Merge branch 'master' into feature/wpa2_enterprise

Conflicts:
	components/esp32/component.mk
	components/wpa_supplicant/component.mk
This commit is contained in:
Xia Xiaotian 2016-11-21 18:09:13 +08:00
commit 1ca82de638
196 changed files with 9732 additions and 2768 deletions

5
.gitignore vendored
View File

@ -19,3 +19,8 @@ GPATH
examples/*/sdkconfig
examples/*/sdkconfig.old
examples/*/build
#Doc build artifacts
docs/_build/
docs/doxygen-warning-log.txt
docs/xml/

View File

@ -63,10 +63,7 @@ build_ssc:
<<: *build_template
artifacts:
paths:
- ./SSC/build/*.bin
- ./SSC/build/*.elf
- ./SSC/build/*.map
- ./SSC/build/bootloader/*.bin
- ./SSC/ssc_bin
expire_in: 6 mos
script:
@ -118,6 +115,9 @@ build_docs:
- build_docs
script:
- cd docs
- doxygen
# If not building master branch, and there are Doxygen warnings, print them and bail out
- test "${CI_BUILD_REF_NAME}" = "master" || test $(cat doxygen-warning-log.txt | wc -l) -eq 0 || ( echo "Doxygen pass had some warnings:" && cat doxygen-warning-log.txt && false )
- make html
artifacts:
paths:
@ -159,6 +159,7 @@ test_report:
when: always
paths:
- $REPORT_PATH
- $LOG_PATH
expire_in: 12 mos
script:
# clone test bench
@ -229,7 +230,7 @@ deploy_docs:
variables:
# LOCAL_ENV_CONFIG_PATH: define in template and jobs can overwrite if required
LOCAL_ENV_CONFIG_PATH: /home/gitlab-runner/LocalConfig/ESP32_IDF
BIN_PATH: "$CI_PROJECT_DIR/SSC/build/"
BIN_PATH: "$CI_PROJECT_DIR/SSC/ssc_bin/SSC"
APP_NAME: "ssc"
LOG_PATH: "$CI_PROJECT_DIR/$CI_BUILD_REF"
# append test level folder to TEST_CASE_FILE_PATH in before_script of test job

3
.gitmodules vendored
View File

@ -7,3 +7,6 @@
[submodule "components/bt/lib"]
path = components/bt/lib
url = https://github.com/espressif/esp32-bt-lib.git
[submodule "components/micro-ecc/micro-ecc"]
path = components/micro-ecc/micro-ecc
url = https://github.com/kmackay/micro-ecc.git

View File

@ -39,6 +39,7 @@ If this process passes, it will be merged onto the public github repository.
Legal Part
----------
Before a contribution can be accepted, you will need to sign our `Contributor Agreement <http://esp-idf.readthedocs.io/en/latest/contributing.html>`_. You will be prompted for this automatically as part of the Pull Request process.
Before a contribution can be accepted, you will need to sign our :doc:`contributor-agreement`. You will be prompted for this automatically as part of the Pull Request process.

View File

@ -20,12 +20,99 @@ config LOG_BOOTLOADER_LEVEL_VERBOSE
endchoice
config LOG_BOOTLOADER_LEVEL
int
default 0 if LOG_BOOTLOADER_LEVEL_NONE
default 1 if LOG_BOOTLOADER_LEVEL_ERROR
default 2 if LOG_BOOTLOADER_LEVEL_WARN
default 3 if LOG_BOOTLOADER_LEVEL_INFO
default 4 if LOG_BOOTLOADER_LEVEL_DEBUG
default 5 if LOG_BOOTLOADER_LEVEL_VERBOSE
int
default 0 if LOG_BOOTLOADER_LEVEL_NONE
default 1 if LOG_BOOTLOADER_LEVEL_ERROR
default 2 if LOG_BOOTLOADER_LEVEL_WARN
default 3 if LOG_BOOTLOADER_LEVEL_INFO
default 4 if LOG_BOOTLOADER_LEVEL_DEBUG
default 5 if LOG_BOOTLOADER_LEVEL_VERBOSE
endmenu
menu "Secure boot configuration"
choice SECURE_BOOTLOADER
bool "Secure bootloader"
default SECURE_BOOTLOADER_DISABLED
help
Build a bootloader with the secure boot flag enabled.
Secure bootloader can be one-time-flash (chip will only ever
boot that particular bootloader), or a digest key can be used
to allow the secure bootloader to be re-flashed with
modifications. Secure boot also permanently disables JTAG.
See docs/security/secure-boot.rst for details.
config SECURE_BOOTLOADER_DISABLED
bool "Disabled"
config SECURE_BOOTLOADER_ONE_TIME_FLASH
bool "One-time flash"
help
On first boot, the bootloader will generate a key which is not readable externally or by software. A digest is generated from the bootloader image itself. This digest will be verified on each subsequent boot.
Enabling this option means that the bootloader cannot be changed after the first time it is booted.
config SECURE_BOOTLOADER_REFLASHABLE
bool "Reflashable"
help
Generate a reusable secure bootloader key, derived (via SHA-256) from the secure boot signing key.
This allows the secure bootloader to be re-flashed by anyone with access to the secure boot signing key.
This option is less secure than one-time flash, because a leak of the digest key from one device allows reflashing of any device that uses it.
endchoice
config SECURE_BOOT_SIGNING_KEY
string "Secure boot signing key"
depends on SECURE_BOOTLOADER_ENABLED
default secure_boot_signing_key.pem
help
Path to the key file used to sign partition tables and app images for secure boot.
Key file is an ECDSA private key (NIST256p curve) in PEM format.
Path is evaluated relative to the project directory.
You can generate a new signing key by running the following command:
espsecure.py generate_signing_key secure_boot_signing_key.pem
See docs/security/secure-boot.rst for details.
config SECURE_BOOT_DISABLE_JTAG
bool "First boot: Permanently disable JTAG"
depends on SECURE_BOOTLOADER_ENABLED
default Y
help
Bootloader permanently disable JTAG (across entire chip) when enabling secure boot. This happens on first boot of the bootloader.
It is recommended this option remains set for production environments.
config SECURE_BOOT_DISABLE_ROM_BASIC
bool "First boot: Permanently disable ROM BASIC fallback"
depends on SECURE_BOOTLOADER_ENABLED
default Y
help
Bootloader permanently disables ROM BASIC (on UART console) as a fallback if the bootloader image becomes invalid. This happens on first boot.
It is recommended this option remains set in production environments.
config SECURE_BOOT_TEST_MODE
bool "Test mode: don't actually enable secure boot"
depends on SECURE_BOOTLOADER_ENABLED
default N
help
If this option is set, all permanent secure boot changes (via Efuse) are disabled.
This option is for testing purposes only - it effectively completely disables secure boot protection.
config SECURE_BOOTLOADER_ENABLED
bool
default SECURE_BOOTLOADER_ONE_TIME_FLASH || SECURE_BOOTLOADER_REFLASHABLE
endmenu

View File

@ -13,45 +13,110 @@ ifndef IS_BOOTLOADER_BUILD
BOOTLOADER_COMPONENT_PATH := $(COMPONENT_PATH)
BOOTLOADER_BUILD_DIR=$(abspath $(BUILD_DIR_BASE)/bootloader)
BOOTLOADER_BIN=$(BOOTLOADER_BUILD_DIR)/bootloader.bin
BOOTLOADER_SDKCONFIG=$(BOOTLOADER_BUILD_DIR)/sdkconfig
# signing key path is resolved relative to the project directory
SECURE_BOOT_SIGNING_KEY=$(abspath $(call dequote,$(CONFIG_SECURE_BOOT_SIGNING_KEY)))
export SECURE_BOOT_SIGNING_KEY # used by bootloader_support component
# Custom recursive make for bootloader sub-project
BOOTLOADER_MAKE=+$(MAKE) -C $(BOOTLOADER_COMPONENT_PATH)/src \
V=$(V) SDKCONFIG=$(BOOTLOADER_SDKCONFIG) \
BUILD_DIR_BASE=$(BOOTLOADER_BUILD_DIR) \
V=$(V) BUILD_DIR_BASE=$(BOOTLOADER_BUILD_DIR)
.PHONY: bootloader-clean bootloader-flash bootloader $(BOOTLOADER_BIN)
$(BOOTLOADER_BIN): | $(BOOTLOADER_BUILD_DIR)/sdkconfig
$(Q) $(BOOTLOADER_MAKE) $@
bootloader-clean:
$(Q) $(BOOTLOADER_MAKE) app-clean config-clean
$(Q) rm -f $(BOOTLOADER_SDKCONFIG) $(BOOTLOADER_SDKCONFIG).old
$(BOOTLOADER_BIN): $(SDKCONFIG_MAKEFILE)
$(BOOTLOADER_MAKE) $@
clean: bootloader-clean
ifdef CONFIG_SECURE_BOOTLOADER_DISABLED
# If secure boot disabled, bootloader flashing is integrated
# with 'make flash' and no warnings are printed.
bootloader: $(BOOTLOADER_BIN)
@echo $(SEPARATOR)
@echo "Bootloader built. Default flash command is:"
@echo "$(ESPTOOLPY_WRITE_FLASH) 0x1000 $^"
all_binaries: $(BOOTLOADER_BIN)
ESPTOOL_ALL_FLASH_ARGS += 0x1000 $(BOOTLOADER_BIN)
# bootloader-flash calls flash in the bootloader dummy project
bootloader-flash: $(BOOTLOADER_BIN)
$(ESPTOOLPY_WRITE_FLASH) 0x1000 $^
# synchronise the project level config to the bootloader's
# config
$(BOOTLOADER_SDKCONFIG): $(PROJECT_PATH)/sdkconfig | $(BOOTLOADER_BUILD_DIR)
$(Q) cp $< $@
else ifdef CONFIG_SECURE_BOOTLOADER_ONE_TIME_FLASH
#### TEMPORARILY DISABLE THIS OPTION
ifneq ("$(IDF_INSECURE_SECURE_BOOT)","1")
bootloader:
@echo "Secure boot features are not yet mature, so the current secure bootloader will not properly secure the device"
@echo "If you flash this bootloader, you will be left with an non-updateable bootloader that is missing features."
@echo "If you really want to do this, set the environment variable IDF_INSECURE_SECURE_BOOT=1 and rerun make."
exit 1
else
# One time flashing requires user to run esptool.py command themselves,
# and warning is printed about inability to reflash.
bootloader: $(BOOTLOADER_BIN)
@echo $(SEPARATOR)
@echo "Bootloader built. One-time flash command is:"
@echo "$(ESPTOOLPY_WRITE_FLASH) 0x1000 $(BOOTLOADER_BIN)"
@echo $(SEPARATOR)
@echo "* IMPORTANT: After first boot, BOOTLOADER CANNOT BE RE-FLASHED on same device"
endif # IDF_INSECURE_SECURE_BOOT
else ifdef CONFIG_SECURE_BOOTLOADER_REFLASHABLE
# Reflashable secure bootloader
# generates a digest binary (bootloader + digest)
#### TEMPORARILY DISABLE THIS OPTION
ifneq ("$(IDF_INSECURE_SECURE_BOOT)","1")
bootloader:
@echo "Secure boot features are not yet mature, so the current secure bootloader will not properly secure the device."
@echo "If using this feature, expect to reflash the bootloader at least one more time."
@echo "If you really want to do this, set the environment variable IDF_INSECURE_SECURE_BOOT=1 and rerun make."
exit 1
else
BOOTLOADER_DIGEST_BIN := $(BOOTLOADER_BUILD_DIR)/bootloader-reflash-digest.bin
SECURE_BOOTLOADER_KEY := $(BOOTLOADER_BUILD_DIR)/secure-bootloader-key.bin
$(SECURE_BOOTLOADER_KEY): $(SECURE_BOOT_SIGNING_KEY)
$(Q) $(ESPSECUREPY) digest_private_key -k $< $@
bootloader: $(BOOTLOADER_DIGEST_BIN)
@echo $(SEPARATOR)
@echo "Bootloader built and secure digest generated. First time flash command is:"
@echo "$(ESPEFUSEPY) burn_key secure_boot $(SECURE_BOOTLOADER_KEY)"
@echo "$(ESPTOOLPY_WRITE_FLASH) 0x1000 $(BOOTLOADER_BIN)"
@echo $(SEPARATOR)
@echo "To reflash the bootloader after initial flash:"
@echo "$(ESPTOOLPY_WRITE_FLASH) 0x0 $(BOOTLOADER_DIGEST_BIN)"
@echo $(SEPARATOR)
@echo "* After first boot, only re-flashes of this kind (with same key) will be accepted."
@echo "* Not recommended to re-use the same secure boot keyfile on multiple production devices."
$(BOOTLOADER_DIGEST_BIN): $(BOOTLOADER_BIN) $(SECURE_BOOTLOADER_KEY)
@echo "DIGEST $(notdir $@)"
$(Q) $(ESPSECUREPY) digest_secure_bootloader -k $(SECURE_BOOTLOADER_KEY) -o $@ $<
endif # IDF_INSECURE_SECURE_BOOT
else
bootloader:
@echo "Invalid bootloader target: bad sdkconfig?"
@exit 1
endif
all_binaries: $(BOOTLOADER_BIN)
bootloader-clean:
$(BOOTLOADER_MAKE) app-clean
rm -f $(SECURE_BOOTLOADER_KEY) $(BOOTLOADER_DIGEST_BIN)
$(BOOTLOADER_BUILD_DIR):
$(Q) mkdir -p $@
mkdir -p $@
else
CFLAGS += -D BOOTLOADER_BUILD=1 -I $(IDF_PATH)/components/esp32/include
CFLAGS += -D BOOTLOADER_BUILD=1 -I $(IDF_PATH)/components/esp32/include
endif

View File

@ -4,7 +4,10 @@
#
PROJECT_NAME := bootloader
COMPONENTS := esptool_py bootloader log spi_flash
#We cannot include the esp32 component directly but we need its includes.
#This is fixed by adding CFLAGS from Makefile.projbuild
COMPONENTS := esptool_py bootloader bootloader_support log spi_flash micro-ecc
# The bootloader pseudo-component is also included in this build, for its Kconfig.projbuild to be included.
#
@ -12,7 +15,7 @@ COMPONENTS := esptool_py bootloader log spi_flash
IS_BOOTLOADER_BUILD := 1
export IS_BOOTLOADER_BUILD
#We cannot include the esp32 component directly but we need its includes.
#This is fixed by adding CFLAGS from Makefile.projbuild
# include the top-level "project" include directory, for sdkconfig.h
CFLAGS += -I$(BUILD_DIR_BASE)/../include
include $(IDF_PATH)/make/project.mk

View File

@ -25,8 +25,6 @@ extern "C"
#define BOOT_VERSION "V0.1"
#define SPI_SEC_SIZE 0x1000
#define MEM_CACHE(offset) (uint8_t *)(0x3f400000 + (offset))
#define CACHE_READ_32(offset) ((uint32_t *)(0x3f400000 + (offset)))
#define IROM_LOW 0x400D0000
#define IROM_HIGH 0x40400000
#define DROM_LOW 0x3F400000
@ -36,7 +34,6 @@ extern "C"
#define RTC_DATA_LOW 0x50000000
#define RTC_DATA_HIGH 0x50002000
#define PART_TYPE_APP 0x00
#define PART_SUBTYPE_FACTORY 0x00
#define PART_SUBTYPE_OTA_FLAG 0x10
@ -62,12 +59,7 @@ typedef struct {
uint32_t selected_subtype;
} bootloader_state_t;
void boot_cache_redirect( uint32_t pos, size_t size );
uint32_t get_bin_len(uint32_t pos);
bool flash_encrypt(bootloader_state_t *bs);
bool secure_boot(void);
#ifdef __cplusplus
}

View File

@ -33,6 +33,9 @@
#include "soc/timer_group_reg.h"
#include "sdkconfig.h"
#include "esp_image_format.h"
#include "esp_secure_boot.h"
#include "bootloader_flash.h"
#include "bootloader_config.h"
@ -49,7 +52,7 @@ flash cache is down and the app CPU is in reset. We do have a stack, so we can d
extern void Cache_Flush(int);
void bootloader_main();
void unpack_load_app(const esp_partition_pos_t *app_node);
static void unpack_load_app(const esp_partition_pos_t *app_node);
void print_flash_info(const esp_image_header_t* pfhdr);
void set_cache_and_start_app(uint32_t drom_addr,
uint32_t drom_load_addr,
@ -94,53 +97,6 @@ void IRAM_ATTR call_start_cpu0()
bootloader_main();
}
/**
* @function : get_bin_len
* @description: get bin's length
*
* @inputs: pos bin locate address in flash
* @return: uint32 length of bin,if bin MAGIC error return 0
*/
uint32_t get_bin_len(uint32_t pos)
{
uint32_t len = 8 + 16;
uint8_t i;
ESP_LOGD(TAG, "pos %d %x",pos,*(uint8_t *)pos);
if(0xE9 != *(uint8_t *)pos) {
return 0;
}
for (i = 0; i < *(uint8_t *)(pos + 1); i++) {
len += *(uint32_t *)(pos + len + 4) + 8;
}
if (len % 16 != 0) {
len = (len / 16 + 1) * 16;
} else {
len += 16;
}
ESP_LOGD(TAG, "bin length = %d", len);
return len;
}
/**
* @function : boot_cache_redirect
* @description: Configure several pages in flash map so that `size` bytes
* starting at `pos` are mapped to 0x3f400000.
* This sets up mapping only for PRO CPU.
*
* @inputs: pos address in flash
* size size of the area to map, in bytes
*/
void boot_cache_redirect( uint32_t pos, size_t size )
{
uint32_t pos_aligned = pos & 0xffff0000;
uint32_t count = (size + 0xffff) / 0x10000;
Cache_Read_Disable( 0 );
Cache_Flush( 0 );
ESP_LOGD(TAG, "mmu set paddr=%08x count=%d", pos_aligned, count );
cache_flash_mmu_set( 0, 0, 0x3f400000, pos_aligned, 64, count );
Cache_Read_Enable( 0 );
}
/**
* @function : load_partition_table
@ -148,85 +104,103 @@ void boot_cache_redirect( uint32_t pos, size_t size )
* OTA info sector, factory app sector, and test app sector.
*
* @inputs: bs bootloader state structure used to save the data
* addr address of partition table in flash
* @return: return true, if the partition table is loaded (and MD5 checksum is valid)
*
*/
bool load_partition_table(bootloader_state_t* bs, uint32_t addr)
bool load_partition_table(bootloader_state_t* bs)
{
esp_partition_info_t partition;
uint32_t end = addr + 0x1000;
int index = 0;
const esp_partition_info_t *partitions;
const int ESP_PARTITION_TABLE_DATA_LEN = 0xC00; /* length of actual data (signature is appended to this) */
const int MAX_PARTITIONS = ESP_PARTITION_TABLE_DATA_LEN / sizeof(esp_partition_info_t);
char *partition_usage;
ESP_LOGI(TAG, "Partition Table:");
ESP_LOGI(TAG, "## Label Usage Type ST Offset Length");
while (addr < end) {
ESP_LOGD(TAG, "load partition table entry from %x(%08x)", addr, MEM_CACHE(addr));
memcpy(&partition, MEM_CACHE(addr), sizeof(partition));
ESP_LOGD(TAG, "type=%x subtype=%x", partition.type, partition.subtype);
#ifdef CONFIG_SECURE_BOOTLOADER_ENABLED
if(esp_secure_boot_enabled()) {
ESP_LOGI(TAG, "Verifying partition table signature...");
esp_err_t err = esp_secure_boot_verify_signature(ESP_PARTITION_TABLE_ADDR, ESP_PARTITION_TABLE_DATA_LEN);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to verify partition table signature.");
return false;
}
ESP_LOGD(TAG, "Partition table signature verified");
}
#endif
partitions = bootloader_mmap(ESP_PARTITION_TABLE_ADDR, ESP_PARTITION_TABLE_DATA_LEN);
if (!partitions) {
ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", ESP_PARTITION_TABLE_ADDR, ESP_PARTITION_TABLE_DATA_LEN);
return false;
}
ESP_LOGD(TAG, "mapped partition table 0x%x at 0x%x", ESP_PARTITION_TABLE_ADDR, (intptr_t)partitions);
for(int i = 0; i < MAX_PARTITIONS; i++) {
const esp_partition_info_t *partition = &partitions[i];
ESP_LOGD(TAG, "load partition table entry 0x%x", (intptr_t)partition);
ESP_LOGD(TAG, "type=%x subtype=%x", partition->type, partition->subtype);
partition_usage = "unknown";
if (partition.magic == ESP_PARTITION_MAGIC) { /* valid partition definition */
switch(partition.type) {
case PART_TYPE_APP: /* app partition */
switch(partition.subtype) {
case PART_SUBTYPE_FACTORY: /* factory binary */
bs->factory = partition.pos;
partition_usage = "factory app";
break;
case PART_SUBTYPE_TEST: /* test binary */
bs->test = partition.pos;
partition_usage = "test app";
break;
default:
/* OTA binary */
if ((partition.subtype & ~PART_SUBTYPE_OTA_MASK) == PART_SUBTYPE_OTA_FLAG) {
bs->ota[partition.subtype & PART_SUBTYPE_OTA_MASK] = partition.pos;
++bs->app_count;
partition_usage = "OTA app";
}
else {
partition_usage = "Unknown app";
}
break;
if (partition->magic != ESP_PARTITION_MAGIC) {
/* invalid partition definition indicates end-of-table */
break;
}
/* valid partition table */
switch(partition->type) {
case PART_TYPE_APP: /* app partition */
switch(partition->subtype) {
case PART_SUBTYPE_FACTORY: /* factory binary */
bs->factory = partition->pos;
partition_usage = "factory app";
break;
case PART_SUBTYPE_TEST: /* test binary */
bs->test = partition->pos;
partition_usage = "test app";
break;
default:
/* OTA binary */
if ((partition->subtype & ~PART_SUBTYPE_OTA_MASK) == PART_SUBTYPE_OTA_FLAG) {
bs->ota[partition->subtype & PART_SUBTYPE_OTA_MASK] = partition->pos;
++bs->app_count;
partition_usage = "OTA app";
}
break; /* PART_TYPE_APP */
case PART_TYPE_DATA: /* data partition */
switch(partition.subtype) {
case PART_SUBTYPE_DATA_OTA: /* ota data */
bs->ota_info = partition.pos;
partition_usage = "OTA data";
break;
case PART_SUBTYPE_DATA_RF:
partition_usage = "RF data";
break;
case PART_SUBTYPE_DATA_WIFI:
partition_usage = "WiFi data";
break;
default:
partition_usage = "Unknown data";
break;
else {
partition_usage = "Unknown app";
}
break; /* PARTITION_USAGE_DATA */
default: /* other partition type */
break;
}
}
/* invalid partition magic number */
else {
break; /* todo: validate md5 */
break; /* PART_TYPE_APP */
case PART_TYPE_DATA: /* data partition */
switch(partition->subtype) {
case PART_SUBTYPE_DATA_OTA: /* ota data */
bs->ota_info = partition->pos;
partition_usage = "OTA data";
break;
case PART_SUBTYPE_DATA_RF:
partition_usage = "RF data";
break;
case PART_SUBTYPE_DATA_WIFI:
partition_usage = "WiFi data";
break;
default:
partition_usage = "Unknown data";
break;
}
break; /* PARTITION_USAGE_DATA */
default: /* other partition type */
break;
}
/* print partition type info */
ESP_LOGI(TAG, "%2d %-16s %-16s %02x %02x %08x %08x", index, partition.label, partition_usage,
partition.type, partition.subtype,
partition.pos.offset, partition.pos.size);
index++;
addr += sizeof(partition);
ESP_LOGI(TAG, "%2d %-16s %-16s %02x %02x %08x %08x", i, partition->label, partition_usage,
partition->type, partition->subtype,
partition->pos.offset, partition->pos.size);
}
bootloader_munmap(partitions);
ESP_LOGI(TAG,"End of partition table");
return true;
}
@ -254,8 +228,10 @@ void bootloader_main()
esp_image_header_t fhdr;
bootloader_state_t bs;
SpiFlashOpResult spiRet1,spiRet2;
SpiFlashOpResult spiRet1,spiRet2;
esp_ota_select_entry_t sa,sb;
const esp_ota_select_entry_t *ota_select_map;
memset(&bs, 0, sizeof(bs));
ESP_LOGI(TAG, "compile time " __TIME__ );
@ -263,16 +239,17 @@ void bootloader_main()
REG_CLR_BIT( RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_FLASHBOOT_MOD_EN );
REG_CLR_BIT( TIMG_WDTCONFIG0_REG(0), TIMG_WDT_FLASHBOOT_MOD_EN );
SPIUnlock();
/*register first sector in drom0 page 0 */
boot_cache_redirect( 0, 0x5000 );
memcpy((unsigned int *) &fhdr, MEM_CACHE(0x1000), sizeof(esp_image_header_t) );
if(esp_image_load_header(0x1000, &fhdr) != ESP_OK) {
ESP_LOGE(TAG, "failed to load bootloader header!");
return;
}
print_flash_info(&fhdr);
update_flash_config(&fhdr);
if (!load_partition_table(&bs, ESP_PARTITION_TABLE_ADDR)) {
if (!load_partition_table(&bs)) {
ESP_LOGE(TAG, "load partition table error!");
return;
}
@ -281,9 +258,19 @@ void bootloader_main()
if (bs.ota_info.offset != 0) { // check if partition table has OTA info partition
//ESP_LOGE("OTA info sector handling is not implemented");
boot_cache_redirect(bs.ota_info.offset, bs.ota_info.size );
memcpy(&sa,MEM_CACHE(bs.ota_info.offset & 0x0000ffff),sizeof(sa));
memcpy(&sb,MEM_CACHE((bs.ota_info.offset + 0x1000)&0x0000ffff) ,sizeof(sb));
if (bs.ota_info.size < 2 * sizeof(esp_ota_select_entry_t)) {
ESP_LOGE(TAG, "ERROR: ota_info partition size %d is too small (minimum %d bytes)", bs.ota_info.size, sizeof(esp_ota_select_entry_t));
return;
}
ota_select_map = bootloader_mmap(bs.ota_info.offset, bs.ota_info.size);
if (!ota_select_map) {
ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", bs.ota_info.offset, bs.ota_info.size);
return;
}
sa = ota_select_map[0];
sb = ota_select_map[1];
bootloader_munmap(ota_select_map);
if(sa.ota_seq == 0xFFFFFFFF && sb.ota_seq == 0xFFFFFFFF) {
// init status flash
load_part_pos = bs.ota[0];
@ -329,35 +316,61 @@ void bootloader_main()
}
ESP_LOGI(TAG, "Loading app partition at offset %08x", load_part_pos);
if(fhdr.secure_boot_flag == 0x01) {
/* protect the 2nd_boot */
if(false == secure_boot()){
ESP_LOGE(TAG, "secure boot failed");
return;
}
#ifdef CONFIG_SECURE_BOOTLOADER_ENABLED
/* Generate secure digest from this bootloader to protect future
modifications */
esp_err_t err = esp_secure_boot_permanently_enable();
if (err != ESP_OK) {
ESP_LOGE(TAG, "Bootloader digest generation failed (%d). SECURE BOOT IS NOT ENABLED.", err);
/* Allow booting to continue, as the failure is probably
due to user-configured EFUSEs for testing...
*/
}
#endif
if(fhdr.encrypt_flag == 0x01) {
/* encrypt flash */
/* encrypt flash */
if (false == flash_encrypt(&bs)) {
ESP_LOGE(TAG, "flash encrypt failed");
return;
}
}
// copy sections to RAM, set up caches, and start application
// copy loaded segments to RAM, set up caches for mapped segments, and start application
unpack_load_app(&load_part_pos);
}
void unpack_load_app(const esp_partition_pos_t* partition)
static void unpack_load_app(const esp_partition_pos_t* partition)
{
boot_cache_redirect(partition->offset, partition->size);
uint32_t pos = 0;
esp_err_t err;
esp_image_header_t image_header;
memcpy(&image_header, MEM_CACHE(pos), sizeof(image_header));
pos += sizeof(image_header);
uint32_t image_length;
/* TODO: verify the app image as part of OTA boot decision, so can have fallbacks */
err = esp_image_basic_verify(partition->offset, &image_length);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to verify app image @ 0x%x (%d)", partition->offset, err);
return;
}
#ifdef CONFIG_SECURE_BOOTLOADER_ENABLED
if (esp_secure_boot_enabled()) {
ESP_LOGI(TAG, "Verifying app signature @ 0x%x (length 0x%x)", partition->offset, image_length);
err = esp_secure_boot_verify_signature(partition->offset, image_length);
if (err != ESP_OK) {
ESP_LOGE(TAG, "App image @ 0x%x failed signature verification (%d)", partition->offset, err);
return;
}
ESP_LOGD(TAG, "App signature is valid");
}
#endif
if (esp_image_load_header(partition->offset, &image_header) != ESP_OK) {
ESP_LOGE(TAG, "Failed to load app image header @ 0x%x", partition->offset);
return;
}
uint32_t drom_addr = 0;
uint32_t drom_load_addr = 0;
@ -366,24 +379,27 @@ void unpack_load_app(const esp_partition_pos_t* partition)
uint32_t irom_load_addr = 0;
uint32_t irom_size = 0;
/* Reload the RTC memory sections whenever a non-deepsleep reset
/* Reload the RTC memory segments whenever a non-deepsleep reset
is occurring */
bool load_rtc_memory = rtc_get_reset_reason(0) != DEEPSLEEP_RESET;
ESP_LOGD(TAG, "bin_header: %u %u %u %u %08x", image_header.magic,
image_header.blocks,
image_header.segment_count,
image_header.spi_mode,
image_header.spi_size,
(unsigned)image_header.entry_addr);
for (uint32_t section_index = 0;
section_index < image_header.blocks;
++section_index) {
esp_image_section_header_t section_header = {0};
memcpy(&section_header, MEM_CACHE(pos), sizeof(section_header));
pos += sizeof(section_header);
for (int segment = 0; segment < image_header.segment_count; segment++) {
esp_image_segment_header_t segment_header;
uint32_t data_offs;
if(esp_image_load_segment_header(segment, partition->offset,
&image_header, &segment_header,
&data_offs) != ESP_OK) {
ESP_LOGE(TAG, "failed to load segment header #%d", segment);
return;
}
const uint32_t address = section_header.load_addr;
const uint32_t address = segment_header.load_addr;
bool load = true;
bool map = false;
if (address == 0x00000000) { // padding, ignore block
@ -395,47 +411,50 @@ void unpack_load_app(const esp_partition_pos_t* partition)
}
if (address >= DROM_LOW && address < DROM_HIGH) {
ESP_LOGD(TAG, "found drom section, map from %08x to %08x", pos,
section_header.load_addr);
drom_addr = partition->offset + pos - sizeof(section_header);
drom_load_addr = section_header.load_addr;
drom_size = section_header.data_len + sizeof(section_header);
ESP_LOGD(TAG, "found drom segment, map from %08x to %08x", data_offs,
segment_header.load_addr);
drom_addr = data_offs;
drom_load_addr = segment_header.load_addr;
drom_size = segment_header.data_len + sizeof(segment_header);
load = false;
map = true;
}
if (address >= IROM_LOW && address < IROM_HIGH) {
ESP_LOGD(TAG, "found irom section, map from %08x to %08x", pos,
section_header.load_addr);
irom_addr = partition->offset + pos - sizeof(section_header);
irom_load_addr = section_header.load_addr;
irom_size = section_header.data_len + sizeof(section_header);
ESP_LOGD(TAG, "found irom segment, map from %08x to %08x", data_offs,
segment_header.load_addr);
irom_addr = data_offs;
irom_load_addr = segment_header.load_addr;
irom_size = segment_header.data_len + sizeof(segment_header);
load = false;
map = true;
}
if (!load_rtc_memory && address >= RTC_IRAM_LOW && address < RTC_IRAM_HIGH) {
ESP_LOGD(TAG, "Skipping RTC code section at %08x\n", pos);
ESP_LOGD(TAG, "Skipping RTC code segment at %08x\n", data_offs);
load = false;
}
if (!load_rtc_memory && address >= RTC_DATA_LOW && address < RTC_DATA_HIGH) {
ESP_LOGD(TAG, "Skipping RTC data section at %08x\n", pos);
ESP_LOGD(TAG, "Skipping RTC data segment at %08x\n", data_offs);
load = false;
}
ESP_LOGI(TAG, "section %d: paddr=0x%08x vaddr=0x%08x size=0x%05x (%6d) %s", section_index, pos,
section_header.load_addr, section_header.data_len, section_header.data_len, (load)?"load":(map)?"map":"");
ESP_LOGI(TAG, "segment %d: paddr=0x%08x vaddr=0x%08x size=0x%05x (%6d) %s", segment, data_offs - sizeof(esp_image_segment_header_t),
segment_header.load_addr, segment_header.data_len, segment_header.data_len, (load)?"load":(map)?"map":"");
if (!load) {
pos += section_header.data_len;
continue;
if (load) {
const void *data = bootloader_mmap(data_offs, segment_header.data_len);
if(!data) {
ESP_LOGE(TAG, "bootloader_mmap(0x%xc, 0x%x) failed",
data_offs, segment_header.data_len);
return;
}
memcpy((void *)segment_header.load_addr, data, segment_header.data_len);
bootloader_munmap(data);
}
memcpy((void*) section_header.load_addr, MEM_CACHE(pos), section_header.data_len);
pos += section_header.data_len;
}
set_cache_and_start_app(drom_addr,
drom_load_addr,
drom_size,
@ -520,7 +539,7 @@ void print_flash_info(const esp_image_header_t* phdr)
#if (BOOT_LOG_LEVEL >= BOOT_LOG_LEVEL_NOTICE)
ESP_LOGD(TAG, "magic %02x", phdr->magic );
ESP_LOGD(TAG, "blocks %02x", phdr->blocks );
ESP_LOGD(TAG, "segments %02x", phdr->segment_count );
ESP_LOGD(TAG, "spi_mode %02x", phdr->spi_mode );
ESP_LOGD(TAG, "spi_speed %02x", phdr->spi_speed );
ESP_LOGD(TAG, "spi_size %02x", phdr->spi_size );

View File

@ -1,12 +1,9 @@
#
# Main Makefile. This is basically the same as a component makefile.
# Main bootloader Makefile.
#
# This Makefile should, at the very least, just include $(IDF_PATH)/make/component_common.mk. By default,
# this will take the sources in the src/ directory, compile them and link them into
# lib(subdirectory_name).a in the build directory. This behaviour is entirely configurable,
# please read the esp-idf build system document if you need to do this.
# This is basically the same as a component makefile, but in the case of the bootloader
# we pull in bootloader-specific linker arguments.
#
COMPONENT_ADD_LDFLAGS := -L $(abspath .) -lmain -T esp32.bootloader.ld -T $(IDF_PATH)/components/esp32/ld/esp32.rom.ld
COMPONENT_ADD_LDFLAGS := -L $(COMPONENT_PATH) -lmain -T esp32.bootloader.ld -T $(IDF_PATH)/components/esp32/ld/esp32.rom.ld
include $(IDF_PATH)/make/component_common.mk

View File

@ -17,6 +17,7 @@
#include "esp_types.h"
#include "esp_attr.h"
#include "esp_log.h"
#include "esp_err.h"
#include "rom/cache.h"
#include "rom/ets_sys.h"
@ -30,6 +31,7 @@
#include "sdkconfig.h"
#include "bootloader_config.h"
#include "esp_image_format.h"
static const char* TAG = "flash_encrypt";
@ -90,103 +92,97 @@ bool flash_encrypt_write(uint32_t pos, uint32_t len)
Cache_Read_Enable(0);
return true;
}
/**
* @function : flash_encrypt
* @description: encrypt 2nd boot ,partition table ,factory bin <EFBFBD><EFBFBD>test bin (if use)<EFBFBD><EFBFBD>ota bin
* <EFBFBD><EFBFBD>OTA info sector.
*
* @inputs: bs bootloader state structure used to save the data
*
*
* @return: return true, if the encrypt flash success
*
*
*/
bool flash_encrypt(bootloader_state_t *bs)
{
uint32_t bin_len = 0;
uint32_t flash_crypt_cnt = REG_GET_FIELD(EFUSE_BLK0_RDATA0_REG, EFUSE_FLASH_CRYPT_CNT);
uint8_t count = bitcount(flash_crypt_cnt);
int i = 0;
ESP_LOGD(TAG, "flash encrypt cnt %x, bitcount %d", flash_crypt_cnt, count);
esp_err_t err;
uint32_t image_len = 0;
uint32_t flash_crypt_cnt = REG_GET_FIELD(EFUSE_BLK0_RDATA0_REG, EFUSE_FLASH_CRYPT_CNT);
uint8_t count = bitcount(flash_crypt_cnt);
ESP_LOGD(TAG, "flash encrypt cnt %x, bitcount %d", flash_crypt_cnt, count);
if ((count % 2) == 0) {
boot_cache_redirect( 0, 64*1024);
/* encrypt iv and abstruct */
if (false == flash_encrypt_write(0, SPI_SEC_SIZE)) {
ESP_LOGE(TAG, "encrypt iv and abstract error");
return false;
}
if ((count % 2) == 0) {
/* encrypt iv and abstract */
if (false == flash_encrypt_write(0, SPI_SEC_SIZE)) {
ESP_LOGE(TAG, "encrypt iv and abstract error");
return false;
}
/* encrypt bootloader image */
err = esp_image_basic_verify(0x1000, &image_len);
if(err == ESP_OK && image_len != 0) {
if (false == flash_encrypt_write(0x1000, image_len)) {
ESP_LOGE(TAG, "encrypt 2nd boot error");
return false;
}
} else {
ESP_LOGE(TAG, "2nd boot len error");
return false;
}
/* encrypt write boot bin*/
bin_len = get_bin_len((uint32_t)MEM_CACHE(0x1000));
if(bin_len != 0) {
if (false == flash_encrypt_write(0x1000, bin_len)) {
ESP_LOGE(TAG, "encrypt 2nd boot error");
return false;
}
} else {
ESP_LOGE(TAG, "2nd boot len error");
return false;
}
/* encrypt partition table */
if (false == flash_encrypt_write(ESP_PARTITION_TABLE_ADDR, SPI_SEC_SIZE)) {
ESP_LOGE(TAG, "encrypt partition table error");
return false;
}
if (false == flash_encrypt_write(ESP_PARTITION_TABLE_ADDR, SPI_SEC_SIZE)) {
ESP_LOGE(TAG, "encrypt partition table error");
return false;
}
/* encrypt write factory bin */
if(bs->factory.offset != 0x00) {
ESP_LOGD(TAG, "have factory bin");
boot_cache_redirect(bs->factory.offset, bs->factory.size);
bin_len = get_bin_len((uint32_t)MEM_CACHE(bs->factory.offset&0xffff));
if(bin_len != 0) {
if (false == flash_encrypt_write(bs->factory.offset, bin_len)) {
ESP_LOGE(TAG, "encrypt factory bin error");
return false;
}
}
}
if(bs->factory.offset != 0 && bs->factory.size != 0) {
ESP_LOGD(TAG, "have factory bin");
if (false == flash_encrypt_write(bs->factory.offset, bs->factory.size)) {
ESP_LOGE(TAG, "encrypt factory bin error");
return false;
}
}
/* encrypt write test bin */
if(bs->test.offset != 0x00) {
ESP_LOGD(TAG, "have test bin");
boot_cache_redirect(bs->test.offset, bs->test.size);
bin_len = get_bin_len((uint32_t)MEM_CACHE(bs->test.offset&0xffff));
if(bin_len != 0) {
if (false == flash_encrypt_write(bs->test.offset, bin_len)) {
ESP_LOGE(TAG, "encrypt test bin error");
return false;
}
}
}
if(bs->test.offset != 0 && bs->test.size != 0) {
ESP_LOGD(TAG, "have test bin");
if (false == flash_encrypt_write(bs->test.offset, bs->test.size)) {
ESP_LOGE(TAG, "encrypt test bin error");
return false;
}
}
/* encrypt write ota bin */
for (i = 0;i<16;i++) {
if(bs->ota[i].offset != 0x00) {
ESP_LOGD(TAG, "have ota[%d] bin",i);
boot_cache_redirect(bs->ota[i].offset, bs->ota[i].size);
bin_len = get_bin_len((uint32_t)MEM_CACHE(bs->ota[i].offset&0xffff));
if(bin_len != 0) {
if (false == flash_encrypt_write(bs->ota[i].offset, bin_len)) {
ESP_LOGE(TAG, "encrypt ota bin error");
return false;
}
}
}
}
for (int i = 0; i < 16; i++) {
if(bs->ota[i].offset != 0 && bs->ota[i].size != 0) {
ESP_LOGD(TAG, "have ota[%d] bin",i);
if (false == flash_encrypt_write(bs->ota[i].offset, bs->ota[i].size)) {
ESP_LOGE(TAG, "encrypt ota bin error");
return false;
}
}
}
/* encrypt write ota info bin */
if (false == flash_encrypt_write(bs->ota_info.offset, 2*SPI_SEC_SIZE)) {
ESP_LOGE(TAG, "encrypt ota info error");
return false;
}
REG_SET_FIELD(EFUSE_BLK0_WDATA0_REG, EFUSE_FLASH_CRYPT_CNT, 0x04);
REG_WRITE(EFUSE_CONF_REG, 0x5A5A); /* efuse_pgm_op_ena, force no rd/wr disable */
REG_WRITE(EFUSE_CMD_REG, 0x02); /* efuse_pgm_cmd */
while (REG_READ(EFUSE_CMD_REG)); /* wait for efuse_pagm_cmd=0 */
ESP_LOGW(TAG, "burn flash_crypt_cnt");
REG_WRITE(EFUSE_CONF_REG, 0x5AA5); /* efuse_read_op_ena, release force */
REG_WRITE(EFUSE_CMD_REG, 0x01); /* efuse_read_cmd */
while (REG_READ(EFUSE_CMD_REG)); /* wait for efuse_read_cmd=0 */
return true;
} else {
ESP_LOGI(TAG, "flash already encrypted.");
return true;
}
if (false == flash_encrypt_write(bs->ota_info.offset, 2*SPI_SEC_SIZE)) {
ESP_LOGE(TAG, "encrypt ota info error");
return false;
}
REG_SET_FIELD(EFUSE_BLK0_WDATA0_REG, EFUSE_FLASH_CRYPT_CNT, 0x04);
REG_WRITE(EFUSE_CONF_REG, 0x5A5A); /* efuse_pgm_op_ena, force no rd/wr disable */
REG_WRITE(EFUSE_CMD_REG, 0x02); /* efuse_pgm_cmd */
while (REG_READ(EFUSE_CMD_REG)); /* wait for efuse_pagm_cmd=0 */
ESP_LOGW(TAG, "burn flash_crypt_cnt");
REG_WRITE(EFUSE_CONF_REG, 0x5AA5); /* efuse_read_op_ena, release force */
REG_WRITE(EFUSE_CMD_REG, 0x01); /* efuse_read_cmd */
while (REG_READ(EFUSE_CMD_REG)); /* wait for efuse_read_cmd=0 */
return true;
} else {
ESP_LOGI(TAG, "flash already encrypted.");
return true;
}
}

View File

@ -1,127 +0,0 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include "esp_attr.h"
#include "esp_types.h"
#include "esp_log.h"
#include "rom/cache.h"
#include "rom/ets_sys.h"
#include "rom/spi_flash.h"
#include "rom/secure_boot.h"
#include "soc/dport_reg.h"
#include "soc/io_mux_reg.h"
#include "soc/efuse_reg.h"
#include "soc/rtc_cntl_reg.h"
#include "sdkconfig.h"
#include "bootloader_config.h"
static const char* TAG = "secure_boot";
/**
* @function : secure_boot_generate
* @description: generate boot abstract & iv
*
* @inputs: bool
*/
bool secure_boot_generate(uint32_t bin_len){
SpiFlashOpResult spiRet;
uint16_t i;
uint32_t buf[32];
if (bin_len % 128 != 0) {
bin_len = (bin_len / 128 + 1) * 128;
}
ets_secure_boot_start();
ets_secure_boot_rd_iv(buf);
ets_secure_boot_hash(NULL);
Cache_Read_Disable(0);
/* iv stored in sec 0 */
spiRet = SPIEraseSector(0);
if (spiRet != SPI_FLASH_RESULT_OK)
{
ESP_LOGE(TAG, SPI_ERROR_LOG);
return false;
}
/* write iv to flash, 0x0000, 128 bytes (1024 bits) */
spiRet = SPIWrite(0, buf, 128);
if (spiRet != SPI_FLASH_RESULT_OK)
{
ESP_LOGE(TAG, SPI_ERROR_LOG);
return false;
}
ESP_LOGD(TAG, "write iv to flash.");
Cache_Read_Enable(0);
/* read 4K code image from flash, for test */
for (i = 0; i < bin_len; i+=128) {
ets_secure_boot_hash((uint32_t *)(0x3f400000 + 0x1000 + i));
}
ets_secure_boot_obtain();
ets_secure_boot_rd_abstract(buf);
ets_secure_boot_finish();
Cache_Read_Disable(0);
/* write abstract to flash, 0x0080, 64 bytes (512 bits) */
spiRet = SPIWrite(0x80, buf, 64);
if (spiRet != SPI_FLASH_RESULT_OK) {
ESP_LOGE(TAG, SPI_ERROR_LOG);
return false;
}
ESP_LOGD(TAG, "write abstract to flash.");
Cache_Read_Enable(0);
return true;
}
/**
* @function : secure_boot
* @description: protect boot code in flash
*
* @inputs: bool
*/
bool secure_boot(void){
uint32_t bin_len = 0;
if (REG_READ(EFUSE_BLK0_RDATA6_REG) & EFUSE_RD_ABS_DONE_0)
{
ESP_LOGD(TAG, "already secure boot !");
return true;
} else {
boot_cache_redirect( 0, 64*1024);
bin_len = get_bin_len((uint32_t)MEM_CACHE(0x1000));
if (bin_len == 0) {
ESP_LOGE(TAG, "boot len is error");
return false;
}
if (false == secure_boot_generate(bin_len)){
ESP_LOGE(TAG, "secure boot generate failed");
return false;
}
}
REG_SET_BIT(EFUSE_BLK0_WDATA6_REG, EFUSE_RD_ABS_DONE_0);
REG_WRITE(EFUSE_CONF_REG, 0x5A5A); /* efuse_pgm_op_ena, force no rd/wr disable */
REG_WRITE(EFUSE_CMD_REG, 0x02); /* efuse_pgm_cmd */
while (REG_READ(EFUSE_CMD_REG)); /* wait for efuse_pagm_cmd=0 */
ESP_LOGW(TAG, "burn abstract_done_0");
REG_WRITE(EFUSE_CONF_REG, 0x5AA5); /* efuse_read_op_ena, release force */
REG_WRITE(EFUSE_CMD_REG, 0x01); /* efuse_read_cmd */
while (REG_READ(EFUSE_CMD_REG)); /* wait for efuse_read_cmd=0 */
ESP_LOGI(TAG, "read EFUSE_BLK0_RDATA6 %x", REG_READ(EFUSE_BLK0_RDATA6_REG));
return true;
}

View File

@ -0,0 +1,9 @@
Bootloader Support Component
============================
Overview
--------
"Bootloader support" contains APIs which are used by the bootloader but are also needed for the main app.
Code in this component needs to be aware of being executed in a bootloader environment (no RTOS available, BOOTLOADER_BUILD macro set) or in an esp-idf app environment (RTOS running, need locking support.)

