driver/adc: support adc single sample on s3

This commit is contained in:
laokaiyao 2021-06-08 17:38:46 +08:00
parent 6bb6f3ebc4
commit 27d9657b6c
9 changed files with 241 additions and 644 deletions

View File

@ -61,8 +61,7 @@ if(${target} STREQUAL "esp32s3")
"sdmmc_transaction.c"
"mcpwm.c"
"spi_slave_hd.c"
"touch_sensor_common.c"
)
"touch_sensor_common.c")
endif()
if(IDF_TARGET STREQUAL "esp32c3")

View File

@ -117,7 +117,7 @@ static _lock_t adc2_wifi_lock;
#endif // CONFIG_IDF_TARGET_*
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
#if CONFIG_IDF_TARGET_ESP32S2
#ifdef CONFIG_PM_ENABLE
static esp_pm_lock_handle_t s_adc2_arbiter_lock;
#endif //CONFIG_PM_ENABLE
@ -127,7 +127,7 @@ static esp_pm_lock_handle_t s_adc2_arbiter_lock;
ADC Common
---------------------------------------------------------------*/
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
#if CONFIG_IDF_TARGET_ESP32S2
static uint32_t get_calibration_offset(adc_ll_num_t adc_n, adc_channel_t chan)
{
adc_atten_t atten = adc_hal_get_atten(adc_n, chan);
@ -299,10 +299,10 @@ esp_err_t adc_set_data_inv(adc_unit_t adc_unit, bool inv_en)
esp_err_t adc_set_data_width(adc_unit_t adc_unit, adc_bits_width_t bits)
{
#ifdef CONFIG_IDF_TARGET_ESP32
#if CONFIG_IDF_TARGET_ESP32
ADC_CHECK(bits < ADC_WIDTH_MAX, "WIDTH ERR: ESP32 support 9 ~ 12 bit width", ESP_ERR_INVALID_ARG);
#else
ADC_CHECK(bits == ADC_WIDTH_BIT_13, "WIDTH ERR: " CONFIG_IDF_TARGET " support 13 bit width", ESP_ERR_INVALID_ARG);
ADC_CHECK(bits == ADC_WIDTH_MAX - 1, "WIDTH ERR: see `adc_bits_width_t` for supported bit width", ESP_ERR_INVALID_ARG);
#endif
if (adc_unit & ADC_UNIT_1) {
@ -329,7 +329,7 @@ esp_err_t adc_set_data_width(adc_unit_t adc_unit, adc_bits_width_t bits)
esp_err_t adc_rtc_reset(void)
{
FSM_ENTER();
adc_hal_rtc_reset();
adc_ll_rtc_reset();
FSM_EXIT();
return ESP_OK;
}
@ -358,10 +358,10 @@ esp_err_t adc1_config_channel_atten(adc1_channel_t channel, adc_atten_t atten)
esp_err_t adc1_config_width(adc_bits_width_t width_bit)
{
#ifdef CONFIG_IDF_TARGET_ESP32
#if CONFIG_IDF_TARGET_ESP32
ADC_CHECK(width_bit < ADC_WIDTH_MAX, "WIDTH ERR: ESP32 support 9 ~ 12 bit width", ESP_ERR_INVALID_ARG);
#elif !defined(CONFIG_IDF_TARGET_ESP32)
ADC_CHECK(width_bit == ADC_WIDTH_BIT_13, "WIDTH ERR: " CONFIG_IDF_TARGET " support 13 bit width", ESP_ERR_INVALID_ARG);
#else
ADC_CHECK(width_bit == ADC_WIDTH_MAX - 1, "WIDTH ERR: see `adc_bits_width_t` for supported bit width", ESP_ERR_INVALID_ARG);
#endif
SARADC1_ENTER();
@ -382,7 +382,11 @@ esp_err_t adc1_dma_mode_acquire(void)
SARADC1_ENTER();
/* switch SARADC into DIG channel */
#if CONFIG_IDF_TARGET_ESP32S3 // remove this macro. TODO: IDF-1776
adc_hal_set_controller(ADC_NUM_1, ADC_LL_CTRL_DIG);
#else
adc_hal_set_controller(ADC_NUM_1, ADC_CTRL_DIG);
#endif
SARADC1_EXIT();
return ESP_OK;
@ -397,7 +401,11 @@ esp_err_t adc1_rtc_mode_acquire(void)
SARADC1_ENTER();
/* switch SARADC into RTC channel. */
#if CONFIG_IDF_TARGET_ESP32S3 // remove this macro. TODO: IDF-1776
adc_hal_set_controller(ADC_NUM_1, ADC_LL_CTRL_RTC);
#else
adc_hal_set_controller(ADC_NUM_1, ADC_CTRL_RTC);
#endif
SARADC1_EXIT();
return ESP_OK;
@ -419,7 +427,7 @@ int adc1_get_raw(adc1_channel_t channel)
ADC_CHANNEL_CHECK(ADC_NUM_1, channel);
adc1_rtc_mode_acquire();
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
#if CONFIG_IDF_TARGET_ESP32S2
// Get calibration value before going into critical section
uint32_t cal_val = get_calibration_offset(ADC_NUM_1, channel);
adc_hal_set_calibration_param(ADC_NUM_1, cal_val);
@ -430,10 +438,14 @@ int adc1_get_raw(adc1_channel_t channel)
adc_hal_hall_disable(); //Disable other peripherals.
adc_hal_amp_disable(); //Currently the LNA is not open, close it by default.
#endif
#if CONFIG_IDF_TARGET_ESP32S3 // remove this macro. TODO: IDF-1776
adc_hal_set_controller(ADC_NUM_1, ADC_LL_CTRL_RTC); //Set controller
#else
adc_hal_set_controller(ADC_NUM_1, ADC_CTRL_RTC); //Set controller
#endif
adc_hal_convert(ADC_NUM_1, channel, &adc_value); //Start conversion, For ADC1, the data always valid.
#if !CONFIG_IDF_TARGET_ESP32
adc_hal_rtc_reset(); //Reset FSM of rtc controller
adc_ll_rtc_reset(); //Reset FSM of rtc controller
#endif
SARADC1_EXIT();
@ -452,7 +464,11 @@ void adc1_ulp_enable(void)
adc_power_acquire();
SARADC1_ENTER();
adc_hal_set_controller(ADC_NUM_1, ADC_CTRL_ULP);
#if CONFIG_IDF_TARGET_ESP32S3 // remove this macro. TODO: IDF-1776
adc_hal_set_controller(ADC_NUM_1, ADC_LL_CTRL_ULP);
#else
adc_hal_set_controller(ADC_NUM_1, ADC_CTRL_ULP); //Set controller
#endif
/* since most users do not need LNA and HALL with uLP, we disable them here
open them in the uLP if needed. */
#ifdef CONFIG_IDF_TARGET_ESP32
@ -556,13 +572,13 @@ esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *
ADC_CHECK(raw_out != NULL, "ADC out value err", ESP_ERR_INVALID_ARG);
ADC_CHECK(channel < ADC2_CHANNEL_MAX, "ADC Channel Err", ESP_ERR_INVALID_ARG);
#ifdef CONFIG_IDF_TARGET_ESP32
#if CONFIG_IDF_TARGET_ESP32
ADC_CHECK(width_bit < ADC_WIDTH_MAX, "WIDTH ERR: ESP32 support 9 ~ 12 bit width", ESP_ERR_INVALID_ARG);
#else
ADC_CHECK(width_bit == ADC_WIDTH_BIT_13, "WIDTH ERR: ESP32S2 support 13 bit width", ESP_ERR_INVALID_ARG);
ADC_CHECK(width_bit == ADC_WIDTH_MAX - 1, "WIDTH ERR: see `adc_bits_width_t` for supported bit width", ESP_ERR_INVALID_ARG);
#endif
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
#if CONFIG_IDF_TARGET_ESP32S2
// Get calibration value before going into critical section
uint32_t cal_val = get_calibration_offset(ADC_NUM_2, channel);
adc_hal_set_calibration_param(ADC_NUM_2, cal_val);
@ -581,7 +597,11 @@ esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *
adc2_dac_disable(channel); //disable other peripherals
#endif
adc_hal_rtc_set_output_format(ADC_NUM_2, width_bit);
adc_hal_set_controller(ADC_NUM_2, ADC_CTRL_RTC);// set controller
#if CONFIG_IDF_TARGET_ESP32S3 // remove this macro. TODO: IDF-1776
adc_hal_set_controller(ADC_NUM_2, ADC_LL_CTRL_ARB);// set controller
#else
adc_hal_set_controller(ADC_NUM_2, ADC_CTRL_RTC);
#endif
#if !CONFIG_IDF_TARGET_ESP32
#ifdef CONFIG_PM_ENABLE
@ -596,7 +616,7 @@ esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *
adc_value = -1;
}
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
#if CONFIG_IDF_TARGET_ESP32S2
#ifdef CONFIG_PM_ENABLE
/* Release APB clock. */
if (s_adc2_arbiter_lock) {

