support flash instr and rodata copy to SPIRAM

This commit is contained in:
jiangguangming 2020-08-28 11:53:28 +08:00 committed by morris
parent 61f89b97c6
commit 28145e0894
6 changed files with 147 additions and 83 deletions

View File

@ -87,5 +87,52 @@ void esp_spiram_writeback_cache(void);
*/ */
esp_err_t esp_spiram_reserve_dma_pool(size_t size); esp_err_t esp_spiram_reserve_dma_pool(size_t size);
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
extern int _instruction_reserved_start, _instruction_reserved_end;
/**
* @brief Get the start page number of the instruction in SPI flash
*
* @return start page number
*/
uint32_t instruction_flash_start_page_get(void);
/**
* @brief Get the end page number of the instruction in SPI flash
*
* @return end page number
*/
uint32_t instruction_flash_end_page_get(void);
/**
* @brief Get the offset of instruction from SPI flash to SPI RAM
*
* @return instruction offset
*/
int instruction_flash2spiram_offset(void);
#endif
#if CONFIG_SPIRAM_RODATA
extern int _rodata_reserved_start, _rodata_reserved_end;
/**
* @brief Get the start page number of the rodata in SPI flash
*
* @return start page number
*/
uint32_t rodata_flash_start_page_get(void);
/**
* @brief Get the end page number of the rodata in SPI flash
*
* @return end page number
*/
uint32_t rodata_flash_end_page_get(void);
/**
* @brief Get the offset number of rodata from SPI flash to SPI RAM
*
* @return rodata offset
*/
int rodata_flash2spiram_offset(void);
#endif
#endif #endif

View File

@ -284,6 +284,7 @@ SECTIONS
.flash.text : .flash.text :
{ {
_stext = .; _stext = .;
_instruction_reserved_start = ABSOLUTE(.);
_text_start = ABSOLUTE(.); _text_start = ABSOLUTE(.);
mapping[flash_text] mapping[flash_text]
@ -294,6 +295,7 @@ SECTIONS
*(.fini) *(.fini)
*(.gnu.version) *(.gnu.version)
_text_end = ABSOLUTE(.); _text_end = ABSOLUTE(.);
_instruction_reserved_end = ABSOLUTE(.);
_etext = .; _etext = .;
/** /**
@ -308,6 +310,7 @@ SECTIONS
{ {
. = SIZEOF(.flash.text); . = SIZEOF(.flash.text);
. = ALIGN(0x10000) + 0x20; . = ALIGN(0x10000) + 0x20;
_rodata_reserved_start = .;
} > drom0_0_seg } > drom0_0_seg
/* When modifying the alignment, don't forget to update tls_section_alignment in pxPortInitialiseStack */ /* When modifying the alignment, don't forget to update tls_section_alignment in pxPortInitialiseStack */
@ -367,6 +370,7 @@ SECTIONS
*(.tbss) *(.tbss)
*(.tbss.*) *(.tbss.*)
_thread_local_end = ABSOLUTE(.); _thread_local_end = ABSOLUTE(.);
_rodata_reserved_end = ABSOLUTE(.);
. = ALIGN(4); . = ALIGN(4);
} > default_rodata_seg } > default_rodata_seg

View File

@ -40,7 +40,7 @@ we add more types of external RAM memory, this can be made into a more intellige
#if CONFIG_SPIRAM #if CONFIG_SPIRAM
static const char* TAG = "spiram"; static const char *TAG = "spiram";
#if CONFIG_SPIRAM_SPEED_40M #if CONFIG_SPIRAM_SPEED_40M
#define PSRAM_SPEED PSRAM_CACHE_S40M #define PSRAM_SPEED PSRAM_CACHE_S40M
@ -50,9 +50,7 @@ static const char* TAG = "spiram";
#define PSRAM_SPEED PSRAM_CACHE_S20M #define PSRAM_SPEED PSRAM_CACHE_S20M
#endif #endif
#define SPIRAM_SIZE esp_spiram_get_size() static bool spiram_inited = false;
static bool spiram_inited=false;
/* /*
@ -62,31 +60,34 @@ static bool spiram_inited=false;
*/ */
bool esp_spiram_test(void) bool esp_spiram_test(void)
