hal: add ecdsa peripheral verification tests

This commit is contained in:
harshal.patil 2023-05-15 12:20:03 +05:30
parent 7330851db0
commit 21c6d5392f
7 changed files with 332 additions and 0 deletions

View File

@ -41,6 +41,12 @@ This contains tests for the following features of the crypto peripherals:
- Digital Signature Blocking Operation
- Digital Signature Invalid Data
- ECDSA peripheral
- ECDSA P192 signature generation
- ECDSA P256 signature generation
- ECDSA P192 signature verification
- ECDSA P256 signature verification
> **_NOTE:_** The verification tests for the HMAC and Digital Signature peripherals would get exercised in only in an FPGA environment.
# Burning the HMAC key
@ -64,6 +70,16 @@ espefuse.py -p $ESPPORT burn_key BLOCK_KEY2 ds_key2.bin HMAC_DOWN_DIGITAL_SIGNAT
espefuse.py -p $ESPPORT burn_key BLOCK_KEY3 ds_key3.bin HMAC_DOWN_DIGITAL_SIGNATURE --no-read-protect --no-write-protect --do-not-confirm
```
# Burning the ECDSA keys
The ECDSA tests need some ECDSA keys to be burned in the `BLOCK_KEY1` and `BLOCK_KEY2` of the efuses. As this verification application is independent of the efuse component, the user needs to manually burn the keys and their key purposes using `espefuse.py`.
```bash
espefuse.py -p $ESPPORT burn_key BLOCK_KEY1 ecdsa192_priv_key.pem ECDSA_KEY --no-read-protect --no-write-protect --do-not-confirm
espefuse.py -p $ESPPORT burn_key BLOCK_KEY2 ecdsa256_priv_key.pem ECDSA_KEY --no-read-protect --no-write-protect --do-not-confirm
```
# Building
```bash

View File

@ -16,6 +16,10 @@ if(CONFIG_SOC_DIG_SIGN_SUPPORTED)
list(APPEND srcs "ds/test_ds.c")
endif()
if(CONFIG_SOC_ECDSA_SUPPORTED)
list(APPEND srcs "ecdsa/test_ecdsa.c")
endif()
idf_component_register(SRCS ${srcs}
REQUIRES test_utils unity
WHOLE_ARCHIVE)

View File

@ -27,6 +27,10 @@ static void run_all_tests(void)
RUN_TEST_GROUP(ds);
#endif
#if CONFIG_SOC_ECDSA_SUPPORTED
RUN_TEST_GROUP(ecdsa)
#endif
#endif /* CONFIG_IDF_ENV_FPGA */
}

View File

@ -0,0 +1,5 @@
-----BEGIN EC PRIVATE KEY-----
MF8CAQEEGPswTe6IsRRpS/xbXdWj+HbzKV79UPNuFqAKBggqhkjOPQMBAaE0AzIA
BNA/b+ddqvTAHmN7gqsjMzR0WVZdIRCcsYX8dstlvMS+dAn983Tcwt5+SyOtRlyH
wg==
-----END EC PRIVATE KEY-----

View File

@ -0,0 +1,5 @@
-----BEGIN EC PRIVATE KEY-----
MHcCAQEEIKLY3NrF5q4bw/TqTE0a4MGI70bitMzz2AoLIIcMeHi8oAoGCCqGSM49
AwEHoUQDQgAETd9kH9hu1IunygTHEbhF2gz/X3rOWhH5lVUIJoWI6agksE3Mv86a
bqCKthpA8nFqUKj9qiyAoLxzoejsrywlNA==
-----END EC PRIVATE KEY-----