View File

@ -7,231 +7,4 @@
#pragma once
#include "driver/adc_common.h"
#ifdef __cplusplus
extern "C" {
#endif
/*---------------------------------------------------------------
Common setting
---------------------------------------------------------------*/
/**
* @brief Config ADC module arbiter.
* The arbiter is to improve the use efficiency of ADC2. After the control right is robbed by the high priority,
* the low priority controller will read the invalid ADC2 data, and the validity of the data can be judged by the flag bit in the data.
*
* @note Only ADC2 support arbiter.
* @note Default priority: Wi-Fi > RTC > Digital;
* @note In normal use, there is no need to call this interface to config arbiter.
*
* @param adc_unit ADC unit.
* @param config Refer to `adc_arbiter_t`.
*
* @return
* - ESP_OK Success
* - ESP_ERR_NOT_SUPPORTED ADC unit not support arbiter.
*/
esp_err_t adc_arbiter_config(adc_unit_t adc_unit, adc_arbiter_t *config);
/*---------------------------------------------------------------
Digital controller setting
---------------------------------------------------------------*/
/**
* @brief ADC digital controller initialization.
* @return
* - ESP_OK Success
*/
esp_err_t adc_digi_init(void);
/**
* @brief ADC digital controller deinitialization.
* @return
* - ESP_OK Success
*/
esp_err_t adc_digi_deinit(void);
/**
* @brief Setting the digital controller.
*
* @param config Pointer to digital controller paramter. Refer to `adc_digi_config_t`.
*
* @return
* - ESP_OK Success
*/
esp_err_t adc_digi_controller_config(const adc_digi_config_t *config);
/**
* @brief Enable digital controller to trigger the measurement.
*
* @return
* - ESP_OK Success
*/
esp_err_t adc_digi_start(void);
/**
* @brief Disable digital controller to trigger the measurement.
*
* @return
* - ESP_OK Success
*/
esp_err_t adc_digi_stop(void);
/*************************************/
/* Digital controller filter setting */
/*************************************/
/**
* @brief Reset adc digital controller filter.
*
* @param idx Filter index.
*
* @return
* - ESP_OK Success
*/
esp_err_t adc_digi_filter_reset(adc_digi_filter_idx_t idx);
/**
* @brief Set adc digital controller filter configuration.
*
* @note For ESP32S2, Filter IDX0/IDX1 can only be used to filter all enabled channels of ADC1/ADC2 unit at the same time.
*
* @param idx Filter index.
* @param config See ``adc_digi_filter_t``.
*
* @return
* - ESP_OK Success
*/
esp_err_t adc_digi_filter_set_config(adc_digi_filter_idx_t idx, adc_digi_filter_t *config);
/**
* @brief Get adc digital controller filter configuration.
*
* @note For ESP32S2, Filter IDX0/IDX1 can only be used to filter all enabled channels of ADC1/ADC2 unit at the same time.
*
* @param idx Filter index.
* @param config See ``adc_digi_filter_t``.
*
* @return
* - ESP_OK Success
*/
esp_err_t adc_digi_filter_get_config(adc_digi_filter_idx_t idx, adc_digi_filter_t *config);
/**
* @brief Enable/disable adc digital controller filter.
* Filtering the ADC data to obtain smooth data at higher sampling rates.
*
* @note For ESP32S2, Filter IDX0/IDX1 can only be used to filter all enabled channels of ADC1/ADC2 unit at the same time.
*
* @param idx Filter index.
* @param enable Enable/Disable filter.
*
* @return
* - ESP_OK Success
*/
esp_err_t adc_digi_filter_enable(adc_digi_filter_idx_t idx, bool enable);
/**************************************/
/* Digital controller monitor setting */
/**************************************/
/**
* @brief Config monitor of adc digital controller.
*
* @note For ESP32S2, The monitor will monitor all the enabled channel data of the each ADC unit at the same time.
*
* @param idx Monitor index.
* @param config See ``adc_digi_monitor_t``.
*
* @return
* - ESP_OK Success
*/
esp_err_t adc_digi_monitor_set_config(adc_digi_monitor_idx_t idx, adc_digi_monitor_t *config);
/**
* @brief Enable/disable monitor of adc digital controller.
*
* @note For ESP32S2, The monitor will monitor all the enabled channel data of the each ADC unit at the same time.
*
* @param idx Monitor index.
* @param enable True or false enable monitor.
*
* @return
* - ESP_OK Success
*/
esp_err_t adc_digi_monitor_enable(adc_digi_monitor_idx_t idx, bool enable);
/**************************************/
/* Digital controller intr setting */
/**************************************/
/**
* @brief Enable interrupt of adc digital controller by bitmask.
*
* @param adc_unit ADC unit.
* @param intr_mask Interrupt bitmask. See ``adc_digi_intr_t``.
*
* @return
* - ESP_OK Success
*/
esp_err_t adc_digi_intr_enable(adc_unit_t adc_unit, adc_digi_intr_t intr_mask);
/**
* @brief Disable interrupt of adc digital controller by bitmask.
*
* @param adc_unit ADC unit.
* @param intr_mask Interrupt bitmask. See ``adc_digi_intr_t``.
*
* @return
* - ESP_OK Success
*/
esp_err_t adc_digi_intr_disable(adc_unit_t adc_unit, adc_digi_intr_t intr_mask);
/**
* @brief Clear interrupt of adc digital controller by bitmask.
*
* @param adc_unit ADC unit.
* @param intr_mask Interrupt bitmask. See ``adc_digi_intr_t``.
*
* @return
* - ESP_OK Success
*/
esp_err_t adc_digi_intr_clear(adc_unit_t adc_unit, adc_digi_intr_t intr_mask);
/**
* @brief Get interrupt status mask of adc digital controller.
*
* @param adc_unit ADC unit.
* @return
* - intr Interrupt bitmask, See ``adc_digi_intr_t``.
*/
uint32_t adc_digi_intr_get_status(adc_unit_t adc_unit);
/**
* @brief Register ADC interrupt handler, the handler is an ISR.
* The handler will be attached to the same CPU core that this function is running on.
*
* @param fn Interrupt handler function.
* @param arg Parameter for handler function
* @param intr_alloc_flags Flags used to allocate the interrupt. One or multiple (ORred)
* ESP_INTR_FLAG_* values. See esp_intr_alloc.h for more info.
*
* @return
* - ESP_OK Success
* - ESP_ERR_NOT_FOUND Can not find the interrupt that matches the flags.
* - ESP_ERR_INVALID_ARG Function pointer error.
*/
esp_err_t adc_digi_isr_register(void (*fn)(void *), void *arg, int intr_alloc_flags);
/**
* @brief Deregister ADC interrupt handler, the handler is an ISR.
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG hander error.
* - ESP_FAIL ISR not be registered.
*/
esp_err_t adc_digi_isr_deregister(void);
#ifdef __cplusplus
}
#endif
// This file will be removed. TODO: IDF-1776

