driver(uart):merge branch into v3.0 which fixed three bug related with uart

1. uart fifo reset
    2. uart pattern interrupt
    3. uart buffered_len error.
This commit is contained in:
kooho 2018-01-24 21:27:12 +08:00
parent 2a55629556
commit 3a6be05945
5 changed files with 395 additions and 130 deletions

View File

@ -618,8 +618,10 @@ int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t si
int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait); int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait);
/** /**
* @brief UART ring buffer flush. This will discard all data in the UART RX buffer. * @brief Alias of uart_flush_input.
* * UART ring buffer flush. This will discard all data in the UART RX buffer.
* @note Instead of waiting the data sent out, this function will clear UART rx buffer.
* In order to send all the data in tx FIFO, we can use uart_wait_tx_done function.
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2 * @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
* *
* @return * @return
@ -629,8 +631,18 @@ int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickTyp
esp_err_t uart_flush(uart_port_t uart_num); esp_err_t uart_flush(uart_port_t uart_num);
/** /**
* @brief UART get RX ring buffer cached data length * @brief Clear input buffer, discard all the data is in the ring-buffer.
* @note In order to send all the data in tx FIFO, we can use uart_wait_tx_done function.
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
* *
* @return
* - ESP_OK Success
* - ESP_FAIL Parameter error
*/
esp_err_t uart_flush_input(uart_port_t uart_num);
/**
* @brief UART get RX ring buffer cached data length
* @param uart_num UART port number. * @param uart_num UART port number.
* @param size Pointer of size_t to accept cached data length * @param size Pointer of size_t to accept cached data length
* *
@ -671,6 +683,39 @@ esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num);
*/ */
esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle); esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle);
/**
* @brief Return the nearest detected pattern position in buffer.
* The positions of the detected pattern are saved in a queue,
* this function will dequeue the first pattern position and move the pointer to next pattern position.
* @note If the RX buffer is full and flow control is not enabled,
* the detected pattern may not be found in the rx buffer due to overflow.
*
* The following APIs will modify the pattern position info:
* uart_flush_input, uart_read_bytes, uart_driver_delete, uart_pop_pattern_pos
* It is the application's responsibility to ensure atomic access to the pattern queue and the rx data buffer
* when using pattern detect feature.
*
* @param uart_num UART port number
* @return
* - (-1) No pattern found for current index or parameter error
* - others the pattern position in rx buffer.
*/
int uart_pattern_pop_pos(uart_port_t uart_num);
/**
* @brief Allocate a new memory with the given length to save record the detected pattern position in rx buffer.
* @param uart_num UART port number
* @param queue_length Max queue length for the detected pattern.
* If the queue length is not large enough, some pattern positions might be lost.
* Set this value to the maximum number of patterns that could be saved in data buffer at the same time.
* @return
* - ESP_ERR_NO_MEM No enough memory
* - ESP_ERR_INVALID_STATE Driver not installed
* - ESP_FAIL Parameter error
* - ESP_OK Success
*/
esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length);
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif

View File

@ -44,6 +44,8 @@ static const char* UART_TAG = "uart";
#define UART_FULL_THRESH_DEFAULT (120) #define UART_FULL_THRESH_DEFAULT (120)
#define UART_TOUT_THRESH_DEFAULT (10) #define UART_TOUT_THRESH_DEFAULT (10)
#define UART_TX_IDLE_NUM_DEFAULT (0) #define UART_TX_IDLE_NUM_DEFAULT (0)
#define UART_PATTERN_DET_QLEN_DEFAULT (10)
#define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux) #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
#define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux) #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
#define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux) #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
@ -58,6 +60,13 @@ typedef struct {
} tx_data; } tx_data;
} uart_tx_data_t; } uart_tx_data_t;
typedef struct {
int wr;
int rd;
int len;
int* data;
} uart_pat_rb_t;
typedef struct { typedef struct {
uart_port_t uart_num; /*!< UART port number*/ uart_port_t uart_num; /*!< UART port number*/
int queue_size; /*!< UART event queue size*/ int queue_size; /*!< UART event queue size*/
@ -74,6 +83,8 @@ typedef struct {
uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/ uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/ uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */ uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
uart_pat_rb_t rx_pattern_pos;
//tx parameters //tx parameters
SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/ SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/ SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
@ -91,8 +102,6 @@ typedef struct {
uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/ uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
} uart_obj_t; } uart_obj_t;
static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0}; static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
/* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */ /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {&UART0, &UART1, &UART2}; static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {&UART0, &UART1, &UART2};
@ -271,8 +280,11 @@ esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flo
static esp_err_t uart_reset_rx_fifo(uart_port_t uart_num) static esp_err_t uart_reset_rx_fifo(uart_port_t uart_num)
{ {
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
// Read all data from the FIFO //Due to hardware issue, we can not use fifo_rst to reset uart fifo.