View File

@ -0,0 +1,35 @@
COMPONENT_ADD_INCLUDEDIRS := include
COMPONENT_PRIV_INCLUDEDIRS := include_priv
ifdef IS_BOOTLOADER_BUILD
# share "private" headers with the bootloader component
# eventual goal: all functionality that needs this lives in bootloader_support
COMPONENT_ADD_INCLUDEDIRS += include_priv
endif
COMPONENT_SRCDIRS := src
#
# Secure boot signing key support
#
ifdef CONFIG_SECURE_BOOTLOADER_ENABLED
# this path is created relative to the component build directory
SECURE_BOOT_VERIFICATION_KEY := $(abspath signature_verification_key.bin)
$(SECURE_BOOT_SIGNING_KEY):
@echo "Need to generate secure boot signing key."
@echo "One way is to run this command:"
@echo "$(ESPSECUREPY) generate_signing_key $@"
@echo "Keep key file safe after generating."
@echo "(See secure boot documentation for risks & alternatives.)"
@exit 1
$(SECURE_BOOT_VERIFICATION_KEY): $(SECURE_BOOT_SIGNING_KEY)
$(ESPSECUREPY) extract_public_key --keyfile $< $@
COMPONENT_EXTRA_CLEAN += $(SECURE_BOOT_VERIFICATION_KEY)
COMPONENT_EMBED_FILES := $(SECURE_BOOT_VERIFICATION_KEY)
endif

View File

@ -0,0 +1,132 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef __ESP32_IMAGE_FORMAT_H
#define __ESP32_IMAGE_FORMAT_H
#include <stdbool.h>
#include <esp_err.h>
#define ESP_ERR_IMAGE_BASE 0x2000
#define ESP_ERR_IMAGE_FLASH_FAIL (ESP_ERR_IMAGE_BASE + 1)
#define ESP_ERR_IMAGE_INVALID (ESP_ERR_IMAGE_BASE + 2)
/* Support for app/bootloader image parsing
Can be compiled as part of app or bootloader code.
*/
/* SPI flash mode, used in esp_image_header_t */
typedef enum {
ESP_IMAGE_SPI_MODE_QIO,
ESP_IMAGE_SPI_MODE_QOUT,
ESP_IMAGE_SPI_MODE_DIO,
ESP_IMAGE_SPI_MODE_DOUT,
ESP_IMAGE_SPI_MODE_FAST_READ,
ESP_IMAGE_SPI_MODE_SLOW_READ
} esp_image_spi_mode_t;
/* SPI flash clock frequency */
enum {
ESP_IMAGE_SPI_SPEED_40M,
ESP_IMAGE_SPI_SPEED_26M,
ESP_IMAGE_SPI_SPEED_20M,
ESP_IMAGE_SPI_SPEED_80M = 0xF
} esp_image_spi_freq_t;
/* Supported SPI flash sizes */
typedef enum {
ESP_IMAGE_FLASH_SIZE_1MB = 0,
ESP_IMAGE_FLASH_SIZE_2MB,
ESP_IMAGE_FLASH_SIZE_4MB,
ESP_IMAGE_FLASH_SIZE_8MB,
ESP_IMAGE_FLASH_SIZE_16MB,
ESP_IMAGE_FLASH_SIZE_MAX
} esp_image_flash_size_t;
#define ESP_IMAGE_HEADER_MAGIC 0xE9
/* Main header of binary image */
typedef struct {
uint8_t magic;
uint8_t segment_count;
uint8_t spi_mode; /* flash read mode (esp_image_spi_mode_t as uint8_t) */
uint8_t spi_speed: 4; /* flash frequency (esp_image_spi_freq_t as uint8_t) */
uint8_t spi_size: 4; /* flash chip size (esp_image_flash_size_t as uint8_t) */
uint32_t entry_addr;
uint8_t encrypt_flag; /* encrypt flag */
uint8_t extra_header[15]; /* ESP32 additional header, unused by second bootloader */
} esp_image_header_t;
/* Header of binary image segment */
typedef struct {
uint32_t load_addr;
uint32_t data_len;
} esp_image_segment_header_t;
/**
* @brief Read an ESP image header from flash.
*
* @param src_addr Address in flash to load image header. Must be 4 byte aligned.
* @param[out] image_header Pointer to an esp_image_header_t struture to be filled with data. If the function fails, contents are undefined.
*
* @return ESP_OK if image header was loaded, ESP_ERR_IMAGE_FLASH_FAIL
* if a SPI flash error occurs, ESP_ERR_IMAGE_INVALID if the image header
* appears invalid.
*/
esp_err_t esp_image_load_header(uint32_t src_addr, esp_image_header_t *image_header);
/**
* @brief Read the segment header and data offset of a segment in the image.
*
* @param index Index of the segment to load information for.
* @param src_addr Base address in flash of the image.
* @param[in] image_header Pointer to the flash image header, already loaded by @ref esp_image_load_header().
* @param[out] segment_header Pointer to a segment header structure to be filled with data. If the function fails, contents are undefined.
* @param[out] segment_data_offset Pointer to the data offset of the segment.
*
* @return ESP_OK if segment_header & segment_data_offset were loaded successfully, ESP_ERR_IMAGE_FLASH_FAIL if a SPI flash error occurs, ESP_ERR_IMAGE_INVALID if the image header appears invalid, ESP_ERR_INVALID_ARG if the index is invalid.
*/
esp_err_t esp_image_load_segment_header(uint8_t index, uint32_t src_addr, const esp_image_header_t *image_header, esp_image_segment_header_t *segment_header, uint32_t *segment_data_offset);
/**
* @brief Return length of an image in flash. Non-cryptographically validates image integrity in the process.
*
* If the image has a secure boot signature appended, the signature is not checked and this length is not included in the result.
*
* Image validation checks:
* - Magic byte
* - No single segment longer than 16MB
* - Total image no longer than 16MB
* - 8 bit image checksum is valid
*
* @param src_addr Offset of the start of the image in flash. Must be 4 byte aligned.
* @param[out] length Length of the image, set to a value if the image is valid. Can be null.
*
* @return ESP_OK if image is valid, ESP_FAIL or ESP_ERR_IMAGE_INVALID on errors.
*
*/
esp_err_t esp_image_basic_verify(uint32_t src_addr, uint32_t *length);
typedef struct {
uint32_t drom_addr;
uint32_t drom_load_addr;
uint32_t drom_size;
uint32_t irom_addr;
uint32_t irom_load_addr;
uint32_t irom_size;
} esp_image_flash_mapping_t;
#endif

View File

@ -0,0 +1,75 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef __ESP32_SECUREBOOT_H
#define __ESP32_SECUREBOOT_H
#include <stdbool.h>
#include <esp_err.h>
#include "soc/efuse_reg.h"
/* Support functions for secure boot features.
Can be compiled as part of app or bootloader code.
*/
/** @brief Is secure boot currently enabled in hardware?
*
* Secure boot is enabled if the ABS_DONE_0 efuse is blown. This means
* that the ROM bootloader code will only boot a verified secure
* bootloader digest from now on.
*
* @return true if secure boot is enabled.
*/
static inline bool esp_secure_boot_enabled(void) {
return REG_READ(EFUSE_BLK0_RDATA6_REG) & EFUSE_RD_ABS_DONE_0;
}
/** @brief Enable secure boot if it is not already enabled.
*
* @important If this function succeeds, secure boot is permanently
* enabled on the chip via efuse.
*
* @important This function is intended to be called from bootloader code only.
*
* If secure boot is not yet enabled for bootloader, this will
* generate the secure boot digest and enable secure boot by blowing
* the EFUSE_RD_ABS_DONE_0 efuse.
*
* This function does not verify secure boot of the bootloader (the
* ROM bootloader does this.)
*
* Will fail if efuses have been part-burned in a way that indicates
* secure boot should not or could not be correctly enabled.
*
*
* @return ESP_ERR_INVALID_STATE if efuse state doesn't allow
* secure boot to be enabled cleanly. ESP_OK if secure boot
* is enabled on this chip from now on.
*/
esp_err_t esp_secure_boot_permanently_enable(void);
/** @brief Verify the secure boot signature (determinstic ECDSA w/ SHA256) appended to some binary data in flash.
*
* Public key is compiled into the calling program. See docs/security/secure-boot.rst for details.
*
* @param src_addr Starting offset of the data in flash.
* @param length Length of data in bytes. Signature is appended -after- length bytes.
*
* @return ESP_OK if signature is valid, ESP_ERR_INVALID_STATE if
* signature fails, ESP_FAIL for other failures (ie can't read flash).
*/
esp_err_t esp_secure_boot_verify_signature(uint32_t src_addr, uint32_t length);
#endif

View File

@ -0,0 +1,69 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef __BOOTLOADER_FLASH_H
#define __BOOTLOADER_FLASH_H
#include <stddef.h>
#include <stdbool.h>
#include <stdint.h>
#include <esp_err.h>
/* Provide a Flash API for bootloader_support code,
that can be used from bootloader or app code.
This header is available to source code in the bootloader &
bootloader_support components only.
*/
/**
* @brief Map a region of flash to data memory
*
* @important In bootloader code, only one region can be bootloader_mmaped at once. The previous region must be bootloader_munmapped before another region is mapped.
*
* @important In app code, these functions are not thread safe.
*
* Call bootloader_munmap once for each successful call to bootloader_mmap.
*
* In esp-idf app, this function maps directly to spi_flash_mmap.
*
* @param offset - Starting flash offset to map to memory.
* @param length - Length of data to map.
*
* @return Pointer to mapped data memory (at src_addr), or NULL
* if an allocation error occured.
*/
const void *bootloader_mmap(uint32_t src_addr, uint32_t size);
/**
* @brief Unmap a previously mapped region of flash
*
* Call bootloader_munmap once for each successful call to bootloader_mmap.
*/
void bootloader_munmap(const void *mapping);
/**
* @brief Read data from Flash.
*
* @note Both src and dest have to be 4-byte aligned.
*
* @param src source address of the data in Flash.
* @param dest pointer to the destination buffer
* @param size length of data
*
* @return esp_err_t
*/
esp_err_t bootloader_flash_read(size_t src_addr, void *dest, size_t size);
#endif

View File

@ -0,0 +1,122 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stddef.h>
#include <bootloader_flash.h>
#include <esp_log.h>
#include <esp_spi_flash.h> /* including in bootloader for error values */
#ifndef BOOTLOADER_BUILD
/* Normal app version maps to esp_spi_flash.h operations...
*/
static const char *TAG = "bootloader_mmap";
static spi_flash_mmap_memory_t map;
const void *bootloader_mmap(uint32_t src_addr, uint32_t size)
{
if (map) {
ESP_LOGE(TAG, "tried to bootloader_mmap twice");
return NULL; /* existing mapping in use... */
}
const void *result = NULL;
esp_err_t err = spi_flash_mmap(src_addr, size, SPI_FLASH_MMAP_DATA, &result, &map);
if (err != ESP_OK) {
result = NULL;
}
return result;
}
void bootloader_munmap(const void *mapping)
{
if(mapping && map) {
spi_flash_munmap(map);
}
map = 0;
}
esp_err_t bootloader_flash_read(size_t src, void *dest, size_t size)
{
return spi_flash_read(src, dest, size);
}
#else
/* Bootloader version, uses ROM functions only */
#include <rom/spi_flash.h>
#include <rom/cache.h>
static const char *TAG = "bootloader_flash";
static bool mapped;
const void *bootloader_mmap(uint32_t src_addr, uint32_t size)
{
if (mapped) {
ESP_LOGE(TAG, "tried to bootloader_mmap twice");
return NULL; /* can't map twice */
}
uint32_t src_addr_aligned = src_addr & 0xffff0000;
uint32_t count = (size + (src_addr - src_addr_aligned) + 0xffff) / 0x10000;
Cache_Read_Disable(0);
Cache_Flush(0);
ESP_LOGD(TAG, "mmu set paddr=%08x count=%d", src_addr_aligned, count );
cache_flash_mmu_set( 0, 0, 0x3f400000, src_addr_aligned, 64, count );
Cache_Read_Enable( 0 );
mapped = true;
return (void *)(0x3f400000 + (src_addr - src_addr_aligned));
}
void bootloader_munmap(const void *mapping)
{
if (mapped) {
/* Full MMU reset */
Cache_Read_Disable(0);
Cache_Flush(0);
mmu_init(0);
mapped = false;
}
}
esp_err_t bootloader_flash_read(size_t src_addr, void *dest, size_t size)
{
if(src_addr & 3) {
ESP_LOGE(TAG, "bootloader_flash_read src_addr 0x%x not 4-byte aligned", src_addr);
return ESP_FAIL;
}
if((intptr_t)dest & 3) {
ESP_LOGE(TAG, "bootloader_flash_read dest 0x%x not 4-byte aligned", (intptr_t)dest);
return ESP_FAIL;
}
Cache_Read_Disable(0);
Cache_Flush(0);
SpiFlashOpResult r = SPIRead(src_addr, dest, size);
Cache_Read_Enable(0);
switch(r) {
case SPI_FLASH_RESULT_OK:
return ESP_OK;
case SPI_FLASH_RESULT_ERR:
return ESP_ERR_FLASH_OP_FAIL;
case SPI_FLASH_RESULT_TIMEOUT:
return ESP_ERR_FLASH_OP_TIMEOUT;
default:
return ESP_FAIL;
}
}
#endif

View File

@ -0,0 +1,161 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include <esp_image_format.h>
#include <esp_log.h>
#include <bootloader_flash.h>
static const char *TAG = "esp_image";
#define SIXTEEN_MB 0x1000000
#define ESP_ROM_CHECKSUM_INITIAL 0xEF
esp_err_t esp_image_load_header(uint32_t src_addr, esp_image_header_t *image_header)
{
esp_err_t err;
ESP_LOGD(TAG, "reading image header @ 0x%x", src_addr);
err = bootloader_flash_read(src_addr, image_header, sizeof(esp_image_header_t));
if (err == ESP_OK) {
if (image_header->magic != ESP_IMAGE_HEADER_MAGIC) {
ESP_LOGE(TAG, "image at 0x%x has invalid magic byte", src_addr);
err = ESP_ERR_IMAGE_INVALID;
}
if (image_header->spi_mode > ESP_IMAGE_SPI_MODE_SLOW_READ) {
ESP_LOGW(TAG, "image at 0x%x has invalid SPI mode %d", src_addr, image_header->spi_mode);
}
if (image_header->spi_speed > ESP_IMAGE_SPI_SPEED_80M) {
ESP_LOGW(TAG, "image at 0x%x has invalid SPI speed %d", src_addr, image_header->spi_speed);
}
if (image_header->spi_size > ESP_IMAGE_FLASH_SIZE_MAX) {
ESP_LOGW(TAG, "image at 0x%x has invalid SPI size %d", src_addr, image_header->spi_size);
}
}
if (err != ESP_OK) {
bzero(image_header, sizeof(esp_image_header_t));
}
return err;
}
esp_err_t esp_image_load_segment_header(uint8_t index, uint32_t src_addr, const esp_image_header_t *image_header, esp_image_segment_header_t *segment_header, uint32_t *segment_data_offset)
{
esp_err_t err = ESP_OK;
uint32_t next_addr = src_addr + sizeof(esp_image_header_t);
if(index >= image_header->segment_count) {
ESP_LOGE(TAG, "index %d higher than segment count %d", index, image_header->segment_count);
return ESP_ERR_INVALID_ARG;
}
for(int i = 0; i <= index && err == ESP_OK; i++) {
ESP_LOGV(TAG, "loading segment header %d at offset 0x%x", i, next_addr);
err = bootloader_flash_read(next_addr, segment_header, sizeof(esp_image_segment_header_t));
if (err == ESP_OK) {
if ((segment_header->data_len & 3) != 0
|| segment_header->data_len >= SIXTEEN_MB) {
ESP_LOGE(TAG, "invalid segment length 0x%x", segment_header->data_len);
err = ESP_ERR_IMAGE_INVALID;
}
next_addr += sizeof(esp_image_segment_header_t);
ESP_LOGV(TAG, "segment data length 0x%x data starts 0x%x", segment_header->data_len, next_addr);
*segment_data_offset = next_addr;
next_addr += segment_header->data_len;
}
}
if (err != ESP_OK) {
*segment_data_offset = 0;
bzero(segment_header, sizeof(esp_image_segment_header_t));
}
return err;
}
esp_err_t esp_image_basic_verify(uint32_t src_addr, uint32_t *p_length)
{
esp_err_t err;
uint8_t buf[16];
uint8_t checksum = ESP_ROM_CHECKSUM_INITIAL;
esp_image_header_t image_header;
esp_image_segment_header_t segment_header = { 0 };
uint32_t segment_data_offs = 0;
const uint8_t *segment_data;
uint32_t end_addr;
uint32_t length;
if (p_length != NULL) {
*p_length = 0;
}
err = esp_image_load_header(src_addr, &image_header);
if (err != ESP_OK) {
return err;
}
ESP_LOGD(TAG, "reading %d image segments", image_header.segment_count);
/* Checksum each segment's data */
for (int i = 0; i < image_header.segment_count; i++) {
err = esp_image_load_segment_header(i, src_addr, &image_header,
&segment_header, &segment_data_offs);
if (err != ESP_OK) {
return err;
}
segment_data = bootloader_mmap(segment_data_offs, segment_header.data_len);
if (segment_data == NULL) {
ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", segment_data_offs, segment_header.data_len);
return ESP_FAIL;
}
for(int i = 0; i < segment_header.data_len; i++) {
checksum ^= segment_data[i];
}
bootloader_munmap(segment_data);
}
/* End of image, verify checksum */
end_addr = segment_data_offs + segment_header.data_len;
if (end_addr < src_addr) {
ESP_LOGE(TAG, "image offset has wrapped");
return ESP_ERR_IMAGE_INVALID;
}
length = end_addr - src_addr;
if (length >= SIXTEEN_MB) {
ESP_LOGE(TAG, "invalid total length 0x%x", length);
return ESP_ERR_IMAGE_INVALID;
}
/* image padded to next full 16 byte block, with checksum byte at very end */
ESP_LOGV(TAG, "unpadded image length 0x%x", length);
length += 16; /* always pad by at least 1 byte */
length = length - (length % 16);
ESP_LOGV(TAG, "padded image length 0x%x", length);
ESP_LOGD(TAG, "reading checksum block at 0x%x", src_addr + length - 16);
bootloader_flash_read(src_addr + length - 16, buf, 16);
if (checksum != buf[15]) {
ESP_LOGE(TAG, "checksum failed. Calculated 0x%x read 0x%x",
checksum, buf[15]);
return ESP_ERR_IMAGE_INVALID;
}
if (p_length != NULL) {
*p_length = length;
}
return ESP_OK;
}

View File

@ -0,0 +1,222 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include "esp_attr.h"
#include "esp_types.h"
#include "esp_log.h"
#include "rom/cache.h"
#include "rom/ets_sys.h"
#include "rom/spi_flash.h"
#include "rom/secure_boot.h"
#include "soc/dport_reg.h"
#include "soc/io_mux_reg.h"
#include "soc/efuse_reg.h"
#include "soc/rtc_cntl_reg.h"
#include "sdkconfig.h"
#include "bootloader_flash.h"
#include "esp_image_format.h"
#include "esp_secure_boot.h"
static const char* TAG = "secure_boot";
#define HASH_BLOCK_SIZE 128
#define IV_LEN HASH_BLOCK_SIZE
#define DIGEST_LEN 64
/**
* @function : secure_boot_generate
* @description: generate boot digest (aka "abstract") & iv
*
* @inputs: image_len - length of image to calculate digest for
*/
static bool secure_boot_generate(uint32_t image_len){
SpiFlashOpResult spiRet;
/* buffer is uint32_t not uint8_t to meet ROM SPI API signature */
uint32_t buf[IV_LEN / sizeof(uint32_t)];
const void *image;
/* hardware secure boot engine only takes full blocks, so round up the
image length. The additional data should all be 0xFF.
*/
if (image_len % HASH_BLOCK_SIZE != 0) {
image_len = (image_len / HASH_BLOCK_SIZE + 1) * HASH_BLOCK_SIZE;
}
ets_secure_boot_start();
ets_secure_boot_rd_iv(buf);
ets_secure_boot_hash(NULL);
Cache_Read_Disable(0);
/* iv stored in sec 0 */
spiRet = SPIEraseSector(0);
if (spiRet != SPI_FLASH_RESULT_OK)
{
ESP_LOGE(TAG, "SPI erase failed %d", spiRet);
return false;
}
Cache_Read_Enable(0);
/* write iv to flash, 0x0000, 128 bytes (1024 bits) */
ESP_LOGD(TAG, "write iv to flash.");
spiRet = SPIWrite(0, buf, IV_LEN);
if (spiRet != SPI_FLASH_RESULT_OK)
{
ESP_LOGE(TAG, "SPI write failed %d", spiRet);
return false;
}
bzero(buf, sizeof(buf));
/* generate digest from image contents */
image = bootloader_mmap(0x1000, image_len);
if (!image) {
ESP_LOGE(TAG, "bootloader_mmap(0x1000, 0x%x) failed", image_len);
return false;
}
for (int i = 0; i < image_len; i+= HASH_BLOCK_SIZE) {
ets_secure_boot_hash(image + i/sizeof(void *));
}
bootloader_munmap(image);
ets_secure_boot_obtain();
ets_secure_boot_rd_abstract(buf);
ets_secure_boot_finish();
ESP_LOGD(TAG, "write digest to flash.");
spiRet = SPIWrite(0x80, buf, DIGEST_LEN);
if (spiRet != SPI_FLASH_RESULT_OK) {
ESP_LOGE(TAG, "SPI write failed %d", spiRet);
return false;
}
ESP_LOGD(TAG, "write digest to flash.");
Cache_Read_Enable(0);
return true;
}
/* Burn values written to the efuse write registers */
static inline void burn_efuses()
{
#ifdef CONFIG_SECURE_BOOT_TEST_MODE
ESP_LOGE(TAG, "SECURE BOOT TEST MODE. Not really burning any efuses!");
#else
REG_WRITE(EFUSE_CONF_REG, 0x5A5A); /* efuse_pgm_op_ena, force no rd/wr disable */
REG_WRITE(EFUSE_CMD_REG, 0x02); /* efuse_pgm_cmd */
while (REG_READ(EFUSE_CMD_REG)); /* wait for efuse_pagm_cmd=0 */
REG_WRITE(EFUSE_CONF_REG, 0x5AA5); /* efuse_read_op_ena, release force */
REG_WRITE(EFUSE_CMD_REG, 0x01); /* efuse_read_cmd */
while (REG_READ(EFUSE_CMD_REG)); /* wait for efuse_read_cmd=0 */
#endif
}
esp_err_t esp_secure_boot_permanently_enable(void) {
esp_err_t err;
uint32_t image_len = 0;
if (esp_secure_boot_enabled())
{
ESP_LOGI(TAG, "bootloader secure boot is already enabled, continuing..");
return ESP_OK;
}
err = esp_image_basic_verify(0x1000, &image_len);
if (err != ESP_OK) {
ESP_LOGE(TAG, "bootloader image appears invalid! error %d", err);
return err;
}
uint32_t dis_reg = REG_READ(EFUSE_BLK0_RDATA0_REG);
bool efuse_key_read_protected = dis_reg & EFUSE_RD_DIS_BLK2;
bool efuse_key_write_protected = dis_reg & EFUSE_WR_DIS_BLK2;
if (efuse_key_read_protected == false
&& efuse_key_write_protected == false
&& REG_READ(EFUSE_BLK2_RDATA0_REG) == 0
&& REG_READ(EFUSE_BLK2_RDATA1_REG) == 0
&& REG_READ(EFUSE_BLK2_RDATA2_REG) == 0
&& REG_READ(EFUSE_BLK2_RDATA3_REG) == 0
&& REG_READ(EFUSE_BLK2_RDATA4_REG) == 0
&& REG_READ(EFUSE_BLK2_RDATA5_REG) == 0
&& REG_READ(EFUSE_BLK2_RDATA6_REG) == 0
&& REG_READ(EFUSE_BLK2_RDATA7_REG) == 0) {
ESP_LOGI(TAG, "Generating new secure boot key...");
/* reuse the secure boot IV generation function to generate
the key, as this generator uses the hardware RNG. */
uint32_t buf[32];
ets_secure_boot_start();
ets_secure_boot_rd_iv(buf);
ets_secure_boot_finish();
for (int i = 0; i < 8; i++) {
ESP_LOGV(TAG, "EFUSE_BLK2_WDATA%d_REG = 0x%08x", i, buf[i]);
REG_WRITE(EFUSE_BLK2_WDATA0_REG + 4*i, buf[i]);
}
bzero(buf, sizeof(buf));
burn_efuses();
ESP_LOGI(TAG, "Read & write protecting new key...");
REG_WRITE(EFUSE_BLK0_WDATA0_REG, EFUSE_WR_DIS_BLK2 | EFUSE_RD_DIS_BLK2);
burn_efuses();
efuse_key_read_protected = true;
efuse_key_write_protected = true;
} else {
ESP_LOGW(TAG, "Using pre-loaded secure boot key in EFUSE block 2");
}
ESP_LOGI(TAG, "Generating secure boot digest...");
if (false == secure_boot_generate(image_len)){
ESP_LOGE(TAG, "secure boot generation failed");
return ESP_FAIL;
}
ESP_LOGI(TAG, "Digest generation complete.");
if (!efuse_key_read_protected) {
ESP_LOGE(TAG, "Pre-loaded key is not read protected. Refusing to blow secure boot efuse.");
return ESP_ERR_INVALID_STATE;
}
if (!efuse_key_write_protected) {
ESP_LOGE(TAG, "Pre-loaded key is not write protected. Refusing to blow secure boot efuse.");
return ESP_ERR_INVALID_STATE;
}
ESP_LOGI(TAG, "blowing secure boot efuse...");
ESP_LOGD(TAG, "before updating, EFUSE_BLK0_RDATA6 %x", REG_READ(EFUSE_BLK0_RDATA6_REG));
uint32_t new_wdata6 = EFUSE_RD_ABS_DONE_0;
#ifdef CONFIG_SECURE_BOOT_DISABLE_JTAG
ESP_LOGI(TAG, "disabling JTAG...");
new_wdata6 |= EFUSE_RD_DISABLE_JTAG;
#endif
#ifdef CONFIG_SECURE_BOOT_DISABLE_UART_BOOTLOADER
ESP_LOGI(TAG, "disabling UART bootloader...");
new_wdata6 |= EFUSE_RD_CONSOLE_DEBUG_DISABLE_S;
#endif
REG_WRITE(EFUSE_BLK0_WDATA6_REG, new_wdata6);
burn_efuses();
uint32_t after = REG_READ(EFUSE_BLK0_RDATA6_REG);
ESP_LOGD(TAG, "after updating, EFUSE_BLK0_RDATA6 %x", after);
if (after & EFUSE_RD_ABS_DONE_0) {
ESP_LOGI(TAG, "secure boot is now enabled for bootloader image");
return ESP_OK;
} else {
#ifdef CONFIG_SECURE_BOOT_TEST_MODE
ESP_LOGE(TAG, "secure boot not enabled due to test mode");
#else
ESP_LOGE(TAG, "secure boot not enabled for bootloader image, EFUSE_RD_ABS_DONE_0 is probably write protected!");
#endif
return ESP_ERR_INVALID_STATE;
}
}

View File

@ -0,0 +1,110 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "sdkconfig.h"
#include "bootloader_flash.h"
#include "esp_log.h"
#include "esp_image_format.h"
#include "esp_secure_boot.h"
#include "uECC.h"
#ifdef BOOTLOADER_BUILD
#include "rom/sha.h"
typedef SHA_CTX sha_context;
#else
#include "hwcrypto/sha.h"
typedef esp_sha_context sha_context;
#endif
typedef struct {
uint32_t version;
uint8_t signature[64];
} signature_block_t;
static const char* TAG = "secure_boot";
extern const uint8_t signature_verification_key_start[] asm("_binary_signature_verification_key_bin_start");
extern const uint8_t signature_verification_key_end[] asm("_binary_signature_verification_key_bin_end");
#define SIGNATURE_VERIFICATION_KEYLEN 64
esp_err_t esp_secure_boot_verify_signature(uint32_t src_addr, uint32_t length)
{
sha_context sha;
uint8_t digest[32];
ptrdiff_t keylen;
const uint8_t *data;
const signature_block_t *sigblock;
bool is_valid;
#ifdef BOOTLOADER_BUILD
const uint8_t *digest_data;
uint32_t digest_len;
#endif
ESP_LOGD(TAG, "verifying signature src_addr 0x%x length 0x%x", src_addr, length);
data = bootloader_mmap(src_addr, length + sizeof(signature_block_t));
if(data == NULL) {
ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", src_addr, length+sizeof(signature_block_t));
return ESP_FAIL;
}
sigblock = (const signature_block_t *)(data + length);
if (sigblock->version != 0) {
ESP_LOGE(TAG, "src 0x%x has invalid signature version field 0x%08x", src_addr, sigblock->version);
goto unmap_and_fail;
}
#ifdef BOOTLOADER_BUILD
/* Use ROM SHA functions directly */
ets_sha_enable();
ets_sha_init(&sha);
digest_len = length * 8;
digest_data = data;
while (digest_len > 0) {
uint32_t chunk_len = (digest_len > 64) ? 64 : digest_len;
ets_sha_update(&sha, SHA2_256, digest_data, chunk_len);
digest_len -= chunk_len;
digest_data += chunk_len / 8;
}
ets_sha_finish(&sha, SHA2_256, digest);
ets_sha_disable();
#else
/* Use thread-safe esp-idf SHA layer */
esp_sha256_init(&sha);
esp_sha256_start(&sha, false);
esp_sha256_update(&sha, data, length);
esp_sha256_finish(&sha, digest);
esp_sha256_free(&sha);
#endif
keylen = signature_verification_key_end - signature_verification_key_start;
if(keylen != SIGNATURE_VERIFICATION_KEYLEN) {
ESP_LOGE(TAG, "Embedded public verification key has wrong length %d", keylen);
goto unmap_and_fail;
}
is_valid = uECC_verify(signature_verification_key_start,
digest, sizeof(digest), sigblock->signature,
uECC_secp256r1());
bootloader_munmap(data);
return is_valid ? ESP_OK : ESP_ERR_IMAGE_INVALID;
unmap_and_fail:
bootloader_munmap(data);
return ESP_FAIL;
}

View File

@ -2,22 +2,17 @@
# Component Makefile
#
#COMPONENT_ADD_INCLUDEDIRS :=
COMPONENT_ADD_INCLUDEDIRS := include
CFLAGS += -Wno-error=unused-label -Wno-error=return-type -Wno-error=missing-braces -Wno-error=pointer-sign -Wno-error=parentheses
LIBS := btdm_app
COMPONENT_ADD_LDFLAGS := -lbt -L$(abspath lib) \
COMPONENT_ADD_LDFLAGS := -lbt -L $(COMPONENT_PATH)/lib \
$(addprefix -l,$(LIBS)) \
$(LINKER_SCRIPTS)
include $(IDF_PATH)/make/component_common.mk
ALL_LIB_FILES := $(patsubst %,$(COMPONENT_PATH)/lib/lib%.a,$(LIBS))
$(COMPONENT_LIBRARY): $(ALL_LIB_FILES)
# automatically trigger a git submodule update if BT library is missing
$(eval $(call SubmoduleCheck,$(ALL_LIB_FILES),$(COMPONENT_PATH)/lib))
COMPONENT_SUBMODULES += lib

View File

@ -32,13 +32,10 @@ void bt_controller_init(void);
/** @brief vhci_host_callback
* used for vhci call host function to notify what host need to do
*
* notify_host_send_available: notify host can send packet to controller
* notify_host_recv: notify host that controller has packet send to host
*/
typedef struct vhci_host_callback {
void (*notify_host_send_available)(void);
int (*notify_host_recv)(uint8_t *data, uint16_t len);
void (*notify_host_send_available)(void); /*!< callback used to notify that the host can send packet to controller */
int (*notify_host_recv)(uint8_t *data, uint16_t len); /*!< callback used to notify that the controller has a packet to send to the host*/
} vhci_host_callback_t;
/** @brief API_vhci_host_check_send_available

View File

@ -1,14 +1,8 @@
#
# Component Makefile
#
# This Makefile should, at the very least, just include $(SDK_PATH)/make/component.mk. By default,
# this will take the sources in this directory, compile them and link them into
# lib(subdirectory_name).a in the build directory. This behaviour is entirely configurable,
# please read the SDK documents if you need to do this.
#
COMPONENT_ADD_INCLUDEDIRS := include
COMPONENT_PRIV_INCLUDEDIRS := include/driver
include $(IDF_PATH)/make/component_common.mk

