Merge branch 'feature/refactor_phy_access_v4.2' into 'release/v4.2'

esp_wifi: refactor PHY access (Backport v4.2)

See merge request espressif/esp-idf!16975
This commit is contained in:
Jiang Jiang Jian 2022-02-15 10:36:56 +00:00
commit 473d39e6e6
10 changed files with 123 additions and 456 deletions

View File

@ -902,8 +902,7 @@ static void btdm_sleep_enter_phase1_wrapper(uint32_t lpcycles)
static void btdm_sleep_enter_phase2_wrapper(void) static void btdm_sleep_enter_phase2_wrapper(void)
{ {
if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) { if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
esp_modem_sleep_enter(MODEM_BLE_MODULE); esp_phy_disable();
esp_modem_sleep_enter(MODEM_CLASSIC_BT_MODULE);
#ifdef CONFIG_PM_ENABLE #ifdef CONFIG_PM_ENABLE
if (s_pm_lock_acquired) { if (s_pm_lock_acquired) {
esp_pm_lock_release(s_pm_lock); esp_pm_lock_release(s_pm_lock);
@ -911,7 +910,7 @@ static void btdm_sleep_enter_phase2_wrapper(void)
} }
#endif #endif
} else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) { } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
esp_modem_sleep_enter(MODEM_BLE_MODULE); esp_phy_disable();
// pause bluetooth baseband // pause bluetooth baseband
periph_module_disable(PERIPH_BT_BASEBAND_MODULE); periph_module_disable(PERIPH_BT_BASEBAND_MODULE);
} }
@ -927,8 +926,7 @@ static void btdm_sleep_exit_phase3_wrapper(void)
#endif #endif
if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) { if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
esp_modem_sleep_exit(MODEM_BLE_MODULE); esp_phy_enable();
esp_modem_sleep_exit(MODEM_CLASSIC_BT_MODULE);
btdm_check_and_init_bb(); btdm_check_and_init_bb();
#ifdef CONFIG_PM_ENABLE #ifdef CONFIG_PM_ENABLE
esp_timer_stop(s_btdm_slp_tmr); esp_timer_stop(s_btdm_slp_tmr);
@ -936,7 +934,7 @@ static void btdm_sleep_exit_phase3_wrapper(void)
} else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) { } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
// resume bluetooth baseband // resume bluetooth baseband
periph_module_enable(PERIPH_BT_BASEBAND_MODULE); periph_module_enable(PERIPH_BT_BASEBAND_MODULE);
esp_modem_sleep_exit(MODEM_BLE_MODULE); esp_phy_enable();
} }
} }
@ -1560,7 +1558,7 @@ static void bt_shutdown(void)
} }
esp_bt_controller_shutdown(); esp_bt_controller_shutdown();
esp_phy_rf_deinit(PHY_BT_MODULE); esp_phy_disable();
return; return;
} }
@ -1586,21 +1584,11 @@ esp_err_t esp_bt_controller_enable(esp_bt_mode_t mode)
esp_pm_lock_acquire(s_pm_lock); esp_pm_lock_acquire(s_pm_lock);
#endif #endif
esp_phy_load_cal_and_init(PHY_BT_MODULE); esp_phy_enable();
if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_NONE) { #if CONFIG_ESP32_WIFI_SW_COEXIST_ENABLE
//Just register to sleep module, make the modem sleep modules check BT sleep status when sleep enter. coex_init();
//Thus, it will prevent WIFI from disabling RF when BT is not in sleep but is using RF. #endif
esp_modem_sleep_register(MODEM_BLE_MODULE);
esp_modem_sleep_register(MODEM_CLASSIC_BT_MODULE);
esp_modem_sleep_exit(MODEM_BLE_MODULE);
esp_modem_sleep_exit(MODEM_CLASSIC_BT_MODULE);
} else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
esp_modem_sleep_register(MODEM_BLE_MODULE);
esp_modem_sleep_register(MODEM_CLASSIC_BT_MODULE);
} else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
esp_modem_sleep_register(MODEM_BLE_MODULE);
}
if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) { if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
btdm_controller_enable_sleep(true); btdm_controller_enable_sleep(true);
@ -1610,15 +1598,11 @@ esp_err_t esp_bt_controller_enable(esp_bt_mode_t mode)
btdm_check_and_init_bb(); btdm_check_and_init_bb();
ret = btdm_controller_enable(mode); ret = btdm_controller_enable(mode);
if (ret) { if (ret != 0) {
if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_NONE #if CONFIG_ESP32_WIFI_SW_COEXIST_ENABLE
|| btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) { coex_deinit();
esp_modem_sleep_deregister(MODEM_BLE_MODULE); #endif
esp_modem_sleep_deregister(MODEM_CLASSIC_BT_MODULE); esp_phy_disable();
} else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
esp_modem_sleep_deregister(MODEM_BLE_MODULE);
}
esp_phy_rf_deinit(PHY_BT_MODULE);
#ifdef CONFIG_PM_ENABLE #ifdef CONFIG_PM_ENABLE
if (!s_btdm_allow_light_sleep) { if (!s_btdm_allow_light_sleep) {
esp_pm_lock_release(s_light_sleep_pm_lock); esp_pm_lock_release(s_light_sleep_pm_lock);
@ -1654,14 +1638,11 @@ esp_err_t esp_bt_controller_disable(void)
btdm_controller_disable(); btdm_controller_disable();
if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_NONE #if CONFIG_ESP32_WIFI_SW_COEXIST_ENABLE
|| btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) { coex_deinit();
esp_modem_sleep_deregister(MODEM_BLE_MODULE); #endif
esp_modem_sleep_deregister(MODEM_CLASSIC_BT_MODULE);
} else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) { esp_phy_disable();
esp_modem_sleep_deregister(MODEM_BLE_MODULE);
}
esp_phy_rf_deinit(PHY_BT_MODULE);
btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED; btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED;
esp_unregister_shutdown_handler(bt_shutdown); esp_unregister_shutdown_handler(bt_shutdown);
@ -1728,13 +1709,8 @@ esp_err_t esp_bt_sleep_enable (void)
if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) { if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
return ESP_ERR_INVALID_STATE; return ESP_ERR_INVALID_STATE;
} }
if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) { if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG ||
esp_modem_sleep_register(MODEM_BLE_MODULE); btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
esp_modem_sleep_register(MODEM_CLASSIC_BT_MODULE);
btdm_controller_enable_sleep (true);
status = ESP_OK;
} else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
esp_modem_sleep_register(MODEM_BLE_MODULE);
btdm_controller_enable_sleep (true); btdm_controller_enable_sleep (true);
status = ESP_OK; status = ESP_OK;
} else { } else {
@ -1750,13 +1726,8 @@ esp_err_t esp_bt_sleep_disable (void)
if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) { if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
return ESP_ERR_INVALID_STATE; return ESP_ERR_INVALID_STATE;
} }
if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) { if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG ||
esp_modem_sleep_deregister(MODEM_BLE_MODULE); btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
esp_modem_sleep_deregister(MODEM_CLASSIC_BT_MODULE);
btdm_controller_enable_sleep (false);
status = ESP_OK;
} else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
esp_modem_sleep_deregister(MODEM_BLE_MODULE);
btdm_controller_enable_sleep (false); btdm_controller_enable_sleep (false);
status = ESP_OK; status = ESP_OK;
} else { } else {