{ {
volatile int *spiram=(volatile int*)(SOC_EXTRAM_DATA_HIGH - SPIRAM_SIZE); size_t spiram_size = esp_spiram_get_size();
volatile int *spiram = (volatile int *)(SOC_EXTRAM_DATA_HIGH - spiram_size);
size_t p; size_t p;
size_t s=SPIRAM_SIZE; size_t s = spiram_size;
int errct=0; int errct = 0;
int initial_err=-1; int initial_err = -1;
if ((SOC_EXTRAM_DATA_HIGH - SOC_EXTRAM_DATA_LOW) < SPIRAM_SIZE) { if (SOC_EXTRAM_DATA_SIZE < spiram_size) {
ESP_EARLY_LOGW(TAG, "Only test spiram from %08x to %08x\n", SOC_EXTRAM_DATA_LOW, SOC_EXTRAM_DATA_HIGH); ESP_EARLY_LOGW(TAG, "Only test spiram from %08x to %08x\n", SOC_EXTRAM_DATA_LOW, SOC_EXTRAM_DATA_HIGH);
spiram=(volatile int*)SOC_EXTRAM_DATA_LOW; spiram = (volatile int *)SOC_EXTRAM_DATA_LOW;
s = SOC_EXTRAM_DATA_HIGH - SOC_EXTRAM_DATA_LOW; s = SOC_EXTRAM_DATA_HIGH - SOC_EXTRAM_DATA_LOW;
} }
for (p=0; p<(s/sizeof(int)); p+=8) { for (p = 0; p < (s / sizeof(int)); p += 8) {
spiram[p]=p^0xAAAAAAAA; spiram[p] = p ^ 0xAAAAAAAA;
} }
for (p=0; p<(s/sizeof(int)); p+=8) { for (p = 0; p < (s / sizeof(int)); p += 8) {
if (spiram[p]!=(p^0xAAAAAAAA)) { if (spiram[p] != (p ^ 0xAAAAAAAA)) {
errct++; errct++;
if (errct==1) initial_err=p*4; if (errct == 1) {
initial_err = p * 4;
}
if (errct < 4) { if (errct < 4) {
ESP_EARLY_LOGE(TAG, "SPI SRAM error@%08x:%08x/%08x \n", &spiram[p], spiram[p], p^0xAAAAAAAA); ESP_EARLY_LOGE(TAG, "SPI SRAM error@%08x:%08x/%08x \n", &spiram[p], spiram[p], p ^ 0xAAAAAAAA);
} }
} }
} }
if (errct) { if (errct) {
ESP_EARLY_LOGE(TAG, "SPI SRAM memory test fail. %d/%d writes failed, first @ %X\n", errct, s/32, initial_err+SOC_EXTRAM_DATA_LOW); ESP_EARLY_LOGE(TAG, "SPI SRAM memory test fail. %d/%d writes failed, first @ %X\n", errct, s / 32, initial_err + SOC_EXTRAM_DATA_LOW);
return false; return false;
} else { } else {
ESP_EARLY_LOGI(TAG, "SPI SRAM memory test OK"); ESP_EARLY_LOGI(TAG, "SPI SRAM memory test OK");
@ -96,11 +97,12 @@ bool esp_spiram_test(void)
void IRAM_ATTR esp_spiram_init_cache(void) void IRAM_ATTR esp_spiram_init_cache(void)
{ {
size_t spiram_size = esp_spiram_get_size();
Cache_Suspend_DCache(); Cache_Suspend_DCache();
if ((SOC_EXTRAM_DATA_HIGH - SOC_EXTRAM_DATA_LOW) >= SPIRAM_SIZE) { if ((SOC_EXTRAM_DATA_HIGH - SOC_EXTRAM_DATA_LOW) >= spiram_size) {
Cache_Dbus_MMU_Set(MMU_ACCESS_SPIRAM, SOC_EXTRAM_DATA_HIGH - SPIRAM_SIZE, 0, 64, SPIRAM_SIZE >> 16, 0); Cache_Dbus_MMU_Set(MMU_ACCESS_SPIRAM, SOC_EXTRAM_DATA_HIGH - spiram_size, 0, 64, spiram_size >> 16, 0);
} else { } else {
Cache_Dbus_MMU_Set(MMU_ACCESS_SPIRAM, SOC_EXTRAM_DATA_HIGH - SPIRAM_SIZE, 0, 64, (SOC_EXTRAM_DATA_HIGH - SOC_EXTRAM_DATA_LOW) >> 16, 0); Cache_Dbus_MMU_Set(MMU_ACCESS_SPIRAM, SOC_EXTRAM_DATA_HIGH - spiram_size, 0, 64, (SOC_EXTRAM_DATA_HIGH - SOC_EXTRAM_DATA_LOW) >> 16, 0);
} }
REG_CLR_BIT(EXTMEM_DCACHE_CTRL1_REG, EXTMEM_DCACHE_SHUT_CORE0_BUS); REG_CLR_BIT(EXTMEM_DCACHE_CTRL1_REG, EXTMEM_DCACHE_SHUT_CORE0_BUS);
#if !CONFIG_FREERTOS_UNICORE #if !CONFIG_FREERTOS_UNICORE
@ -110,8 +112,6 @@ void IRAM_ATTR esp_spiram_init_cache(void)
} }
static uint32_t pages_for_flash = 0; static uint32_t pages_for_flash = 0;
static uint32_t page0_mapped = 0;
static uint32_t page0_page = INVALID_PHY_PAGE;
static uint32_t instrcution_in_spiram = 0; static uint32_t instrcution_in_spiram = 0;