View File

@ -18,34 +18,13 @@
#include "freertos/xtensa_api.h"
#include "driver/gpio.h"
#include "soc/soc.h"
#include "esp_log.h"
//TODO: move debug options to menuconfig
#define GPIO_DBG_ENABLE (0)
#define GPIO_WARNING_ENABLE (0)
#define GPIO_ERROR_ENABLE (0)
#define GPIO_INFO_ENABLE (0)
//DBG INFOR
#if GPIO_INFO_ENABLE
#define GPIO_INFO ets_printf
#else
#define GPIO_INFO(...)
#endif
#if GPIO_WARNING_ENABLE
#define GPIO_WARNING(format,...) do{\
ets_printf("[waring][%s#%u]",__FUNCTION__,__LINE__);\
ets_printf(format,##__VA_ARGS__);\
}while(0)
#else
#define GPIO_WARNING(...)
#endif
#if GPIO_ERROR_ENABLE
#define GPIO_ERROR(format,...) do{\
ets_printf("[error][%s#%u]",__FUNCTION__,__LINE__);\
ets_printf(format,##__VA_ARGS__);\
}while(0)
#else
#define GPIO_ERROR(...)
#endif
static const char* GPIO_TAG = "GPIO";
#define GPIO_CHECK(a, str, ret_val) if (!(a)) { \
ESP_LOGE(GPIO_TAG,"%s:%d (%s):%s", __FILE__, __LINE__, __FUNCTION__, str); \
return (ret_val); \
}
const uint32_t GPIO_PIN_MUX_REG[GPIO_PIN_COUNT] = {
GPIO_PIN_REG_0,
@ -90,33 +69,85 @@ const uint32_t GPIO_PIN_MUX_REG[GPIO_PIN_COUNT] = {
GPIO_PIN_REG_39
};
static int is_valid_gpio(int gpio_num)
{
if(gpio_num >= GPIO_PIN_COUNT || GPIO_PIN_MUX_REG[gpio_num] == 0) {
GPIO_ERROR("GPIO io_num=%d does not exist\n",gpio_num);
return 0;
}
return 1;
const gpio_pu_pd_desc_t gpio_pu_pd_desc[GPIO_PIN_COUNT]={
{RTC_IO_TOUCH_PAD1_REG, RTC_IO_TOUCH_PAD1_RUE_M, RTC_IO_TOUCH_PAD1_RDE_M},
{PERIPHS_IO_MUX_U0TXD_U, FUN_PU, FUN_PD},
{RTC_IO_TOUCH_PAD2_REG, RTC_IO_TOUCH_PAD2_RUE_M, RTC_IO_TOUCH_PAD2_RDE_M},
{PERIPHS_IO_MUX_U0RXD_U, FUN_PU, FUN_PD},
{RTC_IO_TOUCH_PAD0_REG, RTC_IO_TOUCH_PAD0_RUE_M, RTC_IO_TOUCH_PAD0_RDE_M},
{PERIPHS_IO_MUX_GPIO5_U, FUN_PU, FUN_PD},
{PERIPHS_IO_MUX_SD_CLK_U, FUN_PU, FUN_PD},
{PERIPHS_IO_MUX_SD_DATA0_U, FUN_PU, FUN_PD},
{PERIPHS_IO_MUX_SD_DATA1_U, FUN_PU, FUN_PD},
{PERIPHS_IO_MUX_SD_DATA2_U, FUN_PU, FUN_PD},
{PERIPHS_IO_MUX_SD_DATA3_U, FUN_PU, FUN_PD},
{PERIPHS_IO_MUX_SD_CMD_U, FUN_PU, FUN_PD},
{RTC_IO_TOUCH_PAD5_REG, RTC_IO_TOUCH_PAD5_RUE_M, RTC_IO_TOUCH_PAD5_RDE_M},
{RTC_IO_TOUCH_PAD4_REG, RTC_IO_TOUCH_PAD4_RUE_M, RTC_IO_TOUCH_PAD4_RDE_M},
{RTC_IO_TOUCH_PAD6_REG, RTC_IO_TOUCH_PAD6_RUE_M, RTC_IO_TOUCH_PAD6_RDE_M},
{RTC_IO_TOUCH_PAD3_REG, RTC_IO_TOUCH_PAD3_RUE_M, RTC_IO_TOUCH_PAD3_RDE_M},
{PERIPHS_IO_MUX_GPIO16_U, FUN_PU, FUN_PD},
{PERIPHS_IO_MUX_GPIO17_U, FUN_PU, FUN_PD},
{PERIPHS_IO_MUX_GPIO18_U, FUN_PU, FUN_PD},
{PERIPHS_IO_MUX_GPIO19_U, FUN_PU, FUN_PD},
{0,0,0},
{PERIPHS_IO_MUX_GPIO21_U, FUN_PU, FUN_PD},
{PERIPHS_IO_MUX_GPIO22_U, FUN_PU, FUN_PD},
{PERIPHS_IO_MUX_GPIO23_U, FUN_PU, FUN_PD},
{0,0,0},
{RTC_IO_PAD_DAC1_REG, RTC_IO_PDAC1_RUE_M, RTC_IO_PDAC1_RDE_M},
{RTC_IO_PAD_DAC2_REG, RTC_IO_PDAC2_RUE_M, RTC_IO_PDAC2_RDE_M},
{RTC_IO_TOUCH_PAD7_REG, RTC_IO_TOUCH_PAD7_RUE_M, RTC_IO_TOUCH_PAD7_RDE_M},
{0,0,0},
{0,0,0},
{0,0,0},
{0,0,0},
{RTC_IO_XTAL_32K_PAD_REG, RTC_IO_X32P_RUE_M, RTC_IO_X32P_RDE_M},
{RTC_IO_XTAL_32K_PAD_REG, RTC_IO_X32N_RUE_M, RTC_IO_X32N_RDE_M},
{PERIPHS_IO_MUX_GPIO34_U, FUN_PU, FUN_PD},
{PERIPHS_IO_MUX_GPIO35_U, FUN_PU, FUN_PD},
{PERIPHS_IO_MUX_GPIO36_U, FUN_PU, FUN_PD},
{PERIPHS_IO_MUX_GPIO37_U, FUN_PU, FUN_PD},
{PERIPHS_IO_MUX_GPIO38_U, FUN_PU, FUN_PD},
{PERIPHS_IO_MUX_GPIO39_U, FUN_PU, FUN_PD}
};
esp_err_t gpio_pullup_en(gpio_num_t gpio_num) {
GPIO_CHECK(GPIO_IS_VALID_GPIO(gpio_num), "GPIO number error", ESP_ERR_INVALID_ARG);
REG_SET_BIT(gpio_pu_pd_desc[gpio_num].reg, gpio_pu_pd_desc[gpio_num].pu);
return ESP_OK;
}
esp_err_t gpio_pullup_dis(gpio_num_t gpio_num) {
GPIO_CHECK(GPIO_IS_VALID_GPIO(gpio_num), "GPIO number error", ESP_ERR_INVALID_ARG);
REG_CLR_BIT(gpio_pu_pd_desc[gpio_num].reg, gpio_pu_pd_desc[gpio_num].pu);
return ESP_OK;
}
esp_err_t gpio_pulldown_en(gpio_num_t gpio_num) {
GPIO_CHECK(GPIO_IS_VALID_GPIO(gpio_num), "GPIO number error", ESP_ERR_INVALID_ARG);
REG_SET_BIT(gpio_pu_pd_desc[gpio_num].reg, gpio_pu_pd_desc[gpio_num].pd);
return ESP_OK;
}
esp_err_t gpio_pulldown_dis(gpio_num_t gpio_num) {
GPIO_CHECK(GPIO_IS_VALID_GPIO(gpio_num), "GPIO number error", ESP_ERR_INVALID_ARG);
REG_CLR_BIT(gpio_pu_pd_desc[gpio_num].reg, gpio_pu_pd_desc[gpio_num].pd);
return ESP_OK;
}
esp_err_t gpio_set_intr_type(gpio_num_t gpio_num, gpio_int_type_t intr_type)
{
if(!is_valid_gpio(gpio_num)) {
return ESP_ERR_INVALID_ARG;
}
if(intr_type >= GPIO_INTR_MAX) {
GPIO_ERROR("Unknown GPIO intr:%u\n",intr_type);
return ESP_ERR_INVALID_ARG;
}
GPIO_CHECK(GPIO_IS_VALID_GPIO(gpio_num), "GPIO number error", ESP_ERR_INVALID_ARG);
GPIO_CHECK(intr_type < GPIO_INTR_MAX, "GPIO interrupt type error", ESP_ERR_INVALID_ARG);
GPIO.pin[gpio_num].int_type = intr_type;
return ESP_OK;
}
esp_err_t gpio_intr_enable(gpio_num_t gpio_num)
{
if(!is_valid_gpio(gpio_num)) {
return ESP_ERR_INVALID_ARG;
}
GPIO_CHECK(GPIO_IS_VALID_GPIO(gpio_num), "GPIO number error", ESP_ERR_INVALID_ARG);
if(xPortGetCoreID() == 0) {
GPIO.pin[gpio_num].int_ena = GPIO_PRO_CPU_INTR_ENA; //enable pro cpu intr
} else {
@ -127,18 +158,14 @@ esp_err_t gpio_intr_enable(gpio_num_t gpio_num)
esp_err_t gpio_intr_disable(gpio_num_t gpio_num)
{
if(!is_valid_gpio(gpio_num)) {
return ESP_ERR_INVALID_ARG;
}
GPIO_CHECK(GPIO_IS_VALID_GPIO(gpio_num), "GPIO number error", ESP_ERR_INVALID_ARG);
GPIO.pin[gpio_num].int_ena = 0; //disable GPIO intr
return ESP_OK;
}
static esp_err_t gpio_output_disable(gpio_num_t gpio_num)
{
if(!is_valid_gpio(gpio_num)) {
return ESP_ERR_INVALID_ARG;
}
GPIO_CHECK(GPIO_IS_VALID_GPIO(gpio_num), "GPIO number error", ESP_ERR_INVALID_ARG);
if(gpio_num < 32) {
GPIO.enable_w1tc = (0x1 << gpio_num);
} else {
@ -149,13 +176,7 @@ static esp_err_t gpio_output_disable(gpio_num_t gpio_num)
static esp_err_t gpio_output_enable(gpio_num_t gpio_num)
{
if(gpio_num >= 34) {
GPIO_ERROR("io_num=%d can only be input\n",gpio_num);
return ESP_ERR_INVALID_ARG;
}
if(!is_valid_gpio(gpio_num)) {
return ESP_ERR_INVALID_ARG;
}
GPIO_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num), "GPIO output gpio_num error", ESP_ERR_INVALID_ARG);
if(gpio_num < 32) {
GPIO.enable_w1ts = (0x1 << gpio_num);
} else {
@ -166,9 +187,7 @@ static esp_err_t gpio_output_enable(gpio_num_t gpio_num)
esp_err_t gpio_set_level(gpio_num_t gpio_num, uint32_t level)
{
if(!GPIO_IS_VALID_GPIO(gpio_num)) {
return ESP_ERR_INVALID_ARG;
}
GPIO_CHECK(GPIO_IS_VALID_GPIO(gpio_num), "GPIO number error", ESP_ERR_INVALID_ARG);
if(level) {
if(gpio_num < 32) {
GPIO.out_w1ts = (1 << gpio_num);
@ -196,29 +215,28 @@ int gpio_get_level(gpio_num_t gpio_num)
esp_err_t gpio_set_pull_mode(gpio_num_t gpio_num, gpio_pull_mode_t pull)
{
if(!is_valid_gpio(gpio_num)) {
return ESP_ERR_INVALID_ARG;
}
GPIO_CHECK(GPIO_IS_VALID_GPIO(gpio_num), "GPIO number error", ESP_ERR_INVALID_ARG);
GPIO_CHECK(pull <= GPIO_FLOATING, "GPIO pull mode error", ESP_ERR_INVALID_ARG);
esp_err_t ret = ESP_OK;
switch(pull) {
case GPIO_PULLUP_ONLY:
PIN_PULLUP_EN(GPIO_PIN_MUX_REG[gpio_num]);
PIN_PULLDWN_DIS(GPIO_PIN_MUX_REG[gpio_num]);
REG_SET_BIT(gpio_pu_pd_desc[gpio_num].reg, gpio_pu_pd_desc[gpio_num].pu);
REG_CLR_BIT(gpio_pu_pd_desc[gpio_num].reg, gpio_pu_pd_desc[gpio_num].pd);
break;
case GPIO_PULLDOWN_ONLY:
PIN_PULLUP_DIS(GPIO_PIN_MUX_REG[gpio_num]);
PIN_PULLDWN_EN(GPIO_PIN_MUX_REG[gpio_num]);
REG_CLR_BIT(gpio_pu_pd_desc[gpio_num].reg, gpio_pu_pd_desc[gpio_num].pu);
REG_SET_BIT(gpio_pu_pd_desc[gpio_num].reg, gpio_pu_pd_desc[gpio_num].pd);
break;
case GPIO_PULLUP_PULLDOWN:
PIN_PULLUP_EN(GPIO_PIN_MUX_REG[gpio_num]);
PIN_PULLDWN_EN(GPIO_PIN_MUX_REG[gpio_num]);
REG_SET_BIT(gpio_pu_pd_desc[gpio_num].reg, gpio_pu_pd_desc[gpio_num].pu);
REG_SET_BIT(gpio_pu_pd_desc[gpio_num].reg, gpio_pu_pd_desc[gpio_num].pd);
break;
case GPIO_FLOATING:
PIN_PULLUP_DIS(GPIO_PIN_MUX_REG[gpio_num]);
PIN_PULLDWN_DIS(GPIO_PIN_MUX_REG[gpio_num]);
REG_CLR_BIT(gpio_pu_pd_desc[gpio_num].reg, gpio_pu_pd_desc[gpio_num].pu);
REG_CLR_BIT(gpio_pu_pd_desc[gpio_num].reg, gpio_pu_pd_desc[gpio_num].pd);
break;
default:
GPIO_ERROR("Unknown pull up/down mode,gpio_num=%u,pull=%u\n",gpio_num,pull);
ESP_LOGE(GPIO_TAG, "Unknown pull up/down mode,gpio_num=%u,pull=%u",gpio_num,pull);
ret = ESP_ERR_INVALID_ARG;
break;
}
@ -227,11 +245,9 @@ esp_err_t gpio_set_pull_mode(gpio_num_t gpio_num, gpio_pull_mode_t pull)
esp_err_t gpio_set_direction(gpio_num_t gpio_num, gpio_mode_t mode)
{
if(!is_valid_gpio(gpio_num)) {
return ESP_ERR_INVALID_ARG;
}
GPIO_CHECK(GPIO_IS_VALID_GPIO(gpio_num), "GPIO number error", ESP_ERR_INVALID_ARG);
if(gpio_num >= 34 && (mode & (GPIO_MODE_DEF_OUTPUT))) {
GPIO_ERROR("io_num=%d can only be input\n",gpio_num);
ESP_LOGE(GPIO_TAG, "io_num=%d can only be input",gpio_num);
return ESP_ERR_INVALID_ARG;
}
esp_err_t ret = ESP_OK;
@ -266,54 +282,56 @@ esp_err_t gpio_config(gpio_config_t *pGPIOConfig)
uint64_t gpio_pin_mask = (pGPIOConfig->pin_bit_mask);
uint32_t io_reg = 0;
uint32_t io_num = 0;
uint64_t bit_valid = 0;
uint8_t input_en = 0;
uint8_t output_en = 0;
uint8_t od_en = 0;
uint8_t pu_en = 0;
uint8_t pd_en = 0;
if(pGPIOConfig->pin_bit_mask == 0 || pGPIOConfig->pin_bit_mask >= (((uint64_t) 1) << GPIO_PIN_COUNT)) {
GPIO_ERROR("GPIO_PIN mask error \n");
ESP_LOGE(GPIO_TAG, "GPIO_PIN mask error ");
return ESP_ERR_INVALID_ARG;
}
if((pGPIOConfig->mode) & (GPIO_MODE_DEF_OUTPUT)) {
//GPIO 34/35/36/37/38/39 can only be used as input mode;
if((gpio_pin_mask & ( GPIO_SEL_34 | GPIO_SEL_35 | GPIO_SEL_36 | GPIO_SEL_37 | GPIO_SEL_38 | GPIO_SEL_39))) {
GPIO_ERROR("GPIO34-39 can only be used as input mode\n");
ESP_LOGE(GPIO_TAG, "GPIO34-39 can only be used as input mode");
return ESP_ERR_INVALID_ARG;
}
}
do {
io_reg = GPIO_PIN_MUX_REG[io_num];
if(((gpio_pin_mask >> io_num) & BIT(0)) && io_reg) {
GPIO_INFO("Gpio%02d |Mode:",io_num);
if((pGPIOConfig->mode) & GPIO_MODE_DEF_INPUT) {
GPIO_INFO("INPUT ");
input_en = 1;
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[io_num]);
} else {
PIN_INPUT_DISABLE(GPIO_PIN_MUX_REG[io_num]);
}
if((pGPIOConfig->mode) & GPIO_MODE_DEF_OD) {
GPIO_INFO("OD ");
od_en = 1;
GPIO.pin[io_num].pad_driver = 1; /*0x01 Open-drain */
} else {
GPIO.pin[io_num].pad_driver = 0; /*0x00 Normal gpio output */
}
if((pGPIOConfig->mode) & GPIO_MODE_DEF_OUTPUT) {
GPIO_INFO("OUTPUT ");
output_en = 1;
gpio_output_enable(io_num);
} else {
gpio_output_disable(io_num);
}
GPIO_INFO("|");
if(pGPIOConfig->pull_up_en) {
GPIO_INFO("PU ");
PIN_PULLUP_EN(io_reg);
pu_en = 1;
REG_SET_BIT(gpio_pu_pd_desc[io_num].reg, gpio_pu_pd_desc[io_num].pd);
} else {
PIN_PULLUP_DIS(io_reg);
REG_CLR_BIT(gpio_pu_pd_desc[io_num].reg, gpio_pu_pd_desc[io_num].pd);
}
if(pGPIOConfig->pull_down_en) {
GPIO_INFO("PD ");
PIN_PULLDWN_EN(io_reg);
pd_en = 1;
REG_SET_BIT(gpio_pu_pd_desc[io_num].reg, gpio_pu_pd_desc[io_num].pd);
} else {
PIN_PULLDWN_DIS(io_reg);
REG_CLR_BIT(gpio_pu_pd_desc[io_num].reg, gpio_pu_pd_desc[io_num].pd);
}
GPIO_INFO("Intr:%d |\n",pGPIOConfig->intr_type);
ESP_LOGI(GPIO_TAG, "GPIO[%d]| InputEn: %d| OutputEn: %d| OpenDrain: %d| Pullup: %d| Pulldown: %d| Intr:%d ", io_num, input_en, output_en, od_en, pu_en, pd_en, pGPIOConfig->intr_type);
gpio_set_intr_type(io_num, pGPIOConfig->intr_type);
if(pGPIOConfig->intr_type) {
gpio_intr_enable(io_num);
@ -321,8 +339,6 @@ esp_err_t gpio_config(gpio_config_t *pGPIOConfig)
gpio_intr_disable(io_num);
}
PIN_FUNC_SELECT(io_reg, PIN_FUNC_GPIO); /*function number 2 is GPIO_FUNC for each pin */
} else if(bit_valid && (io_reg == 0)) {
GPIO_WARNING("io_num=%d does not exist\n",io_num);
}
io_num++;
} while(io_num < GPIO_PIN_COUNT);
@ -331,9 +347,7 @@ esp_err_t gpio_config(gpio_config_t *pGPIOConfig)
esp_err_t gpio_isr_register(uint32_t gpio_intr_num, void (*fn)(void*), void * arg)
{
if(fn == NULL) {
return ESP_ERR_INVALID_ARG;
}
GPIO_CHECK(fn, "GPIO ISR null", ESP_ERR_INVALID_ARG);
ESP_INTR_DISABLE(gpio_intr_num);
intr_matrix_set(xPortGetCoreID(), ETS_GPIO_INTR_SOURCE, gpio_intr_num);
xt_set_interrupt_handler(gpio_intr_num, fn, arg);
@ -344,15 +358,13 @@ esp_err_t gpio_isr_register(uint32_t gpio_intr_num, void (*fn)(void*), void * ar
/*only level interrupt can be used for wake-up function*/
esp_err_t gpio_wakeup_enable(gpio_num_t gpio_num, gpio_int_type_t intr_type)
{
if(!is_valid_gpio(gpio_num)) {
return ESP_ERR_INVALID_ARG;
}
GPIO_CHECK(GPIO_IS_VALID_GPIO(gpio_num), "GPIO number error", ESP_ERR_INVALID_ARG);
esp_err_t ret = ESP_OK;
if((intr_type == GPIO_INTR_LOW_LEVEL) || (intr_type == GPIO_INTR_HIGH_LEVEL)) {
GPIO.pin[gpio_num].int_type = intr_type;
GPIO.pin[gpio_num].wakeup_enable = 0x1;
} else {
GPIO_ERROR("GPIO wakeup only support Level mode,but edge mode set. gpio_num:%u\n",gpio_num);
ESP_LOGE(GPIO_TAG, "GPIO wakeup only support Level mode,but edge mode set. gpio_num:%u",gpio_num);
ret = ESP_ERR_INVALID_ARG;
}
return ret;
@ -360,9 +372,7 @@ esp_err_t gpio_wakeup_enable(gpio_num_t gpio_num, gpio_int_type_t intr_type)
esp_err_t gpio_wakeup_disable(gpio_num_t gpio_num)
{
if(!is_valid_gpio(gpio_num)) {
return ESP_ERR_INVALID_ARG;
}
GPIO_CHECK(GPIO_IS_VALID_GPIO(gpio_num), "GPIO number error", ESP_ERR_INVALID_ARG);
GPIO.pin[gpio_num].wakeup_enable = 0;
return ESP_OK;
}

View File

@ -20,6 +20,7 @@
#include "soc/gpio_struct.h"
#include "soc/rtc_io_reg.h"
#include "soc/io_mux_reg.h"
#include "soc/gpio_sig_map.h"
#include "rom/gpio.h"
#include "esp_attr.h"
@ -116,6 +117,32 @@ extern const uint32_t GPIO_PIN_MUX_REG[GPIO_PIN_COUNT];
#define GPIO_IS_VALID_GPIO(gpio_num) ((gpio_num < GPIO_PIN_COUNT && GPIO_PIN_MUX_REG[gpio_num] != 0)) //to decide whether it is a valid GPIO number
#define GPIO_IS_VALID_OUTPUT_GPIO(gpio_num) ((GPIO_IS_VALID_GPIO(gpio_num)) && (gpio_num < 34)) //to decide whether it can be a valid GPIO number of output mode
/**
* @brief Pullup/pulldown information for a single GPIO pad
*/
typedef struct {
uint32_t reg; /*!< Register to modify to enable or disable pullups or pulldowns */
uint32_t pu; /*!< Bit to set or clear in the above register to enable or disable the pullup, respectively */
uint32_t pd; /*!< Bit to set or clear in the above register to enable or disable the pulldown, respectively */
} gpio_pu_pd_desc_t;
/**
* Per-GPIO pullup/pulldown information
* On the ESP32, some GPIOs need their pullups and pulldowns enabled and disabled in the RTC
* peripheral instead of in the GPIO peripheral. This array documents for every GPIO what bit
* to set or clear.
*
* This array is non-static, so if you need a very quick way of toggling the pull-up/downs, you can just
* do e.g. REG_SET_BIT(gpio_pu_pd_desc[gpio_num].reg, gpio_pu_pd_desc[gpio_num].pu); inline.
*
* ToDo: Functions using the contents of this array will do a read/modify/write on GPIO as well as RTC
* registers. We may need to look into muxes/locks for other code that accesses these RTC registers when we
* write drivers for the RTC stuff.
*/
extern const gpio_pu_pd_desc_t gpio_pu_pd_desc[GPIO_PIN_COUNT];
typedef enum {
GPIO_NUM_0 = 0, /*!< GPIO0, input and output */
GPIO_NUM_1 = 1, /*!< GPIO1, input and output */
@ -184,6 +211,9 @@ typedef enum {
GPIO_PULLDOWN_ENABLE = 0x1, /*!< Enable GPIO pull-down resistor */
} gpio_pulldown_t;
/**
* @brief Configuration parameters of GPIO pad for gpio_config function
*/
typedef struct {
uint64_t pin_bit_mask; /*!< GPIO pin: set with bit mask, each bit maps to a GPIO */
gpio_mode_t mode; /*!< GPIO mode: set input/output mode */
@ -219,7 +249,7 @@ esp_err_t gpio_config(gpio_config_t *pGPIOConfig);
/**
* @brief GPIO set interrupt trigger type
*
* @param gpio_num GPIO number. If you want to set output level of GPIO16, gpio_num should be GPIO_NUM_16 (16);
* @param gpio_num GPIO number. If you want to set the trigger type of e.g. of GPIO16, gpio_num should be GPIO_NUM_16 (16);
* @param intr_type Interrupt type, select from gpio_int_type_t
*
* @return
@ -232,7 +262,7 @@ esp_err_t gpio_set_intr_type(gpio_num_t gpio_num, gpio_int_type_t intr_type);
/**
* @brief Enable GPIO module interrupt signal
*
* @param gpio_num GPIO number. If you want to set output level of GPIO16, gpio_num should be GPIO_NUM_16 (16);
* @param gpio_num GPIO number. If you want to enable an interrupt on e.g. GPIO16, gpio_num should be GPIO_NUM_16 (16);
*
* @return
* - ESP_OK Success
@ -244,7 +274,7 @@ esp_err_t gpio_intr_enable(gpio_num_t gpio_num);
/**
* @brief Disable GPIO module interrupt signal
*
* @param gpio_num GPIO number. If you want to set output level of GPIO16, gpio_num should be GPIO_NUM_16 (16);
* @param gpio_num GPIO number. If you want to disable the interrupt of e.g. GPIO16, gpio_num should be GPIO_NUM_16 (16);
*
* @return
* - ESP_OK success
@ -256,7 +286,7 @@ esp_err_t gpio_intr_disable(gpio_num_t gpio_num);
/**
* @brief GPIO set output level
*
* @param gpio_num GPIO number. If you want to set output level of GPIO16, gpio_num should be GPIO_NUM_16 (16);
* @param gpio_num GPIO number. If you want to set the output level of e.g. GPIO16, gpio_num should be GPIO_NUM_16 (16);
* @param level Output level. 0: low ; 1: high
*
* @return
@ -269,7 +299,7 @@ esp_err_t gpio_set_level(gpio_num_t gpio_num, uint32_t level);
/**
* @brief GPIO get input level
*
* @param gpio_num GPIO number. If you want to get level of pin GPIO16, gpio_num should be GPIO_NUM_16 (16);
* @param gpio_num GPIO number. If you want to get the logic level of e.g. pin GPIO16, gpio_num should be GPIO_NUM_16 (16);
*
* @return
* - 0 the GPIO input level is 0
@ -283,7 +313,7 @@ int gpio_get_level(gpio_num_t gpio_num);
*
* Configure GPIO direction,such as output_only,input_only,output_and_input
*
* @param gpio_num Configure GPIO pins number, it should be GPIO number. If you want to set direction of GPIO16, gpio_num should be GPIO_NUM_16 (16);
* @param gpio_num Configure GPIO pins number, it should be GPIO number. If you want to set direction of e.g. GPIO16, gpio_num should be GPIO_NUM_16 (16);
* @param mode GPIO direction
*
* @return
@ -298,7 +328,7 @@ esp_err_t gpio_set_direction(gpio_num_t gpio_num, gpio_mode_t mode);
*
* User this Function,configure GPIO pull mode,such as pull-up,pull-down
*
* @param gpio_num GPIO number. If you want to set pull up or down mode for GPIO16,gpio_num should be GPIO_NUM_16 (16);
* @param gpio_num GPIO number. If you want to set pull up or down mode for e.g. GPIO16, gpio_num should be GPIO_NUM_16 (16);
* @param pull GPIO pull up/down mode.
*
* @return
@ -313,7 +343,7 @@ esp_err_t gpio_set_pull_mode(gpio_num_t gpio_num, gpio_pull_mode_t pull);
*
* @param gpio_num GPIO number.
*
* @param intr_type GPIO wake-up type. Only GPIO_INTR_LOW_LEVEL\GPIO_INTR_HIGH_LEVEL can be used.
* @param intr_type GPIO wake-up type. Only GPIO_INTR_LOW_LEVEL or GPIO_INTR_HIGH_LEVEL can be used.
*
* @return
* - ESP_OK Success
@ -353,6 +383,53 @@ esp_err_t gpio_wakeup_disable(gpio_num_t gpio_num);
*/
esp_err_t gpio_isr_register(uint32_t gpio_intr_num, void (*fn)(void*), void * arg);
/**
* @brief Enable pull-up on GPIO.
*
* @param gpio_num GPIO number
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t gpio_pullup_en(gpio_num_t gpio_num);
/**
* @brief Disable pull-up on GPIO.
*
* @param gpio_num GPIO number
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t gpio_pullup_dis(gpio_num_t gpio_num);
/**
* @brief Enable pull-down on GPIO.
*
* @param gpio_num GPIO number
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t gpio_pulldown_en(gpio_num_t gpio_num);
/**
* @brief Disable pull-down on GPIO.
*
* @param gpio_num GPIO number
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t gpio_pulldown_dis(gpio_num_t gpio_num);
/**
* *************** ATTENTION ********************/
/**

View File

@ -78,6 +78,9 @@ typedef enum {
LEDC_TIMER_15_BIT = 15, /*!< LEDC PWM depth 15Bit */
} ledc_timer_bit_t;
/**
* @brief Configuration parameters of LEDC channel for ledc_channel_config function
*/
typedef struct {
int gpio_num; /*!< the LEDC output gpio_num, if you want to use gpio16, gpio_num = 16*/
ledc_mode_t speed_mode; /*!< LEDC speed speed_mode, high-speed mode or low-speed mode*/
@ -87,6 +90,9 @@ typedef struct {
uint32_t duty; /*!< LEDC channel duty, the duty range is [0, (2**bit_num) - 1], */
} ledc_channel_config_t;
/**
* @brief Configuration parameters of LEDC Timer timer for ledc_timer_config function
*/
typedef struct {
ledc_mode_t speed_mode; /*!< LEDC speed speed_mode, high-speed mode or low-speed mode*/
ledc_timer_bit_t bit_num; /*!< LEDC channel duty depth*/
@ -150,6 +156,8 @@ esp_err_t ledc_update_duty(ledc_mode_t speed_mode, ledc_channel_t channel);
*
* @param channel LEDC channel(0-7), select from ledc_channel_t
*
* @param idle_level Set output idle level after LEDC stops.
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error

View File

@ -0,0 +1,748 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _DRIVER_UART_H_
#define _DRIVER_UART_H_
#ifdef __cplusplus
extern "C" {
#endif
#include "soc/uart_reg.h"
#include "soc/uart_struct.h"
#include "esp_err.h"
#include "driver/periph_ctrl.h"
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "freertos/xtensa_api.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "freertos/ringbuf.h"
#include <esp_types.h>
#define UART_FIFO_LEN (128) /*!< Length of the hardware FIFO buffers */
#define UART_INTR_MASK 0x1ff /*!< mask of all UART interrupts */
#define UART_LINE_INV_MASK (0x3f << 19) /*!< TBD */
#define UART_BITRATE_MAX 5000000 /*!< Max bit rate supported by UART */
#define UART_PIN_NO_CHANGE (-1) /*!< Constant for uart_set_pin function which indicates that UART pin should not be changed */
#define UART_INVERSE_DISABLE (0x0) /*!< Disable UART signal inverse*/
#define UART_INVERSE_RXD (UART_RXD_INV_M) /*!< UART RXD input inverse*/
#define UART_INVERSE_CTS (UART_CTS_INV_M) /*!< UART CTS input inverse*/
#define UART_INVERSE_TXD (UART_TXD_INV_M) /*!< UART TXD output inverse*/
#define UART_INVERSE_RTS (UART_RTS_INV_M) /*!< UART RTS output inverse*/
/**
* @brief UART word length constants
*/
typedef enum {
UART_DATA_5_BITS = 0x0, /*!< word length: 5bits*/
UART_DATA_6_BITS = 0x1, /*!< word length: 6bits*/
UART_DATA_7_BITS = 0x2, /*!< word length: 7bits*/
UART_DATA_8_BITS = 0x3, /*!< word length: 8bits*/
UART_DATA_BITS_MAX = 0X4,
} uart_word_length_t;
/**
* @brief UART stop bits number
*/
typedef enum {
UART_STOP_BITS_1 = 0x1, /*!< stop bit: 1bit*/
UART_STOP_BITS_1_5 = 0x2, /*!< stop bit: 1.5bits*/
UART_STOP_BITS_2 = 0x3, /*!< stop bit: 2bits*/
UART_STOP_BITS_MAX = 0x4,
} uart_stop_bits_t;
/**
* @brief UART peripheral number
*/
typedef enum {
UART_NUM_0 = 0x0, /*!< UART base address 0x3ff40000*/
UART_NUM_1 = 0x1, /*!< UART base address 0x3ff50000*/
UART_NUM_2 = 0x2, /*!< UART base address 0x3ff6E000*/
UART_NUM_MAX,
} uart_port_t;
/**
* @brief UART parity constants
*/
typedef enum {
UART_PARITY_DISABLE = 0x0, /*!< Disable UART parity*/
UART_PARITY_EVEN = 0x2, /*!< Enable UART even parity*/
UART_PARITY_ODD = 0x3 /*!< Enable UART odd parity*/
} uart_parity_t;
/**
* @brief UART hardware flow control modes
*/
typedef enum {
UART_HW_FLOWCTRL_DISABLE = 0x0, /*!< disable hardware flow control*/
UART_HW_FLOWCTRL_RTS = 0x1, /*!< enable RX hardware flow control (rts)*/
UART_HW_FLOWCTRL_CTS = 0x2, /*!< enable TX hardware flow control (cts)*/
UART_HW_FLOWCTRL_CTS_RTS = 0x3, /*!< enable hardware flow control*/
UART_HW_FLOWCTRL_MAX = 0x4,
} uart_hw_flowcontrol_t;
/**
* @brief UART configuration parameters for uart_param_config function
*/
typedef struct {
int baud_rate; /*!< UART baudrate*/
uart_word_length_t data_bits; /*!< UART byte size*/
uart_parity_t parity; /*!< UART parity mode*/
uart_stop_bits_t stop_bits; /*!< UART stop bits*/
uart_hw_flowcontrol_t flow_ctrl; /*!< UART HW flow control mode(cts/rts)*/
uint8_t rx_flow_ctrl_thresh ; /*!< UART HW RTS threshold*/
} uart_config_t;
/**
* @brief UART interrupt configuration parameters for uart_intr_config function
*/
typedef struct {
uint32_t intr_enable_mask; /*!< UART interrupt enable mask, choose from UART_XXXX_INT_ENA_M under UART_INT_ENA_REG(i), connect with bit-or operator*/
uint8_t rx_timeout_thresh; /*!< UART timeout interrupt threshold(unit: time of sending one byte)*/
uint8_t txfifo_empty_intr_thresh; /*!< UART TX empty interrupt threshold.*/
uint8_t rxfifo_full_thresh; /*!< UART RX full interrupt threshold.*/
} uart_intr_config_t;
/**
* @brief UART event types used in the ringbuffer
*/
typedef enum {
UART_DATA, /*!< UART data event*/
UART_BREAK, /*!< UART break event*/
UART_BUFFER_FULL, /*!< UART RX buffer full event*/
UART_FIFO_OVF, /*!< UART FIFO overflow event*/
UART_FRAME_ERR, /*!< UART RX frame error event*/
UART_PARITY_ERR, /*!< UART RX parity event*/
UART_DATA_BREAK, /*!< UART TX data and break event*/
UART_EVENT_MAX, /*!< UART event max index*/
} uart_event_type_t;
/**
* @brief Event structure used in UART event queue
*/
typedef struct {
uart_event_type_t type; /*!< UART event type */
size_t size; /*!< UART data size for UART_DATA event*/
} uart_event_t;
/**
* @brief Set UART data bits.
*
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
* @param data_bit UART data bits
*
* @return
* - ESP_OK Success
* - ESP_FAIL Parameter error
*/
esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit);
/**
* @brief Get UART data bits.
*
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
* @param data_bit Pointer to accept value of UART data bits.
*
* @return
* - ESP_FAIL Parameter error
* - ESP_OK Success, result will be put in (*data_bit)
*/
esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit);
/**
* @brief Set UART stop bits.
*
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
* @param bit_num UART stop bits
*
* @return
* - ESP_OK Success
* - ESP_FAIL Fail
*/
esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t bit_num);
/**
* @brief Set UART stop bits.
*
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
* @param stop_bit Pointer to accept value of UART stop bits.
*
* @return
* - ESP_FAIL Parameter error
* - ESP_OK Success, result will be put in (*stop_bit)
*/
esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit);
/**
* @brief Set UART parity.
*
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
* @param parity_mode the enum of uart parity configuration
*
* @return
* - ESP_FAIL Parameter error
* - ESP_OK Success
*/
esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode);
/**
* @brief Get UART parity mode.
*
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
* @param parity_mode Pointer to accept value of UART parity mode.
*
* @return
* - ESP_FAIL Parameter error
* - ESP_OK Success, result will be put in (*parity_mode)
*
*/
esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode);
/**
* @brief Set UART baud rate.
*
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
* @param baud_rate UART baud-rate.
*
* @return
* - ESP_FAIL Parameter error
* - ESP_OK Success
*/
esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate);
/**
* @brief Get UART bit-rate.
*
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
* @param baudrate Pointer to accept value of UART baud rate
*
* @return
* - ESP_FAIL Parameter error
* - ESP_OK Success, result will be put in (*baudrate)
*
*/
esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t* baudrate);
/**
* @brief Set UART line inverse mode
*
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
* @param inverse_mask Choose the wires that need to be inversed.
* Inverse_mask should be chosen from UART_INVERSE_RXD/UART_INVERSE_TXD/UART_INVERSE_RTS/UART_INVERSE_CTS, combine with OR operation.
*
* @return
* - ESP_OK Success
* - ESP_FAIL Parameter error
*/
esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask);
/**
* @brief Set hardware flow control.
*
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
* @param flow_ctrl Hardware flow control mode
* @param rx_thresh Threshold of Hardware RX flow control(0 ~ UART_FIFO_LEN).
* Only when UART_HW_FLOWCTRL_RTS is set, will the rx_thresh value be set.
*
* @return
* - ESP_OK Success
* - ESP_FAIL Parameter error
*/
esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh);
/**
* @brief Get hardware flow control mode
*
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
* @param flow_ctrl Option for different flow control mode.
*
* @return
* - ESP_FAIL Parameter error
* - ESP_OK Success, result will be put in (*flow_ctrl)
*/
esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl);
/**
* @brief Clear UART interrupt status
*
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
* @param clr_mask Bit mask of the status that to be cleared.
* enable_mask should be chosen from the fields of register UART_INT_CLR_REG.
*
* @return
* - ESP_OK Success
* - ESP_FAIL Parameter error
*/
esp_err_t uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask);
/**
* @brief Set UART interrupt enable
*
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
* @param enable_mask Bit mask of the enable bits.
* enable_mask should be chosen from the fields of register UART_INT_ENA_REG.
*
* @return
* - ESP_OK Success
* - ESP_FAIL Parameter error
*/
esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask);
/**
* @brief Clear UART interrupt enable bits
*
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
* @param disable_mask Bit mask of the disable bits.
* disable_mask should be chosen from the fields of register UART_INT_ENA_REG.
*
* @return
* - ESP_OK Success
* - ESP_FAIL Parameter error
*/
esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask);
/**
* @brief Enable UART RX interrupt(RX_FULL & RX_TIMEOUT INTERRUPT)
*
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
*
* @return
* - ESP_OK Success
* - ESP_FAIL Parameter error
*/
esp_err_t uart_enable_rx_intr(uart_port_t uart_num);
/**
* @brief Disable UART RX interrupt(RX_FULL & RX_TIMEOUT INTERRUPT)
*
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
*
* @return
* - ESP_OK Success
* - ESP_FAIL Parameter error
*/
esp_err_t uart_disable_rx_intr(uart_port_t uart_num);
/**
* @brief Disable UART TX interrupt(RX_FULL & RX_TIMEOUT INTERRUPT)
*
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
*
* @return
* - ESP_OK Success
* - ESP_FAIL Parameter error
*/
esp_err_t uart_disable_tx_intr(uart_port_t uart_num);
/**
* @brief Enable UART TX interrupt(RX_FULL & RX_TIMEOUT INTERRUPT)
*
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
* @param enable 1: enable; 0: disable
* @param thresh Threshold of TX interrupt, 0 ~ UART_FIFO_LEN
*
* @return
* - ESP_OK Success
* - ESP_FAIL Parameter error
*/
esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh);
/**
* @brief register UART interrupt handler(ISR).
*
* @note UART ISR handler will be attached to the same CPU core that this function is running on.
* Users should know that which CPU is running and then pick a INUM that is not used by system.
* We can find the information of INUM and interrupt level in soc.h.
*
* @attention The ISR handler function MUST be defined with attribution of "IRAM_ATTR" for now.
*
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
* @param uart_intr_num UART interrupt number,check the info in soc.h, and please refer to core-isa.h for more details
* @param fn Interrupt handler function.
* @param arg parameter for handler function
*
* @return
* - ESP_OK Success
* - ESP_FAIL Parameter error
*/
esp_err_t uart_isr_register(uart_port_t uart_num, uint8_t uart_intr_num, void (*fn)(void*), void * arg);
/**
* @brief Set UART pin number
*
* @note Internal signal can be output to multiple GPIO pads.
* Only one GPIO pad can connect with input signal.
*
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
* @param tx_io_num UART TX pin GPIO number, if set to UART_PIN_NO_CHANGE, use the current pin.
* @param rx_io_num UART RX pin GPIO number, if set to UART_PIN_NO_CHANGE, use the current pin.
* @param rts_io_num UART RTS pin GPIO number, if set to UART_PIN_NO_CHANGE, use the current pin.
* @param cts_io_num UART CTS pin GPIO number, if set to UART_PIN_NO_CHANGE, use the current pin.
*
* @return
* - ESP_OK Success
* - ESP_FAIL Parameter error
*/
esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num);
/**
* @brief UART set RTS level (before inverse)
* UART rx hardware flow control should not be set.
*
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
* @param level 1: RTS output low(active); 0: RTS output high(block)
*
* @return
* - ESP_OK Success
* - ESP_FAIL Parameter error
*/
esp_err_t uart_set_rts(uart_port_t uart_num, int level);
/**
* @brief UART set DTR level (before inverse)
*
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
* @param level 1: DTR output low; 0: DTR output high
*
* @return
* - ESP_OK Success
* - ESP_FAIL Parameter error
*/
esp_err_t uart_set_dtr(uart_port_t uart_num, int level);
/**
* @brief UART parameter configure
*
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
* @param uart_config UART parameter settings
*
* @return
* - ESP_OK Success
* - ESP_FAIL Parameter error
*/
esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config);
/**
* @brief UART interrupt configure
*
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
* @param intr_conf UART interrupt settings
*
* @return
* - ESP_OK Success
* - ESP_FAIL Parameter error
*/
esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf);
/**
* @brief Install UART driver.
*
* UART ISR handler will be attached to the same CPU core that this function is running on.
* Users should know that which CPU is running and then pick a INUM that is not used by system.
* We can find the information of INUM and interrupt level in soc.h.
*
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
* @param rx_buffer_size UART RX ring buffer size
* @param tx_buffer_size UART TX ring buffer size.
* If set to zero, driver will not use TX buffer, TX function will block task until all data have been sent out..
* @param queue_size UART event queue size/depth.
* @param uart_intr_num UART interrupt number,check the info in soc.h, and please refer to core-isa.h for more details
* @param uart_queue UART event queue handle, if set NULL, driver will not use an event queue.
*
* @return
* - ESP_OK Success
* - ESP_FAIL Parameter error
*/
esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, int uart_intr_num, void* uart_queue);
/**
* @brief Uninstall UART driver.
*
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
*
* @return
* - ESP_OK Success
* - ESP_FAIL Parameter error
*/
esp_err_t uart_driver_delete(uart_port_t uart_num);
/**
* @brief Wait UART TX FIFO empty
*
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
* @param ticks_to_wait Timeout, count in RTOS ticks
*
* @return
* - ESP_OK Success
* - ESP_FAIL Parameter error
* - ESP_ERR_TIMEOUT Timeout
*/
esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait);
/**
* @brief Send data to the UART port from a given buffer and length.
*
* This function will not wait for the space in TX FIFO, just fill the TX FIFO and return when the FIFO is full.
* @note This function should only be used when UART TX buffer is not enabled.
*
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
* @param buffer data buffer address
* @param len data length to send
*
* @return
* - (-1) Parameter error
* - OTHERS(>=0) The number of data that pushed to the TX FIFO
*/
int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len);
/**
* @brief Send data to the UART port from a given buffer and length,
*
* If parameter tx_buffer_size is set to zero:
* This function will not return until all the data have been sent out, or at least pushed into TX FIFO.
*
* Otherwise, if tx_buffer_size > 0, this function will return after copying all the data to tx ringbuffer,
* then, UART ISR will move data from ring buffer to TX FIFO gradually.
*
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
* @param src data buffer address
* @param size data length to send
*
* @return
* - (-1) Parameter error
* - OTHERS(>=0) The number of data that pushed to the TX FIFO
*/
int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size);
/**
* @brief Send data to the UART port from a given buffer and length,
*
* If parameter tx_buffer_size is set to zero:
* This function will not return until all the data and the break signal have been sent out.
* After all data send out, send a break signal.
*
* Otherwise, if tx_buffer_size > 0, this function will return after copying all the data to tx ringbuffer,
* then, UART ISR will move data from ring buffer to TX FIFO gradually.
* After all data send out, send a break signal.
*
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
* @param src data buffer address
* @param size data length to send
* @param brk_len break signal length (unit: time of one data bit at current_baudrate)
*
* @return
* - (-1) Parameter error
* - OTHERS(>=0) The number of data that pushed to the TX FIFO
*/
int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len);
/**
* @brief UART read bytes from UART buffer
*
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
* @param buf pointer to the buffer.
* @param length data length
* @param ticks_to_wait sTimeout, count in RTOS ticks
*
* @return
* - (-1) Error
* - Others return a char data from uart fifo.
*/
int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait);
/**
* @brief UART ring buffer flush
*
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
*
* @return
* - ESP_OK Success
* - ESP_FAIL Parameter error
*/
esp_err_t uart_flush(uart_port_t uart_num);
/***************************EXAMPLE**********************************
*
*
* ----------------EXAMPLE OF UART SETTING ---------------------
* @code{c}
* //1. Setup UART
* #include "freertos/queue.h"
* #define UART_INTR_NUM 17 //choose one interrupt number from soc.h
* //a. Set UART parameter
* int uart_num = 0; //uart port number
* uart_config_t uart_config = {
* .baud_rate = UART_BITRATE_115200, //baudrate
* .data_bits = UART_DATA_8_BITS, //data bit mode
* .parity = UART_PARITY_DISABLE, //parity mode
* .stop_bits = UART_STOP_BITS_1, //stop bit mode
* .flow_ctrl = UART_HW_FLOWCTRL_DISABLE, //hardware flow control(cts/rts)
* .rx_flow_ctrl_thresh = 120, //flow control threshold
* };
* uart_param_config(uart_num, &uart_config);
* //b1. Setup UART driver(with UART queue)
* QueueHandle_t uart_queue;
* //parameters here are just an example, tx buffer size is 2048
* uart_driver_install(uart_num, 1024 * 2, 1024 * 2, 10, UART_INTR_NUM, &uart_queue);
* //b2. Setup UART driver(without UART queue)
* //parameters here are just an example, tx buffer size is 0
* uart_driver_install(uart_num, 1024 * 2, 0, 10, UART_INTR_NUM, NULL);
*@endcode
*-----------------------------------------------------------------------------*
* @code{c}
* //2. Set UART pin
* //set UART pin, not needed if use default pins.
* uart_set_pin(uart_num, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, 15, 13);
* @endcode
*-----------------------------------------------------------------------------*
* @code{c}
* //3. Read data from UART.
* uint8_t data[128];
* int length = 0;
* length = uart_read_bytes(uart_num, data, sizeof(data), 100);
* @endcode
*-----------------------------------------------------------------------------*
* @code{c}
* //4. Write data to UART.
* char* test_str = "This is a test string.\n"
* uart_write_bytes(uart_num, (const char*)test_str, strlen(test_str));
* @endcode
*-----------------------------------------------------------------------------*
* @code{c}
* //5. Write data to UART, end with a break signal.
* uart_write_bytes_with_break(0, "test break\n",strlen("test break\n"), 100);
* @endcode
*-----------------------------------------------------------------------------*
* @code{c}
* //6. an example of echo test with hardware flow control on UART1
* void uart_loop_back_test()
* {
* int uart_num = 1;
* uart_config_t uart_config = {
* .baud_rate = 115200,
* .data_bits = UART_DATA_8_BITS,
* .parity = UART_PARITY_DISABLE,
* .stop_bits = UART_STOP_BITS_1,
* .flow_ctrl = UART_HW_FLOWCTRL_CTS_RTS,
* .rx_flow_ctrl_thresh = 122,
* };
* //Configure UART1 parameters
* uart_param_config(uart_num, &uart_config);
* //Set UART1 pins(TX: IO16, RX: IO17, RTS: IO18, CTS: IO19)
* uart_set_pin(uart_num, 16, 17, 18, 19);
* //Install UART driver( We don't need an event queue here)
* uart_driver_install(uart_num, 1024 * 2, 1024*4, 10, 17, NULL, RINGBUF_TYPE_BYTEBUF);
* uint8_t data[1000];
* while(1) {
* //Read data from UART
* int len = uart_read_bytes(uart_num, data, sizeof(data), 10);
* //Write data back to UART
* uart_write_bytes(uart_num, (const char*)data, len);
* }
* }
* @endcode
*-----------------------------------------------------------------------------*
* @code{c}
* //7. An example of using UART event queue on UART0.
* #include "freertos/queue.h"
* //A queue to handle UART event.
* QueueHandle_t uart0_queue;
* static const char *TAG = "uart_example";
* void uart_task(void *pvParameters)
* {
* int uart_num = (int)pvParameters;
* uart_event_t event;
* size_t size = 1024;
* uint8_t* dtmp = (uint8_t*)malloc(size);
* for(;;) {
* //Waiting for UART event.
* if(xQueueReceive(uart0_queue, (void * )&event, (portTickType)portMAX_DELAY)) {
* ESP_LOGI(TAG, "uart[%d] event:", uart_num);
* switch(event.type) {
* memset(dtmp, 0, size);
* //Event of UART receving data
* case UART_DATA:
* ESP_LOGI(TAG,"data, len: %d", event.size);
* int len = uart_read_bytes(uart_num, dtmp, event.size, 10);
* ESP_LOGI(TAG, "uart read: %d", len);
uart_write_bytes(uart_num, (const char*)dtmp, len);
* break;
* //Event of HW FIFO overflow detected
* case UART_FIFO_OVF:
* ESP_LOGI(TAG, "hw fifo overflow\n");
* break;
* //Event of UART ring buffer full
* case UART_BUFFER_FULL:
* ESP_LOGI(TAG, "ring buffer full\n");
* break;
* //Event of UART RX break detected
* case UART_BREAK:
* ESP_LOGI(TAG, "uart rx break\n");
* break;
* //Event of UART parity check error
* case UART_PARITY_ERR:
* ESP_LOGI(TAG, "uart parity error\n");
* break;
* //Event of UART frame error
* case UART_FRAME_ERR:
* ESP_LOGI(TAG, "uart frame error\n");
* break;
* //Others
* default:
* ESP_LOGI(TAG, "uart event type: %d\n", event.type);
* break;
* }
* }
* }
* free(dtmp);
* dtmp = NULL;
* vTaskDelete(NULL);
* }
*
* void uart_queue_test()
* {
* int uart_num = 0;
* uart_config_t uart_config = {
* .baud_rate = 115200,
* .data_bits = UART_DATA_8_BITS,
* .parity = UART_PARITY_DISABLE,
* .stop_bits = UART_STOP_BITS_1,
* .flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
* .rx_flow_ctrl_thresh = 122,
* };
* //Set UART parameters
* uart_param_config(uart_num, &uart_config);
* //Set UART pins,(-1: default pin, no change.)
* uart_set_pin(uart_num, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE);
* //Set UART log level
* esp_log_level_set(TAG, ESP_LOG_INFO);
* //Install UART driver, and get the queue.
* uart_driver_install(uart_num, 1024 * 2, 1024*4, 10, 17, &uart0_queue);
* //Create a task to handler UART event from ISR
* xTaskCreate(uart_task, "uTask", 1024, (void*)uart_num, 10, NULL);
* }
* @endcode
*
***************************END OF EXAMPLE**********************************/
#ifdef __cplusplus
}
#endif
#endif /*_DRIVER_UART_H_*/

