32_t *pbase = (uint32_t *)mem_base;
|
||||
uint32_t copy_words = MIN(num_words, mpi->MBEDTLS_PRIVATE(n));
|
||||
|
||||
/* Copy MPI data to memory block registers */
|
||||
for (uint32_t i = 0; i < copy_words; i++) {
|
||||
pbase[i] = mpi->MBEDTLS_PRIVATE(p)[i];
|
||||
}
|
||||
|
||||
/* Zero any remaining memory block data */
|
||||
for (uint32_t i = copy_words; i < num_words; i++) {
|
||||
pbase[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* Read mbedTLS MPI bignum back from hardware memory block.
|
||||
|
||||
Reads num_words words from block.
|
||||
*/
|
||||
static inline void mem_block_to_mpi(mbedtls_mpi *x, uint32_t mem_base, int num_words)
|
||||
{
|
||||
|
||||
/* Copy data from memory block registers */
|
||||
esp_dport_access_read_buffer(x->MBEDTLS_PRIVATE(p), mem_base, num_words);
|
||||
/* Zero any remaining limbs in the bignum, if the buffer is bigger
|
||||
than num_words */
|
||||
for (size_t i = num_words; i < x->MBEDTLS_PRIVATE(n); i++) {
|
||||
x->MBEDTLS_PRIVATE(p)[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* Begin an RSA operation. op_reg specifies which 'START' register
|
||||
to write to.
|
||||
*/
|
||||
static inline void start_op(uint32_t op_reg)
|
||||
{
|
||||
/* Clear interrupt status */
|
||||
DPORT_REG_WRITE(RSA_CLEAR_INTERRUPT_REG, 1);
|
||||
|
||||
/* Note: above REG_WRITE includes a memw, so we know any writes
|
||||
to the memory blocks are also complete. */
|
||||
|
||||
DPORT_REG_WRITE(op_reg, 1);
|
||||
}
|
||||
|
||||
/* Wait for an RSA operation to complete.
|
||||
*/
|
||||
static inline void wait_op_complete(void)
|
||||
{
|
||||
while (DPORT_REG_READ(RSA_QUERY_INTERRUPT_REG) != 1)
|
||||
{ }
|
||||
|
||||
/* clear the interrupt */
|
||||
DPORT_REG_WRITE(RSA_CLEAR_INTERRUPT_REG, 1);
|
||||
}
|
||||
|
||||
|
||||
/* Read result from last MPI operation */
|
||||
void esp_mpi_read_result_hw_op(mbedtls_mpi *Z, size_t z_words)
|
||||
{
|
||||
wait_op_complete();
|
||||
mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, z_words);
|
||||
}
|
||||
|
||||
|
||||
/* Z = (X * Y) mod M
|
||||
|
||||
Not an mbedTLS function
|
||||
*/
|
||||
void esp_mpi_mul_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t num_words)
|
||||
{
|
||||
DPORT_REG_WRITE(RSA_LENGTH_REG, (num_words - 1));
|
||||
|
||||
/* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_Y_BLOCK_BASE, Y, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, Rinv, num_words);
|
||||
DPORT_REG_WRITE(RSA_M_DASH_REG, Mprime);
|
||||
|
||||
start_op(RSA_MOD_MULT_START_REG);
|
||||
}
|
||||
|
||||
/* Z = (X ^ Y) mod M
|
||||
*/
|
||||
void esp_mpi_exp_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t num_words)
|
||||
{
|
||||
size_t y_bits = mbedtls_mpi_bitlen(Y);
|
||||
|
||||
DPORT_REG_WRITE(RSA_LENGTH_REG, (num_words - 1));
|
||||
|
||||
/* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_Y_BLOCK_BASE, Y, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, Rinv, num_words);
|
||||
DPORT_REG_WRITE(RSA_M_DASH_REG, Mprime);
|
||||
|
||||
/* Enable acceleration options */
|
||||
DPORT_REG_WRITE(RSA_CONSTANT_TIME_REG, 0);
|
||||
DPORT_REG_WRITE(RSA_SEARCH_OPEN_REG, 1);
|
||||
DPORT_REG_WRITE(RSA_SEARCH_POS_REG, y_bits - 1);
|
||||
|
||||
/* Execute first stage montgomery multiplication */
|
||||
start_op(RSA_MODEXP_START_REG);
|
||||
|
||||
DPORT_REG_WRITE(RSA_SEARCH_OPEN_REG, 0);
|
||||
}
|
||||
|
||||
|
||||
/* Z = X * Y */
|
||||
void esp_mpi_mul_mpi_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
|
||||
{
|
||||
/* Copy X (right-extended) & Y (left-extended) to memory block */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_Z_BLOCK_BASE + num_words * 4, Y, num_words);
|
||||
/* NB: as Y is left-extended, we don't zero the bottom words_mult words of Y block.