while (UART[uart_num]->status.rxfifo_cnt) { //See description about UART_TXFIFO_RST and UART_RXFIFO_RST in <<esp32_technical_reference_manual>> v2.6 or later.
// we read the data out and make `fifo_len == 0 && rd_addr == wr_addr`.
while(UART[uart_num]->status.rxfifo_cnt != 0 || (UART[uart_num]->mem_rx_status.wr_addr != UART[uart_num]->mem_rx_status.rd_addr)) {
READ_PERI_REG(UART_FIFO_REG(uart_num)); READ_PERI_REG(UART_FIFO_REG(uart_num));
} }
return ESP_OK; return ESP_OK;
@ -305,6 +317,120 @@ esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
return ESP_OK; return ESP_OK;
} }
static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
{
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
int* pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
free(pdata);
}
return ESP_OK;
}
static esp_err_t uart_pattern_enqueue(uart_port_t uart_num, int pos)
{
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
esp_err_t ret = ESP_OK;
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
int next = p_pos->wr + 1;
if (next >= p_pos->len) {
next = 0;
}
if (next == p_pos->rd) {
ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
ret = ESP_FAIL;
} else {
p_pos->data[p_pos->wr] = pos;
p_pos->wr = next;
ret = ESP_OK;
}
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ret;
}
static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
{
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
return ESP_ERR_INVALID_STATE;
} else {
esp_err_t ret = ESP_OK;
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
if (p_pos->rd == p_pos->wr) {
ret = ESP_FAIL;
} else {
p_pos->rd++;
}
if (p_pos->rd >= p_pos->len) {
p_pos->rd = 0;
}
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ret;
}
}
static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
{
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
int rd = p_pos->rd;
while(rd != p_pos->wr) {
p_pos->data[rd] -= diff_len;
int rd_rec = rd;
rd ++;
if (rd >= p_pos->len) {
rd = 0;
}
if (p_pos->data[rd_rec] < 0) {
p_pos->rd = rd;
}
}
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return ESP_OK;
}
int uart_pattern_pop_pos(uart_port_t uart_num)
{
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
int pos = -1;
if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
pos = pat_pos->data[pat_pos->rd];
uart_pattern_dequeue(uart_num);
}
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return pos;
}
esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
int* pdata = (int*) malloc(queue_length * sizeof(int));
if(pdata == NULL) {
return ESP_ERR_NO_MEM;
}
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
free(ptmp);
return ESP_OK;
}
esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle) esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
{ {
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
@ -531,26 +657,42 @@ esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_
return ESP_OK; return ESP_OK;
} }
static int uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, int pat_num)
{
int cnt = 0;
int len = length;
while (len >= 0) {
if (buf[len] == pat_chr) {
cnt++;
} else {
cnt = 0;
}
if (cnt >= pat_num) {
break;
}
len --;
}
return len;
}
//internal isr handler for default driver code. //internal isr handler for default driver code.