static uint32_t rodata_in_spiram = 0; static uint32_t rodata_in_spiram = 0;
@ -127,6 +127,11 @@ static uint32_t rodata_start_page = 0;
static uint32_t rodata_end_page = 0; static uint32_t rodata_end_page = 0;
#endif #endif
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS || CONFIG_SPIRAM_RODATA
static uint32_t page0_mapped = 0;
static uint32_t page0_page = INVALID_PHY_PAGE;
#endif
uint32_t esp_spiram_instruction_access_enabled(void) uint32_t esp_spiram_instruction_access_enabled(void)
{ {
return instrcution_in_spiram; return instrcution_in_spiram;
@ -140,21 +145,18 @@ uint32_t esp_spiram_rodata_access_enabled(void)
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
esp_err_t esp_spiram_enable_instruction_access(void) esp_err_t esp_spiram_enable_instruction_access(void)
{ {
size_t spiram_size = esp_spiram_get_size();
uint32_t pages_in_flash = 0; uint32_t pages_in_flash = 0;
pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_IBUS0, &page0_mapped); pages_in_flash += Cache_Count_Flash_Pages(CACHE_IBUS, &page0_mapped);
pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_IBUS1, &page0_mapped); if ((pages_in_flash + pages_for_flash) > (spiram_size >> 16)) {
if ((pages_in_flash + pages_for_flash) > (SPIRAM_SIZE >> 16)) { ESP_EARLY_LOGE(TAG, "SPI RAM space not enough for the instructions, has %d pages, need %d pages.", (spiram_size >> 16), (pages_in_flash + pages_for_flash));
ESP_EARLY_LOGE(TAG, "SPI RAM space not enough for the instructions, has %d pages, need %d pages.", (SPIRAM_SIZE >> 16), (pages_in_flash + pages_for_flash));
return ESP_FAIL; return ESP_FAIL;
} }
ESP_EARLY_LOGI(TAG, "Instructions copied and mapped to SPIRAM"); ESP_EARLY_LOGI(TAG, "Instructions copied and mapped to SPIRAM");
uint32_t instr_mmu_offset = ((uint32_t)&_instruction_reserved_start & 0xFFFFFF)/MMU_PAGE_SIZE; uint32_t mmu_value = *(volatile uint32_t *)(DR_REG_MMU_TABLE + CACHE_IROM_MMU_START);
uint32_t mmu_value = *(volatile uint32_t *)(DR_REG_MMU_TABLE + PRO_CACHE_IBUS0_MMU_START + instr_mmu_offset*sizeof(uint32_t));
mmu_value &= MMU_ADDRESS_MASK;
instr_flash2spiram_offs = mmu_value - pages_for_flash; instr_flash2spiram_offs = mmu_value - pages_for_flash;
ESP_EARLY_LOGV(TAG, "Instructions from flash page%d copy to SPIRAM page%d, Offset: %d", mmu_value, pages_for_flash, instr_flash2spiram_offs); ESP_EARLY_LOGV(TAG, "Instructions from flash page%d copy to SPIRAM page%d, Offset: %d", mmu_value, pages_for_flash, instr_flash2spiram_offs);
pages_for_flash = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_IBUS0, IRAM0_ADDRESS_LOW, pages_for_flash, &page0_page); pages_for_flash = Cache_Flash_To_SPIRAM_Copy(CACHE_IBUS, IRAM0_CACHE_ADDRESS_LOW, pages_for_flash, &page0_page);
pages_for_flash = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_IBUS1, IRAM1_ADDRESS_LOW, pages_for_flash, &page0_page);
instrcution_in_spiram = 1; instrcution_in_spiram = 1;
return ESP_OK; return ESP_OK;
} }
@ -163,27 +165,19 @@ esp_err_t esp_spiram_enable_instruction_access(void)
#if CONFIG_SPIRAM_RODATA #if CONFIG_SPIRAM_RODATA
esp_err_t esp_spiram_enable_rodata_access(void) esp_err_t esp_spiram_enable_rodata_access(void)
{ {
size_t spiram_size = esp_spiram_get_size();
uint32_t pages_in_flash = 0; uint32_t pages_in_flash = 0;
pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_IBUS2, &page0_mapped); pages_in_flash += Cache_Count_Flash_Pages(CACHE_DBUS, &page0_mapped);
pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_DBUS0, &page0_mapped);
pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_DBUS1, &page0_mapped);
pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_DBUS2, &page0_mapped);
if ((pages_in_flash + pages_for_flash) > (SPIRAM_SIZE >> 16)) { if ((pages_in_flash + pages_for_flash) > (spiram_size >> 16)) {
ESP_EARLY_LOGE(TAG, "SPI RAM space not enough for the read only data."); ESP_EARLY_LOGE(TAG, "SPI RAM space not enough for the read only data.");
return ESP_FAIL; return ESP_FAIL;
} }
ESP_EARLY_LOGI(TAG, "Read only data copied and mapped to SPIRAM"); ESP_EARLY_LOGI(TAG, "Read only data copied and mapped to SPIRAM");
uint32_t rodata_mmu_offset = ((uint32_t)&_rodata_reserved_start & 0xFFFFFF)/MMU_PAGE_SIZE; uint32_t mmu_value = *(volatile uint32_t *)(DR_REG_MMU_TABLE + CACHE_DROM_MMU_START);
uint32_t mmu_value = *(volatile uint32_t *)(DR_REG_MMU_TABLE + PRO_CACHE_IBUS2_MMU_START + rodata_mmu_offset*sizeof(uint32_t));
mmu_value &= MMU_ADDRESS_MASK;
rodata_flash2spiram_offs = mmu_value - pages_for_flash; rodata_flash2spiram_offs = mmu_value - pages_for_flash;
ESP_EARLY_LOGV(TAG, "Rodata from flash page%d copy to SPIRAM page%d, Offset: %d", mmu_value, pages_for_flash, rodata_flash2spiram_offs); ESP_EARLY_LOGV(TAG, "Rodata from flash page%d copy to SPIRAM page%d, Offset: %d", mmu_value, pages_for_flash, rodata_flash2spiram_offs);
pages_for_flash = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_IBUS2, DROM0_ADDRESS_LOW, pages_for_flash, &page0_page); pages_for_flash = Cache_Flash_To_SPIRAM_Copy(CACHE_DBUS, DRAM0_CACHE_ADDRESS_LOW, pages_for_flash, &page0_page);
pages_for_flash = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_DBUS0, DRAM0_ADDRESS_LOW, pages_for_flash, &page0_page);
pages_for_flash = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_DBUS1, DRAM1_ADDRESS_LOW, pages_for_flash, &page0_page);
pages_for_flash = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_DBUS2, DPORT_ADDRESS_LOW, pages_for_flash, &page0_page);
rodata_in_spiram = 1; rodata_in_spiram = 1;
return ESP_OK; return ESP_OK;
} }
@ -192,10 +186,9 @@ esp_err_t esp_spiram_enable_rodata_access(void)
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
void instruction_flash_page_info_init(void) void instruction_flash_page_info_init(void)
{ {
uint32_t instr_page_cnt = ((uint32_t)&_instruction_reserved_end - SOC_IROM_LOW + MMU_PAGE_SIZE - 1)/MMU_PAGE_SIZE; uint32_t instr_page_cnt = ((uint32_t)&_instruction_reserved_end - SOC_IROM_LOW + MMU_PAGE_SIZE - 1) / MMU_PAGE_SIZE;
uint32_t instr_mmu_offset = ((uint32_t)&_instruction_reserved_start & 0xFFFFFF)/MMU_PAGE_SIZE;
instr_start_page = *(volatile uint32_t *)(DR_REG_MMU_TABLE + PRO_CACHE_IBUS0_MMU_START + instr_mmu_offset*sizeof(uint32_t)); instr_start_page = *(volatile uint32_t *)(DR_REG_MMU_TABLE + CACHE_IROM_MMU_START);
instr_start_page &= MMU_ADDRESS_MASK; instr_start_page &= MMU_ADDRESS_MASK;
instr_end_page = instr_start_page + instr_page_cnt - 1; instr_end_page = instr_start_page + instr_page_cnt - 1;
} }
@ -219,10 +212,9 @@ int IRAM_ATTR instruction_flash2spiram_offset(void)
#if CONFIG_SPIRAM_RODATA #if CONFIG_SPIRAM_RODATA
void rodata_flash_page_info_init(void) void rodata_flash_page_info_init(void)