View File

@ -461,6 +461,22 @@ static void * IRAM_ATTR zalloc_internal_wrapper(size_t size)
return ptr; return ptr;
} }
static int coex_init_wrapper(void)
{
#if CONFIG_ESP32_WIFI_SW_COEXIST_ENABLE
return coex_init();
#else
return 0;
#endif
}
static void coex_deinit_wrapper(void)
{
#if CONFIG_ESP32_WIFI_SW_COEXIST_ENABLE
coex_deinit();
#endif
}
static uint32_t coex_status_get_wrapper(void) static uint32_t coex_status_get_wrapper(void)
{ {
#if CONFIG_ESP32_WIFI_SW_COEXIST_ENABLE #if CONFIG_ESP32_WIFI_SW_COEXIST_ENABLE
@ -625,8 +641,8 @@ wifi_osi_funcs_t g_wifi_osi_funcs = {
._rand = esp_random, ._rand = esp_random,
._dport_access_stall_other_cpu_start_wrap = s_esp_dport_access_stall_other_cpu_start, ._dport_access_stall_other_cpu_start_wrap = s_esp_dport_access_stall_other_cpu_start,
._dport_access_stall_other_cpu_end_wrap = s_esp_dport_access_stall_other_cpu_end, ._dport_access_stall_other_cpu_end_wrap = s_esp_dport_access_stall_other_cpu_end,
._phy_rf_deinit = esp_phy_rf_deinit, ._phy_disable = esp_phy_disable,
._phy_load_cal_and_init = esp_phy_load_cal_and_init, ._phy_enable = esp_phy_enable,
._phy_common_clock_enable = esp_phy_common_clock_enable, ._phy_common_clock_enable = esp_phy_common_clock_enable,
._phy_common_clock_disable = esp_phy_common_clock_disable, ._phy_common_clock_disable = esp_phy_common_clock_disable,
._phy_update_country_info = esp_phy_update_country_info, ._phy_update_country_info = esp_phy_update_country_info,
@ -668,10 +684,8 @@ wifi_osi_funcs_t g_wifi_osi_funcs = {
._wifi_zalloc = wifi_zalloc_wrapper, ._wifi_zalloc = wifi_zalloc_wrapper,
._wifi_create_queue = wifi_create_queue_wrapper, ._wifi_create_queue = wifi_create_queue_wrapper,
._wifi_delete_queue = wifi_delete_queue_wrapper, ._wifi_delete_queue = wifi_delete_queue_wrapper,
._modem_sleep_enter = esp_modem_sleep_enter, ._coex_init = coex_init_wrapper,
._modem_sleep_exit = esp_modem_sleep_exit, ._coex_deinit = coex_deinit_wrapper,
._modem_sleep_register = esp_modem_sleep_register,
._modem_sleep_deregister = esp_modem_sleep_deregister,
._coex_status_get = coex_status_get_wrapper, ._coex_status_get = coex_status_get_wrapper,
._coex_condition_set = coex_condition_set_wrapper, ._coex_condition_set = coex_condition_set_wrapper,
._coex_wifi_request = coex_wifi_request_wrapper, ._coex_wifi_request = coex_wifi_request_wrapper,