static void uart_rx_intr_handler_default(void *param) static void uart_rx_intr_handler_default(void *param)
{ {
uart_obj_t *p_uart = (uart_obj_t*) param; uart_obj_t *p_uart = (uart_obj_t*) param;
uint8_t uart_num = p_uart->uart_num; uint8_t uart_num = p_uart->uart_num;
uart_dev_t* uart_reg = UART[uart_num]; uart_dev_t* uart_reg = UART[uart_num];
int rx_fifo_len = uart_reg->status.rxfifo_cnt;
uint8_t buf_idx = 0; uint8_t buf_idx = 0;
uint32_t uart_intr_status = UART[uart_num]->int_st.val; uint32_t uart_intr_status = UART[uart_num]->int_st.val;
int rx_fifo_len = 0;
uart_event_t uart_event; uart_event_t uart_event;
portBASE_TYPE HPTaskAwoken = 0; portBASE_TYPE HPTaskAwoken = 0;
static uint8_t pat_flg = 0;
while(uart_intr_status != 0x0) { while(uart_intr_status != 0x0) {
buf_idx = 0; buf_idx = 0;
uart_event.type = UART_EVENT_MAX; uart_event.type = UART_EVENT_MAX;
if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) { if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]); uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
uart_reg->int_ena.txfifo_empty = 0; uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
uart_reg->int_clr.txfifo_empty = 1;
UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
if(p_uart->tx_waiting_brk) { if(p_uart->tx_waiting_brk) {
continue; continue;
} }
@ -561,8 +703,7 @@ static void uart_rx_intr_handler_default(void *param)
if(HPTaskAwoken == pdTRUE) { if(HPTaskAwoken == pdTRUE) {
portYIELD_FROM_ISR() ; portYIELD_FROM_ISR() ;
} }
} } else {
else {
//We don't use TX ring buffer, because the size is zero. //We don't use TX ring buffer, because the size is zero.
if(p_uart->tx_buf_size == 0) { if(p_uart->tx_buf_size == 0) {
continue; continue;
@ -604,7 +745,7 @@ static void uart_rx_intr_handler_default(void *param)
break; break;
} }
} }
if(p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) { if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
//To fill the TX FIFO. //To fill the TX FIFO.
int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur; int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
for(buf_idx = 0; buf_idx < send_len; buf_idx++) { for(buf_idx = 0; buf_idx < send_len; buf_idx++) {
@ -613,7 +754,7 @@ static void uart_rx_intr_handler_default(void *param)
p_uart->tx_len_tot -= send_len; p_uart->tx_len_tot -= send_len;
p_uart->tx_len_cur -= send_len; p_uart->tx_len_cur -= send_len;
tx_fifo_rem -= send_len; tx_fifo_rem -= send_len;
if(p_uart->tx_len_cur == 0) { if (p_uart->tx_len_cur == 0) {
//Return item to ring buffer. //Return item to ring buffer.
vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken); vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
if(HPTaskAwoken == pdTRUE) { if(HPTaskAwoken == pdTRUE) {
@ -642,62 +783,96 @@ static void uart_rx_intr_handler_default(void *param)
} }
} }
} }
if(en_tx_flg) { if (en_tx_flg) {
UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]); uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
uart_reg->int_clr.txfifo_empty = 1; uart_enable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
uart_reg->int_ena.txfifo_empty = 1;
UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
} }
} }
} }
else if((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M) || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)) { else if ((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M)
if(p_uart->rx_buffer_full_flg == false) { || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)
//Get the buffer from the FIFO || (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M)
rx_fifo_len = uart_reg->status.rxfifo_cnt; ) {
p_uart->rx_stash_len = rx_fifo_len; rx_fifo_len = uart_reg->status.rxfifo_cnt;
if(pat_flg == 1) {
uart_intr_status |= UART_AT_CMD_CHAR_DET_INT_ST_M;
pat_flg = 0;
}
if (p_uart->rx_buffer_full_flg == false) {
//We have to read out all data in RX FIFO to clear the interrupt signal //We have to read out all data in RX FIFO to clear the interrupt signal
while(buf_idx < rx_fifo_len) { while (buf_idx < rx_fifo_len) {
p_uart->rx_data_buf[buf_idx++] = uart_reg->fifo.rw_byte; p_uart->rx_data_buf[buf_idx++] = uart_reg->fifo.rw_byte;
} }
//After Copying the Data From FIFO ,Clear intr_status uint8_t pat_chr = uart_reg->at_cmd_char.data;
UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]); int pat_num = uart_reg->at_cmd_char.char_num;
uart_reg->int_clr.rxfifo_tout = 1; int pat_idx = -1;
uart_reg->int_clr.rxfifo_full = 1;
UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]); //Get the buffer from the FIFO
uart_event.size = rx_fifo_len; if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
uart_clear_intr_status(uart_num, UART_AT_CMD_CHAR_DET_INT_CLR_M);
uart_event.type = UART_PATTERN_DET;
uart_event.size = rx_fifo_len;
pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
} else {
//After Copying the Data From FIFO ,Clear intr_status
uart_clear_intr_status(uart_num, UART_RXFIFO_TOUT_INT_CLR_M | UART_RXFIFO_FULL_INT_CLR_M);
uart_event.type = UART_DATA;
uart_event.size = rx_fifo_len;
}
p_uart->rx_stash_len = rx_fifo_len;
//If we fail to push data to ring buffer, we will have to stash the data, and send next time. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
//Mainly for applications that uses flow control or small ring buffer. //Mainly for applications that uses flow control or small ring buffer.