View File

@ -48,8 +48,6 @@ void adc_hal_init(void)
ADC calibration setting
---------------------------------------------------------------*/
#if SOC_ADC_HW_CALIBRATION_V1
// ESP32-S2 and C3 support HW offset calibration.
void adc_hal_calibration_init(adc_ll_num_t adc_n)
{
adc_ll_calibration_init(adc_n);
@ -94,7 +92,7 @@ static void cal_setup(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t att
adc_ll_onetime_sample_enable(ADC_NUM_2, false);
/* Enable/disable internal connect GND (for calibration). */
if (internal_gnd) {
const int esp32c3_invalid_chan = (adc_n == ADC_NUM_1)? 0xF: 0x1;
const int esp32c3_invalid_chan = (adc_n == ADC_NUM_1) ? 0xF : 0x1;
adc_ll_onetime_set_channel(adc_n, esp32c3_invalid_chan);
} else {
adc_ll_onetime_set_channel(adc_n, channel);
@ -110,7 +108,7 @@ static uint32_t read_cal_channel(adc_ll_num_t adc_n, int channel)
esp_rom_delay_us(5);
adc_ll_onetime_start(true);
while(!adc_ll_intr_get_raw(ADC_LL_INTR_ADC1_DONE | ADC_LL_INTR_ADC2_DONE));
while (!adc_ll_intr_get_raw(ADC_LL_INTR_ADC1_DONE | ADC_LL_INTR_ADC2_DONE));
uint32_t read_val = -1;
if (adc_n == ADC_NUM_1) {
@ -179,8 +177,8 @@ uint32_t adc_hal_self_calibration(adc_ll_num_t adc_n, adc_channel_t channel, adc
chk_code = code_h + code_l;
uint32_t ret = ((code_sum - chk_code) % (ADC_HAL_CAL_TIMES - 2) < 4)
? (code_sum - chk_code) / (ADC_HAL_CAL_TIMES - 2)
: (code_sum - chk_code) / (ADC_HAL_CAL_TIMES - 2) + 1;
? (code_sum - chk_code) / (ADC_HAL_CAL_TIMES - 2)
: (code_sum - chk_code) / (ADC_HAL_CAL_TIMES - 2) + 1;
adc_ll_calibration_finish(adc_n);
return ret;
@ -227,11 +225,11 @@ static void adc_hal_digi_dma_link_descriptors(dma_descriptor_t *desc, uint8_t *d
desc[n].dw0.suc_eof = 0;
desc[n].dw0.owner = 1;
desc[n].buffer = data_buf;
desc[n].next = &desc[n+1];
desc[n].next = &desc[n + 1];
data_buf += size;
n++;
}
desc[n-1].next = NULL;
desc[n - 1].next = NULL;
}
void adc_hal_digi_rxdma_start(adc_hal_context_t *hal, uint8_t *data_buf)
@ -334,7 +332,7 @@ static void adc_hal_onetime_start(void)
//3 ADC digital controller clock cycle
delay = delay * 3;
//This coefficient (8) is got from test. When digi_clk is not smaller than ``APB_CLK_FREQ/8``, no delay is needed.
if (digi_clk >= APB_CLK_FREQ/8) {
if (digi_clk >= APB_CLK_FREQ / 8) {
delay = 0;
}
@ -352,7 +350,7 @@ static esp_err_t adc_hal_single_read(adc_ll_num_t adc_n, int *out_raw)
*out_raw = adc_ll_adc2_read();
if (adc_ll_analysis_raw_data(adc_n, *out_raw)) {
return ESP_ERR_INVALID_STATE;
}
}
}
return ESP_OK;
}

