mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
Merge branch 'fix/usb_cdc_reconnection' into 'release/v4.4'
tinyusb: Fix lost packet after reconnection See merge request espressif/esp-idf!18952
This commit is contained in:
commit
2476d5d837
@ -41,7 +41,7 @@ if(CONFIG_TINYUSB)
|
||||
)
|
||||
|
||||
list(APPEND srcs
|
||||
"tinyusb/src/portable/espressif/${tusb_family}/dcd_${tusb_family}.c"
|
||||
"additions/src/portable/espressif/${tusb_family}/dcd_${tusb_family}.c"
|
||||
"tinyusb/src/class/cdc/cdc_device.c"
|
||||
"tinyusb/src/class/hid/hid_device.c"
|
||||
"tinyusb/src/class/midi/midi_device.c"
|
||||
|
@ -0,0 +1,853 @@
|
||||
/*
|
||||
* The MIT License (MIT)
|
||||
*
|
||||
* Copyright (c) 2018 Scott Shawcroft, 2019 William D. Jones for Adafruit Industries
|
||||
* Copyright (c) 2019 Ha Thach (tinyusb.org)
|
||||
* Additions Copyright (c) 2020, Espressif Systems (Shanghai) Co. Ltd.
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
* THE SOFTWARE.
|
||||
*
|
||||
* This file is part of the TinyUSB stack.
|
||||
*/
|
||||
|
||||
#include "tusb_option.h"
|
||||
|
||||
#if (((CFG_TUSB_MCU == OPT_MCU_ESP32S2) || (CFG_TUSB_MCU == OPT_MCU_ESP32S3)) && TUSB_OPT_DEVICE_ENABLED)
|
||||
|
||||
// Espressif
|
||||
#include "freertos/xtensa_api.h"
|
||||
#include "esp_intr_alloc.h"
|
||||
#include "esp_log.h"
|
||||
#include "driver/gpio.h"
|
||||
#include "soc/dport_reg.h"
|
||||
#include "soc/gpio_sig_map.h"
|
||||
#include "soc/usb_periph.h"
|
||||
#include "soc/periph_defs.h" // for interrupt source
|
||||
|
||||
#include "device/dcd.h"
|
||||
|
||||
// Max number of bi-directional endpoints including EP0
|
||||
// Note: ESP32S2 specs say there are only up to 5 IN active endpoints include EP0
|
||||
// We should probably prohibit enabling Endpoint IN > 4 (not done yet)
|
||||
#define EP_MAX USB_OUT_EP_NUM
|
||||
|
||||
// FIFO size in bytes
|
||||
#define EP_FIFO_SIZE 1024
|
||||
|
||||
// Max number of IN EP FIFOs
|
||||
#define EP_FIFO_NUM 5
|
||||
|
||||
typedef struct {
|
||||
uint8_t *buffer;
|
||||
// tu_fifo_t * ff; // TODO support dcd_edpt_xfer_fifo API
|
||||
uint16_t total_len;
|
||||
uint16_t queued_len;
|
||||
uint16_t max_size;
|
||||
bool short_packet;
|
||||
} xfer_ctl_t;
|
||||
|
||||
static const char *TAG = "TUSB:DCD";
|
||||
static intr_handle_t usb_ih;
|
||||
|
||||
|
||||
static uint32_t _setup_packet[2];
|
||||
|
||||
#define XFER_CTL_BASE(_ep, _dir) &xfer_status[_ep][_dir]
|
||||
static xfer_ctl_t xfer_status[EP_MAX][2];
|
||||
|
||||
// Keep count of how many FIFOs are in use
|
||||
static uint8_t _allocated_fifos = 1; //FIFO0 is always in use
|
||||
|
||||
// Will either return an unused FIFO number, or 0 if all are used.
|
||||
static uint8_t get_free_fifo(void)
|
||||
{
|
||||
if (_allocated_fifos < EP_FIFO_NUM) return _allocated_fifos++;
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Setup the control endpoint 0.
|
||||
static void bus_reset(void)
|
||||
{
|
||||
for (int ep_num = 0; ep_num < USB_OUT_EP_NUM; ep_num++) {
|
||||
USB0.out_ep_reg[ep_num].doepctl |= USB_DO_SNAK0_M; // DOEPCTL0_SNAK
|
||||
}
|
||||
|
||||
// clear device address
|
||||
USB0.dcfg &= ~USB_DEVADDR_M;
|
||||
|
||||
USB0.daintmsk = USB_OUTEPMSK0_M | USB_INEPMSK0_M;
|
||||
USB0.doepmsk = USB_SETUPMSK_M | USB_XFERCOMPLMSK;
|
||||
USB0.diepmsk = USB_TIMEOUTMSK_M | USB_DI_XFERCOMPLMSK_M /*| USB_INTKNTXFEMPMSK_M*/;
|
||||
|
||||
// "USB Data FIFOs" section in reference manual
|
||||
// Peripheral FIFO architecture
|
||||
//
|
||||
// --------------- 320 or 1024 ( 1280 or 4096 bytes )
|
||||
// | IN FIFO MAX |
|
||||
// ---------------
|
||||
// | ... |
|
||||
// --------------- y + x + 16 + GRXFSIZ
|
||||
// | IN FIFO 2 |
|
||||
// --------------- x + 16 + GRXFSIZ
|
||||
// | IN FIFO 1 |
|
||||
// --------------- 16 + GRXFSIZ
|
||||
// | IN FIFO 0 |
|
||||
// --------------- GRXFSIZ
|
||||
// | OUT FIFO |
|
||||
// | ( Shared ) |
|
||||
// --------------- 0
|
||||
//
|
||||
// According to "FIFO RAM allocation" section in RM, FIFO RAM are allocated as follows (each word 32-bits):
|
||||
// - Each EP IN needs at least max packet size, 16 words is sufficient for EP0 IN
|
||||
//
|
||||
// - All EP OUT shared a unique OUT FIFO which uses
|
||||
// * 10 locations in hardware for setup packets + setup control words (up to 3 setup packets).