|
||||
This is OK for now because zeroing is done by hardware when we do esp_mpi_acquire_hardware().
|
||||
*/
|
||||
DPORT_REG_WRITE(RSA_LENGTH_REG, (num_words * 2 - 1));
|
||||
start_op(RSA_MULT_START_REG);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief Special-case of (X * Y), where we use hardware montgomery mod
|
||||
multiplication to calculate result where either A or B are >2048 bits so
|
||||
can't use the standard multiplication method.
|
||||
*
|
||||
*/
|
||||
void esp_mpi_mult_mpi_failover_mod_mult_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
|
||||
{
|
||||
/* M = 2^num_words - 1, so block is entirely FF */
|
||||
for (size_t i = 0; i < num_words; i++) {
|
||||
DPORT_REG_WRITE(RSA_MEM_M_BLOCK_BASE + i * 4, UINT32_MAX);
|
||||
}
|
||||
|
||||
/* Mprime = 1 */
|
||||
DPORT_REG_WRITE(RSA_M_DASH_REG, 1);
|
||||
DPORT_REG_WRITE(RSA_LENGTH_REG, num_words - 1);
|
||||
|
||||
/* Load X & Y */
|
||||
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
|
||||
mpi_to_mem_block(RSA_MEM_Y_BLOCK_BASE, Y, num_words);
|
||||
|
||||
/* Rinv = 1, write first word */
|
||||
DPORT_REG_WRITE(RSA_MEM_RB_BLOCK_BASE, 1);
|
||||
|
||||
/* Zero out rest of the Rinv words */
|
||||
for (size_t i = 1; i < num_words; i++) {
|
||||
DPORT_REG_WRITE(RSA_MEM_RB_BLOCK_BASE + i * 4, 0);
|
||||
}
|
||||
|
||||
start_op(RSA_MOD_MULT_START_REG);
|
||||
}
|
@ -83,6 +83,10 @@ if(CONFIG_SOC_MCPWM_SUPPORTED)
|
||||
list(APPEND srcs "${target}/mcpwm_periph.c")
|
||||
endif()
|
||||
|
||||
if(CONFIG_SOC_MPI_SUPPORTED)
|
||||
list(APPEND srcs "${target}/mpi_periph.c")
|
||||
endif()
|
||||
|
||||
if(CONFIG_SOC_SDMMC_HOST_SUPPORTED)
|
||||
list(APPEND srcs "${target}/sdmmc_periph.c")
|
||||
endif()
|
||||
|
@ -691,6 +691,14 @@ config SOC_SHA_SUPPORT_SHA512
|
||||
bool
|
||||
default y
|
||||
|
||||
config SOC_MPI_MEM_BLOCKS_NUM
|
||||
int
|
||||
default 4
|
||||
|
||||
config SOC_MPI_OPERATIONS_NUM
|
||||
bool
|
||||
default y
|
||||
|
||||
config SOC_RSA_MAX_BIT_LEN
|
||||
int
|
||||
default 4096
|
||||
|
@ -340,6 +340,9 @@
|
||||
#define SOC_SHA_SUPPORT_SHA384 (1)
|
||||
#define SOC_SHA_SUPPORT_SHA512 (1)
|
||||
|
||||
/*--------------------------- MPI CAPS ---------------------------------------*/
|
||||
#define SOC_MPI_MEM_BLOCKS_NUM (4)
|
||||
#define SOC_MPI_OPERATIONS_NUM (1)
|
||||
|
||||
/*--------------------------- RSA CAPS ---------------------------------------*/
|
||||
#define SOC_RSA_MAX_BIT_LEN (4096)
|
||||
|
19
components/soc/esp32/mpi_periph.c
Normal file
19
components/soc/esp32/mpi_periph.c
Normal file