View File

@ -18,86 +18,19 @@
#include "freertos/xtensa_api.h"
#include "soc/gpio_sig_map.h"
#include "driver/ledc.h"
#include "esp_log.h"
//TODO: to use APIs in esp_log.h.
#define LEDC_DBG_WARING_ENABLE (0)
#define LEDC_DBG_ERROR_ENABLE (0)
#define LEDC_INFO_ENABLE (0)
#define LEDC_DBG_ENABLE (0)
//DBG INFOR
#if LEDC_DBG_ENABLE
#define LEDC_DBG(format,...) do{\
ets_printf("[dbg][%s#%u]",__FUNCTION__,__LINE__);\
ets_printf(format,##__VA_ARGS__);\
}while(0)
#else
#define LEDC_DBG(...)
#endif
#if LEDC_INFO_ENABLE
#define LEDC_INFO(format,...) do{\
ets_printf("[info][%s#%u]",__FUNCTION__,__LINE__);\
ets_printf(format,##__VA_ARGS__);\
}while(0)
#else
#define LEDC_INFO(...)
#endif
#if LEDC_DBG_WARING_ENABLE
#define LEDC_WARING(format,...) do{\
ets_printf("[waring][%s#%u]",__FUNCTION__,__LINE__);\
ets_printf(format,##__VA_ARGS__);\
}while(0)
#else
#define LEDC_WARING(...)
#endif
#if LEDC_DBG_ERROR_ENABLE
#define LEDC_ERROR(format,...) do{\
ets_printf("[error][%s#%u]",__FUNCTION__,__LINE__);\
ets_printf(format,##__VA_ARGS__);\
}while(0)
#else
#define LEDC_ERROR(...)
#endif
static const char* LEDC_TAG = "LEDC";
static portMUX_TYPE ledc_spinlock = portMUX_INITIALIZER_UNLOCKED;
static bool ledc_is_valid_channel(uint32_t channel)
{
if(channel > LEDC_CHANNEL_7) {
LEDC_ERROR("LEDC CHANNEL ERR: %d\n",channel);
return false;
}
return true;
}
static bool ledc_is_valid_mode(uint32_t mode)
{
if(mode >= LEDC_SPEED_MODE_MAX) {
LEDC_ERROR("LEDC MODE ERR: %d\n",mode);
return false;
}
return true;
}
static bool ledc_is_valid_timer(int timer)
{
if(timer > LEDC_TIMER_3) {
LEDC_ERROR("LEDC TIMER ERR: %d\n", timer);
return false;
}
return true;
}
#define LEDC_CHECK(a, str, ret_val) if (!(a)) { \
ESP_LOGE(LEDC_TAG,"%s:%d (%s):%s", __FILE__, __LINE__, __FUNCTION__, str); \
return (ret_val); \
}
esp_err_t ledc_timer_set(ledc_mode_t speed_mode, ledc_timer_t timer_sel, uint32_t div_num, uint32_t bit_num, ledc_clk_src_t clk_src)
{
if(!ledc_is_valid_mode(speed_mode)) {
return ESP_ERR_INVALID_ARG;
}
if(!ledc_is_valid_timer(timer_sel)) {
return ESP_ERR_INVALID_ARG;
}
LEDC_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "ledc mode error", ESP_ERR_INVALID_ARG);
LEDC_CHECK(timer_sel <= LEDC_TIMER_3, "ledc timer error", ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&ledc_spinlock);
LEDC.timer_group[speed_mode].timer[timer_sel].conf.div_num = div_num;
LEDC.timer_group[speed_mode].timer[timer_sel].conf.tick_sel = clk_src;
@ -125,12 +58,8 @@ static esp_err_t ledc_duty_config(ledc_mode_t speed_mode, uint32_t channel_num,
esp_err_t ledc_bind_channel_timer(ledc_mode_t speed_mode, uint32_t channel, uint32_t timer_idx)
{
if(!ledc_is_valid_mode(speed_mode)) {
return ESP_ERR_INVALID_ARG;
}
if(!ledc_is_valid_timer(timer_idx)) {
return ESP_ERR_INVALID_ARG;
}
LEDC_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "ledc mode error", ESP_ERR_INVALID_ARG);
LEDC_CHECK(timer_idx <= LEDC_TIMER_3, "ledc timer error", ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&ledc_spinlock);
LEDC.channel_group[speed_mode].channel[channel].conf0.timer_sel = timer_idx;
portEXIT_CRITICAL(&ledc_spinlock);
@ -139,12 +68,8 @@ esp_err_t ledc_bind_channel_timer(ledc_mode_t speed_mode, uint32_t channel, uint
esp_err_t ledc_timer_rst(ledc_mode_t speed_mode, uint32_t timer_sel)
{
if(!ledc_is_valid_mode(speed_mode)) {
return ESP_ERR_INVALID_ARG;
}
if(!ledc_is_valid_timer(timer_sel)) {
return ESP_ERR_INVALID_ARG;
}
LEDC_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "ledc mode error", ESP_ERR_INVALID_ARG);
LEDC_CHECK(timer_sel <= LEDC_TIMER_3, "ledc timer error", ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&ledc_spinlock);
LEDC.timer_group[speed_mode].timer[timer_sel].conf.rst = 1;
LEDC.timer_group[speed_mode].timer[timer_sel].conf.rst = 0;
@ -154,12 +79,8 @@ esp_err_t ledc_timer_rst(ledc_mode_t speed_mode, uint32_t timer_sel)
esp_err_t ledc_timer_pause(ledc_mode_t speed_mode, uint32_t timer_sel)
{
if(!ledc_is_valid_mode(speed_mode)) {
return ESP_ERR_INVALID_ARG;
}
if(!ledc_is_valid_timer(timer_sel)) {
return ESP_ERR_INVALID_ARG;
}
LEDC_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "ledc mode error", ESP_ERR_INVALID_ARG);
LEDC_CHECK(timer_sel <= LEDC_TIMER_3, "ledc timer error", ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&ledc_spinlock);
LEDC.timer_group[speed_mode].timer[timer_sel].conf.pause = 1;
portEXIT_CRITICAL(&ledc_spinlock);
@ -168,12 +89,8 @@ esp_err_t ledc_timer_pause(ledc_mode_t speed_mode, uint32_t timer_sel)
esp_err_t ledc_timer_resume(ledc_mode_t speed_mode, uint32_t timer_sel)
{
if(!ledc_is_valid_mode(speed_mode)) {
return ESP_ERR_INVALID_ARG;
}
if(!ledc_is_valid_timer(timer_sel)) {
return ESP_ERR_INVALID_ARG;
}
LEDC_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "ledc mode error", ESP_ERR_INVALID_ARG);
LEDC_CHECK(timer_sel <= LEDC_TIMER_3, "ledc timer error", ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&ledc_spinlock);
LEDC.timer_group[speed_mode].timer[timer_sel].conf.pause = 0;
portEXIT_CRITICAL(&ledc_spinlock);
@ -182,9 +99,7 @@ esp_err_t ledc_timer_resume(ledc_mode_t speed_mode, uint32_t timer_sel)
static esp_err_t ledc_enable_intr_type(ledc_mode_t speed_mode, uint32_t channel, ledc_intr_type_t type)
{
if(!ledc_is_valid_mode(speed_mode)) {
return ESP_ERR_INVALID_ARG;
}
LEDC_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "ledc mode error", ESP_ERR_INVALID_ARG);
uint32_t value;
uint32_t intr_type = type;
portENTER_CRITICAL(&ledc_spinlock);
@ -200,9 +115,7 @@ static esp_err_t ledc_enable_intr_type(ledc_mode_t speed_mode, uint32_t channel,
esp_err_t ledc_isr_register(uint32_t ledc_intr_num, void (*fn)(void*), void * arg)
{
if(fn == NULL) {
return ESP_ERR_INVALID_ARG;
}
LEDC_CHECK(fn, "ledc isr null", ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&ledc_spinlock);
ESP_INTR_DISABLE(ledc_intr_num);
intr_matrix_set(xPortGetCoreID(), ETS_LEDC_INTR_SOURCE, ledc_intr_num);
@ -218,16 +131,13 @@ esp_err_t ledc_timer_config(ledc_timer_config_t* timer_conf)
int bit_num = timer_conf->bit_num;
int timer_num = timer_conf->timer_num;
int speed_mode = timer_conf->speed_mode;
if(!ledc_is_valid_mode(speed_mode)) {
return ESP_ERR_INVALID_ARG;
}
LEDC_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "ledc mode error", ESP_ERR_INVALID_ARG);
if(freq_hz == 0 || bit_num == 0 || bit_num > LEDC_TIMER_15_BIT) {
LEDC_ERROR("freq_hz=%u bit_num=%u\n", freq_hz, bit_num);
ESP_LOGE(LEDC_TAG, "freq_hz=%u bit_num=%u", freq_hz, bit_num);
return ESP_ERR_INVALID_ARG;
}
if(timer_num > LEDC_TIMER_3) {
LEDC_ERROR("Time Select %u\n", timer_num);
ESP_LOGE(LEDC_TAG, "Time Select %u", timer_num);
return ESP_ERR_INVALID_ARG;
}
esp_err_t ret = ESP_OK;
@ -239,7 +149,7 @@ esp_err_t ledc_timer_config(ledc_timer_config_t* timer_conf)
/*Selet the reference tick*/
div_param = ((uint64_t) LEDC_REF_CLK_HZ << 8) / freq_hz / precision;
if(div_param <= 256 || div_param > LEDC_DIV_NUM_HSTIMER0_V) {
LEDC_ERROR("div param err,div_param=%u\n", div_param);
ESP_LOGE(LEDC_TAG, "div param err,div_param=%u", (uint32_t)div_param);
ret = ESP_FAIL;
}
timer_clk_src = LEDC_REF_TICK;
@ -254,6 +164,21 @@ esp_err_t ledc_timer_config(ledc_timer_config_t* timer_conf)
return ret;
}
esp_err_t ledc_set_pin(int gpio_num, ledc_mode_t speed_mode, ledc_channel_t ledc_channel)
{
LEDC_CHECK(ledc_channel <= LEDC_CHANNEL_7, "ledc channel error", ESP_ERR_INVALID_ARG);
LEDC_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num), "ledc GPIO output number error", ESP_ERR_INVALID_ARG);
LEDC_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "ledc mode error", ESP_ERR_INVALID_ARG);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[gpio_num], PIN_FUNC_GPIO);
gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT);
if(speed_mode == LEDC_HIGH_SPEED_MODE) {
gpio_matrix_out(gpio_num, LEDC_HS_SIG_OUT0_IDX + ledc_channel, 0, 0);
} else {
}
return ESP_OK;
}
esp_err_t ledc_channel_config(ledc_channel_config_t* ledc_conf)
{
uint32_t speed_mode = ledc_conf->speed_mode;
@ -262,21 +187,10 @@ esp_err_t ledc_channel_config(ledc_channel_config_t* ledc_conf)
uint32_t timer_select = ledc_conf->timer_sel;
uint32_t intr_type = ledc_conf->intr_type;
uint32_t duty = ledc_conf->duty;
if(!ledc_is_valid_channel(ledc_channel)) {
return ESP_ERR_INVALID_ARG;
}
if(!ledc_is_valid_mode(speed_mode)) {
return ESP_ERR_INVALID_ARG;
}
if(!GPIO_IS_VALID_OUTPUT_GPIO(gpio_num)) {
LEDC_ERROR("GPIO number error: IO%d\n ", gpio_num);
return ESP_ERR_INVALID_ARG;
}
if(timer_select > LEDC_TIMER_3) {
LEDC_ERROR("Time Select %u\n", timer_select);
return ESP_ERR_INVALID_ARG;
}
LEDC_CHECK(ledc_channel <= LEDC_CHANNEL_7, "ledc channel error", ESP_ERR_INVALID_ARG);
LEDC_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "ledc mode error", ESP_ERR_INVALID_ARG);
LEDC_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num), "ledc GPIO output number error", ESP_ERR_INVALID_ARG);
LEDC_CHECK(timer_select <= LEDC_TIMER_3, "ledc timer error", ESP_ERR_INVALID_ARG);
esp_err_t ret = ESP_OK;
/*set channel parameters*/
/* channel parameters decide how the waveform looks like in one period*/
@ -288,7 +202,7 @@ esp_err_t ledc_channel_config(ledc_channel_config_t* ledc_conf)
ledc_bind_channel_timer(speed_mode, ledc_channel, timer_select);
/*set interrupt type*/
ledc_enable_intr_type(speed_mode, ledc_channel, intr_type);
LEDC_INFO("LEDC_PWM CHANNEL %1u|GPIO %02u|Duty %04u|Time %01u\n",
ESP_LOGI(LEDC_TAG, "LEDC_PWM CHANNEL %1u|GPIO %02u|Duty %04u|Time %01u",
ledc_channel, gpio_num, duty, timer_select
);
/*set LEDC signal in gpio matrix*/
@ -300,12 +214,8 @@ esp_err_t ledc_channel_config(ledc_channel_config_t* ledc_conf)
esp_err_t ledc_update_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
{
if(!ledc_is_valid_mode(speed_mode)) {
return ESP_ERR_INVALID_ARG;
}
if(!ledc_is_valid_channel(channel)) {
return ESP_ERR_INVALID_ARG;
}
LEDC_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "ledc mode error", ESP_ERR_INVALID_ARG);
LEDC_CHECK(channel <= LEDC_CHANNEL_7, "ledc channel error", ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&ledc_spinlock);
LEDC.channel_group[speed_mode].channel[channel].conf0.sig_out_en = 1;
LEDC.channel_group[speed_mode].channel[channel].conf1.duty_start = 1;
@ -315,12 +225,8 @@ esp_err_t ledc_update_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
esp_err_t ledc_stop(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t idle_level)
{
if(!ledc_is_valid_mode(speed_mode)) {
return ESP_ERR_INVALID_ARG;
}
if(!ledc_is_valid_channel(channel)) {
return ESP_ERR_INVALID_ARG;
}
LEDC_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "ledc mode error", ESP_ERR_INVALID_ARG);
LEDC_CHECK(channel <= LEDC_CHANNEL_7, "ledc channel error", ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&ledc_spinlock);
LEDC.channel_group[speed_mode].channel[channel].conf0.idle_lv = idle_level & 0x1;
LEDC.channel_group[speed_mode].channel[channel].conf0.sig_out_en = 0;
@ -331,18 +237,11 @@ esp_err_t ledc_stop(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t idl
esp_err_t ledc_set_fade(ledc_mode_t speed_mode, uint32_t channel, uint32_t duty, ledc_duty_direction_t fade_direction,
uint32_t step_num, uint32_t duty_cyle_num, uint32_t duty_scale)
{
if(!ledc_is_valid_mode(speed_mode)) {
return ESP_ERR_INVALID_ARG;
}
if(!ledc_is_valid_channel(channel)) {
return ESP_ERR_INVALID_ARG;
}
if(fade_direction > LEDC_DUTY_DIR_INCREASE) {
LEDC_ERROR("Duty direction err\n");
return ESP_ERR_INVALID_ARG;
}
LEDC_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "ledc mode error", ESP_ERR_INVALID_ARG);
LEDC_CHECK(channel <= LEDC_CHANNEL_7, "ledc channel error", ESP_ERR_INVALID_ARG);
LEDC_CHECK(fade_direction <= LEDC_DUTY_DIR_INCREASE, "ledc fade direction error", ESP_ERR_INVALID_ARG);
if(step_num > LEDC_DUTY_NUM_HSCH0_V || duty_cyle_num > LEDC_DUTY_CYCLE_HSCH0_V || duty_scale > LEDC_DUTY_SCALE_HSCH0_V) {
LEDC_ERROR("step_num=%u duty_cyle_num=%u duty_scale=%u\n", step_num, duty_cyle_num, duty_scale);
ESP_LOGE(LEDC_TAG, "step_num=%u duty_cyle_num=%u duty_scale=%u", step_num, duty_cyle_num, duty_scale);
return ESP_ERR_INVALID_ARG;
}
ledc_duty_config(speed_mode,
@ -359,12 +258,8 @@ esp_err_t ledc_set_fade(ledc_mode_t speed_mode, uint32_t channel, uint32_t duty,
esp_err_t ledc_set_duty(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty)
{
if(!ledc_is_valid_mode(speed_mode)) {
return ESP_ERR_INVALID_ARG;
}
if(!ledc_is_valid_channel(channel)) {
return ESP_ERR_INVALID_ARG;
}
LEDC_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "ledc mode error", ESP_ERR_INVALID_ARG);
LEDC_CHECK(channel <= LEDC_CHANNEL_7, "ledc channel error", ESP_ERR_INVALID_ARG);
ledc_duty_config(speed_mode,
channel, //uint32_t chan_num,
0, //uint32_t hpoint_val,
@ -379,18 +274,14 @@ esp_err_t ledc_set_duty(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t
int ledc_get_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
{
if(!ledc_is_valid_mode(speed_mode)) {
return -1;
}
LEDC_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "ledc mode error", (-1));
uint32_t duty = (LEDC.channel_group[speed_mode].channel[channel].duty_rd.duty_read >> 4);
return duty;
}
esp_err_t ledc_set_freq(ledc_mode_t speed_mode, ledc_timer_t timer_num, uint32_t freq_hz)
{
if(!ledc_is_valid_mode(speed_mode)) {
return ESP_ERR_INVALID_ARG;
}
LEDC_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "ledc mode error", ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&ledc_spinlock);
esp_err_t ret = ESP_OK;
uint32_t div_num = 0;
@ -403,7 +294,7 @@ esp_err_t ledc_set_freq(ledc_mode_t speed_mode, ledc_timer_t timer_num, uint32_t
div_num = ((uint64_t) LEDC_REF_CLK_HZ << 8) / freq_hz / precision;
}
if(div_num <= 256 || div_num > LEDC_DIV_NUM_HSTIMER0) {
LEDC_ERROR("div param err,div_param=%u\n", div_num);
ESP_LOGE(LEDC_TAG, "div param err,div_param=%u", div_num);
ret = ESP_FAIL;
}
LEDC.timer_group[speed_mode].timer[timer_num].conf.div_num = div_num;
@ -413,9 +304,7 @@ esp_err_t ledc_set_freq(ledc_mode_t speed_mode, ledc_timer_t timer_num, uint32_t
uint32_t ledc_get_freq(ledc_mode_t speed_mode, ledc_timer_t timer_num)
{
if(!ledc_is_valid_mode(speed_mode)) {
return 0;
}
LEDC_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "ledc mode error", (0));
portENTER_CRITICAL(&ledc_spinlock);
uint32_t freq = 0;
uint32_t timer_source_clk = LEDC.timer_group[speed_mode].timer[timer_num].conf.tick_sel;

1027
components/driver/uart.c Normal file

File diff suppressed because it is too large Load Diff

View File

@ -364,4 +364,43 @@ config ESP32_RTC_CLOCK_SOURCE_EXTERNAL_CRYSTAL
depends on DOCUMENTATION_FOR_RTC_CNTL
endchoice
config ESP32_PHY_AUTO_INIT
bool "Initialize PHY in startup code"
default y
help
If enabled, PHY will be initialized in startup code, before
app_main function runs.
If this is undesired, disable this option and call esp_phy_init
from the application before enabling WiFi or BT.
If this option is enabled, startup code will also initialize
NVS prior to initializing PHY.
If unsure, choose 'y'.
config ESP32_PHY_INIT_DATA_IN_PARTITION
bool "Use a partition to store PHY init data"
default n
help
If enabled, PHY init data will be loaded from a partition.
When using a custom partition table, make sure that PHY data
partition is included (type: 'data', subtype: 'phy').
With default partition tables, this is done automatically.
If PHY init data is stored in a partition, it has to be flashed there,
otherwise runtime error will occur.
If this option is not enabled, PHY init data will be embedded
into the application binary.
If unsure, choose 'n'.
config ESP32_PHY_MAX_TX_POWER
int "Max TX power (dBm)"
range 0 20
default 20
help
Set maximum transmit power. Actual transmit power for high
data rates may be lower than this setting.
endmenu

View File

@ -0,0 +1,32 @@
ifdef CONFIG_ESP32_PHY_INIT_DATA_IN_PARTITION
PHY_INIT_DATA_OBJ = $(BUILD_DIR_BASE)/phy_init_data.o
PHY_INIT_DATA_BIN = $(BUILD_DIR_BASE)/phy_init_data.bin
# Command to flash PHY init data partition
PHY_INIT_DATA_FLASH_CMD = $(ESPTOOLPY_SERIAL) write_flash $(CONFIG_PHY_DATA_OFFSET) $(PHY_INIT_DATA_BIN)
ESPTOOL_ALL_FLASH_ARGS += $(CONFIG_PHY_DATA_OFFSET) $(PHY_INIT_DATA_BIN)
ESP32_COMPONENT_PATH := $(COMPONENT_PATH)
$(PHY_INIT_DATA_OBJ): $(ESP32_COMPONENT_PATH)/phy_init_data.h $(BUILD_DIR_BASE)/include/sdkconfig.h
$(summary) CC $(notdir $@)
printf "#include \"phy_init_data.h\"\n" | $(CC) -I $(BUILD_DIR_BASE)/include -I $(ESP32_COMPONENT_PATH) -I $(ESP32_COMPONENT_PATH)/include -c -o $@ -xc -
$(PHY_INIT_DATA_BIN): $(PHY_INIT_DATA_OBJ)
$(summary) BIN $(notdir $@)
$(OBJCOPY) -O binary $< $@
phy_init_data: $(PHY_INIT_DATA_BIN)
phy_init_data-flash: $(BUILD_DIR_BASE)/phy_init_data.bin
@echo "Flashing PHY init data..."
$(PHY_INIT_DATA_FLASH_CMD)
phy_init_data-clean:
rm -f $(PHY_INIT_DATA_BIN) $(PHY_INIT_DATA_OBJ)
all: phy_init_data
flash: phy_init_data
endif # CONFIG_ESP32_PHY_INIT_DATA_IN_PARTITION

View File

@ -1,33 +1,23 @@
#
# Component Makefile
#
# This Makefile should, at the very least, just include $(IDF_PATH)/make/component_common.mk. By default,
# this will take the sources in this directory, compile them and link them into
# lib(subdirectory_name).a in the build directory. This behaviour is entirely configurable,
# please read the esp-idf build system document if you need to do this.
#
-include include/config/auto.conf
COMPONENT_SRCDIRS := . hwcrypto
LIBS := core net80211 phy rtc pp wpa smartconfig coexist wpa2
LIBS := core net80211 phy rtc pp wpa smartconfig coexist wps wpa2
LINKER_SCRIPTS += -T esp32_out.ld -T esp32.common.ld -T esp32.rom.ld -T esp32.peripherals.ld
COMPONENT_ADD_LDFLAGS := -lesp32 \
$(abspath libhal.a) \
-L$(abspath lib) \
$(COMPONENT_PATH)/libhal.a \
-L$(COMPONENT_PATH)/lib \
$(addprefix -l,$(LIBS)) \
-L $(abspath ld) \
-L $(COMPONENT_PATH)/ld \
$(LINKER_SCRIPTS)
include $(IDF_PATH)/make/component_common.mk
ALL_LIB_FILES := $(patsubst %,$(COMPONENT_PATH)/lib/lib%.a,$(LIBS))
# automatically trigger a git submodule update
# if any libraries are missing
$(eval $(call SubmoduleCheck,$(ALL_LIB_FILES),$(COMPONENT_PATH)/lib))
COMPONENT_SUBMODULES += lib
# this is a hack to make sure the app is re-linked if the binary
# libraries change or are updated. If they change, the main esp32
@ -44,8 +34,6 @@ $(COMPONENT_LIBRARY): $(ALL_LIB_FILES)
# saves us from having to add the target to a Makefile.projbuild
$(COMPONENT_LIBRARY): esp32_out.ld
# .. is BUILD_DIR_BASE here, as component makefiles
# are evaluated with CWD=component build dir
esp32_out.ld: $(COMPONENT_PATH)/ld/esp32.ld ../include/sdkconfig.h
$(CC) -I ../include -C -P -x c -E $< -o $@

View File

@ -50,6 +50,7 @@
#include "esp_brownout.h"
#include "esp_int_wdt.h"
#include "esp_task_wdt.h"
#include "esp_phy_init.h"
#include "trax.h"
void start_cpu0(void) __attribute__((weak, alias("start_cpu0_default")));
@ -62,6 +63,7 @@ static bool app_cpu_started = false;
#endif //!CONFIG_FREERTOS_UNICORE
static void do_global_ctors(void);
static void do_phy_init();
static void main_task(void* args);
extern void app_main(void);
@ -187,6 +189,11 @@ void start_cpu0_default(void)
esp_ipc_init();
spi_flash_init();
#if CONFIG_ESP32_PHY_AUTO_INIT
nvs_flash_init();
do_phy_init();
#endif
xTaskCreatePinnedToCore(&main_task, "main",
ESP_TASK_MAIN_STACK, NULL,
ESP_TASK_MAIN_PRIO, NULL, 0);
@ -224,3 +231,36 @@ static void main_task(void* args)
vTaskDelete(NULL);
}
static void do_phy_init()
{
esp_phy_calibration_mode_t calibration_mode = PHY_RF_CAL_PARTIAL;
if (rtc_get_reset_reason(0) == DEEPSLEEP_RESET) {
calibration_mode = PHY_RF_CAL_NONE;
}
const esp_phy_init_data_t* init_data = esp_phy_get_init_data();
if (init_data == NULL) {
ESP_LOGE(TAG, "failed to obtain PHY init data");
abort();
}
esp_phy_calibration_data_t* cal_data =
(esp_phy_calibration_data_t*) calloc(sizeof(esp_phy_calibration_data_t), 1);
if (cal_data == NULL) {
ESP_LOGE(TAG, "failed to allocate memory for RF calibration data");
abort();
}
esp_err_t err = esp_phy_load_cal_data_from_nvs(cal_data);
if (err != ESP_OK) {
ESP_LOGW(TAG, "failed to load RF calibration data, falling back to full calibration");
calibration_mode = PHY_RF_CAL_FULL;
}
esp_phy_init(init_data, calibration_mode, cal_data);
if (calibration_mode != PHY_RF_CAL_NONE) {
err = esp_phy_store_cal_data_to_nvs(cal_data);
} else {
err = ESP_OK;
}
esp_phy_release_init_data(init_data);
free(cal_data); // PHY maintains a copy of calibration data, so we can free this
}

View File

@ -45,14 +45,9 @@ the ISR will cause it to switch _away_ from it. portYIELD_FROM_ISR will probably
*/
static void esp_crosscore_isr(void *arg) {
uint32_t myReasonVal;
#if 0
//A pointer to the correct reason array item is passed to this ISR.
volatile uint32_t *myReason=arg;
#else
//The previous line does not work yet, the interrupt code needs work to understand two separate interrupt and argument
//tables... this is a valid but slightly less optimal replacement.
volatile uint32_t *myReason=&reason[xPortGetCoreID()];
#endif
//Clear the interrupt first.
if (xPortGetCoreID()==0) {
WRITE_PERI_REG(DPORT_CPU_INTR_FROM_CPU_0_REG, 0);

View File

@ -68,6 +68,10 @@ static system_event_handle_t g_system_event_handle_table[] = {
{SYSTEM_EVENT_STA_DISCONNECTED, system_event_sta_disconnected_handle_default},
{SYSTEM_EVENT_STA_AUTHMODE_CHANGE, NULL},
{SYSTEM_EVENT_STA_GOT_IP, system_event_sta_got_ip_default},
{SYSTEM_EVENT_STA_WPS_ER_SUCCESS, NULL},
{SYSTEM_EVENT_STA_WPS_ER_FAILED, NULL},
{SYSTEM_EVENT_STA_WPS_ER_TIMEOUT, NULL},
{SYSTEM_EVENT_STA_WPS_ER_PIN, NULL},
{SYSTEM_EVENT_AP_START, system_event_ap_start_handle_default},
{SYSTEM_EVENT_AP_STOP, system_event_ap_stop_handle_default},
{SYSTEM_EVENT_AP_STACONNECTED, NULL},
@ -220,6 +224,22 @@ static esp_err_t esp_system_event_debug(system_event_t *event)
IP2STR(&got_ip->ip_info.gw));
break;
}
case SYSTEM_EVENT_STA_WPS_ER_SUCCESS: {
ESP_LOGD(TAG, "SYSTEM_EVENT_STA_WPS_ER_SUCCESS");
break;
}
case SYSTEM_EVENT_STA_WPS_ER_FAILED: {
ESP_LOGD(TAG, "SYSTEM_EVENT_STA_WPS_ER_FAILED");
break;
}
case SYSTEM_EVENT_STA_WPS_ER_TIMEOUT: {
ESP_LOGD(TAG, "SYSTEM_EVENT_STA_WPS_ER_TIMEOUT");
break;
}
case SYSTEM_EVENT_STA_WPS_ER_PIN: {
ESP_LOGD(TAG, "SYSTEM_EVENT_STA_WPS_ER_PIN");
break;
}
case SYSTEM_EVENT_AP_START: {
ESP_LOGD(TAG, "SYSTEM_EVENT_AP_START");
break;

View File

@ -0,0 +1,96 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include <stdlib.h>
#include <stdbool.h>
#include "esp_attr.h"
#include "esp_freertos_hooks.h"
//We use just a static array here because it's not expected many components will need
//an idle or tick hook.
#define MAX_HOOKS 8
static esp_freertos_idle_cb_t idle_cb[MAX_HOOKS]={0};
static esp_freertos_tick_cb_t tick_cb[MAX_HOOKS]={0};
void IRAM_ATTR esp_vApplicationTickHook()
{
int n;
for (n=0; n<MAX_HOOKS; n++) {
if (tick_cb[n]!=NULL) {
tick_cb[n]();
}
}
}
void esp_vApplicationIdleHook()
{
bool doWait=true;
bool r;
int n;
for (n=0; n<MAX_HOOKS; n++) {
if (idle_cb[n]!=NULL) {
r=idle_cb[n]();
if (!r) doWait=false;
}
}
if (doWait) {
//Wait for whatever interrupt comes next... this should save some power.
asm("waiti 0");
}
}
esp_err_t esp_register_freertos_idle_hook(esp_freertos_idle_cb_t new_idle_cb)
{
int n;
for (n=0; n<MAX_HOOKS; n++) {
if (idle_cb[n]==NULL) {
idle_cb[n]=new_idle_cb;
return ESP_OK;
}
}
return ESP_ERR_NO_MEM;
}
esp_err_t esp_register_freertos_tick_hook(esp_freertos_tick_cb_t new_tick_cb)
{
int n;
for (n=0; n<MAX_HOOKS; n++) {
if (tick_cb[n]==NULL) {
tick_cb[n]=new_tick_cb;
return ESP_OK;
}
}
return ESP_ERR_NO_MEM;
}
void esp_deregister_freertos_idle_hook(esp_freertos_idle_cb_t old_idle_cb)
{
int n;
for (n=0; n<MAX_HOOKS; n++) {
if (idle_cb[n]==old_idle_cb) idle_cb[n]=NULL;
}
}
void esp_deregister_freertos_tick_hook(esp_freertos_tick_cb_t old_tick_cb)
{
int n;
for (n=0; n<MAX_HOOKS; n++) {
if (tick_cb[n]==old_tick_cb) tick_cb[n]=NULL;
}
}

View File

@ -25,6 +25,7 @@
#include "soc/io_mux_reg.h"
#include "esp_gdbstub.h"
#include "driver/gpio.h"
//Length of buffer used to reserve GDB commands. Has to be at least able to fit the G command, which
//implies a minimum size of about 320 bytes.
@ -354,7 +355,7 @@ static int gdbReadCommand() {
void esp_gdbstub_panic_handler(XtExcFrame *frame) {
dumpHwToRegfile(frame);
//Make sure txd/rxd are enabled
PIN_PULLUP_DIS(PERIPHS_IO_MUX_U0TXD_U);
gpio_pullup_dis(1);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_U0RXD_U0RXD);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD_U0TXD);

View File

@ -26,6 +26,10 @@
// Forces data into DRAM instead of flash
#define DRAM_ATTR __attribute__((section(".dram1")))
// Forces a string into DRAM instrad of flash
// Use as ets_printf(DRAM_STR("Hello world!\n"));
#define DRAM_STR(str) (__extension__({static const DRAM_ATTR char __c[] = (str); (const char *)&__c;}))
// Forces code into RTC fast memory. See "docs/deep-sleep-stub.rst"
#define RTC_IRAM_ATTR __attribute__((section(".rtc.text")))

View File

@ -34,6 +34,8 @@ typedef int32_t esp_err_t;
#define ESP_ERR_INVALID_SIZE 0x104
#define ESP_ERR_NOT_FOUND 0x105
#define ESP_ERR_NOT_SUPPORTED 0x106
#define ESP_ERR_TIMEOUT 0x107
#define ESP_ERR_WIFI_BASE 0x3000 /*!< Starting number of WiFi error codes */