|
||||
// * 2 locations for OUT endpoint control words.
|
||||
// * 16 for largest packet size of 64 bytes. ( TODO Highspeed is 512 bytes)
|
||||
// * 1 location for global NAK (not required/used here).
|
||||
// * It is recommended to allocate 2 times the largest packet size, therefore
|
||||
// Recommended value = 10 + 1 + 2 x (16+2) = 47 --> Let's make it 52
|
||||
USB0.grstctl |= 0x10 << USB_TXFNUM_S; // fifo 0x10,
|
||||
USB0.grstctl |= USB_TXFFLSH_M; // Flush fifo
|
||||
USB0.grxfsiz = 52;
|
||||
|
||||
// Control IN uses FIFO 0 with 64 bytes ( 16 32-bit word )
|
||||
USB0.gnptxfsiz = (16 << USB_NPTXFDEP_S) | (USB0.grxfsiz & 0x0000ffffUL);
|
||||
|
||||
// Ready to receive SETUP packet
|
||||
USB0.out_ep_reg[0].doeptsiz |= USB_SUPCNT0_M;
|
||||
|
||||
USB0.gintmsk |= USB_IEPINTMSK_M | USB_OEPINTMSK_M;
|
||||
}
|
||||
|
||||
static void enum_done_processing(void)
|
||||
{
|
||||
ESP_EARLY_LOGV(TAG, "dcd_int_handler - Speed enumeration done! Sending DCD_EVENT_BUS_RESET then");
|
||||
// On current silicon on the Full Speed core, speed is fixed to Full Speed.
|
||||
// However, keep for debugging and in case Low Speed is ever supported.
|
||||
uint32_t enum_spd = (USB0.dsts >> USB_ENUMSPD_S) & (USB_ENUMSPD_V);
|
||||
|
||||
// Maximum packet size for EP 0 is set for both directions by writing DIEPCTL
|
||||
if (enum_spd == 0x03) { // Full-Speed (PHY on 48 MHz)
|
||||
USB0.in_ep_reg[0].diepctl &= ~USB_D_MPS0_V; // 64 bytes
|
||||
USB0.in_ep_reg[0].diepctl &= ~USB_D_STALL0_M; // clear Stall
|
||||
xfer_status[0][TUSB_DIR_OUT].max_size = 64;
|
||||
xfer_status[0][TUSB_DIR_IN].max_size = 64;
|
||||
} else {
|
||||
USB0.in_ep_reg[0].diepctl |= USB_D_MPS0_V; // 8 bytes
|
||||
USB0.in_ep_reg[0].diepctl &= ~USB_D_STALL0_M; // clear Stall
|
||||
xfer_status[0][TUSB_DIR_OUT].max_size = 8;
|
||||
xfer_status[0][TUSB_DIR_IN].max_size = 8;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*------------------------------------------------------------------*/
|
||||
/* Controller API
|
||||
*------------------------------------------------------------------*/
|
||||
void dcd_init(uint8_t rhport)
|
||||
{
|
||||
ESP_LOGV(TAG, "DCD init - Start");
|
||||
|
||||
// A. Disconnect
|
||||
ESP_LOGV(TAG, "DCD init - Soft DISCONNECT and Setting up");
|
||||
USB0.dctl |= USB_SFTDISCON_M; // Soft disconnect
|
||||
|
||||
// B. Programming DCFG
|
||||
/* If USB host misbehaves during status portion of control xfer
|
||||
(non zero-length packet), send STALL back and discard. Full speed. */
|
||||
USB0.dcfg |= USB_NZSTSOUTHSHK_M | // NonZero .... STALL
|
||||
(3 << 0); // dev speed: fullspeed 1.1 on 48 mhz // TODO no value in usb_reg.h (IDF-1476)
|
||||
|
||||
USB0.gahbcfg |= USB_NPTXFEMPLVL_M | USB_GLBLLNTRMSK_M; // Global interruptions ON
|
||||
USB0.gusbcfg |= USB_FORCEDEVMODE_M; // force devmode
|
||||
USB0.gotgctl &= ~(USB_BVALIDOVVAL_M | USB_BVALIDOVEN_M | USB_VBVALIDOVVAL_M); //no overrides
|
||||
|
||||
// C. Setting SNAKs, then connect
|
||||
for (int n = 0; n < USB_OUT_EP_NUM; n++) {
|
||||
USB0.out_ep_reg[n].doepctl |= USB_DO_SNAK0_M; // DOEPCTL0_SNAK
|
||||
}
|
||||
|
||||
// D. Interruption masking
|
||||
USB0.gintmsk = 0; //mask all
|
||||
USB0.gotgint = ~0U; //clear OTG ints
|
||||
USB0.gintsts = ~0U; //clear pending ints
|
||||
USB0.gintmsk = USB_OTGINTMSK_M |
|
||||
USB_MODEMISMSK_M |
|
||||
USB_RXFLVIMSK_M |
|
||||
USB_ERLYSUSPMSK_M |
|
||||
USB_USBSUSPMSK_M |
|
||||
USB_USBRSTMSK_M |
|
||||
USB_ENUMDONEMSK_M |
|
||||
USB_RESETDETMSK_M |
|
||||
USB_DISCONNINTMSK_M; // host most only
|
||||
|
||||
dcd_connect(rhport);
|
||||
}
|
||||
|
||||
void dcd_set_address(uint8_t rhport, uint8_t dev_addr)
|
||||
{
|
||||
(void)rhport;
|
||||