{ {
uint32_t rodata_page_cnt = ((uint32_t)&_rodata_reserved_end - SOC_DROM_LOW + MMU_PAGE_SIZE - 1)/MMU_PAGE_SIZE; uint32_t rodata_page_cnt = ((uint32_t)&_rodata_reserved_end - ((uint32_t)&_rodata_reserved_start & ~ (MMU_PAGE_SIZE - 1)) + MMU_PAGE_SIZE - 1) / MMU_PAGE_SIZE;
uint32_t rodata_mmu_offset = ((uint32_t)&_rodata_reserved_start & 0xFFFFFF)/MMU_PAGE_SIZE;
rodata_start_page = *(volatile uint32_t *)(DR_REG_MMU_TABLE + PRO_CACHE_IBUS2_MMU_START + rodata_mmu_offset*sizeof(uint32_t)); rodata_start_page = *(volatile uint32_t *)(DR_REG_MMU_TABLE + CACHE_DROM_MMU_START);
rodata_start_page &= MMU_ADDRESS_MASK; rodata_start_page &= MMU_ADDRESS_MASK;
rodata_end_page = rodata_start_page + rodata_page_cnt - 1; rodata_end_page = rodata_start_page + rodata_page_cnt - 1;
} }
@ -254,46 +246,52 @@ esp_err_t esp_spiram_init(void)
return r; return r;
} }
spiram_inited=true; spiram_inited = true;
#if (CONFIG_SPIRAM_SIZE != -1) #if (CONFIG_SPIRAM_SIZE != -1)
if (esp_spiram_get_size()!=CONFIG_SPIRAM_SIZE) { if (esp_spiram_get_size() != CONFIG_SPIRAM_SIZE) {
ESP_EARLY_LOGE(TAG, "Expected %dKiB chip but found %dKiB chip. Bailing out..", CONFIG_SPIRAM_SIZE/1024, esp_spiram_get_size()/1024); ESP_EARLY_LOGE(TAG, "Expected %dKiB chip but found %dKiB chip. Bailing out..", CONFIG_SPIRAM_SIZE / 1024, esp_spiram_get_size() / 1024);
return ESP_ERR_INVALID_SIZE; return ESP_ERR_INVALID_SIZE;
} }
#endif #endif
ESP_EARLY_LOGI(TAG, "Found %dMBit SPI RAM device", ESP_EARLY_LOGI(TAG, "Found %dMBit SPI RAM device",
(esp_spiram_get_size()*8)/(1024*1024)); (esp_spiram_get_size() * 8) / (1024 * 1024));
ESP_EARLY_LOGI(TAG, "SPI RAM mode: %s", PSRAM_SPEED == PSRAM_CACHE_S40M ? "sram 40m" : \ ESP_EARLY_LOGI(TAG, "SPI RAM mode: %s", PSRAM_SPEED == PSRAM_CACHE_S40M ? "sram 40m" : \
PSRAM_SPEED == PSRAM_CACHE_S80M ? "sram 80m" : "sram 20m"); PSRAM_SPEED == PSRAM_CACHE_S80M ? "sram 80m" : "sram 20m");
ESP_EARLY_LOGI(TAG, "PSRAM initialized, cache is in %s mode.", \ ESP_EARLY_LOGI(TAG, "PSRAM initialized, cache is in %s mode.", \
(PSRAM_MODE==PSRAM_VADDR_MODE_EVENODD)?"even/odd (2-core)": \ (PSRAM_MODE == PSRAM_VADDR_MODE_EVENODD) ? "even/odd (2-core)" : \
(PSRAM_MODE==PSRAM_VADDR_MODE_LOWHIGH)?"low/high (2-core)": \ (PSRAM_MODE == PSRAM_VADDR_MODE_LOWHIGH) ? "low/high (2-core)" : \
(PSRAM_MODE==PSRAM_VADDR_MODE_NORMAL)?"normal (1-core)":"ERROR"); (PSRAM_MODE == PSRAM_VADDR_MODE_NORMAL) ? "normal (1-core)" : "ERROR");
return ESP_OK; return ESP_OK;
} }
esp_err_t esp_spiram_add_to_heapalloc(void) esp_err_t esp_spiram_add_to_heapalloc(void)
{ {
size_t spiram_size = esp_spiram_get_size();
uint32_t size_for_flash = (pages_for_flash << 16); uint32_t size_for_flash = (pages_for_flash << 16);
ESP_EARLY_LOGI(TAG, "Adding pool of %dK of external SPI memory to heap allocator", (SPIRAM_SIZE - (pages_for_flash << 16))/1024); ESP_EARLY_LOGI(TAG, "Adding pool of %dK of external SPI memory to heap allocator", (spiram_size - (pages_for_flash << 16)) / 1024);
//Add entire external RAM region to heap allocator. Heap allocator knows the capabilities of this type of memory, so there's //Add entire external RAM region to heap allocator. Heap allocator knows the capabilities of this type of memory, so there's
//no need to explicitly specify them. //no need to explicitly specify them.