View File

@ -35,6 +35,10 @@ typedef enum {
SYSTEM_EVENT_STA_DISCONNECTED, /**< ESP32 station disconnected from AP */
SYSTEM_EVENT_STA_AUTHMODE_CHANGE, /**< the auth mode of AP connected by ESP32 station changed */
SYSTEM_EVENT_STA_GOT_IP, /**< ESP32 station got IP from connected AP */
SYSTEM_EVENT_STA_WPS_ER_SUCCESS, /**< ESP32 station wps succeeds in enrollee mode */
SYSTEM_EVENT_STA_WPS_ER_FAILED, /**< ESP32 station wps fails in enrollee mode */
SYSTEM_EVENT_STA_WPS_ER_TIMEOUT, /**< ESP32 station wps timeout in enrollee mode */
SYSTEM_EVENT_STA_WPS_ER_PIN, /**< ESP32 station wps pin code in enrollee mode */
SYSTEM_EVENT_AP_START, /**< ESP32 soft-AP start */
SYSTEM_EVENT_AP_STOP, /**< ESP32 soft-AP stop */
SYSTEM_EVENT_AP_STACONNECTED, /**< a station connected to ESP32 soft-AP */
@ -73,6 +77,10 @@ typedef struct {
tcpip_adapter_ip_info_t ip_info;
} system_event_sta_got_ip_t;
typedef struct {
uint8_t pin_code[8]; /**< PIN code of station in enrollee mode */
}system_event_sta_wps_er_pin_t;
typedef struct {
uint8_t mac[6]; /**< MAC address of the station connected to ESP32 soft-AP */
uint8_t aid; /**< the aid that ESP32 soft-AP gives to the station connected to */
@ -94,6 +102,7 @@ typedef union {
system_event_sta_scan_done_t scan_done; /**< ESP32 station scan (APs) done */
system_event_sta_authmode_change_t auth_change; /**< the auth mode of AP ESP32 station connected to changed */
system_event_sta_got_ip_t got_ip; /**< ESP32 station got IP */
system_event_sta_wps_er_pin_t sta_er_pin; /**< ESP32 station WPS enrollee mode PIN code received */
system_event_ap_staconnected_t sta_connected; /**< a station connected to ESP32 soft-AP */
system_event_ap_stadisconnected_t sta_disconnected; /**< a station disconnected to ESP32 soft-AP */
system_event_ap_probe_req_rx_t ap_probereqrecved; /**< ESP32 soft-AP receive probe request packet */

View File

@ -21,57 +21,9 @@ extern "C"
{
#endif
#define ESP_PARTITION_TABLE_ADDR 0x4000
#define ESP_PARTITION_TABLE_ADDR 0x8000
#define ESP_PARTITION_MAGIC 0x50AA
/* SPI flash mode, used in esp_image_header_t */
typedef enum {
ESP_IMAGE_SPI_MODE_QIO,
ESP_IMAGE_SPI_MODE_QOUT,
ESP_IMAGE_SPI_MODE_DIO,
ESP_IMAGE_SPI_MODE_DOUT,
ESP_IMAGE_SPI_MODE_FAST_READ,
ESP_IMAGE_SPI_MODE_SLOW_READ
} esp_image_spi_mode_t;
/* SPI flash clock frequency */
enum {
ESP_IMAGE_SPI_SPEED_40M,
ESP_IMAGE_SPI_SPEED_26M,
ESP_IMAGE_SPI_SPEED_20M,
ESP_IMAGE_SPI_SPEED_80M = 0xF
} esp_image_spi_freq_t;
/* Supported SPI flash sizes */
typedef enum {
ESP_IMAGE_FLASH_SIZE_1MB = 0,
ESP_IMAGE_FLASH_SIZE_2MB,
ESP_IMAGE_FLASH_SIZE_4MB,
ESP_IMAGE_FLASH_SIZE_8MB,
ESP_IMAGE_FLASH_SIZE_16MB,
ESP_IMAGE_FLASH_SIZE_MAX
} esp_image_flash_size_t;
/* Main header of binary image */
typedef struct {
uint8_t magic;
uint8_t blocks;
uint8_t spi_mode; /* flash read mode (esp_image_spi_mode_t as uint8_t) */
uint8_t spi_speed: 4; /* flash frequency (esp_image_spi_freq_t as uint8_t) */
uint8_t spi_size: 4; /* flash chip size (esp_image_flash_size_t as uint8_t) */
uint32_t entry_addr;
uint8_t encrypt_flag; /* encrypt flag */
uint8_t secure_boot_flag; /* secure boot flag */
uint8_t extra_header[14]; /* ESP32 additional header, unused by second bootloader */
} esp_image_header_t;
/* Header of binary image segment */
typedef struct {
uint32_t load_addr;
uint32_t data_len;
} esp_image_section_header_t;
/* OTA selection structure (two copies in the OTA data partition.)
Size of 32 bytes is friendly to flash encryption */
typedef struct {

View File

@ -0,0 +1,83 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef __ESP_FREERTOS_HOOKS_H__
#define __ESP_FREERTOS_HOOKS_H__
#include <stdbool.h>
#include "esp_err.h"
#ifdef __cplusplus
extern "C"
{
#endif
/*
Definitions for the tickhook and idlehook callbacks
*/
typedef bool (*esp_freertos_idle_cb_t)();
typedef void (*esp_freertos_tick_cb_t)();
/**
* @brief Register a callback to be called on the freertos idle hook
* The callback should return true if it's okay for the core to
* sleep until an interrupt (or FreeRTOS tick) happens and false
* if it should be called again as fast as possible.
*
* @warning Idle callbacks MUST NOT, UNDER ANY CIRCUMSTANCES, CALL
* A FUNCTION THAT MIGHT BLOCK.
*
* @param esp_freertos_idle_cb_t new_idle_cb : Callback to be called
*
* @return ESP_OK : Callback registered
* @return ESP_ERR_NO_MEM : No more space to register hook
*/
esp_err_t esp_register_freertos_idle_hook(esp_freertos_idle_cb_t new_idle_cb);
/**
* @brief Register a callback to be called on the freertos tick hook
*
* @param esp_freertos_tick_cb_t new_tick_cb : Callback to be called
*
* @return ESP_OK : Callback registered
* @return ESP_ERR_NO_MEM : No more space to register hook
*/
esp_err_t esp_register_freertos_tick_hook(esp_freertos_tick_cb_t tick_cb);
/**
* @brief Unregister an idle callback registered earlier
*
* @param esp_freertos_idle_cb_t new_idle_cb : Callback to be unregistered
*
* @return void
*/
void esp_deregister_freertos_idle_hook(esp_freertos_idle_cb_t old_idle_cb);
/**
* @brief Unregister a tick callback registered earlier
*
* @param esp_freertos_idle_cb_t new_idle_cb : Callback to be unregistered
*
* @return void
*/
void esp_deregister_freertos_tick_hook(esp_freertos_tick_cb_t old_tick_cb);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -41,9 +41,6 @@ This uses the TIMERG1 WDT.
* @brief Initialize the interrupt watchdog. This is called in the init code if
* the interrupt watchdog is enabled in menuconfig.
*
* @param null
*
* @return null
*/
void esp_int_wdt_init();

View File

@ -0,0 +1,249 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <stdint.h>
#include "esp_err.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @file PHY init parameters and API
*/
/**
* @brief Structure holding PHY init parameters
*/
typedef struct {
uint8_t param_ver_id; /*!< init_data structure version */
uint8_t crystal_select; /*!< 0: 40MHz, 1: 26 MHz, 2: 24 MHz, 3: auto */
uint8_t wifi_rx_gain_swp_step_1; /*!< do not change */
uint8_t wifi_rx_gain_swp_step_2; /*!< do not change */
uint8_t wifi_rx_gain_swp_step_3; /*!< do not change */
uint8_t wifi_rx_gain_swp_step_4; /*!< do not change */
uint8_t wifi_rx_gain_swp_step_5; /*!< do not change */
uint8_t wifi_rx_gain_swp_step_6; /*!< do not change */
uint8_t wifi_rx_gain_swp_step_7; /*!< do not change */
uint8_t wifi_rx_gain_swp_step_8; /*!< do not change */
uint8_t wifi_rx_gain_swp_step_9; /*!< do not change */
uint8_t wifi_rx_gain_swp_step_10; /*!< do not change */
uint8_t wifi_rx_gain_swp_step_11; /*!< do not change */
uint8_t wifi_rx_gain_swp_step_12; /*!< do not change */
uint8_t wifi_rx_gain_swp_step_13; /*!< do not change */
uint8_t wifi_rx_gain_swp_step_14; /*!< do not change */
uint8_t wifi_rx_gain_swp_step_15; /*!< do not change */
uint8_t bt_rx_gain_swp_step_1; /*!< do not change */
uint8_t bt_rx_gain_swp_step_2; /*!< do not change */
uint8_t bt_rx_gain_swp_step_3; /*!< do not change */
uint8_t bt_rx_gain_swp_step_4; /*!< do not change */
uint8_t bt_rx_gain_swp_step_5; /*!< do not change */
uint8_t bt_rx_gain_swp_step_6; /*!< do not change */
uint8_t bt_rx_gain_swp_step_7; /*!< do not change */
uint8_t bt_rx_gain_swp_step_8; /*!< do not change */
uint8_t bt_rx_gain_swp_step_9; /*!< do not change */
uint8_t bt_rx_gain_swp_step_10; /*!< do not change */
uint8_t bt_rx_gain_swp_step_11; /*!< do not change */
uint8_t bt_rx_gain_swp_step_12; /*!< do not change */
uint8_t bt_rx_gain_swp_step_13; /*!< do not change */
uint8_t bt_rx_gain_swp_step_14; /*!< do not change */
uint8_t bt_rx_gain_swp_step_15; /*!< do not change */
uint8_t gain_cmp_1; /*!< do not change */
uint8_t gain_cmp_6; /*!< do not change */
uint8_t gain_cmp_11; /*!< do not change */
uint8_t gain_cmp_ext2_1; /*!< do not change */
uint8_t gain_cmp_ext2_6; /*!< do not change */
uint8_t gain_cmp_ext2_11; /*!< do not change */
uint8_t gain_cmp_ext3_1; /*!< do not change */
uint8_t gain_cmp_ext3_6; /*!< do not change */
uint8_t gain_cmp_ext3_11; /*!< do not change */
uint8_t gain_cmp_bt_ofs_1; /*!< do not change */
uint8_t gain_cmp_bt_ofs_6; /*!< do not change */
uint8_t gain_cmp_bt_ofs_11; /*!< do not change */
uint8_t target_power_qdb_0; /*!< 78 means target power is 78/4=19.5dbm */
uint8_t target_power_qdb_1; /*!< 76 means target power is 76/4=19dbm */
uint8_t target_power_qdb_2; /*!< 74 means target power is 74/4=18.5dbm */
uint8_t target_power_qdb_3; /*!< 68 means target power is 68/4=17dbm */
uint8_t target_power_qdb_4; /*!< 64 means target power is 64/4=16dbm */
uint8_t target_power_qdb_5; /*!< 52 means target power is 52/4=13dbm */
uint8_t target_power_index_mcs0; /*!< target power index is 0, means target power is target_power_qdb_0 19.5dbm; (1m,2m,5.5m,11m,6m,9m) */
uint8_t target_power_index_mcs1; /*!< target power index is 0, means target power is target_power_qdb_0 19.5dbm; (12m) */
uint8_t target_power_index_mcs2; /*!< target power index is 1, means target power is target_power_qdb_1 19dbm; (18m) */
uint8_t target_power_index_mcs3; /*!< target power index is 1, means target power is target_power_qdb_1 19dbm; (24m) */
uint8_t target_power_index_mcs4; /*!< target power index is 2, means target power is target_power_qdb_2 18.5dbm; (36m) */
uint8_t target_power_index_mcs5; /*!< target power index is 3, means target power is target_power_qdb_3 17dbm; (48m) */
uint8_t target_power_index_mcs6; /*!< target power index is 4, means target power is target_power_qdb_4 16dbm; (54m) */
uint8_t target_power_index_mcs7; /*!< target power index is 5, means target power is target_power_qdb_5 13dbm */
uint8_t pwr_ind_11b_en; /*!< 0: 11b power is same as mcs0 and 6m, 1: 11b power different with OFDM */
uint8_t pwr_ind_11b_0; /*!< 1m, 2m power index [0~5] */
uint8_t pwr_ind_11b_1; /*!< 5.5m, 11m power index [0~5] */
uint8_t chan_backoff_en; /*!< 0: channel backoff disable, 1:channel backoff enable */
uint8_t chan1_power_backoff_qdb; /*!< 4 means backoff is 1db */
uint8_t chan2_power_backoff_qdb; /*!< see chan1_power_backoff_qdb */
uint8_t chan3_power_backoff_qdb; /*!< chan1_power_backoff_qdb */
uint8_t chan4_power_backoff_qdb; /*!< chan1_power_backoff_qdb */
uint8_t chan5_power_backoff_qdb; /*!< chan1_power_backoff_qdb */
uint8_t chan6_power_backoff_qdb; /*!< chan1_power_backoff_qdb */
uint8_t chan7_power_backoff_qdb; /*!< chan1_power_backoff_qdb */
uint8_t chan8_power_backoff_qdb; /*!< chan1_power_backoff_qdb */
uint8_t chan9_power_backoff_qdb; /*!< chan1_power_backoff_qdb */
uint8_t chan10_power_backoff_qdb; /*!< chan1_power_backoff_qdb */
uint8_t chan11_power_backoff_qdb; /*!< chan1_power_backoff_qdb */
uint8_t chan12_power_backoff_qdb; /*!< chan1_power_backoff_qdb */
uint8_t chan13_power_backoff_qdb; /*!< chan1_power_backoff_qdb */
uint8_t chan14_power_backoff_qdb; /*!< chan1_power_backoff_qdb */
uint8_t chan1_rate_backoff_index; /*!< if bit i is set, backoff data rate is target_power_qdb_i */
uint8_t chan2_rate_backoff_index; /*!< see chan1_rate_backoff_index */
uint8_t chan3_rate_backoff_index; /*!< see chan1_rate_backoff_index */
uint8_t chan4_rate_backoff_index; /*!< see chan1_rate_backoff_index */
uint8_t chan5_rate_backoff_index; /*!< see chan1_rate_backoff_index */
uint8_t chan6_rate_backoff_index; /*!< see chan1_rate_backoff_index */
uint8_t chan7_rate_backoff_index; /*!< see chan1_rate_backoff_index */
uint8_t chan8_rate_backoff_index; /*!< see chan1_rate_backoff_index */
uint8_t chan9_rate_backoff_index; /*!< see chan1_rate_backoff_index */
uint8_t chan10_rate_backoff_index; /*!< see chan1_rate_backoff_index */
uint8_t chan11_rate_backoff_index; /*!< see chan1_rate_backoff_index */
uint8_t chan12_rate_backoff_index; /*!< see chan1_rate_backoff_index */
uint8_t chan13_rate_backoff_index; /*!< see chan1_rate_backoff_index */
uint8_t chan14_rate_backoff_index; /*!< see chan1_rate_backoff_index */
uint8_t spur_freq_cfg_msb_1; /*!< first spur: */
uint8_t spur_freq_cfg_1; /*!< spur_freq_cfg = (spur_freq_cfg_msb_1 <<8) | spur_freq_cfg_1 */
uint8_t spur_freq_cfg_div_1; /*!< spur_freq=spur_freq_cfg/spur_freq_cfg_div_1 */
uint8_t spur_freq_en_h_1; /*!< the seventh bit for total enable */
uint8_t spur_freq_en_l_1; /*!< each bit for 1 channel, and use [spur_freq_en_h, spur_freq_en_l] to select the spur's channel priority */
uint8_t spur_freq_cfg_msb_2; /*!< second spur: */
uint8_t spur_freq_cfg_2; /*!< spur_freq_cfg = (spur_freq_cfg_msb_2 <<8) | spur_freq_cfg_2 */
uint8_t spur_freq_cfg_div_2; /*!< spur_freq=spur_freq_cfg/spur_freq_cfg_div_2 */
uint8_t spur_freq_en_h_2; /*!< the seventh bit for total enable */
uint8_t spur_freq_en_l_2; /*!< each bit for 1 channel, and use [spur_freq_en_h, spur_freq_en_l] to select the spur's channel priority */
uint8_t spur_freq_cfg_msb_3; /*!< third spur: */
uint8_t spur_freq_cfg_3; /*!< spur_freq_cfg = (spur_freq_cfg_msb_3 <<8) | spur_freq_cfg_3 */
uint8_t spur_freq_cfg_div_3; /*!< spur_freq=spur_freq_cfg/spur_freq_cfg_div_3 */
uint8_t spur_freq_en_h_3; /*!< the seventh bit for total enable */
uint8_t spur_freq_en_l_3; /*!< each bit for 1 channel, and use [spur_freq_en_h, spur_freq_en_l] to select the spur's channel priority, */
uint8_t reserved[23]; /*!< reserved for future expansion */
} esp_phy_init_data_t;
/**
* @brief Opaque PHY calibration data
*/
typedef struct {
uint8_t opaque[1904]; /*!< calibration data */
} esp_phy_calibration_data_t;
typedef enum {
PHY_RF_CAL_PARTIAL = 0x00000000, /*!< Do part of RF calibration. This should be used after power-on reset. */
PHY_RF_CAL_NONE = 0x00000001, /*!< Don't do any RF calibration. This mode is only suggested to be used after deep sleep reset. */
PHY_RF_CAL_FULL = 0x00000002 /*!< Do full RF calibration. Produces best results, but also consumes a lot of time and current. Suggested to be used once. */
} esp_phy_calibration_mode_t;
/**
* @brief Get PHY init data
*
* If "Use a partition to store PHY init data" option is set in menuconfig,
* This function will load PHY init data from a partition. Otherwise,
* PHY init data will be compiled into the application itself, and this function
* will return a pointer to PHY init data located in read-only memory (DROM).
*
* If "Use a partition to store PHY init data" option is enabled, this function
* may return NULL if the data loaded from flash is not valid.
*
* @note Call esp_phy_release_init_data to release the pointer obtained using
* this function after the call to esp_wifi_init.
*
* @return pointer to PHY init data structure
*/
const esp_phy_init_data_t* esp_phy_get_init_data();
/**
* @brief Release PHY init data
* @param data pointer to PHY init data structure obtained from
* esp_phy_get_init_data function
*/
void esp_phy_release_init_data(const esp_phy_init_data_t* data);
/**
* @brief Function called by esp_phy_init to load PHY calibration data
*
* This is a convenience function which can be used to load PHY calibration
* data from NVS. Data can be stored to NVS using esp_phy_store_cal_data_to_nvs
* function.
*
* If calibration data is not present in the NVS, or
* data is not valid (was obtained for a chip with a different MAC address,
* or obtained for a different version of software), this function will
* return an error.
*
* If "Initialize PHY in startup code" option is set in menuconfig, this
* function will be used to load calibration data. To provide a different
* mechanism for loading calibration data, disable
* "Initialize PHY in startup code" option in menuconfig and call esp_phy_init
* function from the application. For an example usage of esp_phy_init and
* this function, see do_phy_init function in cpu_start.c
*
* @param out_cal_data pointer to calibration data structure to be filled with
* loaded data.
* @return ESP_OK on success
*/
esp_err_t esp_phy_load_cal_data_from_nvs(esp_phy_calibration_data_t* out_cal_data);
/**
* @brief Function called by esp_phy_init to store PHY calibration data
*
* This is a convenience function which can be used to store PHY calibration
* data to the NVS. Calibration data is returned by esp_phy_init function.
* Data saved using this function to the NVS can later be loaded using
* esp_phy_store_cal_data_to_nvs function.
*
* If "Initialize PHY in startup code" option is set in menuconfig, this
* function will be used to store calibration data. To provide a different
* mechanism for storing calibration data, disable
* "Initialize PHY in startup code" option in menuconfig and call esp_phy_init
* function from the application.
*
* @param cal_data pointer to calibration data which has to be saved.
* @return ESP_OK on success
*/
esp_err_t esp_phy_store_cal_data_to_nvs(const esp_phy_calibration_data_t* cal_data);
/**
* @brief Initialize PHY module
*
* PHY module should be initialized in order to use WiFi or BT.
* If "Initialize PHY in startup code" option is set in menuconfig,
* this function will be called automatically before app_main is called,
* using parameters obtained from esp_phy_get_init_data.
*
* Applications which don't need to enable PHY on every start up should
* disable this menuconfig option and call esp_phy_init before calling
* esp_wifi_init or bt_controller_init. See do_phy_init function in
* cpu_start.c for an example of using this function.
*
* @param init_data PHY parameters. Default set of parameters can
* be obtained by calling esp_phy_get_default_init_data
* function.
* @param mode Calibration mode (Full, partial, or no calibration)
* @param[inout] calibration_data
* @return ESP_OK on success.
*/
esp_err_t esp_phy_init(const esp_phy_init_data_t* init_data,
esp_phy_calibration_mode_t mode, esp_phy_calibration_data_t* calibration_data);
#ifdef __cplusplus
}
#endif

View File

@ -42,9 +42,6 @@ This uses the TIMERG0 WDT.
* @brief Initialize the task watchdog. This is called in the init code, if the
* task watchdog is enabled in menuconfig.
*
* @param null
*
* @return null
*/
void esp_task_wdt_init();
@ -52,9 +49,6 @@ void esp_task_wdt_init();
* @brief Feed the watchdog. After the first feeding session, the watchdog will expect the calling
* task to keep feeding the watchdog until task_wdt_delete() is called.
*
* @param null
*
* @return null
*/
void esp_task_wdt_feed();
@ -63,9 +57,6 @@ void esp_task_wdt_feed();
/**
* @brief Delete the watchdog for the current task.
*
* @param null
*
* @return null
*/
void esp_task_wdt_delete();

View File

@ -88,6 +88,9 @@ extern "C" {
#define ESP_ERR_WIFI_PASSWORD (ESP_ERR_WIFI_BASE + 10) /*!< Passord is invalid */
#define ESP_ERR_WIFI_TIMEOUT (ESP_ERR_WIFI_BASE + 11) /*!< Timeout error */
/**
* @brief WiFi stack configuration parameters passed to esp_wifi_init call.
*/
typedef struct {
system_event_handler_t event_handler; /**< WiFi event handler */
} wifi_init_config_t;
@ -108,12 +111,12 @@ typedef struct {
* will post station connected event to this queue. If the queue is not initialized, WiFi
* will not post any events
*
* @param wifi_init_config_t *config : provide WiFi init configuration
* @param config provide WiFi init configuration
*
* @return
* - ESP_OK : succeed
* - ESP_ERR_WIFI_NO_MEM : out of memory
* - others : refer to error code esp_err.h
* - ESP_OK: succeed
* - ESP_ERR_WIFI_NO_MEM: out of memory
* - others: refer to error code esp_err.h
*/
esp_err_t esp_wifi_init(wifi_init_config_t *config);
@ -123,7 +126,7 @@ esp_err_t esp_wifi_init(wifi_init_config_t *config);
*
* @attention 1. This API should be called if you want to remove WiFi driver from the system
*
* @return ESP_OK : succeed
* @return ESP_OK: succeed
*/
esp_err_t esp_wifi_deinit(void);
@ -133,25 +136,25 @@ esp_err_t esp_wifi_deinit(void);
* Set the WiFi operating mode as station, soft-AP or station+soft-AP,
* The default mode is soft-AP mode.
*
* @param wifi_mode_t mode : WiFi operating modes:
* @param mode WiFi operating mode
*
* @return
* - ESP_OK : succeed
* - ESP_ERR_WIFI_NOT_INIT : WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_ARG : invalid argument
* - others : refer to error code in esp_err.h
* - ESP_OK: succeed
* - ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_ARG: invalid argument
* - others: refer to error code in esp_err.h
*/
esp_err_t esp_wifi_set_mode(wifi_mode_t mode);
/**
* @brief Get current operating mode of WiFi
*
* @param wifi_mode_t *mode : store current WiFi mode
* @param[out] mode store current WiFi mode
*
* @return
* - ESP_OK : succeed
* - ESP_ERR_WIFI_NOT_INIT : WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_ARG : invalid argument
* - ESP_OK: succeed
* - ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_ARG: invalid argument
*/
esp_err_t esp_wifi_get_mode(wifi_mode_t *mode);
@ -161,29 +164,25 @@ esp_err_t esp_wifi_get_mode(wifi_mode_t *mode);
* If mode is WIFI_MODE_AP, it create soft-AP control block and start soft-AP
* If mode is WIFI_MODE_APSTA, it create soft-AP and station control block and start soft-AP and station
*
* @param null
*
* @return
* - ESP_OK : succeed
* - ESP_ERR_WIFI_NOT_INIT : WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_ARG : invalid argument
* - ESP_ERR_WIFI_NO_MEM : out of memory
* - ESP_ERR_WIFI_CONN : WiFi internal error, station or soft-AP control block wrong
* - ESP_ERR_WIFI_FAIL : other WiFi internal errors
* - ESP_OK: succeed
* - ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_ARG: invalid argument
* - ESP_ERR_WIFI_NO_MEM: out of memory
* - ESP_ERR_WIFI_CONN: WiFi internal error, station or soft-AP control block wrong
* - ESP_ERR_WIFI_FAIL: other WiFi internal errors
*/
esp_err_t esp_wifi_start(void);
/**
* @brief Stop WiFi
If mode is WIFI_MODE_STA, it stop station and free station control block
* If mode is WIFI_MODE_STA, it stop station and free station control block
* If mode is WIFI_MODE_AP, it stop soft-AP and free soft-AP control block
* If mode is WIFI_MODE_APSTA, it stop station/soft-AP and free station/soft-AP control block
*
* @param null
*
* @return
* - ESP_OK : succeed
* - ESP_ERR_WIFI_NOT_INIT : WiFi is not initialized by eps_wifi_init
* - ESP_OK: succeed
* - ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by eps_wifi_init
*/
esp_err_t esp_wifi_stop(void);
@ -193,52 +192,47 @@ esp_err_t esp_wifi_stop(void);
* @attention 1. This API only impact WIFI_MODE_STA or WIFI_MODE_APSTA mode
* @attention 2. If the ESP32 is connected to an AP, call esp_wifi_disconnect to disconnect.
*
* @param null
*
* @return
* - ESP_OK : succeed
* - ESP_ERR_WIFI_NOT_INIT : WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_NOT_START : WiFi is not started by esp_wifi_start
* - ESP_ERR_WIFI_CONN : WiFi internal error, station or soft-AP control block wrong
* - ESP_ERR_WIFI_SSID : SSID of AP which station connects is invalid
* - ESP_OK: succeed
* - ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_NOT_START: WiFi is not started by esp_wifi_start
* - ESP_ERR_WIFI_CONN: WiFi internal error, station or soft-AP control block wrong
* - ESP_ERR_WIFI_SSID: SSID of AP which station connects is invalid
*/
esp_err_t esp_wifi_connect(void);
/**
* @brief Disconnect the ESP32 WiFi station from the AP.
*
* @param null
*
* @return
* - ESP_OK : succeed
* - ESP_ERR_WIFI_NOT_INIT : WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_NOT_START : WiFi is not started by esp_wifi_start
* - ESP_ERR_WIFI_FAIL : other WiFi internal errors
* - ESP_OK: succeed
* - ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_NOT_START: WiFi is not started by esp_wifi_start
* - ESP_ERR_WIFI_FAIL: other WiFi internal errors
*/
esp_err_t esp_wifi_disconnect(void);
/**
* @brief Currently this API is just an stub API
*
* @param null
*
* @return
* - ESP_OK : succeed
* - others : fail
* - ESP_OK: succeed
* - others: fail
*/
esp_err_t esp_wifi_clear_fast_connect(void);
/**
* @brief deauthenticate all stations or associated id equals to aid
*
* @param uint16_t aid : when aid is 0, deauthenticate all stations, otherwise deauthenticate station whose associated id is aid
* @param aid when aid is 0, deauthenticate all stations, otherwise deauthenticate station whose associated id is aid
*
* @return
* - ESP_OK : succeed
* - ESP_ERR_WIFI_NOT_INIT : WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_NOT_START : WiFi is not started by esp_wifi_start
* - ESP_ERR_WIFI_ARG : invalid argument
* - ESP_ERR_WIFI_MODE : WiFi mode is wrong
* - ESP_OK: succeed
* - ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_NOT_START: WiFi is not started by esp_wifi_start
* - ESP_ERR_WIFI_ARG: invalid argument
* - ESP_ERR_WIFI_MODE: WiFi mode is wrong
*/
esp_err_t esp_wifi_deauth_sta(uint16_t aid);
@ -249,88 +243,87 @@ esp_err_t esp_wifi_deauth_sta(uint16_t aid);
* will be freed in esp_wifi_get_ap_list, so generally, call esp_wifi_get_ap_list to cause
* the memory to be freed once the scan is done
*
* @param struct scan_config *config : configuration of scanning
* @param bool block : if block is true, this API will block the caller until the scan is done, otherwise
* @param config configuration of scanning
* @param block if block is true, this API will block the caller until the scan is done, otherwise
* it will return immediately
*
* @return
* - ESP_OK : succeed
* - ESP_ERR_WIFI_NOT_INIT : WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_NOT_START : WiFi is not started by esp_wifi_start
* - ESP_ERR_WIFI_TIMEOUT : blocking scan is timeout
* - others : refer to error code in esp_err.h
* - ESP_OK: succeed
* - ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_NOT_START: WiFi is not started by esp_wifi_start
* - ESP_ERR_WIFI_TIMEOUT: blocking scan is timeout
* - others: refer to error code in esp_err.h
*/
esp_err_t esp_wifi_scan_start(wifi_scan_config_t *conf, bool block);
esp_err_t esp_wifi_scan_start(wifi_scan_config_t *config, bool block);
/**
* @brief Stop the scan in process
*
* @param null
* @return
* - ESP_OK : succeed
* - ESP_ERR_WIFI_NOT_INIT : WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_NOT_START : WiFi is not started by esp_wifi_start
* - ESP_OK: succeed
* - ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_NOT_START: WiFi is not started by esp_wifi_start
*/
esp_err_t esp_wifi_scan_stop(void);
/**
* @brief Get number of APs found in last scan
*
* @param uint16_t *number : store number of APIs found in last scan
* @param[out] number store number of APIs found in last scan
*
* @attention This API can only be called when the scan is completed, otherwise it may get wrong value
* @attention This API can only be called when the scan is completed, otherwise it may get wrong value.
*
* @return
* - ESP_OK : succeed
* - ESP_ERR_WIFI_NOT_INIT : WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_NOT_START : WiFi is not started by esp_wifi_start
* - ESP_ERR_WIFI_ARG : invalid argument
* - ESP_OK: succeed
* - ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_NOT_START: WiFi is not started by esp_wifi_start
* - ESP_ERR_WIFI_ARG: invalid argument
*/
esp_err_t esp_wifi_scan_get_ap_num(uint16_t *number);
/**
* @brief Get AP list found in last scan
*
* @param uint16_t *number : as input param, it stores max AP number ap_records can hold, as output param, it store
the actual AP number this API returns
* @param wifi_ap_record_t *ap_records: wifi_ap_record_t array to hold the found APs
* @param[inout] number As input param, it stores max AP number ap_records can hold.
* As output param, it receives the actual AP number this API returns.
* @param ap_records wifi_ap_record_t array to hold the found APs
*
* @return
* - ESP_OK : succeed
* - ESP_ERR_WIFI_NOT_INIT : WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_NOT_START : WiFi is not started by esp_wifi_start
* - ESP_ERR_WIFI_ARG : invalid argument
* - ESP_ERR_WIFI_NO_MEM : out of memory
* - ESP_OK: succeed
* - ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_NOT_START: WiFi is not started by esp_wifi_start
* - ESP_ERR_WIFI_ARG: invalid argument
* - ESP_ERR_WIFI_NO_MEM: out of memory
*/
esp_err_t esp_wifi_scan_get_ap_records(uint16_t *number, wifi_ap_record_t *ap_records);
/**
* @brief Get information of AP associated with ESP32 station
* @brief Get information of AP which the ESP32 station is associated with
*
* @param wifi_ap_record_t *ap_info: the wifi_ap_record_t to hold station assocated AP
* @param ap_info the wifi_ap_record_t to hold AP information
*
* @return
* - ESP_OK : succeed
* - others : fail
* - ESP_OK: succeed
* - others: fail
*/
esp_err_t esp_wifi_sta_get_ap_info(wifi_ap_record_t *ap_info);
/**
* @brief Set current power save type
*
* @param wifi_ps_type_t type : power save type
* @param type power save type
*
* @return ESP_ERR_WIFI_NOT_SUPPORT : not support yet
* @return ESP_ERR_WIFI_NOT_SUPPORT: not supported yet
*/
esp_err_t esp_wifi_set_ps(wifi_ps_type_t type);
/**
* @brief Get current power save type
*
* @param wifi_ps_type_t *type : store current power save type
* @param[out] type: store current power save type
*
* @return ESP_ERR_WIFI_NOT_SUPPORT : not support yet
* @return ESP_ERR_WIFI_NOT_SUPPORT: not supported yet
*/
esp_err_t esp_wifi_get_ps(wifi_ps_type_t *type);
@ -340,47 +333,47 @@ esp_err_t esp_wifi_get_ps(wifi_ps_type_t *type);
*
* @attention Currently we only support 802.11b or 802.11bg or 802.11bgn mode
*
* @param wifi_interface_t ifx : interfaces
* @param uint8_t protocol : WiFi protocol bitmap
* @param ifx interfaces
* @param protocol_bitmap WiFi protocol bitmap
*
* @return
* - ESP_OK : succeed
* - ESP_ERR_WIFI_NOT_INIT : WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_IF : invalid interface
* - others : refer to erro code in esp_err.h
* - ESP_OK: succeed
* - ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_IF: invalid interface
* - others: refer to error codes in esp_err.h
*/
esp_err_t esp_wifi_set_protocol(wifi_interface_t ifx, uint8_t protocol_bitmap);
/**
* @brief Get the current protocol bitmap of specified ifx
* @brief Get the current protocol bitmap of the specified interface
*
* @param wifi_interface_t ifx : interfaces
* @param uint8_t protocol : store current WiFi protocol bitmap of interface ifx
* @param ifx interface
* @param[out] protocol_bitmap store current WiFi protocol bitmap of interface ifx
*
* @return
* - ESP_OK : succeed
* - ESP_ERR_WIFI_NOT_INIT : WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_IF : invalid interface
* - ESP_ERR_WIFI_ARG : invalid argument
* - others : refer to error code in esp_err.h
* - ESP_OK: succeed
* - ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_IF: invalid interface
* - ESP_ERR_WIFI_ARG: invalid argument
* - others: refer to error codes in esp_err.h
*/
esp_err_t esp_wifi_get_protocol(wifi_interface_t ifx, uint8_t *protocol_bitmap);
/**
* @brief Set the bandwidth of ESP32 specified interface
*
* @attention 1. API return false if try to configure a interface that is not enable
* @attention 1. API return false if try to configure an interface that is not enabled
* @attention 2. WIFI_BW_HT40 is supported only when the interface support 11N
*
* @param wifi_interface_t ifx : interface to be configured
* @param wifi_bandwidth_t bw : bandwidth
* @param ifx interface to be configured
* @param bw bandwidth
*
* @return
* - ESP_OK : succeed
* - ESP_ERR_WIFI_NOT_INIT : WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_IF : invalid interface
* - ESP_ERR_WIFI_ARG : invalid argument
* - others : refer to error code in esp_err.h
* - ESP_OK: succeed
* - ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_IF: invalid interface
* - ESP_ERR_WIFI_ARG: invalid argument
* - others: refer to error codes in esp_err.h
*/
esp_err_t esp_wifi_set_bandwidth(wifi_interface_t ifx, wifi_bandwidth_t bw);
@ -389,45 +382,45 @@ esp_err_t esp_wifi_set_bandwidth(wifi_interface_t ifx, wifi_bandwidth_t bw);
*
* @attention 1. API return false if try to get a interface that is not enable
*
* @param wifi_interface_t ifx : interface to be configured
* @param wifi_bandwidth_t *bw : store bandwidth of interface ifx
* @param ifx interface to be configured
* @param[out] bw store bandwidth of interface ifx
*
* @return
* - ESP_OK : succeed
* - ESP_ERR_WIFI_NOT_INIT : WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_IF : invalid interface
* - ESP_ERR_WIFI_ARG : invalid argument
* - ESP_OK: succeed
* - ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_IF: invalid interface
* - ESP_ERR_WIFI_ARG: invalid argument
*/
esp_err_t esp_wifi_get_bandwidth(wifi_interface_t ifx, wifi_bandwidth_t *bw);
/**
* @brief Set primary/second channel of ESP32
* @brief Set primary/secondary channel of ESP32
*
* @attention 1. This is a special API for sniffer
*
* @param uint8_t primary : for HT20, primary is the channel number, for HT40, primary is the primary channel
* @param wifi_second_chan_t second : for HT20, second is ignored, for HT40, second is the second channel
* @param primary for HT20, primary is the channel number, for HT40, primary is the primary channel
* @param second for HT20, second is ignored, for HT40, second is the second channel
*
* @return
* - ESP_OK : succeed
* - ESP_ERR_WIFI_NOT_INIT : WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_IF : invalid interface
* - ESP_ERR_WIFI_ARG : invalid argument
* - ESP_OK: succeed
* - ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_IF: invalid interface
* - ESP_ERR_WIFI_ARG: invalid argument
*/
esp_err_t esp_wifi_set_channel(uint8_t primary, wifi_second_chan_t second);
/**
* @brief Get the primary/second channel of ESP32
* @brief Get the primary/secondary channel of ESP32
*
* @attention 1. API return false if try to get a interface that is not enable
*
* @param uint8_t *primary : store current primary channel
* @param wifi_second_chan_t *second : store current second channel
* @param primary store current primary channel
* @param[out] second store current second channel
*
* @return
* - ESP_OK : succeed
* - ESP_ERR_WIFI_NOT_INIT : WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_ARG : invalid argument
* - ESP_OK: succeed
* - ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_ARG: invalid argument
*/
esp_err_t esp_wifi_get_channel(uint8_t *primary, wifi_second_chan_t *second);
@ -435,25 +428,25 @@ esp_err_t esp_wifi_get_channel(uint8_t *primary, wifi_second_chan_t *second);
* @brief Set country code
* The default value is WIFI_COUNTRY_CN
*
* @param wifi_country_t country : country type
* @param country country type
*
* @return
* - ESP_OK : succeed
* - ESP_ERR_WIFI_NOT_INIT : WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_ARG : invalid argument
* - others : refer to error code in esp_err.h
* - ESP_OK: succeed
* - ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_ARG: invalid argument
* - others: refer to error code in esp_err.h
*/
esp_err_t esp_wifi_set_country(wifi_country_t country);
/**
* @brief Get country code
*
* @param wifi_country_t country : store current country
* @param country store current country
*
* @return
* - ESP_OK : succeed
* - ESP_ERR_WIFI_NOT_INIT : WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_ARG : invalid argument
* - ESP_OK: succeed
* - ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_ARG: invalid argument
*/
esp_err_t esp_wifi_get_country(wifi_country_t *country);
@ -462,43 +455,44 @@ esp_err_t esp_wifi_get_country(wifi_country_t *country);
*
* @attention 1. This API can only be called when the interface is disabled
* @attention 2. ESP32 soft-AP and station have different MAC addresses, do not set them to be the same.
* - The bit0 of the first byte of ESP32 MAC address can not be 1. For example, the MAC address
* @attention 3. The bit 0 of the first byte of ESP32 MAC address can not be 1. For example, the MAC address
* can set to be "1a:XX:XX:XX:XX:XX", but can not be "15:XX:XX:XX:XX:XX".
*
* @param wifi_interface_t ifx : interface
* @param uint8 mac[6]: the MAC address.
* @param ifx interface
* @param mac the MAC address
*
* @return
* - ESP_OK : succeed
* - ESP_ERR_WIFI_NOT_INIT : WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_ARG : invalid argument
* - ESP_ERR_WIFI_IF : invalid interface
* - ESP_ERR_WIFI_MAC : invalid mac address
* - ESP_ERR_WIFI_MODE : WiFi mode is wrong
* - others : refer to error code in esp_err.h
* - ESP_OK: succeed
* - ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_ARG: invalid argument
* - ESP_ERR_WIFI_IF: invalid interface
* - ESP_ERR_WIFI_MAC: invalid mac address
* - ESP_ERR_WIFI_MODE: WiFi mode is wrong
* - others: refer to error codes in esp_err.h
*/
esp_err_t esp_wifi_set_mac(wifi_interface_t ifx, uint8_t mac[6]);
/**
* @brief Get mac of specified interface
*
* @param uint8_t mac[6] : store mac of this interface ifx
* @param ifx interface
* @param[out] mac store mac of the interface ifx
*
* @return
* - ESP_OK : succeed
* - ESP_ERR_WIFI_NOT_INIT : WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_ARG : invalid argument
* - ESP_ERR_WIFI_IF : invalid interface
* - ESP_OK: succeed
* - ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_ARG: invalid argument
* - ESP_ERR_WIFI_IF: invalid interface
*/
esp_err_t esp_wifi_get_mac(wifi_interface_t ifx, uint8_t mac[6]);
/**
* @brief The RX callback function in the promiscuous mode.
*
* Each time a packet is received, the callback function will be called.
* Each time a packet is received, the callback function will be called.
*
* @param void *buf : the data received
* @param uint16_t len : data length
* @param buf the data received
* @param len data length
*
* @return none
*/
@ -507,36 +501,36 @@ typedef void (* wifi_promiscuous_cb_t)(void *buf, uint16_t len);
/**
* @brief Register the RX callback function in the promiscuous mode.
*
* Each time a packet is received, the registered callback function will be called.
* Each time a packet is received, the registered callback function will be called.
*
* @param wifi_promiscuous_cb_t cb : callback
* @param cb callback
*
* @return
* - ESP_OK : succeed
* - ESP_ERR_WIFI_NOT_INIT : WiFi is not initialized by eps_wifi_init
* - ESP_OK: succeed
* - ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by eps_wifi_init
*/
esp_err_t esp_wifi_set_promiscuous_rx_cb(wifi_promiscuous_cb_t cb);
/**
* @brief Enable the promiscuous mode.
*
* @param bool promiscuous : false - disable / true - enable
* @param en false - disable, true - enable
*
* @return
* - ESP_OK : succeed
* - ESP_ERR_WIFI_NOT_INIT : WiFi is not initialized by eps_wifi_init
* - ESP_OK: succeed
* - ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by eps_wifi_init
*/
esp_err_t esp_wifi_set_promiscuous(bool en);
/**
* @brief Get the promiscuous mode.
*
* @param bool *enable : store the current status of promiscuous mode
* @param[out] en store the current status of promiscuous mode
*
* @return
* - ESP_OK : succeed
* - ESP_ERR_WIFI_NOT_INIT : WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_ARG : invalid argument
* - ESP_OK: succeed
* - ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_ARG: invalid argument
*/
esp_err_t esp_wifi_get_promiscuous(bool *en);
@ -548,32 +542,32 @@ esp_err_t esp_wifi_get_promiscuous(bool *en);
* @attention 3. ESP32 is limited to only one channel, so when in the soft-AP+station mode, the soft-AP will adjust its channel automatically to be the same as
* the channel of the ESP32 station.
*
* @param wifi_interface_t ifx : interface
* @param wifi_config_t *conf : station or soft-AP configuration
* @param ifx interface
* @param conf station or soft-AP configuration
*
* @return
* - ESP_OK : succeed
* - ESP_ERR_WIFI_NOT_INIT : WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_ARG : invalid argument
* - ESP_ERR_WIFI_IF : invalid interface
* - ESP_ERR_WIFI_MODE : invalid mode
* - ESP_ERR_WIFI_PASSWORD : invalid password
* - ESP_ERR_WIFI_NVS : WiFi internal NVS error
* - others : refer to the erro code in esp_err.h
* - ESP_OK: succeed
* - ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_ARG: invalid argument
* - ESP_ERR_WIFI_IF: invalid interface
* - ESP_ERR_WIFI_MODE: invalid mode
* - ESP_ERR_WIFI_PASSWORD: invalid password
* - ESP_ERR_WIFI_NVS: WiFi internal NVS error
* - others: refer to the erro code in esp_err.h
*/
esp_err_t esp_wifi_set_config(wifi_interface_t ifx, wifi_config_t *conf);
/**
* @brief Get configuration of specified interface
*
* @param wifi_interface_t ifx : interface
* @param wifi_config_t *conf : station or soft-AP configuration
* @param ifx interface
* @param[out] conf station or soft-AP configuration
*
* @return
* - ESP_OK : succeed
* - ESP_ERR_WIFI_NOT_INIT : WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_ARG : invalid argument
* - ESP_ERR_WIFI_IF : invalid interface
* - ESP_OK: succeed
* - ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_ARG: invalid argument
* - ESP_ERR_WIFI_IF: invalid interface
*/
esp_err_t esp_wifi_get_config(wifi_interface_t ifx, wifi_config_t *conf);
@ -582,14 +576,14 @@ esp_err_t esp_wifi_get_config(wifi_interface_t ifx, wifi_config_t *conf);
*
* @attention SSC only API
*
* @param wifi_sta_list_t *sta: station list
* @param[out] sta station list
*
* @return
* - ESP_OK : succeed
* - ESP_ERR_WIFI_NOT_INIT : WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_ARG : invalid argument
* - ESP_ERR_WIFI_MODE : WiFi mode is wrong
* - ESP_ERR_WIFI_CONN : WiFi internal error, the station/soft-AP control block is invalid
* - ESP_OK: succeed
* - ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_ARG: invalid argument
* - ESP_ERR_WIFI_MODE: WiFi mode is wrong
* - ESP_ERR_WIFI_CONN: WiFi internal error, the station/soft-AP control block is invalid
*/
esp_err_t esp_wifi_ap_get_sta_list(wifi_sta_list_t *sta);
@ -599,12 +593,12 @@ esp_err_t esp_wifi_ap_get_sta_list(wifi_sta_list_t *sta);
*
* @attention 1. The default value is WIFI_STORAGE_FLASH
*
* @param wifi_storage_t storage : storage type
* @param storage : storage type
*
* @return
* - ESP_OK : succeed
* - ESP_ERR_WIFI_NOT_INIT : WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_ARG : invalid argument
* - ESP_OK: succeed
* - ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_ARG: invalid argument
*/
esp_err_t esp_wifi_set_storage(wifi_storage_t storage);
@ -612,72 +606,63 @@ esp_err_t esp_wifi_set_storage(wifi_storage_t storage);
* @brief Set auto connect
* The default value is true
*
* @param bool en : true - enable auto connect / false - disable auto connect
* @param en : true - enable auto connect / false - disable auto connect
*
* @return
* - ESP_OK : succeed
* - ESP_ERR_WIFI_NOT_INIT : WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_MODE : WiFi internal error, the station/soft-AP control block is invalid
* - others : refer to error code in esp_err.h
* - ESP_OK: succeed
* - ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_MODE: WiFi internal error, the station/soft-AP control block is invalid
* - others: refer to error code in esp_err.h
*/
esp_err_t esp_wifi_set_auto_connect(bool en);
/**
* @brief Get the auto connect flag
*
* @param bool *en : store current auto connect configuration
* @param[out] en store current auto connect configuration
*
* @return
* - ESP_OK : succeed
* - ESP_ERR_WIFI_NOT_INIT : WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_ARG : invalid argument
* - ESP_OK: succeed
* - ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_ARG: invalid argument
*/
esp_err_t esp_wifi_get_auto_connect(bool *en);
/**
* @brief Set vendor specific element
*
* @param bool enable : enable or not
* @param wifi_vendor_ie_type_t type : 0 - WIFI_VND_IE_TYPE_BEACON
* 1 - WIFI_VND_IE_TYPE_PROBE_REQ
* 2 - WIFI_VND_IE_TYPE_PROBE_RESP
* 3 - WIFI_VND_IE_TYPE_ASSOC_REQ
* 4 - WIFI_VND_IE_TYPE_ASSOC_RESP
* @param wifi_vendor_ie_id_t idx : 0 - WIFI_VND_IE_ID_0
1 - WIFI_VND_IE_ID_1
* @param uint8_t *vnd_ie : pointer to a vendor specific element
* @param enable enable or not
* @param type information element type
* @param idx information element index
* @param vnd_ie pointer to a vendor specific element
*
* @return
* - ESP_OK : succeed
* - ESP_ERR_WIFI_NOT_INIT : WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_ARG : invalid argument
* - ESP_ERR_WIFI_NO_MEM : out of memory
* - ESP_OK: succeed
* - ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by eps_wifi_init
* - ESP_ERR_WIFI_ARG: invalid argument
* - ESP_ERR_WIFI_NO_MEM: out of memory
*/
esp_err_t esp_wifi_set_vendor_ie(bool enable, wifi_vendor_ie_type_t type, wifi_vendor_ie_id_t idx, uint8_t *vnd_ie);
/**
* @brief Define function pointer for vendor specific element callback
* @param void *ctx : reserved
* @param wifi_vendor_ie_type_t type : 0 - WIFI_VND_IE_TYPE_BEACON
* 1 - WIFI_VND_IE_TYPE_PROBE_REQ
* 2 - WIFI_VND_IE_TYPE_PROBE_RESP
* 3 - WIFI_VND_IE_TYPE_ASSOC_REQ
* 4 - WIFI_VND_IE_TYPE_ASSOC_RESP
* @param const uint8_t sa[6] : source address
* @param const uint8_t *vnd_ie : pointer to a vendor specific element
* @param int rssi : received signal strength indication
* @param ctx reserved
* @param type information element type
* @param sa source address
* @param vnd_ie pointer to a vendor specific element
* @param rssi received signal strength indication
*/
typedef void (*esp_vendor_ie_cb_t) (void *ctx, wifi_vendor_ie_type_t type, const uint8_t sa[6], const uint8_t *vnd_ie, int rssi);
/**
* @brief Set vendor specific element callback
*
* @param esp_vendor_ie_cb_t cb : callback function
* @param void *ctx : reserved
* @param cb callback function
* @param ctx reserved
*
* @return
* - ESP_OK : succeed
* - ESP_ERR_WIFI_NOT_INIT : WiFi is not initialized by eps_wifi_init
* - ESP_OK: succeed
* - ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by eps_wifi_init
*/
esp_err_t esp_wifi_set_vendor_ie_cb(esp_vendor_ie_cb_t cb, void *ctx);