if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) { if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]); uart_disable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA_M | UART_RXFIFO_FULL_INT_ENA_M);
uart_reg->int_ena.rxfifo_full = 0; if (uart_event.type == UART_PATTERN_DET) {
uart_reg->int_ena.rxfifo_tout = 0; if (rx_fifo_len < pat_num) {
UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]); //some of the characters are read out in last interrupt
p_uart->rx_buffer_full_flg = true; uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
} else {
uart_pattern_enqueue(uart_num,
pat_idx <= -1 ?
//can not find the pattern in buffer,
p_uart->rx_buffered_len + p_uart->rx_stash_len :
// find the pattern in buffer
p_uart->rx_buffered_len + pat_idx);
}
if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
ESP_EARLY_LOGW(UART_TAG, "UART event queue full");
}
}
uart_event.type = UART_BUFFER_FULL; uart_event.type = UART_BUFFER_FULL;
p_uart->rx_buffer_full_flg = true;
} else { } else {
UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]); UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
if (rx_fifo_len < pat_num) {
//some of the characters are read out in last interrupt
uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
} else if(pat_idx >= 0) {
// find pattern in statsh buffer.
uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
}
}
p_uart->rx_buffered_len += p_uart->rx_stash_len; p_uart->rx_buffered_len += p_uart->rx_stash_len;
UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]); UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
uart_event.type = UART_DATA;
} }
if(HPTaskAwoken == pdTRUE) { if(HPTaskAwoken == pdTRUE) {
portYIELD_FROM_ISR() ; portYIELD_FROM_ISR() ;
} }
} else { } else {
UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]); uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA_M | UART_RXFIFO_TOUT_INT_ENA_M);
uart_reg->int_ena.rxfifo_full = 0; uart_clear_intr_status(uart_num, UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M);
uart_reg->int_ena.rxfifo_tout = 0; if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
uart_reg->int_clr.val = UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M; uart_reg->int_clr.at_cmd_char_det = 1;
UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]); uart_event.type = UART_PATTERN_DET;
uart_event.type = UART_BUFFER_FULL; uart_event.size = rx_fifo_len;
pat_flg = 1;
}
} }
} else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) { } else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
// When fifo overflows, we reset the fifo.
UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]); UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
// Read all data from the FIFO uart_reset_rx_fifo(uart_num);
rx_fifo_len = uart_reg->status.rxfifo_cnt;
for (int i = 0; i < rx_fifo_len; i++) {
READ_PERI_REG(UART_FIFO_REG(uart_num));
}
uart_reg->int_clr.rxfifo_ovf = 1; uart_reg->int_clr.rxfifo_ovf = 1;
UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]); UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
uart_event.type = UART_FIFO_OVF; uart_event.type = UART_FIFO_OVF;
@ -729,18 +904,14 @@ static void uart_rx_intr_handler_default(void *param)
} }
} }
} else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) { } else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]); uart_disable_intr_mask(uart_num, UART_TX_BRK_IDLE_DONE_INT_ENA_M);
uart_reg->int_ena.tx_brk_idle_done = 0; uart_clear_intr_status(uart_num, UART_TX_BRK_IDLE_DONE_INT_CLR_M);
uart_reg->int_clr.tx_brk_idle_done = 1;
UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
} else if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) { } else if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
uart_reg->int_clr.at_cmd_char_det = 1; uart_reg->int_clr.at_cmd_char_det = 1;
uart_event.type = UART_PATTERN_DET; uart_event.type = UART_PATTERN_DET;
} else if(uart_intr_status & UART_TX_DONE_INT_ST_M) { } else if(uart_intr_status & UART_TX_DONE_INT_ST_M) {
UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]); uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