View File

@ -459,6 +459,22 @@ static void * IRAM_ATTR zalloc_internal_wrapper(size_t size)
return ptr; return ptr;
} }
static int coex_init_wrapper(void)
{
#if CONFIG_ESP32_WIFI_SW_COEXIST_ENABLE
return coex_init();
#else
return 0;
#endif
}
static void coex_deinit_wrapper(void)
{
#if CONFIG_ESP32_WIFI_SW_COEXIST_ENABLE
coex_deinit();
#endif
}
static uint32_t coex_status_get_wrapper(void) static uint32_t coex_status_get_wrapper(void)
{ {
#if CONFIG_ESP32_WIFI_SW_COEXIST_ENABLE #if CONFIG_ESP32_WIFI_SW_COEXIST_ENABLE
@ -623,8 +639,8 @@ wifi_osi_funcs_t g_wifi_osi_funcs = {
._rand = esp_random, ._rand = esp_random,
._dport_access_stall_other_cpu_start_wrap = esp_empty_wrapper, ._dport_access_stall_other_cpu_start_wrap = esp_empty_wrapper,
._dport_access_stall_other_cpu_end_wrap = esp_empty_wrapper, ._dport_access_stall_other_cpu_end_wrap = esp_empty_wrapper,
._phy_rf_deinit = esp_phy_rf_deinit, ._phy_disable = esp_phy_disable,
._phy_load_cal_and_init = esp_phy_load_cal_and_init, ._phy_enable = esp_phy_enable,
._phy_update_country_info = esp_phy_update_country_info, ._phy_update_country_info = esp_phy_update_country_info,
._read_mac = esp_read_mac, ._read_mac = esp_read_mac,
._timer_arm = timer_arm_wrapper, ._timer_arm = timer_arm_wrapper,
@ -667,10 +683,8 @@ wifi_osi_funcs_t g_wifi_osi_funcs = {
._wifi_zalloc = wifi_zalloc_wrapper, ._wifi_zalloc = wifi_zalloc_wrapper,
._wifi_create_queue = wifi_create_queue_wrapper, ._wifi_create_queue = wifi_create_queue_wrapper,
._wifi_delete_queue = wifi_delete_queue_wrapper, ._wifi_delete_queue = wifi_delete_queue_wrapper,
._modem_sleep_enter = esp_modem_sleep_enter, ._coex_init = coex_init_wrapper,
._modem_sleep_exit = esp_modem_sleep_exit, ._coex_deinit = coex_deinit_wrapper,
._modem_sleep_register = esp_modem_sleep_register,
._modem_sleep_deregister = esp_modem_sleep_deregister,
._coex_status_get = coex_status_get_wrapper, ._coex_status_get = coex_status_get_wrapper,
._coex_condition_set = coex_condition_set_wrapper, ._coex_condition_set = coex_condition_set_wrapper,
._coex_wifi_request = coex_wifi_request_wrapper, ._coex_wifi_request = coex_wifi_request_wrapper,

View File

@ -53,18 +53,6 @@ esp_err_t coex_init(void);
*/ */
void coex_deinit(void); void coex_deinit(void);
/**
* @brief Pause software coexist
* extern function for internal use.
*/
void coex_pause(void);
/**
* @brief Resume software coexist
* extern function for internal use.
*/
void coex_resume(void);
/** /**
* @brief Get software coexist version string * @brief Get software coexist version string
* extern function for internal use. * extern function for internal use.