ESP_LOGV(TAG, "DCD init - Set address : %u", dev_addr);
|
||||
USB0.dcfg |= ((dev_addr & USB_DEVADDR_V) << USB_DEVADDR_S);
|
||||
// Response with status after changing device address
|
||||
dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0);
|
||||
}
|
||||
|
||||
void dcd_remote_wakeup(uint8_t rhport)
|
||||
{
|
||||
(void)rhport;
|
||||
|
||||
// set remote wakeup
|
||||
USB0.dctl |= USB_RMTWKUPSIG_M;
|
||||
|
||||
// enable SOF to detect bus resume
|
||||
USB0.gintsts = USB_SOF_M;
|
||||
USB0.gintmsk |= USB_SOFMSK_M;
|
||||
|
||||
// Per specs: remote wakeup signal bit must be clear within 1-15ms
|
||||
vTaskDelay(pdMS_TO_TICKS(1));
|
||||
|
||||
USB0.dctl &= ~USB_RMTWKUPSIG_M;
|
||||
}
|
||||
|
||||
// connect by enabling internal pull-up resistor on D+/D-
|
||||
void dcd_connect(uint8_t rhport)
|
||||
{
|
||||
(void) rhport;
|
||||
USB0.dctl &= ~USB_SFTDISCON_M;
|
||||
}
|
||||
|
||||
// disconnect by disabling internal pull-up resistor on D+/D-
|
||||
void dcd_disconnect(uint8_t rhport)
|
||||
{
|
||||
(void) rhport;
|
||||
USB0.dctl |= USB_SFTDISCON_M;
|
||||
}
|
||||
|
||||
/*------------------------------------------------------------------*/
|
||||
/* DCD Endpoint port
|
||||
*------------------------------------------------------------------*/
|
||||
|
||||
bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const *desc_edpt)
|
||||
{
|
||||
ESP_LOGV(TAG, "DCD endpoint opened");
|
||||
(void)rhport;
|
||||
|
||||
usb_out_endpoint_t *out_ep = &(USB0.out_ep_reg[0]);
|
||||
usb_in_endpoint_t *in_ep = &(USB0.in_ep_reg[0]);
|
||||
|
||||
uint8_t const epnum = tu_edpt_number(desc_edpt->bEndpointAddress);
|
||||
uint8_t const dir = tu_edpt_dir(desc_edpt->bEndpointAddress);
|
||||
|
||||
TU_ASSERT(epnum < EP_MAX);
|
||||
|
||||
xfer_ctl_t *xfer = XFER_CTL_BASE(epnum, dir);
|
||||
xfer->max_size = desc_edpt->wMaxPacketSize.size;
|
||||
|
||||
if (dir == TUSB_DIR_OUT) {
|
||||
out_ep[epnum].doepctl |= USB_USBACTEP1_M |
|
||||
desc_edpt->bmAttributes.xfer << USB_EPTYPE1_S |
|
||||
(desc_edpt->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS ? USB_DO_SETD0PID1_M : 0) |
|
||||
xfer->max_size << USB_MPS1_S;
|
||||
USB0.daintmsk |= (1 << (16 + epnum));
|
||||
} else {
|
||||
// "USB Data FIFOs" section in reference manual
|
||||
// Peripheral FIFO architecture
|
||||
//
|
||||
// --------------- 320 or 1024 ( 1280 or 4096 bytes )
|
||||
// | IN FIFO MAX |
|
||||
// ---------------
|
||||
// | ... |
|
||||
// --------------- y + x + 16 + GRXFSIZ
|
||||
// | IN FIFO 2 |
|
||||
// --------------- x + 16 + GRXFSIZ
|
||||
// | IN FIFO 1 |
|
||||
// --------------- 16 + GRXFSIZ
|
||||
// | IN FIFO 0 |
|
||||
// --------------- GRXFSIZ
|
||||
// | OUT FIFO |
|
||||
// | ( Shared ) |
|
||||
// --------------- 0
|
||||
//
|
||||
// Since OUT FIFO = GRXFSIZ, FIFO 0 = 16, for simplicity, we equally allocated for the rest of endpoints
|
||||
// - Size : (FIFO_SIZE/4 - GRXFSIZ - 16) / (EP_MAX-1)
|
||||
// - Offset: GRXFSIZ + 16 + Size*(epnum-1)
|
||||
// - IN EP 1 gets FIFO 1, IN EP "n" gets FIFO "n".
|
||||
|
||||
uint8_t fifo_num = get_free_fifo();
|
||||
TU_ASSERT(fifo_num != 0);
|
||||
|
||||
in_ep[epnum].diepctl &= ~(USB_D_TXFNUM1_M | USB_D_EPTYPE1_M | USB_DI_SETD0PID1 | USB_D_MPS1_M);
|
||||
in_ep[epnum].diepctl |= USB_D_USBACTEP1_M |
|
||||
fifo_num << USB_D_TXFNUM1_S |
|
||||
desc_edpt->bmAttributes.xfer << USB_D_EPTYPE1_S |
|
||||
(desc_edpt->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS ? (1 << USB_DI_SETD0PID1_S) : 0) |
|
||||
xfer->max_size << 0;
|
||||
|
||||
USB0.daintmsk |= (1 << (0 + epnum));
|
||||
|
||||
// Both TXFD and TXSA are in unit of 32-bit words.
|
||||
// IN FIFO 0 was configured during enumeration, hence the "+ 16".