uart_reg->int_ena.tx_done = 0; uart_clear_intr_status(uart_num, UART_TX_DONE_INT_CLR_M);
uart_reg->int_clr.tx_done = 1;
UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken); xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
if(HPTaskAwoken == pdTRUE) { if(HPTaskAwoken == pdTRUE) {
portYIELD_FROM_ISR() ; portYIELD_FROM_ISR() ;
@ -751,7 +922,9 @@ static void uart_rx_intr_handler_default(void *param)
} }
if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) { if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken); if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
ESP_EARLY_LOGW(UART_TAG, "UART event queue full");
}
if(HPTaskAwoken == pdTRUE) { if(HPTaskAwoken == pdTRUE) {
portYIELD_FROM_ISR() ; portYIELD_FROM_ISR() ;
} }
@ -858,7 +1031,6 @@ static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool
offset += send_size; offset += send_size;
uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT); uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
} }
xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
} else { } else {
while(size) { while(size) {
//semaphore for tx_fifo available //semaphore for tx_fifo available
@ -921,9 +1093,6 @@ int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickTyp
p_uart_obj[uart_num]->rx_cur_remain = size; p_uart_obj[uart_num]->rx_cur_remain = size;
} else { } else {
xSemaphoreGive(p_uart_obj[uart_num]->rx_mux); xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
p_uart_obj[uart_num]->rx_buffered_len -= copy_len;
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return copy_len; return copy_len;
} }
} }
@ -933,7 +1102,11 @@ int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickTyp
len_tmp = p_uart_obj[uart_num]->rx_cur_remain; len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
} }
memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp); memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
uart_pattern_queue_update(uart_num, len_tmp);
p_uart_obj[uart_num]->rx_ptr += len_tmp; p_uart_obj[uart_num]->rx_ptr += len_tmp;
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
p_uart_obj[uart_num]->rx_cur_remain -= len_tmp; p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
copy_len += len_tmp; copy_len += len_tmp;
length -= len_tmp; length -= len_tmp;
@ -953,10 +1126,8 @@ int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickTyp
} }
} }
} }
xSemaphoreGive(p_uart_obj[uart_num]->rx_mux); xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
p_uart_obj[uart_num]->rx_buffered_len -= copy_len;
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
return copy_len; return copy_len;
} }
@ -968,7 +1139,9 @@ esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
return ESP_OK; return ESP_OK;
} }
esp_err_t uart_flush(uart_port_t uart_num) esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
esp_err_t uart_flush_input(uart_port_t uart_num)
{ {
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL); UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL); UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
@ -984,6 +1157,7 @@ esp_err_t uart_flush(uart_port_t uart_num)
vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr); vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain; p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]); UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
p_uart->rx_ptr = NULL; p_uart->rx_ptr = NULL;
p_uart->rx_cur_remain = 0; p_uart->rx_cur_remain = 0;
@ -995,6 +1169,7 @@ esp_err_t uart_flush(uart_port_t uart_num)
} }
UART_ENTER_CRITICAL(&uart_spinlock[uart_num]); UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
p_uart_obj[uart_num]->rx_buffered_len -= size; p_uart_obj[uart_num]->rx_buffered_len -= size;
uart_pattern_queue_update(uart_num, size);
UART_EXIT_CRITICAL(&uart_spinlock[uart_num]); UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
vRingbufferReturnItem(p_uart->rx_ring_buf, data); vRingbufferReturnItem(p_uart->rx_ring_buf, data);
if(p_uart_obj[uart_num]->rx_buffer_full_flg) { if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