return heap_caps_add_region((intptr_t)SOC_EXTRAM_DATA_HIGH - SPIRAM_SIZE + size_for_flash, (intptr_t)SOC_EXTRAM_DATA_HIGH -1); return heap_caps_add_region((intptr_t)SOC_EXTRAM_DATA_HIGH - spiram_size + size_for_flash, (intptr_t)SOC_EXTRAM_DATA_HIGH - 1);
} }
static uint8_t *dma_heap; static uint8_t *dma_heap;
esp_err_t esp_spiram_reserve_dma_pool(size_t size) { esp_err_t esp_spiram_reserve_dma_pool(size_t size)
if (size==0) return ESP_OK; //no-op {
ESP_EARLY_LOGI(TAG, "Reserving pool of %dK of internal memory for DMA/internal allocations", size/1024); if (size == 0) {
dma_heap=heap_caps_malloc(size, MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL); return ESP_OK; //no-op
if (!dma_heap) return ESP_ERR_NO_MEM; }
uint32_t caps[]={MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL, 0, MALLOC_CAP_8BIT|MALLOC_CAP_32BIT}; ESP_EARLY_LOGI(TAG, "Reserving pool of %dK of internal memory for DMA/internal allocations", size / 1024);
return heap_caps_add_region_with_caps(caps, (intptr_t) dma_heap, (intptr_t) dma_heap+size-1); dma_heap = heap_caps_malloc(size, MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL);
if (!dma_heap) {
return ESP_ERR_NO_MEM;
}
uint32_t caps[] = {MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL, 0, MALLOC_CAP_8BIT | MALLOC_CAP_32BIT};
return heap_caps_add_region_with_caps(caps, (intptr_t) dma_heap, (intptr_t) dma_heap + size - 1);
} }
size_t esp_spiram_get_size(void) size_t esp_spiram_get_size(void)
@ -303,11 +301,17 @@ size_t esp_spiram_get_size(void)
abort(); abort();
} }
psram_size_t size=psram_get_size(); psram_size_t size = psram_get_size();
if (size==PSRAM_SIZE_16MBITS) return 2*1024*1024; if (size == PSRAM_SIZE_16MBITS) {
if (size==PSRAM_SIZE_32MBITS) return 4*1024*1024; return 2 * 1024 * 1024;
if (size==PSRAM_SIZE_64MBITS) return 8*1024*1024; }
return SPIRAM_SIZE; if (size == PSRAM_SIZE_32MBITS) {
return 4 * 1024 * 1024;
}
if (size == PSRAM_SIZE_64MBITS) {
return 8 * 1024 * 1024;
}
return CONFIG_SPIRAM_SIZE;
} }
/* /*

View File

@ -54,6 +54,7 @@
#include "esp32s3/dport_access.h" #include "esp32s3/dport_access.h"
#include "esp32s3/memprot.h" #include "esp32s3/memprot.h"
#include "soc/assist_debug_reg.h" #include "soc/assist_debug_reg.h"
#include "soc/cache_memory.h"
#endif #endif
#include "bootloader_flash_config.h" #include "bootloader_flash_config.h"
@ -299,6 +300,13 @@ void IRAM_ATTR call_start_cpu0(void)
extern void rom_config_data_cache_mode(uint32_t cfg_cache_size, uint8_t cfg_cache_ways, uint8_t cfg_cache_line_size); extern void rom_config_data_cache_mode(uint32_t cfg_cache_size, uint8_t cfg_cache_ways, uint8_t cfg_cache_line_size);
rom_config_data_cache_mode(CONFIG_ESP32S3_DATA_CACHE_SIZE, CONFIG_ESP32S3_DCACHE_ASSOCIATED_WAYS, CONFIG_ESP32S3_DATA_CACHE_LINE_SIZE); rom_config_data_cache_mode(CONFIG_ESP32S3_DATA_CACHE_SIZE, CONFIG_ESP32S3_DCACHE_ASSOCIATED_WAYS, CONFIG_ESP32S3_DATA_CACHE_LINE_SIZE);