View File

@ -0,0 +1,88 @@
/*
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Unlicense OR CC0-1.0
*/
#pragma once
#include <stdint.h>
const uint8_t ecc_p256_k[] = {
0xB2, 0xC5, 0x9E, 0x92, 0x64, 0xCD, 0x5F, 0x66,
0x9E, 0xC8, 0x83, 0x6D, 0x99, 0x61, 0x18, 0x72,
0xC8, 0x60, 0x83, 0x1E, 0xE5, 0x79, 0xCC, 0x73,
0xA9, 0xB4, 0x74, 0x85, 0x70, 0x11, 0x2D, 0xA2,
};
const uint8_t ecc_p192_k[] = {
0x6f, 0x18, 0x34, 0xeb, 0x16, 0xb7, 0xac, 0x9f,
0x3c, 0x77, 0x71, 0xb3, 0x02, 0x30, 0x70, 0x48,
0x75, 0x87, 0xbb, 0x6f, 0x80, 0x34, 0x8d, 0x5e
};
uint8_t sha[] = {
0x0c, 0xaa, 0x08, 0xb4, 0xf0, 0x89, 0xd3, 0x45,
0xbb, 0x55, 0x98, 0xd9, 0xc2, 0xe9, 0x65, 0x5d,
0x7e, 0xa3, 0xa9, 0xc3, 0xcd, 0x69, 0xb1, 0xcf,
0x91, 0xbe, 0x58, 0x10, 0xfe, 0x80, 0x65, 0x6e
};
/* Little endian */
uint8_t ecdsa256_r[] = {
0xff, 0x94, 0xf7, 0x5a, 0xce, 0x81, 0x05, 0xfc,
0x98, 0x17, 0xd5, 0x0a, 0x94, 0x53, 0xab, 0x54,
0xa8, 0x21, 0x8b, 0xe6, 0xf2, 0x6e, 0xa0, 0x7b,
0x20, 0x36, 0x27, 0xd2, 0x60, 0x5d, 0xa3, 0x2e
};
/* Little endian */
uint8_t ecdsa256_s[] = {
0x50, 0x78, 0x0e, 0x41, 0xe3, 0x03, 0xd2, 0x5b,
0xaf, 0x74, 0x31, 0xb8, 0x74, 0xc9, 0xb3, 0x89,
0x8d, 0xb5, 0x40, 0x3e, 0x5b, 0x2a, 0x4b, 0xe2,
0x5e, 0xf8, 0x96, 0xd4, 0xf9, 0x22, 0xf9, 0xb4
};
/* Little endian */
uint8_t ecdsa256_pub_x[] = {
0xa8, 0xe9, 0x88, 0x85, 0x26, 0x08, 0x55, 0x95,
0xf9, 0x11, 0x5a, 0xce, 0x7a, 0x5f, 0xff, 0x0c,
0xda, 0x45, 0xb8, 0x11, 0xc7, 0x04, 0xca, 0xa7,
0x8b, 0xd4, 0x6e, 0xd8, 0x1f, 0x64, 0xdf, 0x4d
};
/* Little endian */
uint8_t ecdsa256_pub_y[] = {
0x34, 0x25, 0x2c, 0xaf, 0xec, 0xe8, 0xa1, 0x73,
0xbc, 0xa0, 0x80, 0x2c, 0xaa, 0xfd, 0xa8, 0x50,
0x6a, 0x71, 0xf2, 0x40, 0x1a, 0xb6, 0x8a, 0xa0,
0x6e, 0x9a, 0xce, 0xbf, 0xcc, 0x4d, 0xb0, 0x24
};
/* Little endian */
uint8_t ecdsa192_r[] = {
0x9f, 0xee, 0xb7, 0x4f, 0x09, 0xd5, 0xc8, 0x42,
0x2c, 0x74, 0xe7, 0xaa, 0x6d, 0xe2, 0xe1, 0x1c,
0xb7, 0x26, 0x75, 0xb2, 0x2f, 0x18, 0x8a, 0x2b
};
/* Little endian */
uint8_t ecdsa192_s[] = {
0x12, 0x5b, 0x30, 0x24, 0x59, 0x24, 0xeb, 0xf6,
0x2f, 0x06, 0x60, 0xa8, 0xff, 0xa5, 0xed, 0xce,
0xb6, 0xa5, 0x28, 0xf4, 0x05, 0xb4, 0x74, 0x1a
};
/* Little endian */
uint8_t ecdsa192_pub_x[] = {
0xb1, 0x9c, 0x10, 0x21, 0x5d, 0x56, 0x59, 0x74,
0x34, 0x33, 0x23, 0xab, 0x82, 0x7b, 0x63, 0x1e,
0xc0, 0xf4, 0xaa, 0x5d, 0xe7, 0x6f, 0x3f, 0xd0
};
/* Little endian */
uint8_t ecdsa192_pub_y[] = {
0xc2, 0x87, 0x5c, 0x46, 0xad, 0x23, 0x4b, 0x7e,
0xde, 0xc2, 0xdc, 0x74, 0xf3, 0xfd, 0x09, 0x74,
0xbe, 0xc4, 0xbc, 0x65, 0xcb, 0x76, 0xfc, 0x85
};