View File

@ -48,21 +48,6 @@ typedef enum {
PHY_RF_CAL_FULL = 0x00000002 /*!< Do full RF calibration. Produces best results, but also consumes a lot of time and current. Suggested to be used once. */ PHY_RF_CAL_FULL = 0x00000002 /*!< Do full RF calibration. Produces best results, but also consumes a lot of time and current. Suggested to be used once. */
} esp_phy_calibration_mode_t; } esp_phy_calibration_mode_t;
/**
* @brief Modules for modem sleep
*/
typedef enum{
MODEM_BLE_MODULE, //!< BLE controller used
MODEM_CLASSIC_BT_MODULE, //!< Classic BT controller used
MODEM_WIFI_STATION_MODULE, //!< Wi-Fi Station used
MODEM_WIFI_SOFTAP_MODULE, //!< Wi-Fi SoftAP used
MODEM_WIFI_SNIFFER_MODULE, //!< Wi-Fi Sniffer used
MODEM_WIFI_NULL_MODULE, //!< Wi-Fi Null mode used
MODEM_USER_MODULE, //!< User used
MODEM_MODULE_COUNT //!< Number of items
}modem_sleep_module_t;
#if CONFIG_ESP32_SUPPORT_MULTIPLE_PHY_INIT_DATA_BIN #if CONFIG_ESP32_SUPPORT_MULTIPLE_PHY_INIT_DATA_BIN
/** /**
* @brief PHY init data type * @brief PHY init data type
@ -87,30 +72,6 @@ typedef enum {
} phy_init_data_type_t; } phy_init_data_type_t;
#endif #endif
/**
* @brief Module WIFI mask for medem sleep
*/
#define MODEM_BT_MASK ((1<<MODEM_BLE_MODULE) | \
(1<<MODEM_CLASSIC_BT_MODULE))
/**
* @brief Module WIFI mask for medem sleep
*/
#define MODEM_WIFI_MASK ((1<<MODEM_WIFI_STATION_MODULE) | \
(1<<MODEM_WIFI_SOFTAP_MODULE) | \
(1<<MODEM_WIFI_SNIFFER_MODULE) | \
(1<<MODEM_WIFI_NULL_MODULE))
/**
* @brief Modules needing to call phy_rf_init
*/
typedef enum{
PHY_BT_MODULE, //!< Bluetooth used
PHY_WIFI_MODULE, //!< Wi-Fi used
PHY_MODEM_MODULE, //!< Modem sleep used
PHY_MODULE_COUNT //!< Number of items
}phy_rf_module_t;
/** /**
* @brief Get PHY init data * @brief Get PHY init data
* *
@ -193,38 +154,29 @@ esp_err_t esp_phy_store_cal_data_to_nvs(const esp_phy_calibration_data_t* cal_da
esp_err_t esp_phy_erase_cal_data_in_nvs(void); esp_err_t esp_phy_erase_cal_data_in_nvs(void);
/** /**
* @brief Initialize PHY and RF module * @brief Enable PHY and RF module
* *
* PHY and RF module should be initialized in order to use WiFi or BT. * PHY and RF module should be enabled in order to use WiFi or BT.
* Now PHY and RF initializing job is done automatically when start WiFi or BT. Users should not * Now PHY and RF enabling job is done automatically when start WiFi or BT. Users should not
* call this API in their application. * call this API in their application.
* *
* @param init_data PHY parameters. Default set of parameters can
* be obtained by calling esp_phy_get_default_init_data
* function.
* @param mode Calibration mode (Full, partial, or no calibration)
* @param[inout] calibration_data
* @return ESP_OK on success.
* @return ESP_FAIL on fail.
*/ */
esp_err_t esp_phy_rf_init(const esp_phy_init_data_t* init_data,esp_phy_calibration_mode_t mode, void esp_phy_enable(void);
esp_phy_calibration_data_t* calibration_data, phy_rf_module_t module);
/** /**
* @brief De-initialize PHY and RF module * @brief Disable PHY and RF module
* *
* PHY module should be de-initialized in order to shutdown WiFi or BT. * PHY module should be disabled in order to shutdown WiFi or BT.
* Now PHY and RF de-initializing job is done automatically when stop WiFi or BT. Users should not * Now PHY and RF disabling job is done automatically when stop WiFi or BT. Users should not
* call this API in their application. * call this API in their application.
* *
* @return ESP_OK on success.
*/ */
esp_err_t esp_phy_rf_deinit(phy_rf_module_t module); void esp_phy_disable(void);
/** /**
* @brief Load calibration data from NVS and initialize PHY and RF module * @brief Load calibration data from NVS and initialize PHY and RF module
*/ */
void esp_phy_load_cal_and_init(phy_rf_module_t module); void esp_phy_load_cal_and_init(void);
/** /**
* @brief Enable WiFi/BT common clock * @brief Enable WiFi/BT common clock
@ -238,30 +190,6 @@ void esp_phy_common_clock_enable(void);
*/ */
void esp_phy_common_clock_disable(void); void esp_phy_common_clock_disable(void);
/**
* @brief Module requires to enter modem sleep
*/
esp_err_t esp_modem_sleep_enter(modem_sleep_module_t module);
/**
* @brief Module requires to exit modem sleep
*/
esp_err_t esp_modem_sleep_exit(modem_sleep_module_t module);
/**
* @brief Register module to make it be able to require to enter/exit modem sleep
* Although the module has no sleep function, as long as the module use RF,
* it must call esp_modem_sleep_regsiter. Otherwise, other modules with sleep
* function will disable RF without checking the module which doesn't call
* esp_modem_sleep_regsiter.
*/
esp_err_t esp_modem_sleep_register(modem_sleep_module_t module);
/**
* @brief De-register module from modem sleep list
*/
esp_err_t esp_modem_sleep_deregister(modem_sleep_module_t module);
/** /**
* @brief Get the time stamp when PHY/RF was switched on * @brief Get the time stamp when PHY/RF was switched on
* @return return 0 if PHY/RF is never switched on. Otherwise return time in * @return return 0 if PHY/RF is never switched on. Otherwise return time in