@ -0,0 +1,19 @@
|
||||
/*
|
||||
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
#include "soc/hwcrypto_reg.h"
|
||||
#include "soc/mpi_periph.h"
|
||||
|
||||
const uint32_t MPI_LL_BLOCK_BASES[SOC_MPI_MEM_BLOCKS_NUM] = {
|
||||
RSA_MEM_X_BLOCK_BASE,
|
||||
RSA_MEM_Y_BLOCK_BASE,
|
||||
RSA_MEM_Z_BLOCK_BASE,
|
||||
RSA_MEM_M_BLOCK_BASE,
|
||||
};
|
||||
|
||||
const uint32_t MPI_LL_OPERATIONS[SOC_MPI_OPERATIONS_NUM] = {
|
||||
RSA_MULT_START_REG,
|
||||
};
|
@ -535,6 +535,14 @@ config SOC_RTCIO_PIN_COUNT
|
||||
int
|
||||
default 0
|
||||
|
||||
config SOC_MPI_MEM_BLOCKS_NUM
|
||||
int
|
||||
default 4
|
||||
|
||||
config SOC_MPI_OPERATIONS_NUM
|
||||
int
|
||||
default 3
|
||||
|
||||
config SOC_RSA_MAX_BIT_LEN
|
||||
int
|
||||
default 3072
|
||||
|
@ -242,6 +242,10 @@
|
||||
* for hold, wake & 32kHz crystal functions - via rtc_cntl_reg */
|
||||
#define SOC_RTCIO_PIN_COUNT (0U)
|
||||
|
||||
/*--------------------------- MPI CAPS ---------------------------------------*/
|
||||
#define SOC_MPI_MEM_BLOCKS_NUM (4)
|
||||
#define SOC_MPI_OPERATIONS_NUM (3)
|
||||
|
||||
/*--------------------------- RSA CAPS ---------------------------------------*/
|
||||
#define SOC_RSA_MAX_BIT_LEN (3072)
|
||||
|
||||
|
21
components/soc/esp32c3/mpi_periph.c
Normal file
21
components/soc/esp32c3/mpi_periph.c
Normal file
@ -0,0 +1,21 @@
|
||||
/*
|
||||
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
#include "soc/hwcrypto_reg.h"
|
||||
#include "soc/mpi_periph.h"
|
||||
|
||||
const uint32_t MPI_LL_BLOCK_BASES[4] = {
|
||||
RSA_MEM_X_BLOCK_BASE,
|
||||
RSA_MEM_Y_BLOCK_BASE,
|
||||
RSA_MEM_Z_BLOCK_BASE,
|
||||
RSA_MEM_M_BLOCK_BASE,
|
||||
};
|
||||
|
||||
const uint32_t MPI_LL_OPERATIONS[3] = {
|
||||
RSA_MULT_START_REG,
|
||||
RSA_MOD_MULT_START_REG,
|
||||
RSA_MODEXP_START_REG,
|
||||
};
|
@ -731,6 +731,14 @@ config SOC_PARLIO_TX_RX_SHARE_INTERRUPT
|
||||
bool
|
||||
default y
|
||||
|
||||
config SOC_MPI_MEM_BLOCKS_NUM
|
||||
int
|
||||
default 4
|
||||
|
||||
config SOC_MPI_OPERATIONS_NUM
|
||||
int
|
||||
default 3
|
||||
|
||||
config SOC_RSA_MAX_BIT_LEN
|
||||
int
|
||||
default 3072
|
||||
|
@ -300,6 +300,10 @@
|
||||
#define SOC_PARLIO_RX_UNIT_MAX_DATA_WIDTH 16 /*!< Number of data lines of the RX unit */
|
||||
#define SOC_PARLIO_TX_RX_SHARE_INTERRUPT 1 /*!< TX and RX unit share the same interrupt source number */
|
||||
|
||||
/*--------------------------- MPI CAPS ---------------------------------------*/
|
||||
#define SOC_MPI_MEM_BLOCKS_NUM (4)
|
||||
#define SOC_MPI_OPERATIONS_NUM (3)
|
||||
|