View File

@ -0,0 +1,210 @@
/*
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: CC0-1.0
*/
#include <stdio.h>
#include <stdbool.h>
#include <string.h>
#include "esp_private/periph_ctrl.h"
#include "esp_random.h"
#include "hal/clk_gate_ll.h"
#include "hal/ecdsa_hal.h"
#include "hal/ecdsa_types.h"
#include "memory_checks.h"
#include "unity_fixture.h"
#include "ecdsa_params.h"
static void ecdsa_enable_and_reset(void)
{
periph_ll_enable_clk_clear_rst(PERIPH_ECDSA_MODULE);
}
static void ecdsa_disable_and_reset(void)
{
periph_ll_disable_clk_set_rst(PERIPH_ECDSA_MODULE);
}
static void ecc_be_to_le(const uint8_t* be_point, uint8_t *le_point, uint8_t len)
{
memset(le_point, 0x0, 32);
for (int i = 0; i < len; i++) {
le_point[i] = be_point[len - i - 1];
}
}
static int test_ecdsa_verify(bool is_p256, uint8_t* sha, uint8_t* r_le, uint8_t* s_le, uint8_t *pub_x, uint8_t *pub_y)
{
uint16_t len;
uint8_t sha_le[32];
ecdsa_hal_config_t conf = {
.mode = ECDSA_MODE_SIGN_VERIFY,
.k_mode = ECDSA_K_USE_TRNG,
.sha_mode = ECDSA_Z_USER_PROVIDED,
};
if (is_p256) {
conf.curve = ECDSA_CURVE_SECP256R1;
len = 32;
} else {
conf.curve = ECDSA_CURVE_SECP192R1;
len = 24;
}
/* Set HASH */
ecc_be_to_le(sha, sha_le, len);
ecdsa_enable_and_reset();
int ret = ecdsa_hal_verify_signature(&conf, sha_le, r_le, s_le, pub_x, pub_y, len);
ecdsa_disable_and_reset();
return ret;
}
static void test_ecdsa_corrupt_data(bool is_p256, uint8_t* sha, uint8_t* r_le, uint8_t* s_le, uint8_t *pub_x, uint8_t *pub_y)
{
int len;
if (is_p256) {
len = 32;
} else {
len = 24;
}
// Randomly select a bit and corrupt its correpsonding value
uint16_t r_bit = esp_random() % len * 8;
printf("Corrupting SHA bit %d...\n", r_bit);
sha[r_bit / 8] ^= 1 << (r_bit % 8);
TEST_ASSERT_EQUAL(-1, test_ecdsa_verify(1, sha, r_le, s_le, pub_x, pub_y));
sha[r_bit / 8] ^= 1 << (r_bit % 8);
printf("Corrupting R bit %d...\n", r_bit);
r_le[r_bit / 8] ^= 1 << (r_bit % 8);
TEST_ASSERT_EQUAL(-1, test_ecdsa_verify(1, sha, r_le, s_le, pub_x, pub_y));
r_le[r_bit / 8] ^= 1 << (r_bit % 8);
printf("Corrupting S bit %d...\n", r_bit);
s_le[r_bit / 8] ^= 1 << (r_bit % 8);
TEST_ASSERT_EQUAL(-1, test_ecdsa_verify(1, sha, r_le, s_le, pub_x, pub_y));
s_le[r_bit / 8] ^= 1 << (r_bit % 8);
printf("Corrupting pub_x bit %d...\n", r_bit);
pub_x[r_bit / 8] ^= 1 << (r_bit % 8);
TEST_ASSERT_EQUAL(-1, test_ecdsa_verify(1, sha, r_le, s_le, pub_x, pub_y));
pub_x[r_bit / 8] ^= 1 << (r_bit % 8);
printf("Corrupting pub_y bit %d...\n", r_bit);
pub_y[r_bit / 8] ^= 1 << (r_bit % 8);
TEST_ASSERT_EQUAL(-1, test_ecdsa_verify(1, sha, r_le, s_le, pub_x, pub_y));