View File

@ -78,8 +78,8 @@ typedef struct {
uint32_t (* _rand)(void); uint32_t (* _rand)(void);
void (* _dport_access_stall_other_cpu_start_wrap)(void); void (* _dport_access_stall_other_cpu_start_wrap)(void);
void (* _dport_access_stall_other_cpu_end_wrap)(void); void (* _dport_access_stall_other_cpu_end_wrap)(void);
int32_t (* _phy_rf_deinit)(uint32_t module); void (* _phy_disable)(void);
void (* _phy_load_cal_and_init)(uint32_t module); void (* _phy_enable)(void);
#if CONFIG_IDF_TARGET_ESP32 #if CONFIG_IDF_TARGET_ESP32
void (* _phy_common_clock_enable)(void); void (* _phy_common_clock_enable)(void);
void (* _phy_common_clock_disable)(void); void (* _phy_common_clock_disable)(void);
@ -126,10 +126,8 @@ typedef struct {
void * (* _wifi_zalloc)(size_t size); void * (* _wifi_zalloc)(size_t size);
void * (* _wifi_create_queue)(int32_t queue_len, int32_t item_size); void * (* _wifi_create_queue)(int32_t queue_len, int32_t item_size);
void (* _wifi_delete_queue)(void * queue); void (* _wifi_delete_queue)(void * queue);
int32_t (* _modem_sleep_enter)(uint32_t module); int (* _coex_init)(void);
int32_t (* _modem_sleep_exit)(uint32_t module); void (* _coex_deinit)(void);
int32_t (* _modem_sleep_register)(uint32_t module);
int32_t (* _modem_sleep_deregister)(uint32_t module);
uint32_t (* _coex_status_get)(void); uint32_t (* _coex_status_get)(void);
void (* _coex_condition_set)(uint32_t type, bool dissatisfy); void (* _coex_condition_set)(uint32_t type, bool dissatisfy);
int32_t (* _coex_wifi_request)(uint32_t event, uint32_t latency, uint32_t duration); int32_t (* _coex_wifi_request)(uint32_t event, uint32_t latency, uint32_t duration);

View File

@ -59,12 +59,10 @@ void phy_set_wifi_mode_only(bool wifi_only);
*/ */
void coex_bt_high_prio(void); void coex_bt_high_prio(void);
#if CONFIG_IDF_TARGET_ESP32S2
/** /**
* @brief Open PHY and RF. * @brief Open PHY and RF.
*/ */
void phy_wakeup_init(void); void phy_wakeup_init(void);
#endif
/** /**
* @brief Shutdown PHY and RF. * @brief Shutdown PHY and RF.

@ -1 +1 @@
Subproject commit 88afe19a1e1be3c56ebef0e2fb21bcdc2090ff2d Subproject commit 91a6115333d8b4c974e924cb7144b66d7e62e8b5