View File

@ -1,256 +0,0 @@
// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*******************************************************************************
* NOTICE
* The hal is not public api, don't use in application code.
* See readme.md in hal/include/hal/readme.md
******************************************************************************/
// The HAL layer for ADC (esp32s3 specific part)
#pragma once
#include "hal/adc_ll.h"
#include "hal/adc_types.h"
#include_next "hal/adc_hal.h"
#ifdef __cplusplus
extern "C" {
#endif
/*---------------------------------------------------------------
Digital controller setting
---------------------------------------------------------------*/
/**
* Digital controller deinitialization.
*/
void adc_hal_digi_deinit(void);
/**
* Setting the digital controller.
*
* @param cfg Pointer to digital controller paramter.
*/
void adc_hal_digi_controller_config(const adc_digi_config_t *cfg);
/**
* ADC Digital controller output data invert or not.
*
* @param adc_n ADC unit.
* @param inv_en data invert or not.
*/
#define adc_hal_digi_output_invert(adc_n, inv_en) adc_ll_digi_output_invert(adc_n, inv_en)
/**
* Sets the number of interval clock cycles for the digital controller to trigger the measurement.
*
* @note The trigger interval should not be less than the sampling time of the SAR ADC.
* @param cycle The number of clock cycles for the trigger interval. The unit is the divided clock. Range: 40 ~ 4095.
*/
#define adc_hal_digi_set_trigger_interval(cycle) adc_ll_digi_set_trigger_interval(cycle)
/**
* Enable digital controller to trigger the measurement.
*/
void adc_hal_digi_enable(void);
/**
* Disable digital controller to trigger the measurement.
*/
void adc_hal_digi_disable(void);
/**
* Set ADC digital controller clock division factor. The clock divided from `APLL` or `APB` clock.
* Enable clock and select clock source for ADC digital controller.
* Expression: controller_clk = APLL/APB * (div_num + div_b / div_a).
*
* @param clk Refer to `adc_digi_clk_t`.
*/
void adc_hal_digi_clk_config(const adc_digi_clk_t *clk);
/**
* Reset adc digital controller filter.
*
* @param adc_n ADC unit.
*/
#define adc_hal_digi_filter_reset(adc_n) adc_ll_digi_filter_reset(adc_n)
/**
* Set adc digital controller filter factor.
*
* @param adc_n ADC unit.
* @param factor Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64).
*/
#define adc_hal_digi_filter_set_factor(adc_n, factor) adc_ll_digi_filter_set_factor(adc_n, factor)
/**
* Get adc digital controller filter factor.
*
* @param adc_n ADC unit.
* @param factor Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64).
*/
#define adc_hal_digi_filter_get_factor(adc_n, factor) adc_ll_digi_filter_get_factor(adc_n, factor)
/**
* Enable/disable adc digital controller filter.
* Filtering the ADC data to obtain smooth data at higher sampling rates.
*
* @note The filter will filter all the enabled channel data of the each ADC unit at the same time.
* @param adc_n ADC unit.
*/
#define adc_hal_digi_filter_enable(adc_n, enable) adc_ll_digi_filter_enable(adc_n, enable)
/**
* Get the filtered data of adc digital controller filter.
* The data after each measurement and filtering is updated to the DMA by the digital controller. But it can also be obtained manually through this API.
*
* @note The filter will filter all the enabled channel data of the each ADC unit at the same time.
* @param adc_n ADC unit.
* @return Filtered data.
*/
#define adc_hal_digi_filter_read_data(adc_n) adc_ll_digi_filter_read_data(adc_n)
/**
* Config monitor of adc digital controller.
*
* @note The monitor will monitor all the enabled channel data of the each ADC unit at the same time.
* @param adc_n ADC unit.
* @param config Refer to `adc_digi_monitor_t`.
*/
void adc_hal_digi_monitor_config(adc_ll_num_t adc_n, adc_digi_monitor_t *config);
/**
* Enable/disable monitor of adc digital controller.
*
* @note The monitor will monitor all the enabled channel data of the each ADC unit at the same time.
* @param adc_n ADC unit.
*/
#define adc_hal_digi_monitor_enable(adc_n, enable) adc_ll_digi_monitor_enable(adc_n, enable)
/**
* Enable interrupt of adc digital controller by bitmask.
*
* @param adc_n ADC unit.
* @param intr Interrupt bitmask.
*/
#define adc_hal_digi_intr_enable(adc_n, intr) adc_ll_digi_intr_enable(adc_n, intr)
/**
* Disable interrupt of adc digital controller by bitmask.
*
* @param adc_n ADC unit.
* @param intr Interrupt bitmask.
*/
#define adc_hal_digi_intr_disable(adc_n, intr) adc_ll_digi_intr_disable(adc_n, intr)
/**
* Clear interrupt of adc digital controller by bitmask.
*
* @param adc_n ADC unit.
* @param intr Interrupt bitmask.
*/
#define adc_hal_digi_intr_clear(adc_n, intr) adc_ll_digi_intr_clear(adc_n, intr)
/**
* Get interrupt status mask of adc digital controller.
*
* @param adc_n ADC unit.
* @return
* - intr Interrupt bitmask.
*/
#define adc_hal_digi_get_intr_status(adc_n) adc_ll_digi_get_intr_status(adc_n)
/**
* Set DMA eof num of adc digital controller.
* If the number of measurements reaches `dma_eof_num`, then `dma_in_suc_eof` signal is generated.
*
* @param num eof num of DMA.
*/
#define adc_hal_digi_dma_set_eof_num(num) adc_ll_digi_dma_set_eof_num(num)
/**
* Enable output data to DMA from adc digital controller.
*/
#define adc_hal_digi_dma_enable() adc_ll_digi_dma_enable()
/**
* Disable output data to DMA from adc digital controller.
*/
#define adc_hal_digi_dma_disable() adc_ll_digi_dma_disable()
/**
* Reset adc digital controller.
*/
#define adc_hal_digi_reset() adc_ll_digi_reset()
/*---------------------------------------------------------------
RTC controller setting
---------------------------------------------------------------*/
/**
* Reset RTC controller FSM.
*/
#define adc_hal_rtc_reset() adc_ll_rtc_reset()
/*---------------------------------------------------------------
Common setting
---------------------------------------------------------------*/
/**
* Config ADC2 module arbiter.
* The arbiter is to improve the use efficiency of ADC2. After the control right is robbed by the high priority,
* the low priority controller will read the invalid ADC2 data, and the validity of the data can be judged by the flag bit in the data.
*
* @note Only ADC2 support arbiter.
* @note The arbiter's working clock is APB_CLK. When the APB_CLK clock drops below 8 MHz, the arbiter must be in shield mode.
* @note Default priority: Wi-Fi > RTC > Digital;
*
* @param config Refer to `adc_arbiter_t`.
*/
void adc_hal_arbiter_config(adc_arbiter_t *config);
/*---------------------------------------------------------------
ADC calibration setting
---------------------------------------------------------------*/
/**
* Calibrate the ADC using internal connections.
*
* @note Different ADC units and different attenuation options use different calibration data (initial data).
*
* @param adc_n ADC index number.
* @param channel adc channel number.
* @param atten The attenuation for the channel
* @param internal_gnd true: Disconnect from the IO port and use the internal GND as the calibration voltage.
* false: Use IO external voltage as calibration voltage.
*
* @return
* - The calibration result (initial data) to ADC, use `adc_hal_set_calibration_param` to set.
*/
uint32_t adc_hal_self_calibration(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd);
/**
* Set the calibration result (initial data) to ADC.
*
* @note Different ADC units and different attenuation options use different calibration data (initial data).
*
* @param adc_n ADC index number.
*/
#define adc_hal_set_calibration_param(adc_n, param) adc_ll_set_calibration_param(adc_n, param);
#ifdef __cplusplus
}
#endif