@ -1025,7 +1200,7 @@ esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_b
UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0, "ESP_INTR_FLAG_IRAM set in intr_alloc_flags", ESP_FAIL); /* uart_rx_intr_handler_default is not in IRAM */ UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0, "ESP_INTR_FLAG_IRAM set in intr_alloc_flags", ESP_FAIL); /* uart_rx_intr_handler_default is not in IRAM */
if(p_uart_obj[uart_num] == NULL) { if(p_uart_obj[uart_num] == NULL) {
p_uart_obj[uart_num] = (uart_obj_t*) malloc(sizeof(uart_obj_t)); p_uart_obj[uart_num] = (uart_obj_t*) calloc(1, sizeof(uart_obj_t));
if(p_uart_obj[uart_num] == NULL) { if(p_uart_obj[uart_num] == NULL) {
ESP_LOGE(UART_TAG, "UART driver malloc error"); ESP_LOGE(UART_TAG, "UART driver malloc error");
return ESP_FAIL; return ESP_FAIL;
@ -1045,6 +1220,7 @@ esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_b
p_uart_obj[uart_num]->tx_brk_len = 0; p_uart_obj[uart_num]->tx_brk_len = 0;
p_uart_obj[uart_num]->tx_waiting_brk = 0; p_uart_obj[uart_num]->tx_waiting_brk = 0;
p_uart_obj[uart_num]->rx_buffered_len = 0; p_uart_obj[uart_num]->rx_buffered_len = 0;
uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
if(uart_queue) { if(uart_queue) {
p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t)); p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
@ -1104,6 +1280,7 @@ esp_err_t uart_driver_delete(uart_port_t uart_num)
esp_intr_free(p_uart_obj[uart_num]->intr_handle); esp_intr_free(p_uart_obj[uart_num]->intr_handle);
uart_disable_rx_intr(uart_num); uart_disable_rx_intr(uart_num);
uart_disable_tx_intr(uart_num); uart_disable_tx_intr(uart_num);
uart_pattern_link_free(uart_num);
if(p_uart_obj[uart_num]->tx_fifo_sem) { if(p_uart_obj[uart_num]->tx_fifo_sem) {
vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem); vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);

View File

@ -1105,11 +1105,24 @@
#define UART_MEM_RX_STATUS_REG(i) (REG_UART_BASE(i) + 0x60) #define UART_MEM_RX_STATUS_REG(i) (REG_UART_BASE(i) + 0x60)
/* UART_MEM_RX_STATUS : RO ;bitpos:[23:0] ;default: 24'h0 ; */ /* UART_MEM_RX_STATUS : RO ;bitpos:[23:0] ;default: 24'h0 ; */
/*description: */ /*description: This register stores the current uart rx mem read address
and rx mem write address */
#define UART_MEM_RX_STATUS 0x00FFFFFF #define UART_MEM_RX_STATUS 0x00FFFFFF
#define UART_MEM_RX_STATUS_M ((UART_MEM_RX_STATUS_V)<<(UART_MEM_RX_STATUS_S)) #define UART_MEM_RX_STATUS_M ((UART_MEM_RX_STATUS_V)<<(UART_MEM_RX_STATUS_S))
#define UART_MEM_RX_STATUS_V 0xFFFFFF #define UART_MEM_RX_STATUS_V 0xFFFFFF
#define UART_MEM_RX_STATUS_S 0 #define UART_MEM_RX_STATUS_S 0
/* UART_MEM_RX_RD_ADDR : RO ;bitpos:[12:2] ;default: 11'h0 ; */
/*description: This register stores the rx mem read address */
#define UART_MEM_RX_RD_ADDR 0x000007FF
#define UART_MEM_RX_RD_ADDR_M ((UART_MEM_RX_RD_ADDR_V)<<(UART_MEM_RX_RD_ADDR_S))
#define UART_MEM_RX_RD_ADDR_V (0x7FF)
#define UART_MEM_RX_RD_ADDR_S (2)
/* UART_MEM_RX_WR_ADDR : RO ;bitpos:[23:13] ;default: 11'h0 ; */
/*description: This register stores the rx mem write address */
#define UART_MEM_RX_WR_ADDR 0x000007FF
#define UART_MEM_RX_WR_ADDR_M ((UART_MEM_RX_WR_ADDR_V)<<(UART_MEM_RX_WR_ADDR_S))
#define UART_MEM_RX_WR_ADDR_V (0x7FF)
#define UART_MEM_RX_WR_ADDR_S (13)
#define UART_MEM_CNT_STATUS_REG(i) (REG_UART_BASE(i) + 0x64) #define UART_MEM_CNT_STATUS_REG(i) (REG_UART_BASE(i) + 0x64)
/* UART_TX_MEM_CNT : RO ;bitpos:[5:3] ;default: 3'b0 ; */ /* UART_TX_MEM_CNT : RO ;bitpos:[5:3] ;default: 3'b0 ; */

View File

@ -332,8 +332,14 @@ typedef volatile struct {
} mem_tx_status; } mem_tx_status;
union { union {
struct { struct {
uint32_t status:24; uint32_t status: 24;
uint32_t reserved24: 8; uint32_t reserved24: 8;
};
struct {
uint32_t reserved0: 2;
uint32_t rd_addr: 11; /*This register stores the rx mem read address.*/
uint32_t wr_addr: 11; /*This register stores the rx mem write address.*/
uint32_t reserved: 8;
}; };
uint32_t val; uint32_t val;
} mem_rx_status; } mem_rx_status;

View File

@ -7,6 +7,7 @@
CONDITIONS OF ANY KIND, either express or implied. CONDITIONS OF ANY KIND, either express or implied.