View File

@ -53,32 +53,20 @@ extern wifi_mac_time_update_cb_t s_wifi_mac_time_update_cb;
static const char* TAG = "phy_init"; static const char* TAG = "phy_init";
static _lock_t s_phy_rf_init_lock; static _lock_t s_phy_access_lock;
/* Bit mask of modules needing to call phy_rf_init */ /* Indicate PHY is calibrated or not */
static uint32_t s_module_phy_rf_init = 0; static bool s_is_phy_calibrated = false;
/* Whether modem sleep is turned on */ /* Reference count of enabling PHY */
static volatile bool s_is_phy_rf_en = false; static uint8_t s_phy_access_ref = 0;
/* Bit mask of modules needing to enter modem sleep mode */
static uint32_t s_modem_sleep_module_enter = 0;
/* Bit mask of modules which might use RF, system can enter modem
* sleep mode only when all modules registered require to enter
* modem sleep*/
static uint32_t s_modem_sleep_module_register = 0;
/* Whether modern sleep is turned on */
static volatile bool s_is_modem_sleep_en = false;
static _lock_t s_modem_sleep_lock;
#if CONFIG_IDF_TARGET_ESP32 #if CONFIG_IDF_TARGET_ESP32
/* time stamp updated when the PHY/RF is turned on */ /* time stamp updated when the PHY/RF is turned on */
static int64_t s_phy_rf_en_ts = 0; static int64_t s_phy_rf_en_ts = 0;
#endif #endif
/* PHY spinlock for libphy.a */
static DRAM_ATTR portMUX_TYPE s_phy_int_mux = portMUX_INITIALIZER_UNLOCKED; static DRAM_ATTR portMUX_TYPE s_phy_int_mux = portMUX_INITIALIZER_UNLOCKED;
/* Memory to store PHY digital registers */ /* Memory to store PHY digital registers */
@ -222,290 +210,57 @@ static inline void phy_digital_regs_load(void)
} }
} }
esp_err_t esp_phy_rf_init(const esp_phy_init_data_t* init_data, esp_phy_calibration_mode_t mode, void esp_phy_enable(void)
esp_phy_calibration_data_t* calibration_data, phy_rf_module_t module)
{ {
/* 3 modules may call phy_init: Wi-Fi, BT, Modem Sleep */ _lock_acquire(&s_phy_access_lock);
if (module >= PHY_MODULE_COUNT){
ESP_LOGE(TAG, "%s, invalid module parameter(%d), should be smaller than \
module count(%d)", __func__, module, PHY_MODULE_COUNT);
return ESP_ERR_INVALID_ARG;
}
_lock_acquire(&s_phy_rf_init_lock); if (s_phy_access_ref == 0) {
uint32_t s_module_phy_rf_init_old = s_module_phy_rf_init; #if CONFIG_IDF_TARGET_ESP32
bool is_wifi_or_bt_enabled = !!(s_module_phy_rf_init_old & (BIT(PHY_BT_MODULE) | BIT(PHY_WIFI_MODULE))); // Update time stamp
esp_err_t status = ESP_OK; s_phy_rf_en_ts = esp_timer_get_time();
s_module_phy_rf_init |= BIT(module); // Update WiFi MAC time before WiFi/BT common clock is enabled
phy_update_wifi_mac_time(false, s_phy_rf_en_ts);
#endif
esp_phy_common_clock_enable();
if ((is_wifi_or_bt_enabled == false) && (module == PHY_MODEM_MODULE)){ if (s_is_phy_calibrated == false) {
status = ESP_FAIL; esp_phy_load_cal_and_init();
} s_is_phy_calibrated = true;
else if (s_is_phy_rf_en == true) {
}
else {
/* If Wi-Fi, BT all disabled, modem sleep should not take effect;
* If either Wi-Fi or BT is enabled, should allow modem sleep requires
* to enter sleep;
* If Wi-Fi, BT co-exist, it is disallowed that only one module
* support modem sleep, E,g. BT support modem sleep but Wi-Fi not
* support modem sleep;
*/
if (is_wifi_or_bt_enabled == false){
if ((module == PHY_BT_MODULE) || (module == PHY_WIFI_MODULE)){
s_is_phy_rf_en = true;
}
} }
else { else {
if (module == PHY_MODEM_MODULE){ phy_wakeup_init();
s_is_phy_rf_en = true; phy_digital_regs_load();
}
else if ((module == PHY_BT_MODULE) || (module == PHY_WIFI_MODULE)){
/* New module (BT or Wi-Fi) can init RF according to modem_sleep_exit */
}
} }
if (s_is_phy_rf_en == true){
#if CONFIG_IDF_TARGET_ESP32
// Update time stamp
s_phy_rf_en_ts = esp_timer_get_time();
// Update WiFi MAC time before WiFi/BT common clock is enabled
phy_update_wifi_mac_time(false, s_phy_rf_en_ts);
#endif
esp_phy_common_clock_enable();
phy_set_wifi_mode_only(0);
#if CONFIG_IDF_TARGET_ESP32S2
if (module == PHY_MODEM_MODULE) {
phy_wakeup_init();
phy_digital_regs_load();
}
else
#endif
if (ESP_CAL_DATA_CHECK_FAIL == register_chipv7_phy(init_data, calibration_data, mode)) {
ESP_LOGW(TAG, "saving new calibration data because of checksum failure, mode(%d)", mode);
#ifdef CONFIG_ESP32_PHY_CALIBRATION_AND_DATA_STORAGE
if (mode != PHY_RF_CAL_FULL) {
esp_phy_store_cal_data_to_nvs(calibration_data);
}
#endif
}
#if CONFIG_IDF_TARGET_ESP32 #if CONFIG_IDF_TARGET_ESP32
coex_bt_high_prio(); coex_bt_high_prio();
#endif #endif
}
} }
s_phy_access_ref++;