View File

@ -57,22 +57,6 @@ typedef enum {
ADC_LL_CTRL_ARB = 4, ///< For ADC2. The controller is selected by the arbiter.
} adc_ll_controller_t;
/**
* @brief ADC digital controller (DMA mode) work mode.
*
* @note The conversion mode affects the sampling frequency:
* SINGLE_UNIT_1: When the measurement is triggered, only ADC1 is sampled once.
* SINGLE_UNIT_2: When the measurement is triggered, only ADC2 is sampled once.
* BOTH_UNIT : When the measurement is triggered, ADC1 and ADC2 are sampled at the same time.
* ALTER_UNIT : When the measurement is triggered, ADC1 or ADC2 samples alternately.
*/
typedef enum {
ADC_LL_DIGI_CONV_ONLY_ADC1 = 0, // Only use ADC1 for conversion
ADC_LL_DIGI_CONV_ONLY_ADC2 = 1, // Only use ADC2 for conversion
ADC_LL_DIGI_CONV_BOTH_UNIT = 2, // Use Both ADC1 and ADC2 for conversion simultaneously
ADC_LL_DIGI_CONV_ALTER_UNIT = 3 // Use both ADC1 and ADC2 for conversion by turn. e.g. ADC1 -> ADC2 -> ADC1 -> ADC2 .....
} adc_ll_digi_convert_mode_t;
typedef struct {
union {
struct {
@ -96,8 +80,8 @@ typedef struct {
typedef struct {
union {
struct {
uint16_t data: 13; /*!<ADC real output data info. Resolution: 13 bit. */
uint16_t reserved: 1; /*!<reserved */
uint16_t data: 12; /*!<ADC real output data info. Resolution: 13 bit. */
uint16_t reserved: 2; /*!<reserved */
uint16_t flag: 2; /*!<ADC data flag info.
If (flag == 0), The data is valid.
If (flag > 0), The data is invalid. */
@ -142,6 +126,7 @@ static inline void adc_ll_digi_set_fsm_time(uint32_t rst_wait, uint32_t start_wa
static inline void adc_ll_set_sample_cycle(uint32_t sample_cycle)
{
//To be added including RTC_CNTR reg and functions
abort();
}
/**
@ -192,17 +177,17 @@ static inline void adc_ll_digi_convert_limit_disable(void)
*
* @param mode Conversion mode select.
*/
static inline void adc_ll_digi_set_convert_mode(adc_ll_digi_convert_mode_t mode)
static inline void adc_ll_digi_set_convert_mode(adc_digi_convert_mode_t mode)
{
if (mode == ADC_LL_DIGI_CONV_ONLY_ADC1) {
if (mode == ADC_CONV_SINGLE_UNIT_1) {
APB_SARADC.ctrl.work_mode = 0;
APB_SARADC.ctrl.sar_sel = 0;
} else if (mode == ADC_LL_DIGI_CONV_ONLY_ADC2) {
} else if (mode == ADC_CONV_SINGLE_UNIT_2) {
APB_SARADC.ctrl.work_mode = 0;
APB_SARADC.ctrl.sar_sel = 1;
} else if (mode == ADC_LL_DIGI_CONV_BOTH_UNIT) {
} else if (mode == ADC_CONV_BOTH_UNIT) {
APB_SARADC.ctrl.work_mode = 1;
} else if (mode == ADC_LL_DIGI_CONV_ALTER_UNIT) {
} else if (mode == ADC_CONV_ALTER_UNIT) {
APB_SARADC.ctrl.work_mode = 2;
}
APB_SARADC.ctrl.data_sar_sel = 1;
@ -238,23 +223,7 @@ static inline void adc_ll_digi_set_pattern_table_len(adc_ll_num_t adc_n, uint32_
*/
static inline void adc_ll_digi_set_pattern_table(adc_ll_num_t adc_n, uint32_t pattern_index, adc_digi_pattern_table_t table)
{
uint32_t tab;
uint8_t index = pattern_index / 4;
uint8_t offset = (pattern_index % 4) * 6;
adc_ll_digi_pattern_table_t pattern = {0};
pattern.val = (table.atten & 0x3) | ((table.channel & 0xF) << 2);
if (table.unit == ADC_NUM_1){
tab = APB_SARADC.sar1_patt_tab[index].sar1_patt_tab; //Read old register value
tab &= (~(0xFC0000 >> offset)); //Clear old data
tab |= ((uint32_t)(pattern.val & 0x3F) << 18) >> offset; //Fill in the new data
APB_SARADC.sar1_patt_tab[index].sar1_patt_tab = tab; //Write back
} else {
tab = APB_SARADC.sar2_patt_tab[index].sar2_patt_tab; //Read old register value
tab &= (~(0xFC0000 >> offset)); //clear old data
tab |= ((uint32_t)(pattern.val & 0x3F) << 18) >> offset; //Fill in the new data
APB_SARADC.sar2_patt_tab[index].sar2_patt_tab = tab; //Write back
}
abort();
}
/**
@ -377,13 +346,26 @@ static inline void adc_ll_digi_filter_reset(adc_ll_num_t adc_n)
abort();
}
/**
* Disable adc digital controller filter.
* Filtering the ADC data to obtain smooth data at higher sampling rates.
*
* @note If the channel info is not supported, the filter function will not be enabled.
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_filter_disable(adc_digi_filter_idx_t idx)
{
abort();
}
/**
* Set adc digital controller filter factor.
*
* @param adc_n ADC unit.
* @param factor Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64).
* @note If the channel info is not supported, the filter function will not be enabled.
* @param idx ADC filter unit.
* @param filter Filter config. Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64).
*/
static inline void adc_ll_digi_filter_set_factor(adc_ll_num_t adc_n, adc_digi_filter_mode_t factor)
static inline void adc_ll_digi_filter_set_factor(adc_digi_filter_idx_t idx, adc_digi_filter_t *filter)
{
abort();
}
@ -394,19 +376,7 @@ static inline void adc_ll_digi_filter_set_factor(adc_ll_num_t adc_n, adc_digi_fi
* @param adc_n ADC unit.
* @param factor Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64).
*/
static inline void adc_ll_digi_filter_get_factor(adc_ll_num_t adc_n, adc_digi_filter_mode_t *factor)
{
abort();
}
/**
* Enable/disable adc digital controller filter.
* Filtering the ADC data to obtain smooth data at higher sampling rates.
*
* @note The filter will filter all the enabled channel data of the each ADC unit at the same time.
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_filter_enable(adc_ll_num_t adc_n, bool enable)
static inline void adc_ll_digi_filter_get_factor(adc_digi_filter_idx_t idx, adc_digi_filter_t *filter)
{
abort();
}
@ -432,11 +402,23 @@ static inline uint32_t adc_ll_digi_filter_read_data(adc_ll_num_t adc_n)
* @param is_larger true: If ADC_OUT > threshold, Generates monitor interrupt.