View File

@ -0,0 +1,111 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef __ESP_WPS_H__
#define __ESP_WPS_H__
#include <stdbool.h>
#include "esp_err.h"
#ifdef __cplusplus
extern "C" {
#endif
/** \defgroup WiFi_APIs WiFi Related APIs
* @brief WiFi APIs
*/
/** @addtogroup WiFi_APIs
* @{
*/
/** \defgroup WPS_APIs WPS APIs
* @brief ESP32 WPS APIs
*
* WPS can only be used when ESP32 station is enabled.
*
*/
/** @addtogroup WPS_APIs
* @{
*/
#define ESP_ERR_WIFI_REGISTRAR (ESP_ERR_WIFI_BASE + 51) /*!< WPS registrar is not supported */
#define ESP_ERR_WIFI_WPS_TYPE (ESP_ERR_WIFI_BASE + 52) /*!< WPS type error */
#define ESP_ERR_WIFI_WPS_SM (ESP_ERR_WIFI_BASE + 53) /*!< WPS state machine is not initialized */
typedef enum wps_type {
WPS_TYPE_DISABLE = 0,
WPS_TYPE_PBC,
WPS_TYPE_PIN,
WPS_TYPE_MAX,
} wps_type_t;
/**
* @brief Enable Wi-Fi WPS function.
*
* @attention WPS can only be used when ESP32 station is enabled.
*
* @param wps_type_t wps_type : WPS type, so far only WPS_TYPE_PBC and WPS_TYPE_PIN is supported
*
* @return
* - ESP_OK : succeed
* - ESP_ERR_WIFI_WPS_TYPE : wps type is invalid
* - ESP_ERR_WIFI_WPS_MODE : wifi is not in station mode or sniffer mode is on
* - ESP_ERR_WIFI_FAIL : wps initialization fails
*/
esp_err_t esp_wifi_wps_enable(wps_type_t wps_type);
/**
* @brief Disable Wi-Fi WPS function and release resource it taken.
*
* @param null
*
* @return
* - ESP_OK : succeed
* - ESP_ERR_WIFI_WPS_MODE : wifi is not in station mode or sniffer mode is on
*/
esp_err_t esp_wifi_wps_disable(void);
/**
* @brief WPS starts to work.
*
* @attention WPS can only be used when ESP32 station is enabled.
*
* @param timeout_ms : maximum blocking time before API return.
* - 0 : non-blocking
* - 1~120000 : blocking time (not supported in IDF v1.0)
*
* @return
* - ESP_OK : succeed
* - ESP_ERR_WIFI_WPS_TYPE : wps type is invalid
* - ESP_ERR_WIFI_WPS_MODE : wifi is not in station mode or sniffer mode is on
* - ESP_ERR_WIFI_WPS_SM : wps state machine is not initialized
* - ESP_ERR_WIFI_FAIL : wps initialization fails
*/
esp_err_t esp_wifi_wps_start(int timeout_ms);
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* __ESP_WPS_H__ */

View File

@ -25,7 +25,7 @@ void ets_secure_boot_start(void);
void ets_secure_boot_finish(void);
void ets_secure_boot_hash(uint32_t *buf);
void ets_secure_boot_hash(const uint32_t *buf);
void ets_secure_boot_obtain(void);

View File

@ -1028,6 +1028,7 @@
#define DPORT_WIFI_RST_EN_REG (DR_REG_DPORT_BASE + 0x0D0)
/* DPORT_WIFI_RST : R/W ;bitpos:[31:0] ;default: 32'h0 ; */
/*description: */
#define DPORT_MAC_RST (BIT(2))
#define DPORT_WIFI_RST 0xFFFFFFFF
#define DPORT_WIFI_RST_M ((DPORT_WIFI_RST_V)<<(DPORT_WIFI_RST_S))
#define DPORT_WIFI_RST_V 0xFFFFFFFF

View File

@ -29,6 +29,16 @@
#define EFUSE_RD_EFUSE_RD_DIS_M ((EFUSE_RD_EFUSE_RD_DIS_V)<<(EFUSE_RD_EFUSE_RD_DIS_S))
#define EFUSE_RD_EFUSE_RD_DIS_V 0xF
#define EFUSE_RD_EFUSE_RD_DIS_S 16
/* Read disable bits for efuse blocks 1-3 */
#define EFUSE_RD_DIS_BLK1 (1<<16)
#define EFUSE_RD_DIS_BLK2 (1<<17)
#define EFUSE_RD_DIS_BLK3 (1<<18)
/* Read disable FLASH_CRYPT_CONFIG, CODING_SCHEME & KEY_STATUS
in efuse block 0
*/
#define EFUSE_RD_DIS_BLK0_PARTIAL (1<<19)
/* EFUSE_RD_EFUSE_WR_DIS : RO ;bitpos:[15:0] ;default: 16'b0 ; */
/*description: read for efuse_wr_disable*/
#define EFUSE_RD_EFUSE_WR_DIS 0x0000FFFF
@ -36,6 +46,22 @@
#define EFUSE_RD_EFUSE_WR_DIS_V 0xFFFF
#define EFUSE_RD_EFUSE_WR_DIS_S 0
/* Write disable bits */
#define EFUSE_WR_DIS_RD_DIS (1<<0) /*< disable writing read disable reg */
#define EFUSE_WR_DIS_WR_DIS (1<<1) /*< disable writing write disable reg */
#define EFUSE_WR_DIS_FLASH_CRYPT_CNT (1<<2)
#define EFUSE_WR_DIS_MAC_SPI_CONFIG_HD (1<<3) /*< disable writing MAC & SPI config hd efuses */
#define EFUSE_WR_DIS_XPD_SDIO (1<<5) /*< disable writing SDIO config efuses */
#define EFUSE_WR_DIS_SPI_PAD_CONFIG (1<<6) /*< disable writing SPI_PAD_CONFIG efuses */
#define EFUSE_WR_DIS_BLK1 (1<<7) /*< disable writing BLK1 efuses */
#define EFUSE_WR_DIS_BLK2 (1<<8) /*< disable writing BLK2 efuses */
#define EFUSE_WR_DIS_BLK3 (1<<9) /*< disable writing BLK3 efuses */
#define EFUSE_WR_DIS_FLASH_CRYPT_CODING_SCHEME (1<<10) /*< disable writing FLASH_CRYPT_CONFIG and CODING_SCHEME efuses */
#define EFUSE_WR_DIS_ABS_DONE_0 (1<<12) /*< disable writing ABS_DONE_0 efuse */
#define EFUSE_WR_DIS_ABS_DONE_1 (1<<13) /*< disable writing ABS_DONE_1 efuse */
#define EFUSE_WR_DIS_JTAG_DISABLE (1<<14) /*< disable writing JTAG_DISABLE efuse */
#define EFUSE_WR_DIS_CONSOLE_DL_DISABLE (1<<15) /*< disable writing CONSOLE_DEBUG_DISABLE, DISABLE_DL_ENCRYPT, DISABLE_DL_DECRYPT and DISABLE_DL_CACHE efuses */
#define EFUSE_BLK0_RDATA1_REG (DR_REG_EFUSE_BASE + 0x004)
/* EFUSE_RD_WIFI_MAC_CRC_LOW : RO ;bitpos:[31:0] ;default: 32'b0 ; */
/*description: read for low 32bit WIFI_MAC_Address*/

View File

@ -0,0 +1,37 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef __HWCRYPTO_REG_H__
#define __HWCRYPTO_REG_H__
#include "soc.h"
/* registers for RSA acceleration via Multiple Precision Integer ops */
#define RSA_MEM_M_BLOCK_BASE ((DR_REG_RSA_BASE)+0x000)
/* RB & Z use the same memory block, depending on phase of operation */
#define RSA_MEM_RB_BLOCK_BASE ((DR_REG_RSA_BASE)+0x200)
#define RSA_MEM_Z_BLOCK_BASE ((DR_REG_RSA_BASE)+0x200)
#define RSA_MEM_Y_BLOCK_BASE ((DR_REG_RSA_BASE)+0x400)
#define RSA_MEM_X_BLOCK_BASE ((DR_REG_RSA_BASE)+0x600)
#define RSA_M_DASH_REG (DR_REG_RSA_BASE + 0x800)
#define RSA_MODEXP_MODE_REG (DR_REG_RSA_BASE + 0x804)
#define RSA_START_MODEXP_REG (DR_REG_RSA_BASE + 0x808)
#define RSA_MULT_MODE_REG (DR_REG_RSA_BASE + 0x80c)
#define RSA_MULT_START_REG (DR_REG_RSA_BASE + 0x810)
#define RSA_INTERRUPT_REG (DR_REG_RSA_BASE + 0X814)
#define RSA_CLEAN_ADDR (DR_REG_RSA_BASE + 0X818)
#endif

View File

@ -34,10 +34,41 @@
#define PIN_INPUT_ENABLE(PIN_NAME) SET_PERI_REG_MASK(PIN_NAME,FUN_IE)
#define PIN_INPUT_DISABLE(PIN_NAME) CLEAR_PERI_REG_MASK(PIN_NAME,FUN_IE)
#define PIN_SET_DRV(PIN_NAME, drv) REG_SET_FIELD(PIN_NAME, FUN_DRV, (drv));
#define PIN_PULLUP_DIS(PIN_NAME) REG_CLR_BIT(PIN_NAME, FUN_PU)
#define PIN_PULLUP_EN(PIN_NAME) REG_SET_BIT(PIN_NAME, FUN_PU)
#define PIN_PULLDWN_DIS(PIN_NAME) REG_CLR_BIT(PIN_NAME, FUN_PD)
#define PIN_PULLDWN_EN(PIN_NAME) REG_SET_BIT(PIN_NAME, FUN_PD)
/*
* @attention
* The PIN_PULL[UP|DWN]_[EN|DIS]() functions used to exist as macros in previous SDK versions.
* Unfortunately, however, they do not work for some GPIOs on the ESP32 chip, which needs pullups
* and -downs turned on and off through RTC registers. The functions still exist for compatibility
* with older code, but are marked as deprecated in order to generate a warning.
* Please replace them in this fashion: (make sure to include driver/gpio.h as well)
* PIN_PULLUP_EN(GPIO_PIN_MUX_REG[x]) -> gpio_pullup_en(x)
* PIN_PULLUP_DIS(GPIO_PIN_MUX_REG[x]) -> gpio_pullup_dis(x)
* PIN_PULLDWN_EN(GPIO_PIN_MUX_REG[x]) -> gpio_pulldown_en(x)
* PIN_PULLDWN_DIS(GPIO_PIN_MUX_REG[x]) -> gpio_pulldown_dis(x)
*
*/
static inline void __attribute__ ((deprecated)) PIN_PULLUP_DIS(uint32_t PIN_NAME)
{
REG_CLR_BIT(PIN_NAME, FUN_PU);
}
static inline void __attribute__ ((deprecated)) PIN_PULLUP_EN(uint32_t PIN_NAME)
{
REG_SET_BIT(PIN_NAME, FUN_PU);
}
static inline void __attribute__ ((deprecated)) PIN_PULLDWN_DIS(uint32_t PIN_NAME)
{
REG_CLR_BIT(PIN_NAME, FUN_PD);
}
static inline void __attribute__ ((deprecated)) PIN_PULLDWN_EN(uint32_t PIN_NAME)
{
REG_SET_BIT(PIN_NAME, FUN_PD);
}
#define PIN_FUNC_SELECT(PIN_NAME, FUNC) REG_SET_FIELD(PIN_NAME, MCU_SEL, FUNC)
#define PIN_FUNC_GPIO 2

View File

@ -141,6 +141,7 @@
//}}
#define DR_REG_DPORT_BASE 0x3ff00000
#define DR_REG_RSA_BASE 0x3ff02000
#define DR_REG_UART_BASE 0x3ff40000
#define DR_REG_SPI1_BASE 0x3ff42000
#define DR_REG_SPI0_BASE 0x3ff43000

View File

@ -18,8 +18,10 @@
#include "soc.h"
#define REG_UART_BASE( i ) (DR_REG_UART_BASE + (i) * 0x10000 + ( i > 1 ? 0xe000 : 0 ) )
#define REG_UART_AHB_BASE(i) (0x60000000 + (i) * 0x10000 + ( i > 1 ? 0xe000 : 0 ) )
#define UART_FIFO_AHB_REG(i) (REG_UART_AHB_BASE(i) + 0x0)
#define UART_FIFO_REG(i) (REG_UART_BASE(i) + 0x0)
/* UART_RXFIFO_RD_BYTE : RO ;bitpos:[7:0] ;default: 8'b0 ; */
/*description: This register stores one byte data read by rx fifo.*/
#define UART_RXFIFO_RD_BYTE 0x000000FF

View File

@ -25,6 +25,7 @@
#include "esp_err.h"
#include "esp_intr.h"
#include "esp_attr.h"
#include "esp_freertos_hooks.h"
#include "soc/timer_group_struct.h"
#include "soc/timer_group_reg.h"
@ -36,6 +37,38 @@
#define WDT_INT_NUM 24
//Take care: the tick hook can also be called before esp_int_wdt_init() is called.
#if CONFIG_INT_WDT_CHECK_CPU1
//Not static; the ISR assembly checks this.
bool int_wdt_app_cpu_ticked=false;
static void IRAM_ATTR tick_hook(void) {
if (xPortGetCoreID()!=0) {
int_wdt_app_cpu_ticked=true;
} else {
//Only feed wdt if app cpu also ticked.
if (int_wdt_app_cpu_ticked) {
TIMERG1.wdt_wprotect=TIMG_WDT_WKEY_VALUE;
TIMERG1.wdt_config2=CONFIG_INT_WDT_TIMEOUT_MS*2; //Set timeout before interrupt
TIMERG1.wdt_config3=CONFIG_INT_WDT_TIMEOUT_MS*4; //Set timeout before reset
TIMERG1.wdt_feed=1;
TIMERG1.wdt_wprotect=0;
int_wdt_app_cpu_ticked=false;
}
}
}
#else
static void IRAM_ATTR tick_hook(void) {
if (xPortGetCoreID()!=0) return;
TIMERG1.wdt_wprotect=TIMG_WDT_WKEY_VALUE;
TIMERG1.wdt_config2=CONFIG_INT_WDT_TIMEOUT_MS*2; //Set timeout before interrupt
TIMERG1.wdt_config3=CONFIG_INT_WDT_TIMEOUT_MS*4; //Set timeout before reset
TIMERG1.wdt_feed=1;
TIMERG1.wdt_wprotect=0;
}
#endif
void esp_int_wdt_init() {
TIMERG1.wdt_wprotect=TIMG_WDT_WKEY_VALUE;
TIMERG1.wdt_config0.sys_reset_length=7; //3.2uS
@ -53,6 +86,7 @@ void esp_int_wdt_init() {
TIMERG1.wdt_wprotect=0;
TIMERG1.int_clr_timers.wdt=1;
TIMERG1.int_ena.wdt=1;
esp_register_freertos_tick_hook(tick_hook);
ESP_INTR_DISABLE(WDT_INT_NUM);
intr_matrix_set(xPortGetCoreID(), ETS_TG1_WDT_LEVEL_INTR_SOURCE, WDT_INT_NUM);
//We do not register a handler for the interrupt because it is interrupt level 4 which
@ -62,35 +96,5 @@ void esp_int_wdt_init() {
}
//Take care: the tick hook can also be called before esp_int_wdt_init() is called.
#if CONFIG_INT_WDT_CHECK_CPU1
//Not static; the ISR assembly checks this.
bool int_wdt_app_cpu_ticked=false;
void IRAM_ATTR vApplicationTickHook(void) {
if (xPortGetCoreID()!=0) {
int_wdt_app_cpu_ticked=true;
} else {
//Only feed wdt if app cpu also ticked.
if (int_wdt_app_cpu_ticked) {
TIMERG1.wdt_wprotect=TIMG_WDT_WKEY_VALUE;
TIMERG1.wdt_config2=CONFIG_INT_WDT_TIMEOUT_MS*2; //Set timeout before interrupt
TIMERG1.wdt_config3=CONFIG_INT_WDT_TIMEOUT_MS*4; //Set timeout before reset
TIMERG1.wdt_feed=1;
TIMERG1.wdt_wprotect=0;
int_wdt_app_cpu_ticked=false;
}
}
}
#else
void IRAM_ATTR vApplicationTickHook(void) {
if (xPortGetCoreID()!=0) return;
TIMERG1.wdt_wprotect=TIMG_WDT_WKEY_VALUE;
TIMERG1.wdt_config2=CONFIG_INT_WDT_TIMEOUT_MS*2; //Set timeout before interrupt
TIMERG1.wdt_config3=CONFIG_INT_WDT_TIMEOUT_MS*4; //Set timeout before reset
TIMERG1.wdt_feed=1;
TIMERG1.wdt_wprotect=0;
}
#endif
#endif

@ -1 +1 @@
Subproject commit 76f91098061b0052fe1bb67e85001014f39b84a0
Subproject commit ea9c156e8a67d27623eab6f98ce5a55a00c8fb19

64
components/esp32/phy.h Normal file
View File

@ -0,0 +1,64 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "esp_phy_init.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @file phy.h
* @brief Declarations for functions provided by libphy.a
*/
/**
* @brief Initialize function pointer table in PHY library.
* @note This function should be called before register_chipv7_phy.
*/
void phy_get_romfunc_addr(void);
/**
* @brief Initialize PHY module and do RF calibration
* @param[in] init_data Initialization parameters to be used by the PHY
* @param[inout] cal_data As input, calibration data previously obtained. As output, will contain new calibration data.
* @param[in] cal_mode RF calibration mode
* @return reserved for future use
*/
int register_chipv7_phy(const esp_phy_init_data_t* init_data, esp_phy_calibration_data_t *cal_data, esp_phy_calibration_mode_t cal_mode);
/**
* @brief Get the format version of calibration data used by PHY library.
* @return Format version number, OR'ed with BIT(16) if PHY is in WIFI only mode.
*/
uint32_t phy_get_rf_cal_version();
/**
* @brief Set RF/BB for only WIFI mode or coexist(WIFI & BT) mode
* @param[in] true is for only WIFI mode, false is for coexist mode. default is 0.
* @return NULL
*/
void phy_set_wifi_mode_only(bool wifi_only);
/**
* @brief Set BT the highest priority in coexist mode.
* @return NULL
*/
void coex_bt_high_prio(void);
#ifdef __cplusplus
}
#endif

224
components/esp32/phy_init.c Normal file
View File

@ -0,0 +1,224 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include "rom/ets_sys.h"
#include "soc/dport_reg.h"
#include "esp_err.h"
#include "esp_phy_init.h"
#include "esp_system.h"
#include "phy.h"
#include "esp_log.h"
#include "nvs.h"
#include "sdkconfig.h"
#include "phy_init_data.h"
static const char* TAG = "phy_init";
esp_err_t esp_phy_init(const esp_phy_init_data_t* init_data,
esp_phy_calibration_mode_t mode, esp_phy_calibration_data_t* calibration_data)
{
assert(init_data);
assert(calibration_data);
// Initialize PHY pointer table
phy_get_romfunc_addr();
REG_SET_BIT(DPORT_WIFI_RST_EN_REG, DPORT_MAC_RST);
REG_CLR_BIT(DPORT_WIFI_RST_EN_REG, DPORT_MAC_RST);
// Enable WiFi peripheral clock
SET_PERI_REG_MASK(DPORT_WIFI_CLK_EN_REG, 0x87cf);
ESP_LOGV(TAG, "register_chipv7_phy, init_data=%p, cal_data=%p, mode=%d",
init_data, calibration_data, mode);
phy_set_wifi_mode_only(0);
register_chipv7_phy(init_data, calibration_data, mode);
coex_bt_high_prio();
return ESP_OK;
}
// PHY init data handling functions
#if CONFIG_ESP32_PHY_INIT_DATA_IN_PARTITION
#include "esp_partition.h"
const esp_phy_init_data_t* esp_phy_get_init_data()
{
const esp_partition_t* partition = esp_partition_find_first(
ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_PHY, NULL);
if (partition == NULL) {
ESP_LOGE(TAG, "PHY data partition not found");
return NULL;
}
ESP_LOGD(TAG, "loading PHY init data from partition at offset 0x%x", partition->address);
size_t init_data_store_length = sizeof(phy_init_magic_pre) +
sizeof(esp_phy_init_data_t) + sizeof(phy_init_magic_post);
uint8_t* init_data_store = (uint8_t*) malloc(init_data_store_length);
if (init_data_store == NULL) {
ESP_LOGE(TAG, "failed to allocate memory for PHY init data");
return NULL;
}
esp_err_t err = esp_partition_read(partition, 0, init_data_store, init_data_store_length);
if (err != ESP_OK) {
ESP_LOGE(TAG, "failed to read PHY data partition (%d)", err);
return NULL;
}
if (memcmp(init_data_store, PHY_INIT_MAGIC, sizeof(phy_init_magic_pre)) != 0 ||
memcmp(init_data_store + init_data_store_length - sizeof(phy_init_magic_post),
PHY_INIT_MAGIC, sizeof(phy_init_magic_post)) != 0) {
ESP_LOGE(TAG, "failed to validate PHY data partition");
return NULL;
}
ESP_LOGE(TAG, "PHY data partition validated");
return (const esp_phy_init_data_t*) (init_data_store + sizeof(phy_init_magic_pre));
}
void esp_phy_release_init_data(const esp_phy_init_data_t* init_data)
{
free((uint8_t*) init_data - sizeof(phy_init_magic_pre));
}
#else // CONFIG_ESP32_PHY_INIT_DATA_IN_PARTITION
// phy_init_data.h will declare static 'phy_init_data' variable initialized with default init data
const esp_phy_init_data_t* esp_phy_get_init_data()
{
ESP_LOGD(TAG, "loading PHY init data from application binary");
return &phy_init_data;
}
void esp_phy_release_init_data(const esp_phy_init_data_t* init_data)
{
// no-op
}
#endif // CONFIG_ESP32_PHY_INIT_DATA_IN_PARTITION
// PHY calibration data handling functions
static const char* PHY_NAMESPACE = "phy";
static const char* PHY_CAL_VERSION_KEY = "cal_version";
static const char* PHY_CAL_MAC_KEY = "cal_mac";
static const char* PHY_CAL_DATA_KEY = "cal_data";
static esp_err_t load_cal_data_from_nvs_handle(nvs_handle handle,
esp_phy_calibration_data_t* out_cal_data);
static esp_err_t store_cal_data_to_nvs_handle(nvs_handle handle,
const esp_phy_calibration_data_t* cal_data);
esp_err_t esp_phy_load_cal_data_from_nvs(esp_phy_calibration_data_t* out_cal_data)
{
nvs_handle handle;
esp_err_t err = nvs_open(PHY_NAMESPACE, NVS_READONLY, &handle);
if (err != ESP_OK) {
ESP_LOGD(TAG, "%s: failed to open NVS namespace (%d)", __func__, err);
return err;
}
else {
err = load_cal_data_from_nvs_handle(handle, out_cal_data);
nvs_close(handle);
return err;
}
}
esp_err_t esp_phy_store_cal_data_to_nvs(const esp_phy_calibration_data_t* cal_data)
{
nvs_handle handle;
esp_err_t err = nvs_open(PHY_NAMESPACE, NVS_READWRITE, &handle);
if (err != ESP_OK) {
ESP_LOGD(TAG, "%s: failed to open NVS namespace (%d)", __func__, err);
return err;
}
else {
err = store_cal_data_to_nvs_handle(handle, cal_data);
nvs_close(handle);
return err;
}
}
static esp_err_t load_cal_data_from_nvs_handle(nvs_handle handle,
esp_phy_calibration_data_t* out_cal_data)
{
esp_err_t err;
uint32_t cal_data_version;
err = nvs_get_u32(handle, PHY_CAL_VERSION_KEY, &cal_data_version);
if (err != ESP_OK) {
ESP_LOGD(TAG, "%s: failed to get cal_version (%d)", __func__, err);
return err;
}
uint32_t cal_format_version = phy_get_rf_cal_version() & (~BIT(16));
ESP_LOGV(TAG, "phy_get_rf_cal_version: %d\n", cal_format_version);
if (cal_data_version != cal_format_version) {
ESP_LOGD(TAG, "%s: expected calibration data format %d, found %d",
__func__, cal_format_version, cal_data_version);
return ESP_FAIL;
}
uint8_t cal_data_mac[6];
size_t length = sizeof(cal_data_mac);
err = nvs_get_blob(handle, PHY_CAL_MAC_KEY, cal_data_mac, &length);
if (err != ESP_OK) {
ESP_LOGD(TAG, "%s: failed to get cal_mac (%d)", __func__, err);
return err;
}
if (length != sizeof(cal_data_mac)) {
ESP_LOGD(TAG, "%s: invalid length of cal_mac (%d)", __func__, length);
return ESP_ERR_INVALID_SIZE;
}
uint8_t sta_mac[6];
system_efuse_read_mac(sta_mac);
if (memcmp(sta_mac, cal_data_mac, sizeof(sta_mac)) != 0) {
ESP_LOGE(TAG, "%s: calibration data MAC check failed: expected " \
MACSTR ", found " MACSTR,
__func__, MAC2STR(sta_mac), MAC2STR(cal_data_mac));
return ESP_FAIL;
}
length = sizeof(*out_cal_data);
err = nvs_get_blob(handle, PHY_CAL_DATA_KEY, out_cal_data, &length);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: failed to get cal_data(%d)", __func__, err);
return err;
}
if (length != sizeof(*out_cal_data)) {
ESP_LOGD(TAG, "%s: invalid length of cal_data (%d)", __func__, length);
return ESP_ERR_INVALID_SIZE;
}
return ESP_OK;
}
static esp_err_t store_cal_data_to_nvs_handle(nvs_handle handle,
const esp_phy_calibration_data_t* cal_data)
{
esp_err_t err;
uint32_t cal_format_version = phy_get_rf_cal_version() & (~BIT(16));
ESP_LOGV(TAG, "phy_get_rf_cal_version: %d\n", cal_format_version);
err = nvs_set_u32(handle, PHY_CAL_VERSION_KEY, cal_format_version);
if (err != ESP_OK) {
return err;
}
uint8_t sta_mac[6];
system_efuse_read_mac(sta_mac);
err = nvs_set_blob(handle, PHY_CAL_MAC_KEY, sta_mac, sizeof(sta_mac));
if (err != ESP_OK) {
return err;
}
err = nvs_set_blob(handle, PHY_CAL_DATA_KEY, cal_data, sizeof(*cal_data));
return err;
}
void register_chipv7_phy_stub()
{
}

View File

@ -0,0 +1,139 @@
// Copyright 2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "esp_phy_init.h"
#include "sdkconfig.h"
// constrain a value between 'low' and 'high', inclusive
#define LIMIT(val, low, high) ((val < low) ? low : (val > high) ? high : val)
#define PHY_INIT_MAGIC "PHYINIT"
static const char phy_init_magic_pre[] = PHY_INIT_MAGIC;
/**
* @brief Structure containing default recommended PHY initialization parameters.
*/
static const esp_phy_init_data_t phy_init_data= {
.param_ver_id = 0,
.crystal_select = 3,
.wifi_rx_gain_swp_step_1 = 0x05,
.wifi_rx_gain_swp_step_2 = 0x04,
.wifi_rx_gain_swp_step_3 = 0x06,
.wifi_rx_gain_swp_step_4 = 0x05,
.wifi_rx_gain_swp_step_5 = 0x01,
.wifi_rx_gain_swp_step_6 = 0x06,
.wifi_rx_gain_swp_step_7 = 0x05,
.wifi_rx_gain_swp_step_8 = 0x04,
.wifi_rx_gain_swp_step_9 = 0x06,
.wifi_rx_gain_swp_step_10 = 0x04,
.wifi_rx_gain_swp_step_11 = 0x05,
.wifi_rx_gain_swp_step_12 = 0x00,
.wifi_rx_gain_swp_step_13 = 0x00,
.wifi_rx_gain_swp_step_14 = 0x00,
.wifi_rx_gain_swp_step_15 = 0x00,
.bt_rx_gain_swp_step_1 = 0x05,
.bt_rx_gain_swp_step_2 = 0x04,
.bt_rx_gain_swp_step_3 = 0x06,
.bt_rx_gain_swp_step_4 = 0x05,
.bt_rx_gain_swp_step_5 = 0x01,
.bt_rx_gain_swp_step_6 = 0x06,
.bt_rx_gain_swp_step_7 = 0x05,
.bt_rx_gain_swp_step_8 = 0x00,
.bt_rx_gain_swp_step_9 = 0x00,
.bt_rx_gain_swp_step_10 = 0x00,
.bt_rx_gain_swp_step_11 = 0x00,
.bt_rx_gain_swp_step_12 = 0x00,
.bt_rx_gain_swp_step_13 = 0x00,
.bt_rx_gain_swp_step_14 = 0x00,
.bt_rx_gain_swp_step_15 = 0x00,
.gain_cmp_1 = 0x0a,
.gain_cmp_6 = 0x0a,
.gain_cmp_11 = 0x0c,
.gain_cmp_ext2_1 = 0xf0,
.gain_cmp_ext2_6 = 0xf0,
.gain_cmp_ext2_11 = 0xf0,
.gain_cmp_ext3_1 = 0xe0,
.gain_cmp_ext3_6 = 0xe0,
.gain_cmp_ext3_11 = 0xe0,
.gain_cmp_bt_ofs_1 = 0x18,
.gain_cmp_bt_ofs_6 = 0x18,
.gain_cmp_bt_ofs_11 = 0x18,
.target_power_qdb_0 = LIMIT(CONFIG_ESP32_PHY_MAX_TX_POWER * 4, 0, 78),
.target_power_qdb_1 = LIMIT(CONFIG_ESP32_PHY_MAX_TX_POWER * 4, 0, 76),
.target_power_qdb_2 = LIMIT(CONFIG_ESP32_PHY_MAX_TX_POWER * 4, 0, 74),
.target_power_qdb_3 = LIMIT(CONFIG_ESP32_PHY_MAX_TX_POWER * 4, 0, 68),
.target_power_qdb_4 = LIMIT(CONFIG_ESP32_PHY_MAX_TX_POWER * 4, 0, 64),
.target_power_qdb_5 = LIMIT(CONFIG_ESP32_PHY_MAX_TX_POWER * 4, 0, 52),
.target_power_index_mcs0 = 0,
.target_power_index_mcs1 = 0,
.target_power_index_mcs2 = 1,
.target_power_index_mcs3 = 1,
.target_power_index_mcs4 = 2,
.target_power_index_mcs5 = 3,
.target_power_index_mcs6 = 4,
.target_power_index_mcs7 = 5,
.pwr_ind_11b_en = 0,
.pwr_ind_11b_0 = 0,
.pwr_ind_11b_1 = 0,
.chan_backoff_en = 0,
.chan1_power_backoff_qdb = 0,
.chan2_power_backoff_qdb = 0,
.chan3_power_backoff_qdb = 0,
.chan4_power_backoff_qdb = 0,
.chan5_power_backoff_qdb = 0,
.chan6_power_backoff_qdb = 0,
.chan7_power_backoff_qdb = 0,
.chan8_power_backoff_qdb = 0,
.chan9_power_backoff_qdb = 0,
.chan10_power_backoff_qdb = 0,
.chan11_power_backoff_qdb = 0,
.chan12_power_backoff_qdb = 0,
.chan13_power_backoff_qdb = 0,
.chan14_power_backoff_qdb = 0,
.chan1_rate_backoff_index = 0,
.chan2_rate_backoff_index = 0,
.chan3_rate_backoff_index = 0,
.chan4_rate_backoff_index = 0,
.chan5_rate_backoff_index = 0,
.chan6_rate_backoff_index = 0,
.chan7_rate_backoff_index = 0,
.chan8_rate_backoff_index = 0,
.chan9_rate_backoff_index = 0,
.chan10_rate_backoff_index = 0,
.chan11_rate_backoff_index = 0,
.chan12_rate_backoff_index = 0,
.chan13_rate_backoff_index = 0,
.chan14_rate_backoff_index = 0,
.spur_freq_cfg_msb_1 = 0,
.spur_freq_cfg_1 = 0,
.spur_freq_cfg_div_1 = 0,
.spur_freq_en_h_1 = 0,
.spur_freq_en_l_1 = 0,
.spur_freq_cfg_msb_2 = 0,
.spur_freq_cfg_2 = 0,
.spur_freq_cfg_div_2 = 0,
.spur_freq_en_h_2 = 0,
.spur_freq_en_l_2 = 0,
.spur_freq_cfg_msb_3 = 0,
.spur_freq_cfg_3 = 0,
.spur_freq_cfg_div_3 = 0,
.spur_freq_en_h_3 = 0,
.spur_freq_en_l_3 = 0,
.reserved = {0}
};
static const char phy_init_magic_post[] = PHY_INIT_MAGIC;