#if CONFIG_ESP32_WIFI_SW_COEXIST_ENABLE _lock_release(&s_phy_access_lock);
if ((module == PHY_BT_MODULE) || (module == PHY_WIFI_MODULE)){
uint32_t phy_bt_wifi_mask = BIT(PHY_BT_MODULE) | BIT(PHY_WIFI_MODULE);
if ((s_module_phy_rf_init & phy_bt_wifi_mask) == phy_bt_wifi_mask) { //both wifi & bt enabled
coex_init();
coex_resume();
}
}
#endif
_lock_release(&s_phy_rf_init_lock);
return status;
} }
esp_err_t esp_phy_rf_deinit(phy_rf_module_t module) void esp_phy_disable(void)
{ {
/* 3 modules may call phy_init: Wi-Fi, BT, Modem Sleep */ _lock_acquire(&s_phy_access_lock);
if (module >= PHY_MODULE_COUNT){
ESP_LOGE(TAG, "%s, invalid module parameter(%d), should be smaller than \
module count(%d)", __func__, module, PHY_MODULE_COUNT);
return ESP_ERR_INVALID_ARG;
}
_lock_acquire(&s_phy_rf_init_lock); s_phy_access_ref--;
uint32_t s_module_phy_rf_init_old = s_module_phy_rf_init; if (s_phy_access_ref == 0) {
uint32_t phy_bt_wifi_mask = BIT(PHY_BT_MODULE) | BIT(PHY_WIFI_MODULE); phy_digital_regs_store();
bool is_wifi_or_bt_enabled = !!(s_module_phy_rf_init_old & phy_bt_wifi_mask); // Disable PHY and RF.
bool is_both_wifi_bt_enabled = ((s_module_phy_rf_init_old & phy_bt_wifi_mask) == phy_bt_wifi_mask); phy_close_rf();
s_module_phy_rf_init &= ~BIT(module);
esp_err_t status = ESP_OK;
#if CONFIG_ESP32_WIFI_SW_COEXIST_ENABLE
if ((module == PHY_BT_MODULE) || (module == PHY_WIFI_MODULE)){
if (is_both_wifi_bt_enabled == true) {
coex_deinit();
}
}
#endif
if ((is_wifi_or_bt_enabled == false) && (module == PHY_MODEM_MODULE)){
/* Modem sleep should not take effect in this case */
status = ESP_FAIL;
}
else if (s_is_phy_rf_en == false) {
//do nothing
}
else {
if (is_wifi_or_bt_enabled == false){
if ((module == PHY_BT_MODULE) || (module == PHY_WIFI_MODULE)){
s_is_phy_rf_en = false;
ESP_LOGE(TAG, "%s, RF should not be in enabled state if both Wi-Fi and BT are disabled", __func__);
}
}
else {
if (module == PHY_MODEM_MODULE){
s_is_phy_rf_en = false;
}
else if ((module == PHY_BT_MODULE) || (module == PHY_WIFI_MODULE)){
s_is_phy_rf_en = is_both_wifi_bt_enabled ? true : false;
}
}
if (s_is_phy_rf_en == false) {
phy_digital_regs_store();
// Disable PHY and RF.
phy_close_rf();
#if CONFIG_IDF_TARGET_ESP32 #if CONFIG_IDF_TARGET_ESP32
// Update WiFi MAC time before disalbe WiFi/BT common peripheral clock // Update WiFi MAC time before disalbe WiFi/BT common peripheral clock
phy_update_wifi_mac_time(true, esp_timer_get_time()); phy_update_wifi_mac_time(true, esp_timer_get_time());
#endif #endif
// Disable WiFi/BT common peripheral clock. Do not disable clock for hardware RNG // Disable WiFi/BT common peripheral clock. Do not disable clock for hardware RNG
esp_phy_common_clock_disable(); esp_phy_common_clock_disable();
}
} }
_lock_release(&s_phy_rf_init_lock); _lock_release(&s_phy_access_lock);
return status;
} }
esp_err_t esp_modem_sleep_enter(modem_sleep_module_t module)
{
#if CONFIG_ESP32_WIFI_SW_COEXIST_ENABLE
uint32_t phy_bt_wifi_mask = BIT(PHY_BT_MODULE) | BIT(PHY_WIFI_MODULE);
#endif
if (module >= MODEM_MODULE_COUNT){
ESP_LOGE(TAG, "%s, invalid module parameter(%d), should be smaller than \
module count(%d)", __func__, module, MODEM_MODULE_COUNT);
return ESP_ERR_INVALID_ARG;
}
else if (!(s_modem_sleep_module_register & BIT(module))){
ESP_LOGW(TAG, "%s, module (%d) has not been registered", __func__, module);
return ESP_ERR_INVALID_ARG;
}
else {
_lock_acquire(&s_modem_sleep_lock);
s_modem_sleep_module_enter |= BIT(module);
#if CONFIG_ESP32_WIFI_SW_COEXIST_ENABLE
_lock_acquire(&s_phy_rf_init_lock);
if (((s_module_phy_rf_init & phy_bt_wifi_mask) == phy_bt_wifi_mask) //both wifi & bt enabled
&& (s_modem_sleep_module_enter & (MODEM_BT_MASK | MODEM_WIFI_MASK)) != 0){
coex_pause();
}
_lock_release(&s_phy_rf_init_lock);
#endif
if (!s_is_modem_sleep_en && (s_modem_sleep_module_enter == s_modem_sleep_module_register)){
esp_err_t status = esp_phy_rf_deinit(PHY_MODEM_MODULE);
if (status == ESP_OK){
s_is_modem_sleep_en = true;
}
}
_lock_release(&s_modem_sleep_lock);
return ESP_OK;
}
}
esp_err_t esp_modem_sleep_exit(modem_sleep_module_t module)
{
#if CONFIG_ESP32_WIFI_SW_COEXIST_ENABLE
uint32_t phy_bt_wifi_mask = BIT(PHY_BT_MODULE) | BIT(PHY_WIFI_MODULE);
#endif
if (module >= MODEM_MODULE_COUNT){
ESP_LOGE(TAG, "%s, invalid module parameter(%d), should be smaller than \
module count(%d)", __func__, module, MODEM_MODULE_COUNT);
return ESP_ERR_INVALID_ARG;
}
else if (!(s_modem_sleep_module_register & BIT(module))){