|
||||
uint16_t const allocated_size = (USB0.grxfsiz & 0x0000ffff) + 16;
|
||||
uint16_t const fifo_size = (EP_FIFO_SIZE/4 - allocated_size) / (EP_FIFO_NUM-1);
|
||||
uint32_t const fifo_offset = allocated_size + fifo_size*(fifo_num-1);
|
||||
|
||||
// DIEPTXF starts at FIFO #1.
|
||||
USB0.dieptxf[epnum - 1] = (fifo_size << USB_NPTXFDEP_S) | fifo_offset;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void dcd_edpt_close_all(uint8_t rhport)
|
||||
{
|
||||
(void) rhport;
|
||||
|
||||
usb_out_endpoint_t *out_ep = &(USB0.out_ep_reg[0]);
|
||||
usb_in_endpoint_t *in_ep = &(USB0.in_ep_reg[0]);
|
||||
|
||||
// Disable non-control interrupt
|
||||
USB0.daintmsk = USB_OUTEPMSK0_M | USB_INEPMSK0_M;
|
||||
|
||||
for(uint8_t n = 1; n < EP_MAX; n++)
|
||||
{
|
||||
// disable OUT endpoint
|
||||
out_ep[n].doepctl = 0;
|
||||
xfer_status[n][TUSB_DIR_OUT].max_size = 0;
|
||||
|
||||
// disable IN endpoint
|
||||
in_ep[n].diepctl = 0;
|
||||
xfer_status[n][TUSB_DIR_IN].max_size = 0;
|
||||
}
|
||||
|
||||
_allocated_fifos = 1;
|
||||
}
|
||||
|
||||
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t *buffer, uint16_t total_bytes)
|
||||
{
|
||||
(void)rhport;
|
||||
|
||||
uint8_t const epnum = tu_edpt_number(ep_addr);
|
||||
uint8_t const dir = tu_edpt_dir(ep_addr);
|
||||
|
||||
xfer_ctl_t * xfer = XFER_CTL_BASE(epnum, dir);
|
||||
xfer->buffer = buffer;
|
||||
// xfer->ff = NULL; // TODO support dcd_edpt_xfer_fifo API
|
||||
xfer->total_len = total_bytes;
|
||||
xfer->queued_len = 0;
|
||||
xfer->short_packet = false;
|
||||
|
||||
uint16_t num_packets = (total_bytes / xfer->max_size);
|
||||
uint8_t short_packet_size = total_bytes % xfer->max_size;
|
||||
|
||||
// Zero-size packet is special case.
|
||||
if (short_packet_size > 0 || (total_bytes == 0)) {
|
||||
num_packets++;
|
||||
}
|
||||
|
||||
ESP_LOGV(TAG, "Transfer <-> EP%i, %s, pkgs: %i, bytes: %i",
|
||||
epnum, ((dir == TUSB_DIR_IN) ? "USB0.HOST (in)" : "HOST->DEV (out)"),
|
||||
num_packets, total_bytes);
|
||||
|
||||
// IN and OUT endpoint xfers are interrupt-driven, we just schedule them
|
||||
// here.
|
||||
if (dir == TUSB_DIR_IN) {
|
||||
// A full IN transfer (multiple packets, possibly) triggers XFRC.
|
||||
USB0.in_ep_reg[epnum].dieptsiz = (num_packets << USB_D_PKTCNT0_S) | total_bytes;
|
||||
USB0.in_ep_reg[epnum].diepctl |= USB_D_EPENA1_M | USB_D_CNAK1_M; // Enable | CNAK
|
||||
|
||||
// Enable fifo empty interrupt only if there are something to put in the fifo.
|
||||
if(total_bytes != 0) {
|
||||
USB0.dtknqr4_fifoemptymsk |= (1 << epnum);
|
||||
}
|
||||
} else {
|
||||
// Each complete packet for OUT xfers triggers XFRC.
|
||||
USB0.out_ep_reg[epnum].doeptsiz |= USB_PKTCNT0_M | ((xfer->max_size & USB_XFERSIZE0_V) << USB_XFERSIZE0_S);
|
||||
USB0.out_ep_reg[epnum].doepctl |= USB_EPENA0_M | USB_CNAK0_M;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
#if 0 // TODO support dcd_edpt_xfer_fifo API
|
||||
bool dcd_edpt_xfer_fifo (uint8_t rhport, uint8_t ep_addr, tu_fifo_t * ff, uint16_t total_bytes)
|
||||
{
|
||||
(void)rhport;
|
||||
}
|
||||
#endif
|
||||
|
||||
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
|
||||
{
|
||||
(void)rhport;
|
||||
|
||||
usb_out_endpoint_t *out_ep = &(USB0.out_ep_reg[0]);
|
||||
usb_in_endpoint_t *in_ep = &(USB0.in_ep_reg[0]);
|
||||
|
||||
uint8_t const epnum = tu_edpt_number(ep_addr);
|
||||
uint8_t const dir = tu_edpt_dir(ep_addr);
|
||||
|
||||
if (dir == TUSB_DIR_IN) {
|
||||
// Only disable currently enabled non-control endpoint
|
||||
if ((epnum == 0) || !(in_ep[epnum].diepctl & USB_D_EPENA1_M)) {
|
||||
in_ep[epnum].diepctl |= (USB_DI_SNAK1_M | USB_D_STALL1_M);
|
||||
} else {
|
||||
// Stop transmitting packets and NAK IN xfers.
|
||||
in_ep[epnum].diepctl |= USB_DI_SNAK1_M;
|
||||
while ((in_ep[epnum].diepint & USB_DI_SNAK1_M) == 0) ;
|
||||
|
||||
// Disable the endpoint. Note that both SNAK and STALL are set here.