pub_y[r_bit / 8] ^= 1 << (r_bit % 8);
}
static void test_ecdsa_sign(bool is_p256, uint8_t* sha, uint8_t* r_le, uint8_t* s_le)
{
uint8_t sha_le[32] = {0};
uint8_t zeroes[32] = {0};
uint16_t len;
ecdsa_hal_config_t conf = {
.mode = ECDSA_MODE_SIGN_GEN,
.k_mode = ECDSA_K_USE_TRNG,
.sha_mode = ECDSA_Z_USER_PROVIDED,
};
if (is_p256) {
conf.curve = ECDSA_CURVE_SECP256R1;
conf.efuse_key_blk = 5;
len = 32;
} else {
conf.curve = ECDSA_CURVE_SECP192R1;
conf.efuse_key_blk = 6;
len = 24;
}
/* Set HASH */
ecc_be_to_le(sha, sha_le, len);
ecdsa_enable_and_reset();
do {
ecdsa_hal_gen_signature(&conf, NULL, sha_le, r_le, s_le, len);
} while(!memcmp(r_le, zeroes, len) || !memcmp(s_le, zeroes, len));
ecdsa_disable_and_reset();
}
static void test_ecdsa_sign_and_verify(bool is_p256, uint8_t* sha, uint8_t* pub_x, uint8_t* pub_y)
{
uint8_t r_le[32] = {0};
uint8_t s_le[32] = {0};
test_ecdsa_sign(is_p256, sha, r_le, s_le);
TEST_ASSERT_EQUAL(0, test_ecdsa_verify(is_p256, sha, r_le, s_le, pub_x, pub_y));
}
TEST_GROUP(ecdsa);
TEST_SETUP(ecdsa)
{
test_utils_record_free_mem();
TEST_ESP_OK(test_utils_set_leak_level(0, ESP_LEAK_TYPE_CRITICAL, ESP_COMP_LEAK_GENERAL));
}
TEST_TEAR_DOWN(ecdsa)
{
test_utils_finish_and_evaluate_leaks(test_utils_get_leak_level(ESP_LEAK_TYPE_WARNING, ESP_COMP_LEAK_ALL),
test_utils_get_leak_level(ESP_LEAK_TYPE_CRITICAL, ESP_COMP_LEAK_ALL));
}
TEST(ecdsa, ecdsa_SECP192R1_signature_verification)
{
TEST_ASSERT_EQUAL(0, test_ecdsa_verify(0, sha, ecdsa192_r, ecdsa192_s, ecdsa192_pub_x, ecdsa192_pub_y));
}
TEST(ecdsa, ecdsa_SECP192R1_sign_and_verify)
{
test_ecdsa_sign_and_verify(0, sha, ecdsa192_pub_x, ecdsa192_pub_y);
}
TEST(ecdsa, ecdsa_SECP192R1_corrupt_signature)
{
test_ecdsa_corrupt_data(0, sha, ecdsa192_r, ecdsa192_s, ecdsa192_pub_x, ecdsa192_pub_y);
}
TEST(ecdsa, ecdsa_SECP256R1_signature_verification)
{
TEST_ASSERT_EQUAL(0, test_ecdsa_verify(1, sha, ecdsa256_r, ecdsa256_s, ecdsa256_pub_x, ecdsa256_pub_y));
}
TEST(ecdsa, ecdsa_SECP256R1_sign_and_verify)
{
test_ecdsa_sign_and_verify(1, sha, ecdsa256_pub_x, ecdsa256_pub_y);
}
TEST(ecdsa, ecdsa_SECP256R1_corrupt_signature)
{
test_ecdsa_corrupt_data(1, sha, ecdsa256_r, ecdsa256_s, ecdsa256_pub_x, ecdsa256_pub_y);
}
TEST_GROUP_RUNNER(ecdsa)
{
RUN_TEST_CASE(ecdsa, ecdsa_SECP192R1_signature_verification)
RUN_TEST_CASE(ecdsa, ecdsa_SECP192R1_sign_and_verify)
RUN_TEST_CASE(ecdsa, ecdsa_SECP192R1_corrupt_signature)
RUN_TEST_CASE(ecdsa, ecdsa_SECP256R1_signature_verification)
RUN_TEST_CASE(ecdsa, ecdsa_SECP256R1_sign_and_verify)
RUN_TEST_CASE(ecdsa, ecdsa_SECP256R1_corrupt_signature)
}