ESP_LOGW(TAG, "%s, module (%d) has not been registered", __func__, module);
return ESP_ERR_INVALID_ARG;
}
else {
_lock_acquire(&s_modem_sleep_lock);
s_modem_sleep_module_enter &= ~BIT(module);
if (s_is_modem_sleep_en){
esp_err_t status = esp_phy_rf_init(NULL,PHY_RF_CAL_NONE,NULL, PHY_MODEM_MODULE);
if (status == ESP_OK){
s_is_modem_sleep_en = false;
}
}
#if CONFIG_ESP32_WIFI_SW_COEXIST_ENABLE
_lock_acquire(&s_phy_rf_init_lock);
if (((s_module_phy_rf_init & phy_bt_wifi_mask) == phy_bt_wifi_mask) //both wifi & bt enabled
&& (s_modem_sleep_module_enter & (MODEM_BT_MASK | MODEM_WIFI_MASK)) == 0){
coex_resume();
}
_lock_release(&s_phy_rf_init_lock);
#endif
_lock_release(&s_modem_sleep_lock);
return ESP_OK;
}
return ESP_OK;
}
esp_err_t esp_modem_sleep_register(modem_sleep_module_t module)
{
if (module >= MODEM_MODULE_COUNT){
ESP_LOGE(TAG, "%s, invalid module parameter(%d), should be smaller than \
module count(%d)", __func__, module, MODEM_MODULE_COUNT);
return ESP_ERR_INVALID_ARG;
}
else if (s_modem_sleep_module_register & BIT(module)){
ESP_LOGI(TAG, "%s, multiple registration of module (%d)", __func__, module);
return ESP_OK;
}
else{
_lock_acquire(&s_modem_sleep_lock);
s_modem_sleep_module_register |= BIT(module);
/* The module is set to enter modem sleep by default, otherwise will prevent
* other modules from entering sleep mode if this module never call enter sleep function
* in the future */
s_modem_sleep_module_enter |= BIT(module);
_lock_release(&s_modem_sleep_lock);
return ESP_OK;
}
}
esp_err_t esp_modem_sleep_deregister(modem_sleep_module_t module)
{
if (module >= MODEM_MODULE_COUNT){
ESP_LOGE(TAG, "%s, invalid module parameter(%d), should be smaller than \
module count(%d)", __func__, module, MODEM_MODULE_COUNT);
return ESP_ERR_INVALID_ARG;
}
else if (!(s_modem_sleep_module_register & BIT(module))){
ESP_LOGI(TAG, "%s, module (%d) has not been registered", __func__, module);
return ESP_OK;
}
else{
_lock_acquire(&s_modem_sleep_lock);
s_modem_sleep_module_enter &= ~BIT(module);
s_modem_sleep_module_register &= ~BIT(module);
if (s_modem_sleep_module_register == 0){
s_modem_sleep_module_enter = 0;
/* Once all module are de-registered and current state
* is modem sleep mode, we need to turn off modem sleep
*/
if (s_is_modem_sleep_en == true){
s_is_modem_sleep_en = false;
esp_phy_rf_init(NULL,PHY_RF_CAL_NONE,NULL, PHY_MODEM_MODULE);
}
}
_lock_release(&s_modem_sleep_lock);
return ESP_OK;
}
}
// PHY init data handling functions // PHY init data handling functions
#if CONFIG_ESP32_PHY_INIT_DATA_IN_PARTITION #if CONFIG_ESP32_PHY_INIT_DATA_IN_PARTITION
#include "esp_partition.h" #include "esp_partition.h"
@ -764,7 +519,7 @@ static void __attribute((unused)) esp_phy_reduce_tx_power(esp_phy_init_data_t* i
} }
#endif #endif
void esp_phy_load_cal_and_init(phy_rf_module_t module) void esp_phy_load_cal_and_init(void)
{ {
char * phy_version = get_phy_version_str(); char * phy_version = get_phy_version_str();
ESP_LOGI(TAG, "phy_version %s", phy_version); ESP_LOGI(TAG, "phy_version %s", phy_version);
@ -822,15 +577,19 @@ void esp_phy_load_cal_and_init(phy_rf_module_t module)
esp_efuse_mac_get_default(sta_mac); esp_efuse_mac_get_default(sta_mac);
memcpy(cal_data->mac, sta_mac, 6); memcpy(cal_data->mac, sta_mac, 6);
esp_phy_rf_init(init_data, calibration_mode, cal_data, module); esp_err_t ret = register_chipv7_phy(init_data, cal_data, calibration_mode);
if (ret == ESP_CAL_DATA_CHECK_FAIL) {
ESP_LOGW(TAG, "saving new calibration data because of checksum failure, mode(%d)", calibration_mode);
}
if (calibration_mode != PHY_RF_CAL_NONE && err != ESP_OK) { if ((calibration_mode != PHY_RF_CAL_NONE && err != ESP_OK) ||
(calibration_mode != PHY_RF_CAL_FULL && ret == ESP_CAL_DATA_CHECK_FAIL)) {
err = esp_phy_store_cal_data_to_nvs(cal_data); err = esp_phy_store_cal_data_to_nvs(cal_data);
} else { } else {
err = ESP_OK; err = ESP_OK;
} }
#else #else
esp_phy_rf_init(init_data, PHY_RF_CAL_FULL, cal_data, module); register_chipv7_phy(init_data, cal_data, PHY_RF_CAL_FULL);
#endif #endif
#if CONFIG_ESP32_REDUCE_PHY_TX_POWER #if CONFIG_ESP32_REDUCE_PHY_TX_POWER

View File

@ -45,10 +45,7 @@ static void test_phy_rtc_init(void)
} }
TEST_ESP_OK(ret); TEST_ESP_OK(ret);
#ifdef SOC_BT_SUPPORTED esp_phy_enable();
esp_phy_load_cal_and_init(PHY_BT_MODULE);
#endif
esp_phy_load_cal_and_init(PHY_WIFI_MODULE);
//must run here, not blocking in above code //must run here, not blocking in above code
TEST_ASSERT(1); TEST_ASSERT(1);