||||
/*--------------------------- RSA CAPS ---------------------------------------*/
|
||||
#define SOC_RSA_MAX_BIT_LEN (3072)
|
||||
|
||||
|
21
components/soc/esp32c6/mpi_periph.c
Normal file
21
components/soc/esp32c6/mpi_periph.c
Normal file
@ -0,0 +1,21 @@
|
||||
/*
|
||||
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
#include "soc/rsa_reg.h"
|
||||
#include "soc/mpi_periph.h"
|
||||
|
||||
const uint32_t MPI_LL_BLOCK_BASES[4] = {
|
||||
RSA_X_MEM,
|
||||
RSA_Y_MEM,
|
||||
RSA_Z_MEM,
|
||||
RSA_M_MEM,
|
||||
};
|
||||
|
||||
const uint32_t MPI_LL_OPERATIONS[3] = {
|
||||
RSA_SET_START_MULT_REG,
|
||||
RSA_SET_START_MODMULT_REG,
|
||||
RSA_SET_START_MODEXP_REG,
|
||||
};
|
@ -731,6 +731,14 @@ config SOC_RTCIO_PIN_COUNT
|
||||
int
|
||||
default 0
|
||||
|
||||
config SOC_MPI_MEM_BLOCKS_NUM
|
||||
int
|
||||
default 4
|
||||
|
||||
config SOC_MPI_OPERATIONS_NUM
|
||||
int
|
||||
default 3
|
||||
|
||||
config SOC_RSA_MAX_BIT_LEN
|
||||
int
|
||||
default 3072
|
||||
|
@ -311,6 +311,10 @@
|
||||
* for hold, wake & 32kHz crystal functions - via LP_AON registers */
|
||||
#define SOC_RTCIO_PIN_COUNT (0U)
|
||||
|
||||
/*--------------------------- MPI CAPS ---------------------------------------*/
|
||||
#define SOC_MPI_MEM_BLOCKS_NUM (4)
|
||||
#define SOC_MPI_OPERATIONS_NUM (3)
|
||||
|
||||
/*--------------------------- RSA CAPS ---------------------------------------*/
|
||||
#define SOC_RSA_MAX_BIT_LEN (3072)
|
||||
|
||||
|
21
components/soc/esp32h2/mpi_periph.c
Normal file
21
components/soc/esp32h2/mpi_periph.c
Normal file
@ -0,0 +1,21 @@
|
||||
/*
|
||||
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
#include "soc/rsa_reg.h"
|
||||
#include "soc/mpi_periph.h"
|
||||
|
||||
const uint32_t MPI_LL_BLOCK_BASES[4] = {
|
||||
RSA_X_MEM_REG,
|
||||
RSA_Y_MEM_REG,
|
||||
RSA_Z_MEM_REG,
|
||||
RSA_M_MEM_REG,
|
||||
};
|
||||
|
||||
const uint32_t MPI_LL_OPERATIONS[3] = {
|
||||
RSA_SET_START_MULT_REG,
|
||||
RSA_SET_START_MODMULT_REG,
|
||||
RSA_SET_START_MODEXP_REG,
|
||||
};
|
@ -831,6 +831,14 @@ config SOC_SHA_SUPPORT_SHA512_T
|
||||
bool
|
||||
default y
|
||||
|
||||
config SOC_MPI_MEM_BLOCKS_NUM
|
||||
int
|
||||
default 4
|
||||
|
||||
config SOC_MPI_OPERATIONS_NUM
|
||||
int
|
||||
default 3
|
||||
|
||||
config SOC_RSA_MAX_BIT_LEN
|
||||
int
|
||||
default 4096
|
||||
|
@ -361,6 +361,10 @@
|
||||
#define SOC_SHA_SUPPORT_SHA512_T (1)
|
||||
|
||||
|
||||
/*--------------------------- MPI CAPS ---------------------------------------*/
|
||||
#define SOC_MPI_MEM_BLOCKS_NUM (4)
|
||||