* false: If ADC_OUT < threshold, Generates monitor interrupt.
*/
static inline void adc_ll_digi_monitor_set_mode(adc_ll_num_t adc_n, bool is_larger)
static inline void adc_ll_digi_monitor_set_mode(adc_digi_monitor_idx_t idx, adc_digi_monitor_t *cfg)
{
abort();
}
/**
* Enable/disable monitor of adc digital controller.
*
* @note If the channel info is not supported, the monitor function will not be enabled.
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_monitor_disable(adc_digi_monitor_idx_t idx)
{
abort();
}
/**
* Set monitor threshold of adc digital controller.
*
@ -523,6 +505,30 @@ static inline uint32_t adc_ll_pwdet_get_cct(void)
return SENS.sar_meas2_mux.sar2_pwdet_cct;
}
/**
* Analyze whether the obtained raw data is correct.
* ADC2 can use arbiter. The arbitration result is stored in the channel information of the returned data.
*
* @param adc_n ADC unit.
* @param raw_data ADC raw data input (convert value).
* @return
* - 0: The data is correct to use.
* - -1: The data is invalid.
*/
static inline adc_ll_rtc_raw_data_t adc_ll_analysis_raw_data(adc_ll_num_t adc_n, int raw_data)
{
if (adc_n == ADC_NUM_1) {
return ADC_RTC_DATA_OK;
}
//The raw data API returns value without channel information. Read value directly from the register
if (((APB_SARADC.apb_saradc2_data_status.adc2_data >> 12) & 0xF) > 9) {
return ADC_RTC_DATA_FAIL;
}
return ADC_RTC_DATA_OK;
}
/*---------------------------------------------------------------
Common setting
---------------------------------------------------------------*/
@ -534,12 +540,18 @@ static inline uint32_t adc_ll_pwdet_get_cct(void)
static inline void adc_ll_set_power_manage(adc_ll_power_t manage)
{
if (manage == ADC_POWER_SW_ON) {
SENS.sar_peri_clk_gate_conf.saradc_clk_en = 1;
SENS.sar_power_xpd_sar.force_xpd_sar = 3; //SENS_FORCE_XPD_SAR_PU;
APB_SARADC.ctrl.sar_clk_gated = 1;
APB_SARADC.ctrl.xpd_sar_force = 3;
} else if (manage == ADC_POWER_BY_FSM) {
SENS.sar_peri_clk_gate_conf.saradc_clk_en = 1;
SENS.sar_power_xpd_sar.force_xpd_sar = 0; //SENS_FORCE_XPD_SAR_FSM;
APB_SARADC.ctrl.sar_clk_gated = 1;
APB_SARADC.ctrl.xpd_sar_force = 0;
} else if (manage == ADC_POWER_SW_OFF) {
SENS.sar_power_xpd_sar.force_xpd_sar = 2; //SENS_FORCE_XPD_SAR_PD;
SENS.sar_peri_clk_gate_conf.saradc_clk_en = 0;
APB_SARADC.ctrl.sar_clk_gated = 0;
APB_SARADC.ctrl.xpd_sar_force = 2;
}
@ -559,37 +571,37 @@ static inline void adc_ll_set_controller(adc_ll_num_t adc_n, adc_ll_controller_t
{
if (adc_n == ADC_NUM_1) {
switch (ctrl) {
case ADC_LL_CTRL_RTC:
SENS.sar_meas1_mux.sar1_dig_force = 0; // 1: Select digital control; 0: Select RTC control.
SENS.sar_meas1_ctrl2.meas1_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
SENS.sar_meas1_ctrl2.sar1_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
break;
case ADC_LL_CTRL_ULP:
SENS.sar_meas1_mux.sar1_dig_force = 0; // 1: Select digital control; 0: Select RTC control.
SENS.sar_meas1_ctrl2.meas1_start_force = 0; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
SENS.sar_meas1_ctrl2.sar1_en_pad_force = 0; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
break;
case ADC_LL_CTRL_DIG:
SENS.sar_meas1_mux.sar1_dig_force = 1; // 1: Select digital control; 0: Select RTC control.
SENS.sar_meas1_ctrl2.meas1_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
SENS.sar_meas1_ctrl2.sar1_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
break;
default:
break;
case ADC_LL_CTRL_RTC:
SENS.sar_meas1_mux.sar1_dig_force = 0; // 1: Select digital control; 0: Select RTC control.
SENS.sar_meas1_ctrl2.meas1_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
SENS.sar_meas1_ctrl2.sar1_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
break;
case ADC_LL_CTRL_ULP:
SENS.sar_meas1_mux.sar1_dig_force = 0; // 1: Select digital control; 0: Select RTC control.
SENS.sar_meas1_ctrl2.meas1_start_force = 0; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
SENS.sar_meas1_ctrl2.sar1_en_pad_force = 0; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
break;
case ADC_LL_CTRL_DIG:
SENS.sar_meas1_mux.sar1_dig_force = 1; // 1: Select digital control; 0: Select RTC control.
SENS.sar_meas1_ctrl2.meas1_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
SENS.sar_meas1_ctrl2.sar1_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
break;
default:
break;
}
} else { // adc_n == ADC_NUM_2
//If ADC2 is not controlled by ULP, the arbiter will decide which controller to use ADC2.
switch (ctrl) {
case ADC_LL_CTRL_ARB:
SENS.sar_meas2_ctrl2.meas2_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
SENS.sar_meas2_ctrl2.sar2_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
break;
case ADC_LL_CTRL_ULP:
SENS.sar_meas2_ctrl2.meas2_start_force = 0; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
SENS.sar_meas2_ctrl2.sar2_en_pad_force = 0; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
break;
default:
break;
case ADC_LL_CTRL_ARB:
SENS.sar_meas2_ctrl2.meas2_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
SENS.sar_meas2_ctrl2.sar2_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
break;
case ADC_LL_CTRL_ULP:
SENS.sar_meas2_ctrl2.meas2_start_force = 0; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
SENS.sar_meas2_ctrl2.sar2_en_pad_force = 0; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
break;
default:
break;
}
}
}
@ -752,19 +764,23 @@ static inline void adc_ll_vref_output(adc_ll_num_t adc, adc_channel_t channel, b
*/
static inline void adc_ll_set_sar_clk_div(adc_ll_num_t adc_n, uint32_t div)
{
abort();