Cache_Resume_DCache(0); Cache_Resume_DCache(0);
/* Configure the Cache MMU size for instruction and rodata in flash. */
extern uint32_t Cache_Set_IDROM_MMU_Size(uint32_t irom_size, uint32_t drom_size);
extern int _rodata_reserved_start;
uint32_t rodata_reserved_start_align = (uint32_t)&_rodata_reserved_start & ~(MMU_PAGE_SIZE - 1);
uint32_t cache_mmu_irom_size = ((rodata_reserved_start_align - SOC_DROM_LOW) / MMU_PAGE_SIZE) * sizeof(uint32_t);
Cache_Set_IDROM_MMU_Size(cache_mmu_irom_size, CACHE_DROM_MMU_MAX_END - cache_mmu_irom_size);
#endif #endif
bootloader_init_mem(); bootloader_init_mem();
@ -351,7 +359,7 @@ void IRAM_ATTR call_start_cpu0(void)
} }
#endif #endif
#if CONFIG_IDF_TARGET_ESP32S2 #if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
extern void instruction_flash_page_info_init(void); extern void instruction_flash_page_info_init(void);
instruction_flash_page_info_init(); instruction_flash_page_info_init();
@ -381,7 +389,7 @@ void IRAM_ATTR call_start_cpu0(void)
extern void esp_enable_cache_wrap(uint32_t icache_wrap_enable, uint32_t dcache_wrap_enable); extern void esp_enable_cache_wrap(uint32_t icache_wrap_enable, uint32_t dcache_wrap_enable);
esp_enable_cache_wrap(icache_wrap_enable, dcache_wrap_enable); esp_enable_cache_wrap(icache_wrap_enable, dcache_wrap_enable);
#endif #endif
#endif // CONFIG_IDF_TARGET_ESP32S2 #endif // CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
#if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY #if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
memset(&_ext_ram_bss_start, 0, (&_ext_ram_bss_end - &_ext_ram_bss_start) * sizeof(_ext_ram_bss_start)); memset(&_ext_ram_bss_start, 0, (&_ext_ram_bss_end - &_ext_ram_bss_start) * sizeof(_ext_ram_bss_start));

View File

@ -65,6 +65,7 @@
#define MMU_ADDR_MASK DPORT_MMU_ADDRESS_MASK #define MMU_ADDR_MASK DPORT_MMU_ADDRESS_MASK
#define VADDR1_START_ADDR 0x40000000 #define VADDR1_START_ADDR 0x40000000
#define PRO_IRAM0_FIRST_USABLE_PAGE ((VADDR1_FIRST_USABLE_ADDR - VADDR1_START_ADDR) / SPI_FLASH_MMU_PAGE_SIZE + IROM0_PAGES_START) #define PRO_IRAM0_FIRST_USABLE_PAGE ((VADDR1_FIRST_USABLE_ADDR - VADDR1_START_ADDR) / SPI_FLASH_MMU_PAGE_SIZE + IROM0_PAGES_START)
#define VADDR0_START_ADDR SOC_DROM_LOW
#elif CONFIG_IDF_TARGET_ESP32S2 #elif CONFIG_IDF_TARGET_ESP32S2
#define PAGES_PER_REGION 64 #define PAGES_PER_REGION 64
#define REGIONS_COUNT 6 #define REGIONS_COUNT 6
@ -76,27 +77,28 @@
#define INVALID_ENTRY_VAL MMU_TABLE_INVALID_VAL #define INVALID_ENTRY_VAL MMU_TABLE_INVALID_VAL
#define MMU_ADDR_MASK MMU_ADDRESS_MASK #define MMU_ADDR_MASK MMU_ADDRESS_MASK
#define PAGE_IN_FLASH(page) ((page) | MMU_ACCESS_FLASH) #define PAGE_IN_FLASH(page) ((page) | MMU_ACCESS_FLASH)
#define VADDR1_START_ADDR IRAM0_CACHE_ADDRESS_LOW #define VADDR1_START_ADDR 0x40000000