|
||||
in_ep[epnum].diepctl |= (USB_DI_SNAK1_M | USB_D_STALL1_M | USB_D_EPDIS1_M);
|
||||
while ((in_ep[epnum].diepint & USB_D_EPDISBLD0_M) == 0) ;
|
||||
in_ep[epnum].diepint = USB_D_EPDISBLD0_M;
|
||||
}
|
||||
|
||||
// Flush the FIFO, and wait until we have confirmed it cleared.
|
||||
uint8_t const fifo_num = ((in_ep[epnum].diepctl >> USB_D_TXFNUM1_S) & USB_D_TXFNUM1_V);
|
||||
USB0.grstctl |= (fifo_num << USB_TXFNUM_S);
|
||||
USB0.grstctl |= USB_TXFFLSH_M;
|
||||
while ((USB0.grstctl & USB_TXFFLSH_M) != 0) ;
|
||||
} else {
|
||||
// Only disable currently enabled non-control endpoint
|
||||
if ((epnum == 0) || !(out_ep[epnum].doepctl & USB_EPENA0_M)) {
|
||||
out_ep[epnum].doepctl |= USB_STALL0_M;
|
||||
} else {
|
||||
// Asserting GONAK is required to STALL an OUT endpoint.
|
||||
// Simpler to use polling here, we don't use the "B"OUTNAKEFF interrupt
|
||||
// anyway, and it can't be cleared by user code. If this while loop never
|
||||
// finishes, we have bigger problems than just the stack.
|
||||
USB0.dctl |= USB_SGOUTNAK_M;
|
||||
while ((USB0.gintsts & USB_GOUTNAKEFF_M) == 0) ;
|
||||
|
||||
// Ditto here- disable the endpoint. Note that only STALL and not SNAK
|
||||
// is set here.
|
||||
out_ep[epnum].doepctl |= (USB_STALL0_M | USB_EPDIS0_M);
|
||||
while ((out_ep[epnum].doepint & USB_EPDISBLD0_M) == 0) ;
|
||||
out_ep[epnum].doepint = USB_EPDISBLD0_M;
|
||||
|
||||
// Allow other OUT endpoints to keep receiving.
|
||||
USB0.dctl |= USB_CGOUTNAK_M;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
|
||||
{
|
||||
(void)rhport;
|
||||
|
||||
usb_out_endpoint_t *out_ep = &(USB0.out_ep_reg[0]);
|
||||
usb_in_endpoint_t *in_ep = &(USB0.in_ep_reg[0]);
|
||||
|
||||
uint8_t const epnum = tu_edpt_number(ep_addr);
|
||||
uint8_t const dir = tu_edpt_dir(ep_addr);
|
||||
|
||||
if (dir == TUSB_DIR_IN) {
|
||||
in_ep[epnum].diepctl &= ~USB_D_STALL1_M;
|
||||
|
||||
uint8_t eptype = (in_ep[epnum].diepctl & USB_D_EPTYPE1_M) >> USB_D_EPTYPE1_S;
|
||||
// Required by USB spec to reset DATA toggle bit to DATA0 on interrupt
|
||||
// and bulk endpoints.
|
||||
if (eptype == 2 || eptype == 3) {
|
||||
in_ep[epnum].diepctl |= USB_DI_SETD0PID1_M;
|
||||
}
|
||||
} else {
|
||||
out_ep[epnum].doepctl &= ~USB_STALL1_M;
|
||||
|
||||
uint8_t eptype = (out_ep[epnum].doepctl & USB_EPTYPE1_M) >> USB_EPTYPE1_S;
|
||||
// Required by USB spec to reset DATA toggle bit to DATA0 on interrupt
|
||||
// and bulk endpoints.
|
||||
if (eptype == 2 || eptype == 3) {
|
||||
out_ep[epnum].doepctl |= USB_DO_SETD0PID1_M;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*------------------------------------------------------------------*/
|
||||
|
||||
static void receive_packet(xfer_ctl_t *xfer, /* usb_out_endpoint_t * out_ep, */ uint16_t xfer_size)
|
||||
{
|
||||
ESP_EARLY_LOGV(TAG, "USB - receive_packet");
|
||||
volatile uint32_t *rx_fifo = USB0.fifo[0];
|
||||
|
||||
// See above TODO
|
||||
// uint16_t remaining = (out_ep->DOEPTSIZ & UsbDOEPTSIZ_XFRSIZ_Msk) >> UsbDOEPTSIZ_XFRSIZ_Pos;
|
||||
// xfer->queued_len = xfer->total_len - remaining;
|
||||
|
||||
uint16_t remaining = xfer->total_len - xfer->queued_len;
|
||||
uint16_t to_recv_size;
|
||||
|
||||
if (remaining <= xfer->max_size) {
|
||||
// Avoid buffer overflow.
|
||||
to_recv_size = (xfer_size > remaining) ? remaining : xfer_size;
|
||||
} else {
|
||||
// Room for full packet, choose recv_size based on what the microcontroller
|
||||
// claims.
|
||||
to_recv_size = (xfer_size > xfer->max_size) ? xfer->max_size : xfer_size;
|
||||
}
|
||||
|
||||
// Common buffer read
|
||||
#if 0 // TODO support dcd_edpt_xfer_fifo API
|
||||
if (xfer->ff)
|
||||
{
|
||||
// Ring buffer
|
||||
tu_fifo_write_n_const_addr_full_words(xfer->ff, (const void *) rx_fifo, to_recv_size);
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
uint8_t to_recv_rem = to_recv_size % 4;
|
||||
uint16_t to_recv_size_aligned = to_recv_size - to_recv_rem;
|
||||
|
||||
// Do not assume xfer buffer is aligned.