if (adc_n == ADC_NUM_1) {
SENS.sar_reader1_ctrl.sar1_clk_div = div;
} else { // adc_n == ADC_NUM_2
SENS.sar_reader2_ctrl.sar2_clk_div = div;
}
}
/**
* Set adc output data format for RTC controller.
*
* @note ESP32S2 RTC controller only support 13bit.
* @note ESP32S3 RTC controller only support 13bit.
* @prarm adc_n ADC unit.
* @prarm bits Output data bits width option.
*/
static inline void adc_ll_rtc_set_output_format(adc_ll_num_t adc_n, adc_bits_width_t bits)
{
abort();
}
/**
@ -777,7 +793,11 @@ static inline void adc_ll_rtc_set_output_format(adc_ll_num_t adc_n, adc_bits_wid
*/
static inline void adc_ll_rtc_enable_channel(adc_ll_num_t adc_n, int channel)
{
abort();
if (adc_n == ADC_NUM_1) {
SENS.sar_meas1_ctrl2.sar1_en_pad = (1 << channel); //only one channel is selected.
} else { // adc_n == ADC_NUM_2
SENS.sar_meas2_ctrl2.sar2_en_pad = (1 << channel); //only one channel is selected.
}
}
/**
@ -790,7 +810,11 @@ static inline void adc_ll_rtc_enable_channel(adc_ll_num_t adc_n, int channel)
*/
static inline void adc_ll_rtc_disable_channel(adc_ll_num_t adc_n)
{
abort();
if (adc_n == ADC_NUM_1) {
SENS.sar_meas1_ctrl2.sar1_en_pad = 0; //only one channel is selected.
} else { // adc_n == ADC_NUM_2
SENS.sar_meas2_ctrl2.sar2_en_pad = 0; //only one channel is selected.
}
}
/**
@ -803,7 +827,14 @@ static inline void adc_ll_rtc_disable_channel(adc_ll_num_t adc_n)
*/
static inline void adc_ll_rtc_start_convert(adc_ll_num_t adc_n, int channel)
{
abort();
if (adc_n == ADC_NUM_1) {
while (SENS.sar_slave_addr1.meas_status != 0);
SENS.sar_meas1_ctrl2.meas1_start_sar = 0;
SENS.sar_meas1_ctrl2.meas1_start_sar = 1;
} else { // adc_n == ADC_NUM_2
SENS.sar_meas2_ctrl2.meas2_start_sar = 0; //start force 0
SENS.sar_meas2_ctrl2.meas2_start_sar = 1; //start force 1
}
}
/**
@ -816,7 +847,13 @@ static inline void adc_ll_rtc_start_convert(adc_ll_num_t adc_n, int channel)
*/
static inline bool adc_ll_rtc_convert_is_done(adc_ll_num_t adc_n)
{
abort();
bool ret = true;
if (adc_n == ADC_NUM_1) {
ret = (bool)SENS.sar_meas1_ctrl2.meas1_done_sar;
} else { // adc_n == ADC_NUM_2
ret = (bool)SENS.sar_meas2_ctrl2.meas2_done_sar;
}
return ret;
}
/**
@ -828,7 +865,13 @@ static inline bool adc_ll_rtc_convert_is_done(adc_ll_num_t adc_n)
*/
static inline int adc_ll_rtc_get_convert_value(adc_ll_num_t adc_n)
{
abort();
int ret_val = 0;
if (adc_n == ADC_NUM_1) {
ret_val = SENS.sar_meas1_ctrl2.meas1_data_sar;
} else { // adc_n == ADC_NUM_2
ret_val = SENS.sar_meas2_ctrl2.meas2_data_sar;
}
return ret_val;
}
/**
@ -839,7 +882,11 @@ static inline int adc_ll_rtc_get_convert_value(adc_ll_num_t adc_n)
*/
static inline void adc_ll_rtc_output_invert(adc_ll_num_t adc_n, bool inv_en)
{
abort();
if (adc_n == ADC_NUM_1) {
SENS.sar_reader1_ctrl.sar1_data_inv = inv_en; // Enable / Disable ADC data invert
} else { // adc_n == ADC_NUM_2
SENS.sar_reader2_ctrl.sar2_data_inv = inv_en; // Enable / Disable ADC data invert
}
}
/**
@ -849,7 +896,13 @@ static inline void adc_ll_rtc_output_invert(adc_ll_num_t adc_n, bool inv_en)
*/
static inline void adc_ll_rtc_intr_enable(adc_ll_num_t adc_n)
{
abort();
if (adc_n == ADC_NUM_1) {
SENS.sar_reader1_ctrl.sar1_int_en = 1;
RTCCNTL.int_ena.rtc_saradc1 = 1;
} else { // adc_n == ADC_NUM_2
SENS.sar_reader2_ctrl.sar2_int_en = 1;
RTCCNTL.int_ena.rtc_saradc2 = 1;
}
}
/**
@ -859,7 +912,13 @@ static inline void adc_ll_rtc_intr_enable(adc_ll_num_t adc_n)
*/
static inline void adc_ll_rtc_intr_disable(adc_ll_num_t adc_n)
{
abort();
if (adc_n == ADC_NUM_1) {
SENS.sar_reader1_ctrl.sar1_int_en = 0;
RTCCNTL.int_ena.rtc_saradc1 = 0;
} else { // adc_n == ADC_NUM_2
SENS.sar_reader2_ctrl.sar2_int_en = 0;
RTCCNTL.int_ena.rtc_saradc2 = 0;
}
}
/**
@ -867,7 +926,8 @@ static inline void adc_ll_rtc_intr_disable(adc_ll_num_t adc_n)
*/
static inline void adc_ll_rtc_reset(void)
{
abort();
SENS.sar_peri_reset_conf.saradc_reset = 1;
SENS.sar_peri_reset_conf.saradc_reset = 0;
}
/**
@ -878,7 +938,7 @@ static inline void adc_ll_rtc_reset(void)
*/
static inline void adc_ll_rtc_set_arbiter_stable_cycle(uint32_t cycle)
{
abort();
SENS.sar_reader2_ctrl.sar2_wait_arb_cycle = cycle;
}
/**
@ -895,7 +955,20 @@ static inline void adc_ll_rtc_set_arbiter_stable_cycle(uint32_t cycle)
*/
static inline adc_ll_rtc_raw_data_t adc_ll_rtc_analysis_raw_data(adc_ll_num_t adc_n, uint16_t raw_data)
{
abort();
/* ADC1 don't need check data */
if (adc_n == ADC_NUM_1) {
return ADC_RTC_DATA_OK;
}
adc_ll_rtc_output_data_t *temp = (adc_ll_rtc_output_data_t *)&raw_data;
if (temp->flag == 0) {
return ADC_RTC_DATA_OK;
} else if (temp->flag == 1) {
return ADC_RTC_CTRL_UNSELECTED;
} else if (temp->flag == 2) {
return ADC_RTC_CTRL_BREAK;
} else {
return ADC_RTC_DATA_FAIL;
}
}
/**
@ -933,9 +1006,24 @@ static inline adc_ll_rtc_raw_data_t adc_ll_rtc_analysis_raw_data(adc_ll_num_t ad
*/
static inline void adc_ll_set_atten(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten)
{
abort();
if (adc_n == ADC_NUM_1) {
SENS.sar_atten1 = ( SENS.sar_atten1 & ~(0x3 << (channel * 2)) ) | ((atten & 0x3) << (channel * 2));
} else { // adc_n == ADC_NUM_2
SENS.sar_atten2 = ( SENS.sar_atten2 & ~(0x3 << (channel * 2)) ) | ((atten & 0x3) << (channel * 2));
}
}
static inline uint32_t adc_ll_adc1_read(void)
{
//On ESP32S3, valid data width is 12-bit
return (APB_SARADC.apb_saradc1_data_status.adc1_data & 0xfff);
}
static inline uint32_t adc_ll_adc2_read(void)
{
//On ESP32S3, valid data width is 12-bit
return (APB_SARADC.apb_saradc2_data_status.adc2_data & 0xfff);
}
#ifdef __cplusplus
}