*/ */
#include <stdio.h> #include <stdio.h>
#include <string.h>
#include "freertos/FreeRTOS.h" #include "freertos/FreeRTOS.h"
#include "freertos/task.h" #include "freertos/task.h"
#include "freertos/queue.h" #include "freertos/queue.h"
@ -29,58 +30,85 @@ static const char *TAG = "uart_events";
*/ */
#define EX_UART_NUM UART_NUM_0 #define EX_UART_NUM UART_NUM_0
#define PATTERN_CHR_NUM (3) /*!< Set the number of consecutive and identical characters received by receiver which defines a UART pattern*/
#define BUF_SIZE (1024) #define BUF_SIZE (1024)
#define RD_BUF_SIZE (BUF_SIZE)
static QueueHandle_t uart0_queue; static QueueHandle_t uart0_queue;
static void uart_event_task(void *pvParameters) static void uart_event_task(void *pvParameters)
{ {
uart_event_t event; uart_event_t event;
size_t buffered_size; size_t buffered_size;
uint8_t *dtmp = (uint8_t *) malloc(BUF_SIZE); uint8_t* dtmp = (uint8_t*) malloc(RD_BUF_SIZE);
while (1) { for(;;) {
/* Waiting for UART event. //Waiting for UART event.
If it happens then print out information what is it */ if(xQueueReceive(uart0_queue, (void * )&event, (portTickType)portMAX_DELAY)) {
if (xQueueReceive(uart0_queue, (void * )&event, (portTickType)portMAX_DELAY)) { bzero(dtmp, RD_BUF_SIZE);
ESP_LOGI(TAG, "uart[%d] event:", EX_UART_NUM); ESP_LOGI(TAG, "uart[%d] event:", EX_UART_NUM);
switch (event.type) { switch(event.type) {
case UART_DATA: //Event of UART receving data
/* Event of UART receiving data /*We'd better handler data event fast, there would be much more data events than
* We'd better handler data event fast, there would be much more data events other types of events. If we take too much time on data event, the queue might
* than other types of events. be full.*/
* If we take too much time on data event, the queue might be full. case UART_DATA:
* In this example, we don't process data in event, but read data outside. ESP_LOGI(TAG, "[UART DATA]: %d", event.size);
*/ uart_read_bytes(EX_UART_NUM, dtmp, event.size, portMAX_DELAY);
uart_get_buffered_data_len(EX_UART_NUM, &buffered_size); ESP_LOGI(TAG, "[DATA EVT]:");
ESP_LOGI(TAG, "data, len: %d; buffered len: %d", event.size, buffered_size); uart_write_bytes(EX_UART_NUM, (const char*) dtmp, event.size);
break; break;
case UART_FIFO_OVF: //Event of HW FIFO overflow detected
ESP_LOGE(TAG, "hw fifo overflow"); case UART_FIFO_OVF:
// If fifo overflow happened, you should consider adding flow control for your application. ESP_LOGI(TAG, "hw fifo overflow");
// We can read data out out the buffer, or directly flush the Rx buffer. // If fifo overflow happened, you should consider adding flow control for your application.
uart_flush(EX_UART_NUM); // The ISR has already reset the rx FIFO,
break; // As an example, we directly flush the rx buffer here in order to read more data.
case UART_BUFFER_FULL: uart_flush_input(EX_UART_NUM);
ESP_LOGE(TAG, "ring buffer full"); xQueueReset(uart0_queue);
// If buffer full happened, you should consider increasing your buffer size break;
// We can read data out out the buffer, or directly flush the Rx buffer. //Event of UART ring buffer full
uart_flush(EX_UART_NUM); case UART_BUFFER_FULL:
break; ESP_LOGI(TAG, "ring buffer full");
case UART_BREAK: // If buffer full happened, you should consider encreasing your buffer size
ESP_LOGI(TAG, "uart rx break detected"); // As an example, we directly flush the rx buffer here in order to read more data.