|
||||
uint8_t *base = (xfer->buffer + xfer->queued_len);
|
||||
|
||||
// This for loop always runs at least once- skip if less than 4 bytes
|
||||
// to collect.
|
||||
if (to_recv_size >= 4) {
|
||||
for (uint16_t i = 0; i < to_recv_size_aligned; i += 4) {
|
||||
uint32_t tmp = (*rx_fifo);
|
||||
base[i] = tmp & 0x000000FF;
|
||||
base[i + 1] = (tmp & 0x0000FF00) >> 8;
|
||||
base[i + 2] = (tmp & 0x00FF0000) >> 16;
|
||||
base[i + 3] = (tmp & 0xFF000000) >> 24;
|
||||
}
|
||||
}
|
||||
|
||||
// Do not read invalid bytes from RX FIFO.
|
||||
if (to_recv_rem != 0) {
|
||||
uint32_t tmp = (*rx_fifo);
|
||||
uint8_t *last_32b_bound = base + to_recv_size_aligned;
|
||||
|
||||
last_32b_bound[0] = tmp & 0x000000FF;
|
||||
if (to_recv_rem > 1) {
|
||||
last_32b_bound[1] = (tmp & 0x0000FF00) >> 8;
|
||||
}
|
||||
if (to_recv_rem > 2) {
|
||||
last_32b_bound[2] = (tmp & 0x00FF0000) >> 16;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
xfer->queued_len += xfer_size;
|
||||
|
||||
// Per USB spec, a short OUT packet (including length 0) is always
|
||||
// indicative of the end of a transfer (at least for ctl, bulk, int).
|
||||
xfer->short_packet = (xfer_size < xfer->max_size);
|
||||
}
|
||||
|
||||
static void transmit_packet(xfer_ctl_t *xfer, volatile usb_in_endpoint_t *in_ep, uint8_t fifo_num)
|
||||
{
|
||||
ESP_EARLY_LOGV(TAG, "USB - transmit_packet");
|
||||
volatile uint32_t *tx_fifo = USB0.fifo[fifo_num];
|
||||
|
||||
uint16_t remaining = (in_ep->dieptsiz & 0x7FFFFU) >> USB_D_XFERSIZE0_S;
|
||||
xfer->queued_len = xfer->total_len - remaining;
|
||||
|
||||
uint16_t to_xfer_size = (remaining > xfer->max_size) ? xfer->max_size : remaining;
|
||||
|
||||
#if 0 // TODO support dcd_edpt_xfer_fifo API
|
||||
if (xfer->ff)
|
||||
{
|
||||
tu_fifo_read_n_const_addr_full_words(xfer->ff, (void *) tx_fifo, to_xfer_size);
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
uint8_t to_xfer_rem = to_xfer_size % 4;
|
||||
uint16_t to_xfer_size_aligned = to_xfer_size - to_xfer_rem;
|
||||
|
||||
// Buffer might not be aligned to 32b, so we need to force alignment
|
||||
// by copying to a temp var.
|
||||
uint8_t *base = (xfer->buffer + xfer->queued_len);
|
||||
|
||||
// This for loop always runs at least once- skip if less than 4 bytes
|
||||
// to send off.
|
||||
if (to_xfer_size >= 4) {
|
||||
for (uint16_t i = 0; i < to_xfer_size_aligned; i += 4) {
|
||||
uint32_t tmp = base[i] | (base[i + 1] << 8) |
|
||||
(base[i + 2] << 16) | (base[i + 3] << 24);
|
||||
(*tx_fifo) = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
// Do not read beyond end of buffer if not divisible by 4.
|
||||
if (to_xfer_rem != 0) {
|
||||
uint32_t tmp = 0;
|
||||
uint8_t *last_32b_bound = base + to_xfer_size_aligned;
|
||||
|
||||
tmp |= last_32b_bound[0];
|
||||
if (to_xfer_rem > 1) {
|
||||
tmp |= (last_32b_bound[1] << 8);
|
||||
}
|
||||
if (to_xfer_rem > 2) {
|
||||
tmp |= (last_32b_bound[2] << 16);
|
||||
}
|
||||
|
||||
(*tx_fifo) = tmp;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void read_rx_fifo(void)
|
||||
{
|
||||
// Pop control word off FIFO (completed xfers will have 2 control words,
|
||||
// we only pop one ctl word each interrupt).