#define SOC_MPI_OPERATIONS_NUM (3)
|
||||
|
||||
/*--------------------------- RSA CAPS ---------------------------------------*/
|
||||
#define SOC_RSA_MAX_BIT_LEN (4096)
|
||||
|
||||
|
21
components/soc/esp32s2/mpi_periph.c
Normal file
21
components/soc/esp32s2/mpi_periph.c
Normal file
@ -0,0 +1,21 @@
|
||||
/*
|
||||
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
#include "soc/hwcrypto_reg.h"
|
||||
#include "soc/mpi_periph.h"
|
||||
|
||||
const uint32_t MPI_LL_BLOCK_BASES[4] = {
|
||||
RSA_MEM_X_BLOCK_BASE,
|
||||
RSA_MEM_Y_BLOCK_BASE,
|
||||
RSA_MEM_Z_BLOCK_BASE,
|
||||
RSA_MEM_M_BLOCK_BASE,
|
||||
};
|
||||
|
||||
const uint32_t MPI_LL_OPERATIONS[3] = {
|
||||
RSA_MULT_START_REG,
|
||||
RSA_MOD_MULT_START_REG,
|
||||
RSA_MODEXP_START_REG,
|
||||
};
|
@ -967,6 +967,14 @@ config SOC_SHA_SUPPORT_SHA512_T
|
||||
bool
|
||||
default y
|
||||
|
||||
config SOC_MPI_MEM_BLOCKS_NUM
|
||||
int
|
||||
default 4
|
||||
|
||||
config SOC_MPI_OPERATIONS_NUM
|
||||
int
|
||||
default 3
|
||||
|
||||
config SOC_RSA_MAX_BIT_LEN
|
||||
int
|
||||
default 4096
|
||||
|
@ -390,6 +390,10 @@
|
||||
#define SOC_SHA_SUPPORT_SHA512_T (1)
|
||||
|
||||
|
||||
/*--------------------------- MPI CAPS ---------------------------------------*/
|
||||
#define SOC_MPI_MEM_BLOCKS_NUM (4)
|
||||
#define SOC_MPI_OPERATIONS_NUM (3)
|
||||
|
||||
/*--------------------------- RSA CAPS ---------------------------------------*/
|
||||
#define SOC_RSA_MAX_BIT_LEN (4096)
|
||||
|
||||
|
21
components/soc/esp32s3/mpi_periph.c
Normal file
21
components/soc/esp32s3/mpi_periph.c
Normal file
@ -0,0 +1,21 @@
|
||||
/*
|
||||
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
#include "soc/hwcrypto_reg.h"
|
||||
#include "soc/mpi_periph.h"
|
||||
|
||||
const uint32_t MPI_LL_BLOCK_BASES[4] = {
|
||||
RSA_MEM_X_BLOCK_BASE,
|
||||
RSA_MEM_Y_BLOCK_BASE,
|
||||
RSA_MEM_Z_BLOCK_BASE,
|
||||
RSA_MEM_M_BLOCK_BASE,
|
||||
};
|
||||
|
||||
const uint32_t MPI_LL_OPERATIONS[3] = {
|
||||
RSA_MULT_START_REG,
|
||||
RSA_MOD_MULT_START_REG,
|
||||
RSA_MODEXP_START_REG,
|
||||
};
|
22
components/soc/include/soc/mpi_periph.h
Normal file
22
components/soc/include/soc/mpi_periph.h
Normal file
@ -0,0 +1,22 @@
|
||||
/*
|
||||
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <stdint.h>
|
||||
#include "soc/soc_caps.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
extern const uint32_t MPI_LL_BLOCK_BASES[SOC_MPI_MEM_BLOCKS_NUM];
|
||||
extern const uint32_t MPI_LL_OPERATIONS[SOC_MPI_OPERATIONS_NUM];
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user