View File

@ -133,7 +133,7 @@ typedef struct {
- 2: 11 bit;
- 3: 12 bit. */
int8_t channel: 4; /*!< ADC channel index. */
#elif CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
#elif CONFIG_IDF_TARGET_ESP32S2
uint8_t reserved: 2; /*!< reserved0 */
uint8_t channel: 4; /*!< ADC channel index. */
#elif CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32H2
@ -295,7 +295,7 @@ typedef struct {
#endif
} adc_digi_config_t;
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
#if CONFIG_IDF_TARGET_ESP32S2
/**
* @brief ADC digital controller (DMA mode) interrupt type options.
*/

View File

@ -1,30 +0,0 @@
// Copyright 2010-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#define SOC_ADC_PERIPH_NUM (2)
#define SOC_ADC_PATT_LEN_MAX (16)
#define SOC_ADC_CHANNEL_NUM(PERIPH_NUM) (10)
#define SOC_ADC_MAX_CHANNEL_NUM (10)
#define SOC_ADC_MAX_BITWIDTH (13)
/**
* Check if adc support digital controller (DMA) mode.
* @value
* - 1 : support;
* - 0 : not support;
*/
#define SOC_ADC_SUPPORT_DMA_MODE(PERIPH_NUM) ((PERIPH_NUM==0)? 1: 1)
#define SOC_ADC_SUPPORT_RTC_CTRL 1

View File

@ -28,7 +28,12 @@
/*-------------------------- ADC CAPS ----------------------------------------*/
#include "adc_caps.h"
#define SOC_ADC_PERIPH_NUM (2)
#define SOC_ADC_CHANNEL_NUM(PERIPH_NUM) (10)
#define SOC_ADC_MAX_CHANNEL_NUM (10)
#define SOC_ADC_MAX_BITWIDTH (12)
#define SOC_ADC_SUPPORT_RTC_CTRL (1)
/*-------------------------- BROWNOUT CAPS -----------------------------------*/
#include "brownout_caps.h"