View File

@ -22,10 +22,13 @@
#include "sdkconfig.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "freertos/semphr.h"
#include <esp_types.h>
#include "esp_err.h"
#include "esp_intr.h"
#include "esp_attr.h"
#include "esp_freertos_hooks.h"
#include "soc/timer_group_struct.h"
#include "soc/timer_group_reg.h"
#include "esp_log.h"
@ -44,6 +47,8 @@ struct wdt_task_t {
};
static wdt_task_t *wdt_task_list=NULL;
static portMUX_TYPE taskwdt_spinlock = portMUX_INITIALIZER_UNLOCKED;
static void IRAM_ATTR task_wdt_isr(void *arg) {
wdt_task_t *wdttask;
@ -54,24 +59,35 @@ static void IRAM_ATTR task_wdt_isr(void *arg) {
TIMERG0.wdt_wprotect=0;
//Ack interrupt
TIMERG0.int_clr_timers.wdt=1;
//We are taking a spinlock while doing I/O (ets_printf) here. Normally, that is a pretty
//bad thing, possibly (temporarily) hanging up the 2nd core and stopping FreeRTOS. In this case,
//something bad already happened and reporting this is considered more important
//than the badness caused by a spinlock here.
portENTER_CRITICAL(&taskwdt_spinlock);
if (!wdt_task_list) {
//No task on list. Maybe none registered yet.
portEXIT_CRITICAL(&taskwdt_spinlock);
return;
}
//Watchdog got triggered because at least one task did not report in.
ets_printf("Task watchdog got triggered. The following tasks did not feed the watchdog in time:\n");
ets_printf(DRAM_STR("Task watchdog got triggered. The following tasks did not feed the watchdog in time:\n"));
for (wdttask=wdt_task_list; wdttask!=NULL; wdttask=wdttask->next) {
if (!wdttask->fed_watchdog) {
cpu=xTaskGetAffinity(wdttask->task_handle)==0?"CPU 0":"CPU 1";
if (xTaskGetAffinity(wdttask->task_handle)==tskNO_AFFINITY) cpu="CPU 0/1";
printf(" - %s (%s)\n", pcTaskGetTaskName(wdttask->task_handle), cpu);
cpu=xTaskGetAffinity(wdttask->task_handle)==0?DRAM_STR("CPU 0"):DRAM_STR("CPU 1");
if (xTaskGetAffinity(wdttask->task_handle)==tskNO_AFFINITY) cpu=DRAM_STR("CPU 0/1");
ets_printf(DRAM_STR(" - %s (%s)\n"), pcTaskGetTaskName(wdttask->task_handle), cpu);
}
}
ets_printf("Tasks currently running:\n");
ets_printf(DRAM_STR("Tasks currently running:\n"));
for (int x=0; x<portNUM_PROCESSORS; x++) {
ets_printf("CPU %d: %s\n", x, pcTaskGetTaskName(xTaskGetCurrentTaskHandleForCPU(x)));
ets_printf(DRAM_STR("CPU %d: %s\n"), x, pcTaskGetTaskName(xTaskGetCurrentTaskHandleForCPU(x)));
}
#if CONFIG_TASK_WDT_PANIC
ets_printf("Aborting.\n");
ets_printf(DRAM_STR("Aborting.\n"));
abort();
#endif
portEXIT_CRITICAL(&taskwdt_spinlock);
}
@ -79,6 +95,8 @@ void esp_task_wdt_feed() {
wdt_task_t *wdttask=wdt_task_list;
bool found_task=false, do_feed_wdt=true;
TaskHandle_t handle=xTaskGetCurrentTaskHandle();
portENTER_CRITICAL(&taskwdt_spinlock);
//Walk the linked list of wdt tasks to find this one, as well as see if we need to feed
//the real watchdog timer.
for (wdttask=wdt_task_list; wdttask!=NULL; wdttask=wdttask->next) {
@ -113,14 +131,18 @@ void esp_task_wdt_feed() {
//Reset fed_watchdog status
for (wdttask=wdt_task_list; wdttask->next!=NULL; wdttask=wdttask->next) wdttask->fed_watchdog=false;
}
portEXIT_CRITICAL(&taskwdt_spinlock);
}
void esp_task_wdt_delete() {
TaskHandle_t handle=xTaskGetCurrentTaskHandle();
wdt_task_t *wdttask=wdt_task_list;
portENTER_CRITICAL(&taskwdt_spinlock);
//Wdt task list can't be empty
if (!wdt_task_list) {
ESP_LOGE(TAG, "task_wdt_delete: No tasks in list?");
portEXIT_CRITICAL(&taskwdt_spinlock);
return;
}
if (handle==wdt_task_list) {
@ -129,17 +151,39 @@ void esp_task_wdt_delete() {
free(wdttask);
} else {
//Find current task in list
if (wdt_task_list->task_handle==handle) {
//Task is the very first one.
wdt_task_t *freeme=wdt_task_list;
wdt_task_list=wdt_task_list->next;
free(freeme);
portEXIT_CRITICAL(&taskwdt_spinlock);
return;
}
while (wdttask->next!=NULL && wdttask->next->task_handle!=handle) wdttask=wdttask->next;
if (!wdttask->next) {
ESP_LOGE(TAG, "task_wdt_delete: Task never called task_wdt_feed!");
portEXIT_CRITICAL(&taskwdt_spinlock);
return;
}
wdt_task_t *freeme=wdttask->next;
wdttask->next=wdttask->next->next;
free(freeme);
}
portEXIT_CRITICAL(&taskwdt_spinlock);
}
#if CONFIG_TASK_WDT_CHECK_IDLE_TASK
static bool idle_hook(void) {
#if !CONFIG_TASK_WDT_CHECK_IDLE_TASK_CPU1
if (xPortGetCoreID()!=0) return true;
#endif
esp_task_wdt_feed();
return true;
}
#endif
void esp_task_wdt_init() {
TIMERG0.wdt_wprotect=TIMG_WDT_WKEY_VALUE;
TIMERG0.wdt_config0.sys_reset_length=7; //3.2uS
@ -153,6 +197,9 @@ void esp_task_wdt_init() {
TIMERG0.wdt_config0.en=1;
TIMERG0.wdt_feed=1;
TIMERG0.wdt_wprotect=0;
#if CONFIG_TASK_WDT_CHECK_IDLE_TASK
esp_register_freertos_idle_hook(idle_hook);
#endif
ESP_INTR_DISABLE(ETS_T0_WDT_INUM);
intr_matrix_set(xPortGetCoreID(), ETS_TG0_WDT_LEVEL_INTR_SOURCE, ETS_T0_WDT_INUM);
xt_set_interrupt_handler(ETS_T0_WDT_INUM, task_wdt_isr, NULL);
@ -161,13 +208,5 @@ void esp_task_wdt_init() {
ESP_INTR_ENABLE(ETS_T0_WDT_INUM);
}
#if CONFIG_TASK_WDT_CHECK_IDLE_TASK
void vApplicationIdleHook(void) {
#if !CONFIG_TASK_WDT_CHECK_IDLE_TASK_CPU1
if (xPortGetCoreID()!=0) return;
#endif
esp_task_wdt_feed();
}
#endif
#endif

View File

@ -11,27 +11,49 @@ PYTHON ?= $(call dequote,$(CONFIG_PYTHON))
# two commands that can be used from other components
# to invoke esptool.py (with or without serial port args)
#
# NB: esptool.py lives in the sdk/bin directory not the component directory
ESPTOOLPY_SRC := $(COMPONENT_PATH)/esptool/esptool.py
ESPTOOLPY := $(PYTHON) $(ESPTOOLPY_SRC) --chip esp32
ESPTOOLPY_SERIAL := $(ESPTOOLPY) --port $(ESPPORT) --baud $(ESPBAUD)
# Supporting esptool command line tools
ESPEFUSEPY := $(PYTHON) $(COMPONENT_PATH)/esptool/espefuse.py
ESPSECUREPY := $(PYTHON) $(COMPONENT_PATH)/esptool/espsecure.py
export ESPSECUREPY # is used in bootloader_support component
ESPTOOL_FLASH_OPTIONS := --flash_mode $(ESPFLASHMODE) --flash_freq $(ESPFLASHFREQ) --flash_size $(ESPFLASHSIZE)
# the no-stub argument is temporary until esptool.py fully supports compressed uploads
ESPTOOL_ELF2IMAGE_OPTIONS :=
ESPTOOLPY_WRITE_FLASH=$(ESPTOOLPY_SERIAL) write_flash $(if $(CONFIG_ESPTOOLPY_COMPRESSED),-z) $(ESPTOOL_FLASH_OPTIONS)
ESPTOOL_ALL_FLASH_ARGS += $(CONFIG_APP_OFFSET) $(APP_BIN)
$(APP_BIN): $(APP_ELF) $(ESPTOOLPY_SRC)
$(Q) $(ESPTOOLPY) elf2image $(ESPTOOL_FLASH_OPTIONS) -o $@ $<
ifdef CONFIG_SECURE_BOOTLOADER_ENABLED
ifndef IS_BOOTLOADER_BUILD
# for secure boot, add a signing step to get from unsiged app to signed app
APP_BIN_UNSIGNED := $(APP_BIN:.bin=-unsigned.bin)
$(APP_BIN): $(APP_BIN_UNSIGNED)
$(ESPSECUREPY) sign_data --keyfile $(SECURE_BOOT_SIGNING_KEY) -o $@ $^ # signed in-place
endif
endif
# non-secure boot (or bootloader), both these files are the same
APP_BIN_UNSIGNED ?= $(APP_BIN)
$(APP_BIN_UNSIGNED): $(APP_ELF) $(ESPTOOLPY_SRC)
$(ESPTOOLPY) elf2image $(ESPTOOL_FLASH_OPTIONS) $(ESPTOOL_ELF2IMAGE_OPTIONS) -o $@ $<
flash: all_binaries $(ESPTOOLPY_SRC)
@echo "Flashing binaries to serial port $(ESPPORT) (app at offset $(CONFIG_APP_OFFSET))..."
$(Q) $(ESPTOOLPY_WRITE_FLASH) $(ESPTOOL_ALL_FLASH_ARGS)
ifdef CONFIG_SECURE_BOOTLOADER_ENABLED
@echo "(Secure boot enabled, so bootloader not flashed automatically. See 'make bootloader' output)"
endif
$(ESPTOOLPY_WRITE_FLASH) $(ESPTOOL_ALL_FLASH_ARGS)
app-flash: $(APP_BIN) $(ESPTOOLPY_SRC)
@echo "Flashing app to serial port $(ESPPORT), offset $(CONFIG_APP_OFFSET)..."
$(Q) $(ESPTOOLPY_WRITE_FLASH) $(CONFIG_APP_OFFSET) $(APP_BIN)
$(ESPTOOLPY_WRITE_FLASH) $(CONFIG_APP_OFFSET) $(APP_BIN)
$(eval $(call SubmoduleCheck,$(ESPTOOLPY_SRC),$(COMPONENT_PATH)/esptool))
# Submodules normally added in component.mk, but can be added
# at the project level as long as qualified path
COMPONENT_SUBMODULES += $(COMPONENT_PATH)/esptool

@ -1 +1 @@
Subproject commit 5c6962e894e0a118c9a4b5760876433493449260
Subproject commit b1e00025fa6cbc63062b205259ee70d91bfe4989

View File

@ -1,15 +1,9 @@
#
# Component Makefile
#
# This Makefile should, at the very least, just include $(SDK_PATH)/Makefile. By default,
# this will take the sources in this directory, compile them and link them into
# lib(subdirectory_name).a in the build directory. This behaviour is entirely configurable,
# please read the SDK documents if you need to do this.
#
COMPONENT_ADD_INCLUDEDIRS := port/include include/expat
COMPONENT_SRCDIRS := library port
CFLAGS += -Wno-unused-function -DHAVE_EXPAT_CONFIG_H
include $(IDF_PATH)/make/component_common.mk

View File

@ -108,44 +108,45 @@ add_failure(SRunner *runner, int verbosity)
}
}
static void run_test(SRunner *runner, int verbosity, TCase *tc, int i)
{
if (tc->setup != NULL) {
/* setup */
if (setjmp(env)) {
add_failure(runner, verbosity);
return;
}
tc->setup();
}
/* test */
if (setjmp(env)) {
add_failure(runner, verbosity);
return;
}
(tc->tests[i])();
/* teardown */
if (tc->teardown != NULL) {
if (setjmp(env)) {
add_failure(runner, verbosity);
return;
}
tc->teardown();
}
}
void
srunner_run_all(SRunner *runner, int verbosity)
{
Suite *suite;
TCase *tc;
assert(runner != NULL);
suite = runner->suite;
tc = suite->tests;
assert(runner->suite != NULL);
TCase *tc = runner->suite->tests;
while (tc != NULL) {
int i;
for (i = 0; i < tc->ntests; ++i) {
for (int i = 0; i < tc->ntests; ++i) {
runner->nchecks++;
if (tc->setup != NULL) {
/* setup */
if (setjmp(env)) {
add_failure(runner, verbosity);
continue;
}
tc->setup();
}
/* test */
if (setjmp(env)) {
add_failure(runner, verbosity);
continue;
}
(tc->tests[i])();
/* teardown */
if (tc->teardown != NULL) {
if (setjmp(env)) {
add_failure(runner, verbosity);
continue;
}
tc->teardown();
}
run_test(runner, verbosity, tc, i);
tc = tc->next_tcase;
}
tc = tc->next_tcase;
}
if (verbosity) {
int passed = runner->nchecks - runner->nfailures;

View File

@ -141,6 +141,35 @@ config FREERTOS_ISR_STACKSIZE
The interrupt handlers have their own stack. The size of the stack can be defined here.
Each processor has its own stack, so the total size occupied will be twice this.
config FREERTOS_LEGACY_HOOKS
bool "Use FreeRTOS legacy hooks"
default n
help
FreeRTOS offers a number of hooks/callback functions that are called when a timer
tick happens, the idle thread runs etc. esp-idf replaces these by runtime registerable
hooks using the esp_register_freertos_xxx_hook system, but for legacy reasons the old
hooks can also still be enabled. Please enable this only if you have code that for some
reason can't be migrated to the esp_register_freertos_xxx_hook system.
if FREERTOS_LEGACY_HOOKS
config FREERTOS_LEGACY_IDLE_HOOK
bool "Enable legacy idle hook"
default n
help
If enabled, FreeRTOS will call a function called vApplicationIdleHook when the idle thread
on a CPU is running. Please make sure your code defines such a function.
config FREERTOS_LEGACY_TICK_HOOK
bool "Enable legacy tick hook"
default n
help
If enabled, FreeRTOS will call a function called vApplicationTickHook when a FreeRTOS
tick is executed. Please make sure your code defines such a function.
endif #FREERTOS_LEGACY_HOOKS
menuconfig FREERTOS_DEBUG_INTERNALS
bool "Debug FreeRTOS internals"
default n

View File

@ -6,4 +6,3 @@ COMPONENT_ADD_LDFLAGS = -l$(COMPONENT_NAME) -Wl,--undefined=uxTopUsedPriority
COMPONENT_ADD_INCLUDEDIRS := include
COMPONENT_PRIV_INCLUDEDIRS := include/freertos
include $(IDF_PATH)/make/component_common.mk

View File

@ -152,9 +152,9 @@
*----------------------------------------------------------*/
#define configUSE_PREEMPTION 1
#define configUSE_IDLE_HOOK ( CONFIG_TASK_WDT_CHECK_IDLE_TASK )
#define configUSE_IDLE_HOOK ( CONFIG_FREERTOS_LEGACY_IDLE_HOOK )
#define configUSE_TICK_HOOK ( CONFIG_INT_WDT )
#define configUSE_TICK_HOOK ( CONFIG_FREERTOS_LEGACY_TICK_HOOK )
#define configTICK_RATE_HZ ( CONFIG_FREERTOS_HZ )
@ -265,12 +265,6 @@
#define INCLUDE_eTaskGetState 1
#define configUSE_QUEUE_SETS 1
#if (!defined XT_INTEXC_HOOKS)
#define configXT_INTEXC_HOOKS 1 /* Exception hooks used by certain tests */
#if configUSE_TRACE_FACILITY_2
#define configASSERT_2 1 /* Specific to Xtensa port */
#endif
#endif
#define configXT_BOARD 1 /* Board mode */
#define configXT_SIMULATOR 0

View File

@ -18,22 +18,34 @@ to this bit of memory will block.
The requirement for items to be contiguous is slightly problematic when the only way to place
the next item would involve a wraparound from the end to the beginning of the ringbuffer. This can
be solved in two ways:
- allow_split_items = pdTRUE: The insertion code will split the item in two items; one which fits
be solved (or not) in a few ways:
- type = RINGBUF_TYPE_ALLOWSPLIT: The insertion code will split the item in two items; one which fits
in the space left at the end of the ringbuffer, one that contains the remaining data which is placed
in the beginning. Two xRingbufferReceive calls will be needed to retrieve the data.
- allow_split_items = pdFALSE: The insertion code will leave the room at the end of the ringbuffer
- type = RINGBUF_TYPE_NOSPLIT: The insertion code will leave the room at the end of the ringbuffer
unused and instead will put the entire item at the start of the ringbuffer, as soon as there is
enough free space.
- type = RINGBUF_TYPE_BYTEBUF: This is your conventional byte-based ringbuffer. It does have no
overhead, but it has no item contiguousness either: a read will just give you the entire written
buffer space, or the space up to the end of the buffer, and writes can be broken up in any way
possible. Note that this type cannot do a 2nd read before returning the memory of the 1st.
The maximum size of an item will be affected by this decision. When split items are allowed, it's
acceptable to push items of (buffer_size)-16 bytes into the buffer. When it's not allowed, the
maximum size is (buffer_size/2)-8 bytes.
maximum size is (buffer_size/2)-8 bytes. The bytebuf can fill the entire buffer with data, it has
no overhead.
*/
//An opaque handle for a ringbuff object.
typedef void * RingbufHandle_t;
//The various types of buffer
typedef enum {
RINGBUF_TYPE_NOSPLIT = 0,
RINGBUF_TYPE_ALLOWSPLIT,
RINGBUF_TYPE_BYTEBUF
} ringbuf_type_t;
/**
* @brief Create a ring buffer
@ -45,7 +57,7 @@ typedef void * RingbufHandle_t;
*
* @return A RingbufHandle_t handle to the created ringbuffer, or NULL in case of error.
*/
RingbufHandle_t xRingbufferCreate(size_t buf_length, BaseType_t allow_split_items);
RingbufHandle_t xRingbufferCreate(size_t buf_length, ringbuf_type_t type);
/**
@ -120,6 +132,34 @@ void *xRingbufferReceive(RingbufHandle_t ringbuf, size_t *item_size, TickType_t
void *xRingbufferReceiveFromISR(RingbufHandle_t ringbuf, size_t *item_size);
/**
* @brief Retrieve bytes from a ByteBuf type of ring buffer, specifying the maximum amount of bytes
* to return
*
* @param ringbuf - Ring buffer to retrieve the item from
* @param item_size - Pointer to a variable to which the size of the retrieved item will be written.
* @param xTicksToWait - Ticks to wait for items in the ringbuffer.
*
* @return Pointer to the retrieved item on success; *item_size filled with the length of the
* item. NULL on timeout, *item_size is untouched in that case.
*/
void *xRingbufferReceiveUpTo(RingbufHandle_t ringbuf, size_t *item_size, TickType_t ticks_to_wait, size_t wanted_size);
/**
* @brief Retrieve bytes from a ByteBuf type of ring buffer, specifying the maximum amount of bytes
* to return. Call this from an ISR.
*
* @param ringbuf - Ring buffer to retrieve the item from
* @param item_size - Pointer to a variable to which the size of the retrieved item will be written.
*
* @return Pointer to the retrieved item on success; *item_size filled with the length of the
* item. NULL when the ringbuffer is empty, *item_size is untouched in that case.
*/
void *xRingbufferReceiveUpToFromISR(RingbufHandle_t ringbuf, size_t *item_size, size_t wanted_size);
/**
* @brief Return a previously-retrieved item to the ringbuffer
*

View File

@ -42,7 +42,8 @@ typedef void (*xt_exc_handler)(XtExcFrame *);
/*
-------------------------------------------------------------------------------
Call this function to set a handler for the specified exception.
Call this function to set a handler for the specified exception. The handler
will be installed on the core that calls this function.
n - Exception number (type)
f - Handler function address, NULL to uninstall handler.
@ -61,7 +62,8 @@ extern xt_exc_handler xt_set_exception_handler(int n, xt_exc_handler f);
/*
-------------------------------------------------------------------------------
Call this function to set a handler for the specified interrupt.
Call this function to set a handler for the specified interrupt. The handler
will be installed on the core that calls this function.
n - Interrupt number.
f - Handler function address, NULL to uninstall handler.
@ -73,7 +75,8 @@ extern xt_handler xt_set_interrupt_handler(int n, xt_handler f, void * arg);
/*
-------------------------------------------------------------------------------
Call this function to enable the specified interrupts.
Call this function to enable the specified interrupts on the core that runs
this code.
mask - Bit mask of interrupts to be enabled.
-------------------------------------------------------------------------------
@ -83,7 +86,8 @@ extern void xt_ints_on(unsigned int mask);
/*
-------------------------------------------------------------------------------
Call this function to disable the specified interrupts.
Call this function to disable the specified interrupts on the core that runs
this code.
mask - Bit mask of interrupts to be disabled.
-------------------------------------------------------------------------------

View File

@ -19,11 +19,6 @@ it would on a single-core system: the other core still will keep on
executing all it's own. Use a mux, queue or semaphore to protect your
structures instead.
- While each core has individual interrupts, the handlers are shared. This
means that when you set a handler for an interrupt, it will get triggered if
the interrupt is triggered on both CPU0 as well as on CPU1. This is something
we may change in future FreeRTOS-esp32 releases.
- This FreeRTOS version has the task local storage backported from the 8.2.x
versions. It, however, has an addition: you can also set a callback when you
set the pointer. This callback will be called by the idle task, with the

View File

@ -18,6 +18,7 @@
#include "freertos/queue.h"
#include "freertos/xtensa_api.h"
#include "freertos/ringbuf.h"
#include "esp_attr.h"
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
@ -25,6 +26,7 @@
typedef enum {
flag_allowsplit = 1,
flag_bytebuf = 2,
} rbflag_t;
typedef enum {
@ -33,8 +35,10 @@ typedef enum {
} itemflag_t;
typedef struct ringbuf_t ringbuf_t;
//The ringbuffer structure
typedef struct {
struct ringbuf_t {
SemaphoreHandle_t free_space_sem; //Binary semaphore, wakes up writing threads when there's more free space
SemaphoreHandle_t items_buffered_sem; //Binary semaphore, indicates there are new packets in the circular buffer. See remark.
size_t size; //Size of the data storage
@ -44,7 +48,12 @@ typedef struct {
uint8_t *data; //Data storage
portMUX_TYPE mux; //Spinlock for actual data/ptr/struct modification
rbflag_t flags;
} ringbuf_t;
size_t maxItemSize;
//The following keep function pointers to hold different implementations for ringbuffer management.
BaseType_t (*copyItemToRingbufImpl)(ringbuf_t *rb, uint8_t *buffer, size_t buffer_size);
uint8_t *(*getItemFromRingbufImpl)(ringbuf_t *rb, size_t *length, int wanted_length);
void (*returnItemToRingbufImpl)(ringbuf_t *rb, void *item);
};
@ -73,14 +82,16 @@ static int ringbufferFreeMem(ringbuf_t *rb)
return free_size-1;
}
//Copies a single item to the ring buffer. Assumes there is space in the ringbuffer and
//Copies a single item to the ring buffer; refuses to split items. Assumes there is space in the ringbuffer and
//the ringbuffer is locked. Increases write_ptr to the next item. Returns pdTRUE on
//success, pdFALSE if it can't make the item fit and the calling routine needs to retry
//later or fail.
//This function by itself is not threadsafe, always call from within a muxed section.
static BaseType_t copyItemToRingbuf(ringbuf_t *rb, uint8_t *buffer, size_t buffer_size)
static BaseType_t copyItemToRingbufNoSplit(ringbuf_t *rb, uint8_t *buffer, size_t buffer_size)
{
size_t rbuffer_size=(buffer_size+3)&~3; //Payload length, rounded to next 32-bit value
size_t rbuffer_size;
rbuffer_size=(buffer_size+3)&~3; //Payload length, rounded to next 32-bit value
configASSERT(((int)rb->write_ptr&3)==0); //write_ptr needs to be 32-bit aligned
configASSERT(rb->write_ptr-(rb->data+rb->size) >= sizeof(buf_entry_hdr_t)); //need to have at least the size
//of a header to the end of the ringbuff
@ -88,65 +99,28 @@ static BaseType_t copyItemToRingbuf(ringbuf_t *rb, uint8_t *buffer, size_t buffe
//See if we have enough contiguous space to write the buffer.
if (rem_len < rbuffer_size + sizeof(buf_entry_hdr_t)) {
//The buffer can't be contiguously written to the ringbuffer, but needs special handling. Do
//that depending on how the ringbuffer is configured.
//The code here is also expected to check if the buffer, mangled in whatever way is implemented,
//will still fit, and return pdFALSE if that is not the case.
if (rb->flags & flag_allowsplit) {
//Buffer plus header is not going to fit in the room from wr_pos to the end of the
//ringbuffer... we need to split the write in two.
//First, see if this will fit at all.
if (ringbufferFreeMem(rb) < (sizeof(buf_entry_hdr_t)*2)+rbuffer_size) {
//Will not fit.
return pdFALSE;
}
//Because the code at the end of the function makes sure we always have
//room for a header, this should never assert.
configASSERT(rem_len>=sizeof(buf_entry_hdr_t));
//Okay, it should fit. Write everything.
//First, place bit of buffer that does fit. Write header first...
buf_entry_hdr_t *hdr=(buf_entry_hdr_t *)rb->write_ptr;
hdr->flags=0;
hdr->len=rem_len-sizeof(buf_entry_hdr_t);
rb->write_ptr+=sizeof(buf_entry_hdr_t);
rem_len-=sizeof(buf_entry_hdr_t);
if (rem_len!=0) {
//..then write the data bit that fits.
memcpy(rb->write_ptr, buffer, rem_len);
//Update vars so the code later on will write the rest of the data.
buffer+=rem_len;
rbuffer_size-=rem_len;
buffer_size-=rem_len;
} else {
//Huh, only the header fit. Mark as dummy so the receive function doesn't receive
//an useless zero-byte packet.
hdr->flags|=iflag_dummydata;
}
rb->write_ptr=rb->data;
} else {
//Buffer plus header is not going to fit in the room from wr_pos to the end of the
//ringbuffer... but we're not allowed to split the buffer. We need to fill the
//rest of the ringbuffer with a dummy item so we can place the data at the _start_ of
//the ringbuffer..
//First, find out if we actually have enough space at the start of the ringbuffer to
//make this work (Again, we need 4 bytes extra because otherwise read_ptr==free_ptr)
if (rb->free_ptr-rb->data < rbuffer_size+sizeof(buf_entry_hdr_t)+4) {
//Will not fit.
return pdFALSE;
}
//If the read buffer hasn't wrapped around yet, there's no way this will work either.
if (rb->free_ptr > rb->write_ptr) {
//No luck.
return pdFALSE;
}
//Okay, it will fit. Mark the rest of the ringbuffer space with a dummy packet.
buf_entry_hdr_t *hdr=(buf_entry_hdr_t *)rb->write_ptr;
hdr->flags=iflag_dummydata;
//Reset the write pointer to the start of the ringbuffer so the code later on can
//happily write the data.
rb->write_ptr=rb->data;
//Buffer plus header is not going to fit in the room from wr_pos to the end of the
//ringbuffer... but we're not allowed to split the buffer. We need to fill the
//rest of the ringbuffer with a dummy item so we can place the data at the _start_ of
//the ringbuffer..
//First, find out if we actually have enough space at the start of the ringbuffer to
//make this work (Again, we need 4 bytes extra because otherwise read_ptr==free_ptr)
if (rb->free_ptr-rb->data < rbuffer_size+sizeof(buf_entry_hdr_t)+4) {
//Will not fit.
return pdFALSE;
}
//If the read buffer hasn't wrapped around yet, there's no way this will work either.
if (rb->free_ptr > rb->write_ptr) {
//No luck.
return pdFALSE;
}
//Okay, it will fit. Mark the rest of the ringbuffer space with a dummy packet.
buf_entry_hdr_t *hdr=(buf_entry_hdr_t *)rb->write_ptr;
hdr->flags=iflag_dummydata;
//Reset the write pointer to the start of the ringbuffer so the code later on can
//happily write the data.
rb->write_ptr=rb->data;
} else {
//No special handling needed. Checking if it's gonna fit probably still is a good idea.
if (ringbufferFreeMem(rb) < sizeof(buf_entry_hdr_t)+rbuffer_size) {
@ -174,9 +148,117 @@ static BaseType_t copyItemToRingbuf(ringbuf_t *rb, uint8_t *buffer, size_t buffe
return pdTRUE;
}
//Copies a single item to the ring buffer; allows split items. Assumes there is space in the ringbuffer and
//the ringbuffer is locked. Increases write_ptr to the next item. Returns pdTRUE on
//success, pdFALSE if it can't make the item fit and the calling routine needs to retry
//later or fail.
//This function by itself is not threadsafe, always call from within a muxed section.
static BaseType_t copyItemToRingbufAllowSplit(ringbuf_t *rb, uint8_t *buffer, size_t buffer_size)
{
size_t rbuffer_size;
rbuffer_size=(buffer_size+3)&~3; //Payload length, rounded to next 32-bit value
configASSERT(((int)rb->write_ptr&3)==0); //write_ptr needs to be 32-bit aligned
configASSERT(rb->write_ptr-(rb->data+rb->size) >= sizeof(buf_entry_hdr_t)); //need to have at least the size
//of a header to the end of the ringbuff
size_t rem_len=(rb->data + rb->size) - rb->write_ptr; //length remaining until end of ringbuffer
//See if we have enough contiguous space to write the buffer.
if (rem_len < rbuffer_size + sizeof(buf_entry_hdr_t)) {
//The buffer can't be contiguously written to the ringbuffer, but needs special handling. Do
//that depending on how the ringbuffer is configured.
//The code here is also expected to check if the buffer, mangled in whatever way is implemented,
//will still fit, and return pdFALSE if that is not the case.
//Buffer plus header is not going to fit in the room from wr_pos to the end of the
//ringbuffer... we need to split the write in two.
//First, see if this will fit at all.
if (ringbufferFreeMem(rb) < (sizeof(buf_entry_hdr_t)*2)+rbuffer_size) {
//Will not fit.
return pdFALSE;
}
//Because the code at the end of the function makes sure we always have
//room for a header, this should never assert.
configASSERT(rem_len>=sizeof(buf_entry_hdr_t));
//Okay, it should fit. Write everything.
//First, place bit of buffer that does fit. Write header first...
buf_entry_hdr_t *hdr=(buf_entry_hdr_t *)rb->write_ptr;
hdr->flags=0;
hdr->len=rem_len-sizeof(buf_entry_hdr_t);
rb->write_ptr+=sizeof(buf_entry_hdr_t);
rem_len-=sizeof(buf_entry_hdr_t);
if (rem_len!=0) {
//..then write the data bit that fits.
memcpy(rb->write_ptr, buffer, rem_len);
//Update vars so the code later on will write the rest of the data.
buffer+=rem_len;
rbuffer_size-=rem_len;
buffer_size-=rem_len;
} else {
//Huh, only the header fit. Mark as dummy so the receive function doesn't receive
//an useless zero-byte packet.
hdr->flags|=iflag_dummydata;
}
rb->write_ptr=rb->data;
} else {
//No special handling needed. Checking if it's gonna fit probably still is a good idea.
if (ringbufferFreeMem(rb) < sizeof(buf_entry_hdr_t)+rbuffer_size) {
//Buffer is not going to fit, period.
return pdFALSE;
}
}
//If we are here, the buffer is guaranteed to fit in the space starting at the write pointer.
buf_entry_hdr_t *hdr=(buf_entry_hdr_t *)rb->write_ptr;
hdr->len=buffer_size;
hdr->flags=0;
rb->write_ptr+=sizeof(buf_entry_hdr_t);
memcpy(rb->write_ptr, buffer, buffer_size);
rb->write_ptr+=rbuffer_size;
//The buffer will wrap around if we don't have room for a header anymore.
if ((rb->data+rb->size)-rb->write_ptr < sizeof(buf_entry_hdr_t)) {
//'Forward' the write buffer until we are at the start of the ringbuffer.
//The read pointer will always be at the start of a full header, which cannot
//exist at the point of the current write pointer, so there's no chance of overtaking
//that.
rb->write_ptr=rb->data;
}
return pdTRUE;
}
//Copies a bunch of daya to the ring bytebuffer. Assumes there is space in the ringbuffer and
//the ringbuffer is locked. Increases write_ptr to the next item. Returns pdTRUE on
//success, pdFALSE if it can't make the item fit and the calling routine needs to retry
//later or fail.
//This function by itself is not threadsafe, always call from within a muxed section.
static BaseType_t copyItemToRingbufByteBuf(ringbuf_t *rb, uint8_t *buffer, size_t buffer_size)
{
size_t rem_len=(rb->data + rb->size) - rb->write_ptr; //length remaining until end of ringbuffer
//See if we have enough contiguous space to write the buffer.
if (rem_len < buffer_size) {
//...Nope. Write the data bit that fits.
memcpy(rb->write_ptr, buffer, rem_len);
//Update vars so the code later on will write the rest of the data.
buffer+=rem_len;
buffer_size-=rem_len;
rb->write_ptr=rb->data;
}
//If we are here, the buffer is guaranteed to fit in the space starting at the write pointer.
memcpy(rb->write_ptr, buffer, buffer_size);
rb->write_ptr+=buffer_size;
//The buffer will wrap around if we're at the end.
if ((rb->data+rb->size)==rb->write_ptr) {
rb->write_ptr=rb->data;
}
return pdTRUE;
}
//Retrieves a pointer to the data of the next item, or NULL if this is not possible.
//This function by itself is not threadsafe, always call from within a muxed section.
static uint8_t *getItemFromRingbuf(ringbuf_t *rb, size_t *length)
//Because we always return one item, this function ignores the wanted_length variable.
static uint8_t *getItemFromRingbufDefault(ringbuf_t *rb, size_t *length, int wanted_length)
{
uint8_t *ret;
configASSERT(((int)rb->read_ptr&3)==0);
@ -210,10 +292,48 @@ static uint8_t *getItemFromRingbuf(ringbuf_t *rb, size_t *length)
return ret;
}
//Retrieves a pointer to the data in the buffer, or NULL if this is not possible.
//This function by itself is not threadsafe, always call from within a muxed section.
//This function honours the wanted_length and will never return more data than this.
static uint8_t *getItemFromRingbufByteBuf(ringbuf_t *rb, size_t *length, int wanted_length)
{
uint8_t *ret;
if (rb->read_ptr != rb->free_ptr) {
//This type of ringbuff does not support multiple outstanding buffers.
return NULL;
}
if (rb->read_ptr == rb->write_ptr) {
//No data available.
return NULL;
}
ret=rb->read_ptr;
if (rb->read_ptr > rb->write_ptr) {
//Available data wraps around. Give data until the end of the buffer.
*length=rb->size-(rb->read_ptr - rb->data);
if (wanted_length != 0 && *length > wanted_length) {
*length=wanted_length;
rb->read_ptr+=wanted_length;
} else {
rb->read_ptr=rb->data;
}
} else {
//Return data up to write pointer.
*length=rb->write_ptr -rb->read_ptr;
if (wanted_length != 0 && *length > wanted_length) {
*length=wanted_length;
rb->read_ptr+=wanted_length;
} else {
rb->read_ptr=rb->write_ptr;
}
}
return ret;
}
//Returns an item to the ringbuffer. Will mark the item as free, and will see if the free pointer
//can be increase.
//This function by itself is not threadsafe, always call from within a muxed section.
static void returnItemToRingbuf(ringbuf_t *rb, void *item) {
static void returnItemToRingbufDefault(ringbuf_t *rb, void *item) {
uint8_t *data=(uint8_t*)item;
configASSERT(((int)rb->free_ptr&3)==0);
configASSERT(data >= rb->data);
@ -243,12 +363,26 @@ static void returnItemToRingbuf(ringbuf_t *rb, void *item) {
if ((rb->data+rb->size)-rb->free_ptr < sizeof(buf_entry_hdr_t)) {
rb->free_ptr=rb->data;
}
//The free_ptr can not exceed read_ptr, otherwise write_ptr might overwrite read_ptr.
//Read_ptr can not set to rb->data with free_ptr, otherwise write_ptr might wrap around to rb->data.
if(rb->free_ptr == rb->read_ptr) break;
//Next header
hdr=(buf_entry_hdr_t *)rb->free_ptr;
}
}
//Returns an item to the ringbuffer. Will mark the item as free, and will see if the free pointer
//can be increase.
//This function by itself is not threadsafe, always call from within a muxed section.
static void returnItemToRingbufBytebuf(ringbuf_t *rb, void *item) {
uint8_t *data=(uint8_t*)item;
configASSERT(data >= rb->data);
configASSERT(data < rb->data+rb->size);
//Free the read memory.
rb->free_ptr=rb->read_ptr;
}
void xRingbufferPrintInfo(RingbufHandle_t ringbuf)
{
ringbuf_t *rb=(ringbuf_t *)ringbuf;
@ -259,7 +393,7 @@ void xRingbufferPrintInfo(RingbufHandle_t ringbuf)
RingbufHandle_t xRingbufferCreate(size_t buf_length, BaseType_t allow_split_items)
RingbufHandle_t xRingbufferCreate(size_t buf_length, ringbuf_type_t type)
{
ringbuf_t *rb = malloc(sizeof(ringbuf_t));
if (rb==NULL) goto err;
@ -273,9 +407,35 @@ RingbufHandle_t xRingbufferCreate(size_t buf_length, BaseType_t allow_split_item
rb->free_space_sem = xSemaphoreCreateBinary();
rb->items_buffered_sem = xSemaphoreCreateBinary();
rb->flags=0;
if (allow_split_items) rb->flags|=flag_allowsplit;
if (type==RINGBUF_TYPE_ALLOWSPLIT) {
rb->flags|=flag_allowsplit;
rb->copyItemToRingbufImpl=copyItemToRingbufAllowSplit;
rb->getItemFromRingbufImpl=getItemFromRingbufDefault;
rb->returnItemToRingbufImpl=returnItemToRingbufDefault;
//Calculate max item size. Worst case, we need to split an item into two, which means two headers of overhead.
rb->maxItemSize=rb->size-(sizeof(buf_entry_hdr_t)*2)-4;
} else if (type==RINGBUF_TYPE_BYTEBUF) {
rb->flags|=flag_bytebuf;
rb->copyItemToRingbufImpl=copyItemToRingbufByteBuf;
rb->getItemFromRingbufImpl=getItemFromRingbufByteBuf;
rb->returnItemToRingbufImpl=returnItemToRingbufBytebuf;
//Calculate max item size. We have no headers and can split anywhere -> size is total size minus one.
rb->maxItemSize=rb->size-1;
} else if (type==RINGBUF_TYPE_NOSPLIT) {
rb->copyItemToRingbufImpl=copyItemToRingbufNoSplit;
rb->getItemFromRingbufImpl=getItemFromRingbufDefault;
rb->returnItemToRingbufImpl=returnItemToRingbufDefault;
//Calculate max item size. Worst case, we have the write ptr in such a position that we are lacking four bytes of free
//memory to put an item into the rest of the memory. If this happens, we have to dummy-fill
//(item_data-4) bytes of buffer, then we only have (size-(item_data-4) bytes left to fill
//with the real item. (item size being header+data)
rb->maxItemSize=(rb->size/2)-sizeof(buf_entry_hdr_t)-4;
} else {
configASSERT(0);
}
if (rb->free_space_sem == NULL || rb->items_buffered_sem == NULL) goto err;
vPortCPUInitializeMutex(&rb->mux);
return (RingbufHandle_t)rb;
err:
@ -303,18 +463,7 @@ size_t xRingbufferGetMaxItemSize(RingbufHandle_t ringbuf)
{
ringbuf_t *rb=(ringbuf_t *)ringbuf;
configASSERT(rb);
//In both cases, we return 4 bytes less than what we actually can have. If the ringbuffer is
//indeed entirely filled, read_ptr==free_ptr, which throws off the free space calculation.
if (rb->flags & flag_allowsplit) {
//Worst case, we need to split an item into two, which means two headers of overhead.
return rb->size-(sizeof(buf_entry_hdr_t)*2)-4;
} else {
//Worst case, we have the write ptr in such a position that we are lacking four bytes of free
//memory to put an item into the rest of the memory. If this happens, we have to dummy-fill
//(item_data-4) bytes of buffer, then we only have (size-(item_data-4) bytes left to fill
//with the real item. (item size being header+data)
return (rb->size/2)-sizeof(buf_entry_hdr_t)-4;
}
return rb->maxItemSize;
}
BaseType_t xRingbufferSend(RingbufHandle_t ringbuf, void *data, size_t dataSize, TickType_t ticks_to_wait)
@ -322,7 +471,8 @@ BaseType_t xRingbufferSend(RingbufHandle_t ringbuf, void *data, size_t dataSize,
ringbuf_t *rb=(ringbuf_t *)ringbuf;
size_t needed_size=dataSize+sizeof(buf_entry_hdr_t);
BaseType_t done=pdFALSE;
portTickType ticks_end=xTaskGetTickCount() + ticks_to_wait;
TickType_t ticks_end = xTaskGetTickCount() + ticks_to_wait;
TickType_t ticks_remaining = ticks_to_wait;
configASSERT(rb);
@ -337,22 +487,31 @@ BaseType_t xRingbufferSend(RingbufHandle_t ringbuf, void *data, size_t dataSize,
if (ringbufferFreeMem(rb) < needed_size) {
//Data does not fit yet. Wait until the free_space_sem is given, then re-evaluate.
BaseType_t r = xSemaphoreTake(rb->free_space_sem, ticks_to_wait);
BaseType_t r = xSemaphoreTake(rb->free_space_sem, ticks_remaining);
if (r == pdFALSE) {
//Timeout.
return pdFALSE;
}
//Adjust ticks_to_wait; we may have waited less than that and in the case the free memory still is not enough,
//Adjust ticks_remaining; we may have waited less than that and in the case the free memory still is not enough,
//we will need to wait some more.
ticks_to_wait = ticks_end - xTaskGetTickCount();
if (ticks_to_wait != portMAX_DELAY) {
ticks_remaining = ticks_end - xTaskGetTickCount();
}
// ticks_remaining will always be less than or equal to the original ticks_to_wait,
// unless the timeout is reached - in which case it unsigned underflows to a much
// higher value.
//
// (Check is written this non-intuitive way to allow for the case where xTaskGetTickCount()
// has overflowed but the ticks_end value has not overflowed.)
}
} while (ringbufferFreeMem(rb) < needed_size && ticks_to_wait>=0);
} while (ringbufferFreeMem(rb) < needed_size && ticks_remaining > 0 && ticks_remaining <= ticks_to_wait);
//Lock the mux in order to make sure no one else is messing with the ringbuffer and do the copy.
portENTER_CRITICAL(&rb->mux);
//Another thread may have been able to sneak its write first. Check again now we locked the ringbuff, and retry
//everything if this is the case. Otherwise, we can write and are done.
done=copyItemToRingbuf(rb, data, dataSize);
done=rb->copyItemToRingbufImpl(rb, data, dataSize);
portEXIT_CRITICAL(&rb->mux);
}
xSemaphoreGive(rb->items_buffered_sem);
@ -371,8 +530,7 @@ BaseType_t xRingbufferSendFromISR(RingbufHandle_t ringbuf, void *data, size_t da
//Does not fit in the remaining space in the ringbuffer.
write_succeeded=pdFALSE;
} else {
copyItemToRingbuf(rb, data, dataSize);
write_succeeded=pdTRUE;
write_succeeded = rb->copyItemToRingbufImpl(rb, data, dataSize);
}
portEXIT_CRITICAL_ISR(&rb->mux);
if (write_succeeded) {
@ -382,7 +540,7 @@ BaseType_t xRingbufferSendFromISR(RingbufHandle_t ringbuf, void *data, size_t da
}
void *xRingbufferReceive(RingbufHandle_t ringbuf, size_t *item_size, TickType_t ticks_to_wait)
static void *xRingbufferReceiveGeneric(RingbufHandle_t ringbuf, size_t *item_size, TickType_t ticks_to_wait, size_t wanted_size)
{
ringbuf_t *rb=(ringbuf_t *)ringbuf;
uint8_t *itemData;
@ -399,7 +557,7 @@ void *xRingbufferReceive(RingbufHandle_t ringbuf, size_t *item_size, TickType_t
}
//Okay, we seem to have data in the buffer. Grab the mux and copy it out if it's still there.
portENTER_CRITICAL(&rb->mux);
itemData=getItemFromRingbuf(rb, item_size);
itemData=rb->getItemFromRingbufImpl(rb, item_size, wanted_size);
portEXIT_CRITICAL(&rb->mux);
if (itemData) {
//We managed to get an item.
@ -409,6 +567,11 @@ void *xRingbufferReceive(RingbufHandle_t ringbuf, size_t *item_size, TickType_t
return (void*)itemData;
}
void *xRingbufferReceive(RingbufHandle_t ringbuf, size_t *item_size, TickType_t ticks_to_wait)
{
return xRingbufferReceiveGeneric(ringbuf, item_size, ticks_to_wait, 0);
}
void *xRingbufferReceiveFromISR(RingbufHandle_t ringbuf, size_t *item_size)
{
@ -416,7 +579,28 @@ void *xRingbufferReceiveFromISR(RingbufHandle_t ringbuf, size_t *item_size)
uint8_t *itemData;
configASSERT(rb);
portENTER_CRITICAL_ISR(&rb->mux);
itemData=getItemFromRingbuf(rb, item_size);
itemData=rb->getItemFromRingbufImpl(rb, item_size, 0);
portEXIT_CRITICAL_ISR(&rb->mux);
return (void*)itemData;
}
void *xRingbufferReceiveUpTo(RingbufHandle_t ringbuf, size_t *item_size, TickType_t ticks_to_wait, size_t wanted_size) {
ringbuf_t *rb=(ringbuf_t *)ringbuf;
if (wanted_size == 0) return NULL;
configASSERT(rb);
configASSERT(rb->flags & flag_bytebuf);
return xRingbufferReceiveGeneric(ringbuf, item_size, ticks_to_wait, wanted_size);
}
void *xRingbufferReceiveUpToFromISR(RingbufHandle_t ringbuf, size_t *item_size, size_t wanted_size)
{
ringbuf_t *rb=(ringbuf_t *)ringbuf;
uint8_t *itemData;
if (wanted_size == 0) return NULL;
configASSERT(rb);
configASSERT(rb->flags & flag_bytebuf);
portENTER_CRITICAL_ISR(&rb->mux);
itemData=rb->getItemFromRingbufImpl(rb, item_size, 0);
portEXIT_CRITICAL_ISR(&rb->mux);
return (void*)itemData;
}
@ -426,7 +610,7 @@ void vRingbufferReturnItem(RingbufHandle_t ringbuf, void *item)
{
ringbuf_t *rb=(ringbuf_t *)ringbuf;
portENTER_CRITICAL_ISR(&rb->mux);
returnItemToRingbuf(rb, item);
rb->returnItemToRingbufImpl(rb, item);
portEXIT_CRITICAL_ISR(&rb->mux);
xSemaphoreGive(rb->free_space_sem);
}
@ -436,7 +620,7 @@ void vRingbufferReturnItemFromISR(RingbufHandle_t ringbuf, void *item, BaseType_
{
ringbuf_t *rb=(ringbuf_t *)ringbuf;
portENTER_CRITICAL_ISR(&rb->mux);
returnItemToRingbuf(rb, item);
rb->returnItemToRingbufImpl(rb, item);
portEXIT_CRITICAL_ISR(&rb->mux);
xSemaphoreGiveFromISR(rb->free_space_sem, higher_prio_task_awoken);
}