|
||||
uint32_t const ctl_word = USB0.grxstsp;
|
||||
uint8_t const pktsts = (ctl_word & USB_PKTSTS_M) >> USB_PKTSTS_S;
|
||||
uint8_t const epnum = (ctl_word & USB_CHNUM_M ) >> USB_CHNUM_S;
|
||||
uint16_t const bcnt = (ctl_word & USB_BCNT_M ) >> USB_BCNT_S;
|
||||
|
||||
switch (pktsts) {
|
||||
case 0x01: // Global OUT NAK (Interrupt)
|
||||
ESP_EARLY_LOGV(TAG, "TUSB IRQ - RX type : Global OUT NAK");
|
||||
break;
|
||||
|
||||
case 0x02: { // Out packet recvd
|
||||
ESP_EARLY_LOGV(TAG, "TUSB IRQ - RX type : Out packet");
|
||||
xfer_ctl_t *xfer = XFER_CTL_BASE(epnum, TUSB_DIR_OUT);
|
||||
receive_packet(xfer, bcnt);
|
||||
}
|
||||
break;
|
||||
|
||||
case 0x03: // Out packet done (Interrupt)
|
||||
ESP_EARLY_LOGV(TAG, "TUSB IRQ - RX type : Out packet done");
|
||||
break;
|
||||
|
||||
case 0x04: // Step 2: Setup transaction completed (Interrupt)
|
||||
// After this event, OEPINT interrupt will occur with SETUP bit set
|
||||
ESP_EARLY_LOGV(TAG, "TUSB IRQ - RX : Setup packet done");
|
||||
USB0.out_ep_reg[epnum].doeptsiz |= USB_SUPCNT0_M;
|
||||
break;
|
||||
|
||||
case 0x06: { // Step1: Setup data packet received
|
||||
volatile uint32_t *rx_fifo = USB0.fifo[0];
|
||||
|
||||
// We can receive up to three setup packets in succession, but
|
||||
// only the last one is valid. Therefore we just overwrite it
|
||||
_setup_packet[0] = (*rx_fifo);
|
||||
_setup_packet[1] = (*rx_fifo);
|
||||
|
||||
ESP_EARLY_LOGV(TAG, "TUSB IRQ - RX : Setup packet : 0x%08x 0x%08x", _setup_packet[0], _setup_packet[1]);
|
||||
}
|
||||
break;
|
||||
|
||||
default: // Invalid, do something here, like breakpoint?
|
||||
TU_BREAKPOINT();
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
static void handle_epout_ints(void)
|
||||
{
|
||||
// GINTSTS will be cleared with DAINT == 0
|
||||
// DAINT for a given EP clears when DOEPINTx is cleared.
|
||||
// DOEPINT will be cleared when DAINT's out bits are cleared.
|
||||
for (int n = 0; n < USB_OUT_EP_NUM; n++) {
|
||||
xfer_ctl_t *xfer = XFER_CTL_BASE(n, TUSB_DIR_OUT);
|
||||
|
||||
if (USB0.daint & (1 << (16 + n))) {
|
||||
// SETUP packet Setup Phase done.
|
||||
if ((USB0.out_ep_reg[n].doepint & USB_SETUP0_M)) {
|
||||
USB0.out_ep_reg[n].doepint = USB_STUPPKTRCVD0_M | USB_SETUP0_M; // clear
|
||||
dcd_event_setup_received(0, (uint8_t *)&_setup_packet[0], true);
|
||||
}
|
||||
|
||||
// OUT XFER complete (single packet).q
|
||||
if (USB0.out_ep_reg[n].doepint & USB_XFERCOMPL0_M) {
|
||||
|
||||
ESP_EARLY_LOGV(TAG, "TUSB IRQ - EP OUT - XFER complete (single packet)");
|
||||
USB0.out_ep_reg[n].doepint = USB_XFERCOMPL0_M;
|
||||
|
||||
// Transfer complete if short packet or total len is transferred
|
||||
if (xfer->short_packet || (xfer->queued_len == xfer->total_len)) {
|
||||
xfer->short_packet = false;
|
||||
dcd_event_xfer_complete(0, n, xfer->queued_len, XFER_RESULT_SUCCESS, true);
|
||||
} else {
|
||||
// Schedule another packet to be received.
|
||||
USB0.out_ep_reg[n].doeptsiz |= USB_PKTCNT0_M | ((xfer->max_size & USB_XFERSIZE0_V) << USB_XFERSIZE0_S);
|
||||
USB0.out_ep_reg[n].doepctl |= USB_EPENA0_M | USB_CNAK0_M;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void handle_epin_ints(void)
|
||||
{
|
||||
// GINTSTS will be cleared with DAINT == 0
|
||||
// DAINT for a given EP clears when DIEPINTx is cleared.
|
||||
// IEPINT will be cleared when DAINT's out bits are cleared.
|
||||
for (uint32_t n = 0; n < USB_IN_EP_NUM; n++) {
|
||||
xfer_ctl_t *xfer = &xfer_status[n][TUSB_DIR_IN];
|
||||
|
||||
if (USB0.daint & (1 << (0 + n))) {
|
||||
ESP_EARLY_LOGV(TAG, "TUSB IRQ - EP IN %u", n);
|
||||
// IN XFER complete (entire xfer).
|
||||
if (USB0.in_ep_reg[n].diepint & USB_D_XFERCOMPL0_M) {
|
||||
ESP_EARLY_LOGV(TAG, "TUSB IRQ - IN XFER complete!");
|
||||
USB0.in_ep_reg[n].diepint = USB_D_XFERCOMPL0_M;
|
||||
dcd_event_xfer_complete(0, n | TUSB_DIR_IN_MASK, xfer->total_len, XFER_RESULT_SUCCESS, true);
|
||||
}
|
||||
|
||||
// XFER FIFO empty
|
||||
if (USB0.in_ep_reg[n].diepint & USB_D_TXFEMP0_M) {
|
||||
ESP_EARLY_LOGV(TAG, "TUSB IRQ - IN XFER FIFO empty!");
|
||||
USB0.in_ep_reg[n].diepint = USB_D_TXFEMP0_M;
|
||||
transmit_packet(xfer, &USB0.in_ep_reg[n], n);
|
||||
|
||||
// Turn off TXFE if all bytes are written.
|
||||
if (xfer->queued_len == xfer->total_len)
|
||||
{
|
||||
USB0.dtknqr4_fifoemptymsk &= ~(1 << n);
|
||||
}
|
||||
}
|
||||
|
||||
// XFER Timeout
|
||||
if (USB0.in_ep_reg[n].diepint & USB_D_TIMEOUT0_M) {
|
||||
// Clear interrupt or enpoint will hang.
|
||||
USB0.in_ep_reg[n].diepint = USB_D_TIMEOUT0_M;
|
||||
// Maybe retry?