break; uart_flush_input(EX_UART_NUM);
case UART_PARITY_ERR: xQueueReset(uart0_queue);
ESP_LOGE(TAG, "uart parity error"); break;
break; //Event of UART RX break detected
case UART_FRAME_ERR: case UART_BREAK:
ESP_LOGE(TAG, "uart frame error"); ESP_LOGI(TAG, "uart rx break");
break; break;
case UART_PATTERN_DET: //Event of UART parity check error
ESP_LOGI(TAG, "uart pattern detected"); case UART_PARITY_ERR:
break; ESP_LOGI(TAG, "uart parity error");
default: break;
ESP_LOGE(TAG, "not serviced uart event type: %d\n", event.type); //Event of UART frame error
break; case UART_FRAME_ERR:
ESP_LOGI(TAG, "uart frame error");
break;
//UART_PATTERN_DET
case UART_PATTERN_DET:
uart_get_buffered_data_len(EX_UART_NUM, &buffered_size);
int pos = uart_pattern_pop_pos(EX_UART_NUM);
ESP_LOGI(TAG, "[UART PATTERN DETECTED] pos: %d, buffered size: %d", pos, buffered_size);
if (pos == -1) {
// There used to be a UART_PATTERN_DET event, but the pattern position queue is full so that it can not
// record the position. We should set a larger queue size.
// As an example, we directly flush the rx buffer here.
uart_flush_input(EX_UART_NUM);
} else {
uart_read_bytes(EX_UART_NUM, dtmp, pos, 100 / portTICK_PERIOD_MS);
uint8_t pat[PATTERN_CHR_NUM + 1];
memset(pat, 0, sizeof(pat));
uart_read_bytes(EX_UART_NUM, pat, PATTERN_CHR_NUM, 100 / portTICK_PERIOD_MS);
ESP_LOGI(TAG, "read data: %s", dtmp);
ESP_LOGI(TAG, "read pat : %s", pat);
}
break;
//Others
default:
ESP_LOGI(TAG, "uart event type: %d", event.type);
break;
} }
} }
} }
@ -103,23 +131,19 @@ void app_main()
.flow_ctrl = UART_HW_FLOWCTRL_DISABLE .flow_ctrl = UART_HW_FLOWCTRL_DISABLE
}; };
uart_param_config(EX_UART_NUM, &uart_config); uart_param_config(EX_UART_NUM, &uart_config);
// Set UART pins using UART0 default pins i.e. no changes
//Set UART log level
esp_log_level_set(TAG, ESP_LOG_INFO);
//Set UART pins (using UART0 default pins ie no changes.)
uart_set_pin(EX_UART_NUM, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE); uart_set_pin(EX_UART_NUM, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE);
uart_driver_install(EX_UART_NUM, BUF_SIZE * 2, BUF_SIZE * 2, 10, &uart0_queue, 0); //Install UART driver, and get the queue.
uart_driver_install(EX_UART_NUM, BUF_SIZE * 2, BUF_SIZE * 2, 20, &uart0_queue, 0);
// Set uart pattern detection function //Set uart pattern detect function.
uart_enable_pattern_det_intr(EX_UART_NUM, '+', 3, 10000, 10, 10); uart_enable_pattern_det_intr(EX_UART_NUM, '+', PATTERN_CHR_NUM, 10000, 10, 10);
//Reset the pattern queue length to record at most 20 pattern positions.
uart_pattern_queue_reset(EX_UART_NUM, 20);
// Create a task to handle uart event from ISR //Create a task to handler UART event from ISR
xTaskCreate(uart_event_task, "uart_event_task", 2048, NULL, 12, NULL); xTaskCreate(uart_event_task, "uart_event_task", 2048, NULL, 12, NULL);
// Reserve a buffer and process incoming data
uint8_t *data = (uint8_t *) malloc(BUF_SIZE);
while (1) {
int len = uart_read_bytes(EX_UART_NUM, data, BUF_SIZE, 100 / portTICK_RATE_MS);
if (len > 0) {
ESP_LOGI(TAG, "uart read : %d", len);
uart_write_bytes(EX_UART_NUM, (const char *)data, len);
}
}
} }