#define PRO_IRAM0_FIRST_USABLE_PAGE ((VADDR1_FIRST_USABLE_ADDR - VADDR1_START_ADDR) / SPI_FLASH_MMU_PAGE_SIZE + IROM0_PAGES_START) #define PRO_IRAM0_FIRST_USABLE_PAGE ((VADDR1_FIRST_USABLE_ADDR - VADDR1_START_ADDR) / SPI_FLASH_MMU_PAGE_SIZE + IROM0_PAGES_START)
#define VADDR0_START_ADDR SOC_DROM_LOW
#elif CONFIG_IDF_TARGET_ESP32S3 #elif CONFIG_IDF_TARGET_ESP32S3
#define REGIONS_COUNT 2 #define REGIONS_COUNT 2
#define PAGES_PER_REGION 256 #define PAGES_PER_REGION 256
#define IROM0_PAGES_START (CACHE_IBUS_MMU_START / sizeof(uint32_t)) #define IROM0_PAGES_START (CACHE_IROM_MMU_START / sizeof(uint32_t))
#define IROM0_PAGES_END (CACHE_IBUS_MMU_END / sizeof(uint32_t)) #define IROM0_PAGES_END (CACHE_IROM_MMU_END / sizeof(uint32_t))
#define DROM0_PAGES_START (CACHE_DBUS_MMU_START / sizeof(uint32_t)) #define DROM0_PAGES_START (CACHE_DROM_MMU_START / sizeof(uint32_t))
#define DROM0_PAGES_END (CACHE_DBUS_MMU_END / sizeof(uint32_t)) #define DROM0_PAGES_END (CACHE_DROM_MMU_END / sizeof(uint32_t))
#define DPORT_PRO_FLASH_MMU_TABLE FLASH_MMU_TABLE #define DPORT_PRO_FLASH_MMU_TABLE FLASH_MMU_TABLE
#define INVALID_ENTRY_VAL MMU_TABLE_INVALID_VAL #define INVALID_ENTRY_VAL MMU_TABLE_INVALID_VAL
#define MMU_ADDR_MASK MMU_ADDRESS_MASK #define MMU_ADDR_MASK MMU_ADDRESS_MASK
#define PAGE_IN_FLASH(page) ((page) | MMU_ACCESS_FLASH) #define PAGE_IN_FLASH(page) ((page) | MMU_ACCESS_FLASH)
#define VADDR1_START_ADDR IRAM0_CACHE_ADDRESS_LOW #define VADDR1_START_ADDR IRAM0_CACHE_ADDRESS_LOW
#define PRO_IRAM0_FIRST_USABLE_PAGE (IROM0_PAGES_START) #define PRO_IRAM0_FIRST_USABLE_PAGE (IROM0_PAGES_START)
#define VADDR0_START_ADDR (SOC_DROM_LOW + (DROM0_PAGES_START * SPI_FLASH_MMU_PAGE_SIZE))
#endif #endif
#define IROM0_PAGES_NUM (IROM0_PAGES_END - IROM0_PAGES_START) #define IROM0_PAGES_NUM (IROM0_PAGES_END - IROM0_PAGES_START)
#define DROM0_PAGES_NUM (DROM0_PAGES_END - DROM0_PAGES_START) #define DROM0_PAGES_NUM (DROM0_PAGES_END - DROM0_PAGES_START)
#define PAGES_LIMIT (IROM0_PAGES_END > DROM0_PAGES_END ? IROM0_PAGES_END:DROM0_PAGES_END) #define PAGES_LIMIT (IROM0_PAGES_END > DROM0_PAGES_END ? IROM0_PAGES_END:DROM0_PAGES_END)
#define VADDR0_START_ADDR SOC_DROM_LOW
#define VADDR1_FIRST_USABLE_ADDR SOC_IROM_LOW #define VADDR1_FIRST_USABLE_ADDR SOC_IROM_LOW
typedef struct mmap_entry_{ typedef struct mmap_entry_{

View File

@ -324,9 +324,8 @@ TEST_CASE("flash_mmap can mmap after get enough free MMU pages", "[spi_flash][mm
} }
} }
uint32_t free_pages = spi_flash_mmap_get_free_pages(SPI_FLASH_MMAP_DATA); uint32_t free_pages = spi_flash_mmap_get_free_pages(SPI_FLASH_MMAP_DATA);
if (spi_flash_get_chip_size() <= 0x200000) { uint32_t flash_pages = spi_flash_get_chip_size() / SPI_FLASH_MMU_PAGE_SIZE;
free_pages -= 0x200000/0x10000; free_pages = (free_pages > flash_pages) ? flash_pages : free_pages;
}
printf("Mapping %x (+%x)\n", 0, free_pages * SPI_FLASH_MMU_PAGE_SIZE); printf("Mapping %x (+%x)\n", 0, free_pages * SPI_FLASH_MMU_PAGE_SIZE);
const void *ptr2; const void *ptr2;