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void _dcd_int_handler(void* arg)
|
||||
{
|
||||
(void) arg;
|
||||
uint8_t const rhport = 0;
|
||||
|
||||
const uint32_t int_msk = USB0.gintmsk;
|
||||
const uint32_t int_status = USB0.gintsts & int_msk;
|
||||
|
||||
if (int_status & USB_USBRST_M) {
|
||||
// start of reset
|
||||
ESP_EARLY_LOGV(TAG, "dcd_int_handler - reset");
|
||||
USB0.gintsts = USB_USBRST_M;
|
||||
// FIFOs will be reassigned when the endpoints are reopen
|
||||
_allocated_fifos = 1;
|
||||
bus_reset();
|
||||
}
|
||||
|
||||
if (int_status & USB_RESETDET_M) {
|
||||
ESP_EARLY_LOGV(TAG, "dcd_int_handler - reset while suspend");
|
||||
USB0.gintsts = USB_RESETDET_M;
|
||||
bus_reset();
|
||||
}
|
||||
|
||||
if (int_status & USB_ENUMDONE_M) {
|
||||
// ENUMDNE detects speed of the link. For full-speed, we
|
||||
// always expect the same value. This interrupt is considered
|
||||
// the end of reset.
|
||||
USB0.gintsts = USB_ENUMDONE_M;
|
||||
enum_done_processing();
|
||||
dcd_event_bus_reset(rhport, TUSB_SPEED_FULL, true);
|
||||
}
|
||||
|
||||
if(int_status & USB_USBSUSP_M)
|
||||
{
|
||||
USB0.gintsts = USB_USBSUSP_M;
|
||||
dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true);
|
||||
}
|
||||
|
||||
if(int_status & USB_WKUPINT_M)
|
||||
{
|
||||
USB0.gintsts = USB_WKUPINT_M;
|
||||
dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true);
|
||||
}
|
||||
|
||||
if (int_status & USB_OTGINT_M)
|
||||
{
|
||||
// OTG INT bit is read-only
|
||||
ESP_EARLY_LOGV(TAG, "dcd_int_handler - disconnected");
|
||||
|
||||
uint32_t const otg_int = USB0.gotgint;
|
||||
|
||||
if (otg_int & USB_SESENDDET_M)
|
||||
{
|
||||
dcd_event_bus_signal(rhport, DCD_EVENT_UNPLUGGED, true);
|
||||
}
|
||||
|
||||
USB0.gotgint = otg_int;
|
||||
}
|
||||
|
||||
if (int_status & USB_SOF_M) {
|
||||
USB0.gintsts = USB_SOF_M;
|
||||
|
||||
// Disable SOF interrupt since currently only used for remote wakeup detection
|
||||
USB0.gintmsk &= ~USB_SOFMSK_M;
|
||||
|
||||
dcd_event_bus_signal(rhport, DCD_EVENT_SOF, true);
|
||||
}
|
||||
|
||||
|
||||
if (int_status & USB_RXFLVI_M) {
|
||||
// RXFLVL bit is read-only
|
||||
ESP_EARLY_LOGV(TAG, "dcd_int_handler - rx!");
|
||||
|
||||
// Mask out RXFLVL while reading data from FIFO
|
||||
USB0.gintmsk &= ~USB_RXFLVIMSK_M;
|
||||
read_rx_fifo();
|
||||
USB0.gintmsk |= USB_RXFLVIMSK_M;
|
||||
}
|
||||
|
||||
// OUT endpoint interrupt handling.
|
||||
if (int_status & USB_OEPINT_M) {
|
||||
// OEPINT is read-only
|
||||
ESP_EARLY_LOGV(TAG, "dcd_int_handler - OUT endpoint!");
|
||||
handle_epout_ints();
|
||||
}
|
||||
|
||||
// IN endpoint interrupt handling.
|
||||
if (int_status & USB_IEPINT_M) {
|
||||
// IEPINT bit read-only
|
||||
ESP_EARLY_LOGV(TAG, "dcd_int_handler - IN endpoint!");
|
||||
handle_epin_ints();
|
||||
}
|
||||
|
||||
// Without handling
|
||||
USB0.gintsts |= USB_CURMOD_INT_M |
|
||||
USB_MODEMIS_M |
|
||||
USB_OTGINT_M |
|
||||
USB_NPTXFEMP_M |
|
||||
USB_GINNAKEFF_M |
|
||||
USB_GOUTNAKEFF |
|
||||
USB_ERLYSUSP_M |
|
||||
USB_USBSUSP_M |
|
||||
USB_ISOOUTDROP_M |
|
||||
USB_EOPF_M |
|
||||
USB_EPMIS_M |
|
||||
USB_INCOMPISOIN_M |
|
||||
USB_INCOMPIP_M |
|
||||
USB_FETSUSP_M |
|
||||
USB_PTXFEMP_M;
|
||||
}
|
||||
|
||||
void dcd_int_enable (uint8_t rhport)
|
||||
{
|
||||
(void) rhport;
|
||||
esp_intr_alloc(ETS_USB_INTR_SOURCE, ESP_INTR_FLAG_LOWMED, (intr_handler_t) _dcd_int_handler, NULL, &usb_ih);
|
||||
}
|
||||
|
||||
void dcd_int_disable (uint8_t rhport)
|
||||
{
|
||||
(void) rhport;
|
||||
esp_intr_free(usb_ih);
|
||||
}
|
||||
|
||||
#endif // #if OPT_MCU_ESP32S2 || OPT_MCU_ESP32S3
|
Loading…
x
Reference in New Issue
Block a user