View File

@ -476,6 +476,7 @@ to its original value when it is released. */
#if configUSE_TICK_HOOK > 0
extern void vApplicationTickHook( void );
#endif
extern void esp_vApplicationTickHook( void );
#if portFIRST_TASK_HOOK
extern void vPortFirstTaskHook(TaskFunction_t taskfn);
@ -2360,22 +2361,21 @@ BaseType_t xSwitchRequired = pdFALSE;
We can't really calculate what we need, that's done on core 0... just assume we need a switch.
ToDo: Make this more intelligent? -- JD
*/
//We do need the tick hook to satisfy the int watchdog.
#if ( configUSE_TICK_HOOK == 1 )
{
/* Guard against the tick hook being called when the pended tick
count is being unwound (when the scheduler is being unlocked). */
if( ( uxSchedulerSuspended[ xPortGetCoreID() ] != ( UBaseType_t ) pdFALSE ) || uxPendedTicks == ( UBaseType_t ) 0U )
{
#if ( configUSE_TICK_HOOK == 1 )
vApplicationTickHook();
#endif /* configUSE_TICK_HOOK */
esp_vApplicationTickHook();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* configUSE_TICK_HOOK */
return pdTRUE;
}
@ -2506,20 +2506,21 @@ BaseType_t xSwitchRequired = pdFALSE;
}
#endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */
#if ( configUSE_TICK_HOOK == 1 )
{
/* Guard against the tick hook being called when the pended tick
count is being unwound (when the scheduler is being unlocked). */
if( uxPendedTicks == ( UBaseType_t ) 0U )
{
#if ( configUSE_TICK_HOOK == 1 )
vApplicationTickHook();
#endif /* configUSE_TICK_HOOK */
esp_vApplicationTickHook();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif /* configUSE_TICK_HOOK */
taskEXIT_CRITICAL_ISR(&xTaskQueueMutex);
}
else
@ -2533,6 +2534,7 @@ BaseType_t xSwitchRequired = pdFALSE;
vApplicationTickHook();
}
#endif
esp_vApplicationTickHook();
}
#if ( configUSE_PREEMPTION == 1 )
@ -2702,7 +2704,7 @@ void vTaskSwitchContext( void )
taskENTER_CRITICAL_ISR(&xTaskQueueMutex);
unsigned portBASE_TYPE foundNonExecutingWaiter = pdFALSE, ableToSchedule = pdFALSE, resetListHead;
unsigned portBASE_TYPE uxDynamicTopReady = uxTopReadyPriority;
portBASE_TYPE uxDynamicTopReady = uxTopReadyPriority;
unsigned portBASE_TYPE holdTop=pdFALSE;
/*
@ -2715,8 +2717,6 @@ void vTaskSwitchContext( void )
while ( ableToSchedule == pdFALSE && uxDynamicTopReady >= 0 )
{
configASSERT( uxTopReadyPriority>=0 );
configASSERT( uxDynamicTopReady>=0 );
resetListHead = pdFALSE;
// Nothing to do for empty lists
if (!listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxDynamicTopReady ] ) )) {
@ -3270,6 +3270,12 @@ static portTASK_FUNCTION( prvIdleTask, pvParameters )
vApplicationIdleHook();
}
#endif /* configUSE_IDLE_HOOK */
{
/* Call the esp-idf hook system */
extern void esp_vApplicationIdleHook( void );
esp_vApplicationIdleHook();
}
/* This conditional compilation should use inequality to 0, not equality
to 1. This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when

View File

@ -30,7 +30,9 @@ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#include <xtensa/config/core.h>
#include "freertos/FreeRTOS.h"
#include "freertos/xtensa_api.h"
#include "freertos/portable.h"
#include "rom/ets_sys.h"
@ -39,7 +41,7 @@ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
/* Handler table is in xtensa_intr_asm.S */
// Todo: Make multicore - JD
extern xt_exc_handler _xt_exception_table[XCHAL_EXCCAUSE_NUM];
extern xt_exc_handler _xt_exception_table[XCHAL_EXCCAUSE_NUM*portNUM_PROCESSORS];
/*
@ -66,6 +68,8 @@ xt_exc_handler xt_set_exception_handler(int n, xt_exc_handler f)
if( n < 0 || n >= XCHAL_EXCCAUSE_NUM )
return 0; /* invalid exception number */
/* Convert exception number to _xt_exception_table name */
n = n * portNUM_PROCESSORS + xPortGetCoreID();
old = _xt_exception_table[n];
if (f) {
@ -89,7 +93,7 @@ typedef struct xt_handler_table_entry {
void * arg;
} xt_handler_table_entry;
extern xt_handler_table_entry _xt_interrupt_table[XCHAL_NUM_INTERRUPTS];
extern xt_handler_table_entry _xt_interrupt_table[XCHAL_NUM_INTERRUPTS*portNUM_PROCESSORS];
/*
@ -118,6 +122,9 @@ xt_handler xt_set_interrupt_handler(int n, xt_handler f, void * arg)
if( Xthal_intlevel[n] > XCHAL_EXCM_LEVEL )
return 0; /* priority level too high to safely handle in C */
/* Convert exception number to _xt_exception_table name */
n = n * portNUM_PROCESSORS + xPortGetCoreID();
entry = _xt_interrupt_table + n;
old = entry->handler;

View File

@ -30,6 +30,7 @@ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#include <xtensa/config/core.h>
#include "xtensa_context.h"
#include "FreeRTOSConfig.h"
#if XCHAL_HAVE_INTERRUPTS
@ -59,6 +60,15 @@ _xt_vpri_mask: .word 0xFFFFFFFF /* Virtual priority mask */
Table of C-callable interrupt handlers for each interrupt. Note that not all
slots can be filled, because interrupts at level > EXCM_LEVEL will not be
dispatched to a C handler by default.
Stored as:
int 0 cpu 0
int 0 cpu 1
...
int 0 cpu n
int 1 cpu 0
int 1 cpu 1
etc
-------------------------------------------------------------------------------
*/
@ -69,7 +79,7 @@ _xt_vpri_mask: .word 0xFFFFFFFF /* Virtual priority mask */
_xt_interrupt_table:
.set i, 0
.rept XCHAL_NUM_INTERRUPTS
.rept XCHAL_NUM_INTERRUPTS*portNUM_PROCESSORS
.word xt_unhandled_interrupt /* handler address */
.word i /* handler arg (default: intnum) */
.set i, i+1
@ -85,6 +95,15 @@ _xt_interrupt_table:
Table of C-callable exception handlers for each exception. Note that not all
slots will be active, because some exceptions (e.g. coprocessor exceptions)
are always handled by the OS and cannot be hooked by user handlers.
Stored as:
exc 0 cpu 0
exc 0 cpu 1
...
exc 0 cpu n
exc 1 cpu 0
exc 1 cpu 1
etc
-------------------------------------------------------------------------------
*/
@ -93,7 +112,7 @@ _xt_interrupt_table:
.align 4
_xt_exception_table:
.rept XCHAL_EXCCAUSE_NUM
.rept XCHAL_EXCCAUSE_NUM * portNUM_PROCESSORS
.word xt_unhandled_exception /* handler address */
.endr

View File

@ -113,6 +113,27 @@ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#define XIE_ARG 4
#define XIE_SIZE 8
/*
Macro get_percpu_entry_for - convert a per-core ID into a multicore entry.
Basically does reg=reg*portNUM_PROCESSORS+current_core_id
Multiple versions here to optimize for specific portNUM_PROCESSORS values.
*/
.macro get_percpu_entry_for reg scratch
#if (portNUM_PROCESSORS == 1)
/* No need to do anything */
#elif (portNUM_PROCESSORS == 2)
/* Optimized 2-core code. */
getcoreid \scratch
addx2 \reg,\reg,\scratch
#else
/* Generalized n-core code. Untested! */
movi \scratch,portNUM_PROCESSORS
mull \scratch,\reg,\scratch
getcoreid \reg
add \reg,\scratch,\reg
#endif
.endm
/*
--------------------------------------------------------------------------------
Macro extract_msb - return the input with only the highest bit set.
@ -229,6 +250,7 @@ SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
find_ms_setbit a3, a4, a3, 0 /* a3 = interrupt number */
get_percpu_entry_for a3, a12
movi a4, _xt_interrupt_table
addx8 a3, a3, a4 /* a3 = address of interrupt table entry */
l32i a4, a3, XIE_HANDLER /* a4 = handler address */
@ -395,6 +417,9 @@ panic_print_hex_ok:
with index 0 containing the entry for user exceptions.
Initialized with all 0s, meaning no handler is installed at each level.
See comment in xtensa_rtos.h for more details.
*WARNING* This array is for all CPUs, that is, installing a hook for
one CPU will install it for all others as well!
--------------------------------------------------------------------------------
*/
@ -688,6 +713,7 @@ _xt_user_exc:
rsr a2, EXCCAUSE /* recover exc cause */
movi a3, _xt_exception_table
get_percpu_entry_for a3, a4
addx4 a4, a2, a3 /* a4 = address of exception table entry */
l32i a4, a4, 0 /* a4 = handler address */
#ifdef __XTENSA_CALL0_ABI__

View File

@ -1,13 +1,7 @@
#
# Component Makefile
#
# This Makefile should, at the very least, just include $(SDK_PATH)/Makefile. By default,
# this will take the sources in this directory, compile them and link them into
# lib(subdirectory_name).a in the build directory. This behaviour is entirely configurable,
# please read the SDK documents if you need to do this.
#
COMPONENT_ADD_INCLUDEDIRS := include port/include
COMPONENT_SRCDIRS := library port
include $(IDF_PATH)/make/component_common.mk

View File

@ -1,3 +1,5 @@
COMPONENT_ADD_INCLUDEDIRS := include
#
# Component Makefile
#
# (Uses default behaviour of compiling all source files in directory, adding 'include' to include path.)
include $(IDF_PATH)/make/component_common.mk

View File

@ -19,6 +19,10 @@
#include <stdarg.h>
#include "sdkconfig.h"
#ifdef BOOTLOADER_BUILD
#include <rom/ets_sys.h>
#endif
#ifdef __cplusplus
extern "C" {
#endif

View File

@ -1,5 +1,21 @@
menu "LWIP"
config L2_TO_L3_COPY
bool "Enable copy between Layer2 and Layer3 packets"
default 0
help
If this feature is enabled, all traffic from layer2(WIFI Driver) will be
copied to a new buffer before sending it to layer3(LWIP stack), freeing
the layer2 buffer.
Please be notified that the total layer2 receiving buffer is fixed and
ESP32 currently supports 25 layer2 receiving buffer, when layer2 buffer
runs out of memory, then the incoming packets will be dropped in hardware.
The layer3 buffer is allocated from the heap, so the total layer3 receiving
buffer depends on the available heap size, when heap runs out of memory,
no copy will be sent to layer3 and packet will be dropped in layer2.
Please make sure you fully understand the impact of this feature before
enabling it.
config LWIP_MAX_SOCKETS
int "Max number of open sockets"
range 1 16

View File

@ -8,4 +8,3 @@ COMPONENT_SRCDIRS := api apps/sntp apps core/ipv4 core/ipv6 core netif port/free
CFLAGS += -Wno-address -Wno-unused-variable -Wno-unused-but-set-variable
include $(IDF_PATH)/make/component_common.mk

View File

@ -3008,6 +3008,13 @@
#define LWIP_PERF 0
#endif
/**
* ESP_L2_TO_L3_COPY: enable memcpy when receiving packet from L2
*/
#ifndef ESP_L2_TO_L3_COPY
#define ESP_L2_TO_L3_COPY 0
#endif
#ifndef ESP_THREAD_SAFE_DEBUG
#define ESP_THREAD_SAFE_DEBUG 0
#endif

View File

@ -525,6 +525,7 @@ extern unsigned long os_random(void);
#define ESP_RANDOM_TCP_PORT 1
#define ESP_IP4_ATON 1
#define ESP_LIGHT_SLEEP 1
#define ESP_L2_TO_L3_COPY CONFIG_L2_TO_L3_COPY
#define TCP_WND_DEFAULT (4*TCP_MSS)
#define TCP_SND_BUF_DEFAULT (2*TCP_MSS)

View File

@ -161,40 +161,37 @@ low_level_output(struct netif *netif, struct pbuf *p)
* @param netif the lwip network interface structure for this ethernetif
*/
void
#if ESP_LWIP
wlanif_input(struct netif *netif, void *buffer, u16_t len, void* eb)
#else
wlanif_input(struct netif *netif, void *buffer, uint16 len)
#endif
{
struct pbuf *p;
#if ESP_LWIP
if(buffer== NULL)
if(!buffer || !netif)
goto _exit;
if(netif == NULL)
goto _exit;
#endif
#if ESP_LWIP
p = pbuf_alloc(PBUF_RAW, len, PBUF_REF);
if (p == NULL){
#if ESP_PERF
g_rx_alloc_pbuf_fail_cnt++;
#endif
return;
}
p->payload = buffer;
p->eb = eb;
#else
p = pbuf_alloc(PBUF_IP, len, PBUF_POOL);
#if (ESP_L2_TO_L3_COPY == 1)
//p = pbuf_alloc(PBUF_IP, len, PBUF_POOL);
p = pbuf_alloc(PBUF_RAW, len, PBUF_RAM);
if (p == NULL) {
#if ESP_PERF
g_rx_alloc_pbuf_fail_cnt++;
#endif
esp_wifi_internal_free_rx_buffer(eb);
return;
}
memcpy(p->payload, buffer, len);
esp_wifi_internal_free_rx_buffer(eb);
#else
p = pbuf_alloc(PBUF_RAW, len, PBUF_REF);
if (p == NULL){
#if ESP_PERF
g_rx_alloc_pbuf_fail_cnt++;
#endif
return;
}
p->payload = buffer;
p->eb = eb;
#endif
/* full packet send to tcpip_thread to process */
if (netif->input(p, netif) != ERR_OK) {
LWIP_DEBUGF(NETIF_DEBUG, ("ethernetif_input: IP input error\n"));

View File

@ -22,7 +22,7 @@ config MBEDTLS_SSL_MAX_CONTENT_LEN
config MBEDTLS_DEBUG
bool "Enable mbedTLS debugging"
default "no"
default n
help
Enable mbedTLS debugging functions.
@ -34,4 +34,39 @@ config MBEDTLS_DEBUG
functionality. See the "https_request_main" example for a
sample function which connects the two together.
config MBEDTLS_HARDWARE_AES
bool "Enable hardware AES acceleration"
default y
help
Enable hardware accelerated AES encryption & decryption.
config MBEDTLS_HARDWARE_MPI
bool "Enable hardware MPI (bignum) acceleration"
default y
help
Enable hardware accelerated multiple precision integer operations.
Hardware accelerated multiplication, modulo multiplication,
and modular exponentiation for up to 4096 bit results.
These operations are used by RSA.
config MBEDTLS_MPI_USE_INTERRUPT
bool "Use interrupt for MPI operations"
depends on MBEDTLS_HARDWARE_MPI
default y
help
Use an interrupt to coordinate MPI operations.
This allows other code to run on the CPU while an MPI operation is pending.
Otherwise the CPU busy-waits.
config MBEDTLS_MPI_INTERRUPT_NUM
int "MPI Interrupt number"
depends on MBEDTLS_MPI_USE_INTERRUPT
default 18
help
CPU interrupt number for MPI interrupt to connect to. Must be otherwise unused.
Eventually this assignment will be handled automatically at runtime.
endmenu

View File

@ -6,4 +6,3 @@ COMPONENT_ADD_INCLUDEDIRS := port/include include
COMPONENT_SRCDIRS := library port
include $(IDF_PATH)/make/component_common.mk

View File

@ -1092,6 +1092,8 @@ int mbedtls_mpi_sub_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint
return( mbedtls_mpi_sub_mpi( X, A, &_B ) );
}
#if !defined(MBEDTLS_MPI_MUL_MPI_ALT) || !defined(MBEDTLS_MPI_EXP_MOD_ALT)
/*
* Helper for mbedtls_mpi multiplication
*/
@ -1103,6 +1105,7 @@ static
*/
__attribute__ ((noinline))
#endif
void mpi_mul_hlp( size_t i, mbedtls_mpi_uint *s, mbedtls_mpi_uint *d, mbedtls_mpi_uint b )
{
mbedtls_mpi_uint c = 0, t = 0;
@ -1164,6 +1167,8 @@ void mpi_mul_hlp( size_t i, mbedtls_mpi_uint *s, mbedtls_mpi_uint *d, mbedtls_mp
while( c != 0 );
}
#endif
#if !defined(MBEDTLS_MPI_MUL_MPI_ALT)
/*
* Baseline multiplication: X = A * B (HAC 14.12)
@ -1526,6 +1531,8 @@ int mbedtls_mpi_mod_int( mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_
return( 0 );
}
#if !defined(MBEDTLS_MPI_EXP_MOD_ALT)
/*
* Fast Montgomery initialization (thanks to Tom St Denis)
*/
@ -1600,7 +1607,6 @@ static int mpi_montred( mbedtls_mpi *A, const mbedtls_mpi *N, mbedtls_mpi_uint m
return( mpi_montmul( A, &U, N, mm, T ) );
}
#if !defined(MBEDTLS_MPI_EXP_MOD_ALT)
/*
* Sliding-window exponentiation: X = A^E mod N (HAC 14.85)
*/

View File

@ -23,514 +23,528 @@
#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <limits.h>
#include <assert.h>
#include "mbedtls/bignum.h"
#include "mbedtls/bn_mul.h"
#include "rom/bigint.h"
#include "soc/hwcrypto_reg.h"
#include "esp_system.h"
#include "esp_log.h"
#include "esp_intr.h"
#include "esp_attr.h"
#if defined(MBEDTLS_MPI_MUL_MPI_ALT) || defined(MBEDTLS_MPI_EXP_MOD_ALT)
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
/* Constants from mbedTLS bignum.c */
#define ciL (sizeof(mbedtls_mpi_uint)) /* chars in limb */
#define biL (ciL << 3) /* bits in limb */
static const __attribute__((unused)) char *TAG = "bignum";
#if defined(CONFIG_MBEDTLS_MPI_USE_INTERRUPT)
static SemaphoreHandle_t op_complete_sem;
static IRAM_ATTR void rsa_complete_isr(void *arg)
{
BaseType_t higher_woken;
REG_WRITE(RSA_INTERRUPT_REG, 1);
xSemaphoreGiveFromISR(op_complete_sem, &higher_woken);
if (higher_woken) {
portYIELD_FROM_ISR();
}
}
static void rsa_isr_initialise()
{
if (op_complete_sem == NULL) {
op_complete_sem = xSemaphoreCreateBinary();
intr_matrix_set(xPortGetCoreID(), ETS_RSA_INTR_SOURCE, CONFIG_MBEDTLS_MPI_INTERRUPT_NUM);
xt_set_interrupt_handler(CONFIG_MBEDTLS_MPI_INTERRUPT_NUM, &rsa_complete_isr, NULL);
xthal_set_intclear(1 << CONFIG_MBEDTLS_MPI_INTERRUPT_NUM);
xt_ints_on(1 << CONFIG_MBEDTLS_MPI_INTERRUPT_NUM);
}
}
#endif /* CONFIG_MBEDTLS_MPI_USE_INTERRUPT */
static _lock_t mpi_lock;
/* At the moment these hardware locking functions aren't exposed publically
for MPI. If you want to use the ROM bigint functions and co-exist with mbedTLS,
please raise a feature request.
*/
static void esp_mpi_acquire_hardware( void )
void esp_mpi_acquire_hardware( void )
{
/* newlib locks lazy initialize on ESP-IDF */
_lock_acquire(&mpi_lock);
ets_bigint_enable();
#ifdef CONFIG_MBEDTLS_MPI_USE_INTERRUPT
rsa_isr_initialise();
#endif
}
static void esp_mpi_release_hardware( void )
void esp_mpi_release_hardware( void )
{
ets_bigint_disable();
_lock_release(&mpi_lock);
}
/*
* Helper for mbedtls_mpi multiplication
* copied/trimmed from mbedtls bignum.c
*/
static void mpi_mul_hlp( size_t i, mbedtls_mpi_uint *s, mbedtls_mpi_uint *d, mbedtls_mpi_uint b )
{
mbedtls_mpi_uint c = 0, t = 0;
/* Number of words used to hold 'mpi', rounded up to nearest
16 words (512 bits) to match hardware support.
for( ; i >= 16; i -= 16 )
{
MULADDC_INIT
MULADDC_CORE MULADDC_CORE
MULADDC_CORE MULADDC_CORE
MULADDC_CORE MULADDC_CORE
MULADDC_CORE MULADDC_CORE
Note that mpi->n (size of memory buffer) may be higher than this
number, if the high bits are mostly zeroes.
MULADDC_CORE MULADDC_CORE
MULADDC_CORE MULADDC_CORE
MULADDC_CORE MULADDC_CORE
MULADDC_CORE MULADDC_CORE
MULADDC_STOP
}
for( ; i >= 8; i -= 8 )
{
MULADDC_INIT
MULADDC_CORE MULADDC_CORE
MULADDC_CORE MULADDC_CORE
MULADDC_CORE MULADDC_CORE
MULADDC_CORE MULADDC_CORE
MULADDC_STOP
}
for( ; i > 0; i-- )
{
MULADDC_INIT
MULADDC_CORE
MULADDC_STOP
}
t++;
do {
*d += c; c = ( *d < c ); d++;
}
while( c != 0 );
}
/*
* Helper for mbedtls_mpi subtraction
* Copied/adapter from mbedTLS bignum.c
*/
static void mpi_sub_hlp( size_t n, mbedtls_mpi_uint *s, mbedtls_mpi_uint *d )
{
size_t i;
mbedtls_mpi_uint c, z;
for( i = c = 0; i < n; i++, s++, d++ )
{
z = ( *d < c ); *d -= c;
c = ( *d < *s ) + z; *d -= *s;
}
while( c != 0 )
{
z = ( *d < c ); *d -= c;
c = z; i++; d++;
}
}
/* The following 3 Montgomery arithmetic function are
copied from mbedTLS bigint.c verbatim as they are static.
TODO: find a way to support making the versions in mbedtls
non-static.
This implementation may cause the caller to leak a small amount of
timing information when an operation is performed (length of a
given mpi value, rounded to nearest 512 bits), but not all mbedTLS
RSA operations succeed if we use mpi->N as-is (buffers are too long).
*/
/*
* Fast Montgomery initialization (thanks to Tom St Denis)
*/
static void mpi_montg_init( mbedtls_mpi_uint *mm, const mbedtls_mpi *N )
static inline size_t hardware_words_needed(const mbedtls_mpi *mpi)
{
mbedtls_mpi_uint x, m0 = N->p[0];
unsigned int i;
x = m0;
x += ( ( m0 + 2 ) & 4 ) << 1;
for( i = biL; i >= 8; i /= 2 )
x *= ( 2 - ( m0 * x ) );
*mm = ~x + 1;
size_t res = 1;
for(size_t i = 0; i < mpi->n; i++) {
if( mpi->p[i] != 0 ) {
res = i + 1;
}
}
res = (res + 0xF) & ~0xF;
return res;
}
/*
* Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36)
*/
static int mpi_montmul( mbedtls_mpi *A, const mbedtls_mpi *B, const mbedtls_mpi *N, mbedtls_mpi_uint mm,
const mbedtls_mpi *T )
/* Convert number of bits to number of words, rounded up to nearest
512 bit (16 word) block count.
*/
static inline size_t bits_to_hardware_words(size_t num_bits)
{
size_t i, n, m;
mbedtls_mpi_uint u0, u1, *d;
return ((num_bits + 511) / 512) * 16;
}
if( T->n < N->n + 1 || T->p == NULL )
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
/* Copy mbedTLS MPI bignum 'mpi' to hardware memory block at 'mem_base'.
memset( T->p, 0, T->n * ciL );
If num_words is higher than the number of words in the bignum then
these additional words will be zeroed in the memory buffer.
*/
static inline void mpi_to_mem_block(uint32_t mem_base, const mbedtls_mpi *mpi, size_t num_words)
{
uint32_t *pbase = (uint32_t *)mem_base;
uint32_t copy_words = num_words < mpi->n ? num_words : mpi->n;
d = T->p;
n = N->n;
m = ( B->n < n ) ? B->n : n;
/* Copy MPI data to memory block registers */
memcpy(pbase, mpi->p, copy_words * 4);
for( i = 0; i < n; i++ )
{
/*
* T = (T + u0*B + u1*N) / 2^biL
*/
u0 = A->p[i];
u1 = ( d[0] + u0 * B->p[0] ) * mm;
/* Zero any remaining memory block data */
bzero(pbase + copy_words, (num_words - copy_words) * 4);
mpi_mul_hlp( m, B->p, d, u0 );
mpi_mul_hlp( n, N->p, d, u1 );
/* Note: not executing memw here, can do it before we start a bignum operation */
}
*d++ = u0; d[n + 1] = 0;
/* Read mbedTLS MPI bignum back from hardware memory block.
Reads num_words words from block.
Can return a failure result if fails to grow the MPI result.
*/
static inline int mem_block_to_mpi(mbedtls_mpi *x, uint32_t mem_base, int num_words)
{
int ret = 0;
MBEDTLS_MPI_CHK( mbedtls_mpi_grow(x, num_words) );
/* Copy data from memory block registers */
memcpy(x->p, (uint32_t *)mem_base, num_words * 4);
/* Zero any remaining limbs in the bignum, if the buffer is bigger
than num_words */
for(size_t i = num_words; i < x->n; i++) {
x->p[i] = 0;
}
memcpy( A->p, d, ( n + 1 ) * ciL );
if( mbedtls_mpi_cmp_abs( A, N ) >= 0 )
mpi_sub_hlp( n, N->p, A->p );
else
/* prevent timing attacks */
mpi_sub_hlp( n, A->p, T->p );
return( 0 );
asm volatile ("memw");
cleanup:
return ret;
}
/*
* Montgomery reduction: A = A * R^-1 mod N
/**
*
* There is a need for the value of integer N' such that B^-1(B-1)-N^-1N'=1,
* where B^-1(B-1) mod N=1. Actually, only the least significant part of
* N' is needed, hence the definition N0'=N' mod b. We reproduce below the
* simple algorithm from an article by Dusse and Kaliski to efficiently
* find N0' from N0 and b
*/
static int mpi_montred( mbedtls_mpi *A, const mbedtls_mpi *N, mbedtls_mpi_uint mm, const mbedtls_mpi *T )
static mbedtls_mpi_uint modular_inverse(const mbedtls_mpi *M)
{
mbedtls_mpi_uint z = 1;
mbedtls_mpi U;
int i;
uint64_t t = 1;
uint64_t two_2_i_minus_1 = 2; /* 2^(i-1) */
uint64_t two_2_i = 4; /* 2^i */
uint64_t N = M->p[0];
U.n = U.s = (int) z;
U.p = &z;
for (i = 2; i <= 32; i++) {
if ((mbedtls_mpi_uint) N * t % two_2_i >= two_2_i_minus_1) {
t += two_2_i_minus_1;
}
return( mpi_montmul( A, &U, N, mm, T ) );
two_2_i_minus_1 <<= 1;
two_2_i <<= 1;
}
return (mbedtls_mpi_uint)(UINT32_MAX - t + 1);
}
/* Allocate parameters used by hardware MPI multiply,
and copy mbedtls_mpi structures into them */
static int mul_pram_alloc(const mbedtls_mpi *A, const mbedtls_mpi *B, char **pA, char **pB, char **pX, size_t *bites)
{
char *sa, *sb, *sx;
// int algn;
int words, bytes;
int abytes, bbytes;
if (A->n > B->n)
words = A->n;
else
words = B->n;
bytes = (words / 16 + ((words % 16) ? 1 : 0 )) * 16 * 4 * 2;
abytes = A->n * 4;
bbytes = B->n * 4;
sa = malloc(bytes);
if (!sa) {
return -1;
}
sb = malloc(bytes);
if (!sb) {
free(sa);
return -1;
}
sx = malloc(bytes);
if (!sx) {
free(sa);
free(sb);
return -1;
}
memcpy(sa, A->p, abytes);
memset(sa + abytes, 0, bytes - abytes);
memcpy(sb, B->p, bbytes);
memset(sb + bbytes, 0, bytes - bbytes);
*pA = sa;
*pB = sb;
*pX = sx;
*bites = bytes * 4;
return 0;
}
#if defined(MBEDTLS_MPI_MUL_MPI_ALT)
int mbedtls_mpi_mul_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
{
int ret = -1;
size_t i, j;
char *s1 = NULL, *s2 = NULL, *dest = NULL;
size_t bites;
mbedtls_mpi TA, TB;
mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
if( X == A ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) ); A = &TA; }
if( X == B ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) ); B = &TB; }
for( i = A->n; i > 0; i-- )
if( A->p[i - 1] != 0 )
break;
for( j = B->n; j > 0; j-- )
if( B->p[j - 1] != 0 )
break;
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + j ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
if (mul_pram_alloc(A, B, &s1, &s2, &dest, &bites)) {
goto cleanup;
}
esp_mpi_acquire_hardware();
if (ets_bigint_mult_prepare((uint32_t *)s1, (uint32_t *)s2, bites)){
ets_bigint_wait_finish();
if (ets_bigint_mult_getz((uint32_t *)dest, bites) == true) {
memcpy(X->p, dest, (i + j) * 4);
ret = 0;
} else {
printf("ets_bigint_mult_getz failed\n");
}
} else{
printf("Baseline multiplication failed\n");
}
esp_mpi_release_hardware();
X->s = A->s * B->s;
free(s1);
free(s2);
free(dest);
cleanup:
mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TA );
return( ret );
}
#endif /* MBEDTLS_MPI_MUL_MPI_ALT */
#if defined(MBEDTLS_MPI_EXP_MOD_ALT)
/*
* Sliding-window exponentiation: X = A^E mod N (HAC 14.85)
/* Calculate Rinv = RR^2 mod M, where:
*
* R = b^n where b = 2^32, n=num_words,
* R = 2^N (where N=num_bits)
* RR = R^2 = 2^(2*N) (where N=num_bits=num_words*32)
*
* This calculation is computationally expensive (mbedtls_mpi_mod_mpi)
* so caller should cache the result where possible.
*
* DO NOT call this function while holding esp_mpi_acquire_hardware().
*
*/
int mbedtls_mpi_exp_mod( mbedtls_mpi* X, const mbedtls_mpi* A, const mbedtls_mpi* E, const mbedtls_mpi* N, mbedtls_mpi* _RR )
static int calculate_rinv(mbedtls_mpi *Rinv, const mbedtls_mpi *M, int num_words)
{
int ret;
size_t wbits, wsize, one = 1;
size_t i, j, nblimbs;
size_t bufsize, nbits;
mbedtls_mpi_uint ei, mm, state;
mbedtls_mpi RR, T, W[ 2 << MBEDTLS_MPI_WINDOW_SIZE ], Apos;
int neg;
size_t num_bits = num_words * 32;
mbedtls_mpi RR;
mbedtls_mpi_init(&RR);
MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&RR, num_bits * 2, 1));
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(Rinv, &RR, M));
if( mbedtls_mpi_cmp_int( N, 0 ) < 0 || ( N->p[0] & 1 ) == 0 )
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
cleanup:
mbedtls_mpi_free(&RR);
return ret;
}
if( mbedtls_mpi_cmp_int( E, 0 ) < 0 )
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
/*
* Init temps and window size
*/
mpi_montg_init( &mm, N );
mbedtls_mpi_init( &RR ); mbedtls_mpi_init( &T );
mbedtls_mpi_init( &Apos );
memset( W, 0, sizeof( W ) );
/* Execute RSA operation. op_reg specifies which 'START' register
to write to.
*/
static inline void execute_op(uint32_t op_reg)
{
/* Clear interrupt status */
REG_WRITE(RSA_INTERRUPT_REG, 1);
i = mbedtls_mpi_bitlen( E );
/* Note: above REG_WRITE includes a memw, so we know any writes
to the memory blocks are also complete. */
wsize = ( i > 671 ) ? 6 : ( i > 239 ) ? 5 :
( i > 79 ) ? 4 : ( i > 23 ) ? 3 : 1;
REG_WRITE(op_reg, 1);
if( wsize > MBEDTLS_MPI_WINDOW_SIZE )
wsize = MBEDTLS_MPI_WINDOW_SIZE;
#ifdef CONFIG_MBEDTLS_MPI_USE_INTERRUPT
if (!xSemaphoreTake(op_complete_sem, 2000 / portTICK_PERIOD_MS)) {
ESP_LOGE(TAG, "Timed out waiting for RSA operation (op_reg 0x%x int_reg 0x%x)",
op_reg, REG_READ(RSA_INTERRUPT_REG));
abort(); /* indicates a fundamental problem with driver */
}
#else
while(REG_READ(RSA_INTERRUPT_REG) != 1)
{ }
#endif
j = N->n + 1;
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], j ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T, j * 2 ) );
/* clear the interrupt */
REG_WRITE(RSA_INTERRUPT_REG, 1);
}
/*
* Compensate for negative A (and correct at the end)
*/
neg = ( A->s == -1 );
if( neg )
{
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Apos, A ) );
Apos.s = 1;
A = &Apos;
/* Sub-stages of modulo multiplication/exponentiation operations */
inline static int modular_multiply_finish(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words);
/* Z = (X * Y) mod M
Not an mbedTLS function
*/
int esp_mpi_mul_mpi_mod(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M)
{
int ret;
size_t num_words = hardware_words_needed(M);
mbedtls_mpi Rinv;
mbedtls_mpi_uint Mprime;
/* Calculate and load the first stage montgomery multiplication */
mbedtls_mpi_init(&Rinv);
MBEDTLS_MPI_CHK(calculate_rinv(&Rinv, M, num_words));
Mprime = modular_inverse(M);
esp_mpi_acquire_hardware();
/* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, num_words);
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, &Rinv, num_words);
REG_WRITE(RSA_M_DASH_REG, (uint32_t)Mprime);
/* "mode" register loaded with number of 512-bit blocks, minus 1 */
REG_WRITE(RSA_MULT_MODE_REG, (num_words / 16) - 1);
/* Execute first stage montgomery multiplication */
execute_op(RSA_MULT_START_REG);
/* execute second stage */
MBEDTLS_MPI_CHK( modular_multiply_finish(Z, X, Y, num_words) );
esp_mpi_release_hardware();
cleanup:
mbedtls_mpi_free(&Rinv);
return ret;
}
#if defined(MBEDTLS_MPI_EXP_MOD_ALT)
/*
* Sliding-window exponentiation: Z = X^Y mod M (HAC 14.85)
*
* _Rinv is optional pre-calculated version of Rinv (via calculate_rinv()).
*
* (See RSA Accelerator section in Technical Reference for more about Mprime, Rinv)
*
*/
int mbedtls_mpi_exp_mod( mbedtls_mpi* Z, const mbedtls_mpi* X, const mbedtls_mpi* Y, const mbedtls_mpi* M, mbedtls_mpi* _Rinv )
{
int ret = 0;
size_t z_words = hardware_words_needed(Z);
size_t x_words = hardware_words_needed(X);
size_t y_words = hardware_words_needed(Y);
size_t m_words = hardware_words_needed(M);
size_t num_words;
mbedtls_mpi Rinv_new; /* used if _Rinv == NULL */
mbedtls_mpi *Rinv; /* points to _Rinv (if not NULL) othwerwise &RR_new */
mbedtls_mpi_uint Mprime;
/* "all numbers must be the same length", so choose longest number
as cardinal length of operation...
*/
num_words = z_words;
if (x_words > num_words) {
num_words = x_words;
}
if (y_words > num_words) {
num_words = y_words;
}
if (m_words > num_words) {
num_words = m_words;
}
/*
* If 1st call, pre-compute R^2 mod N
*/
if( _RR == NULL || _RR->p == NULL )
{
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &RR, 1 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &RR, N->n * 2 * biL ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &RR, &RR, N ) );
if( _RR != NULL )
memcpy( _RR, &RR, sizeof( mbedtls_mpi) );
}
else
memcpy( &RR, _RR, sizeof( mbedtls_mpi) );
/*
* W[1] = A * R^2 * R^-1 mod N = A * R mod N
*/
if( mbedtls_mpi_cmp_mpi( A, N ) >= 0 )
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &W[1], A, N ) );
else
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[1], A ) );
mpi_montmul( &W[1], &RR, N, mm, &T );
/*
* X = R^2 * R^-1 mod N = R mod N
*/
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &RR ) );
mpi_montred( X, N, mm, &T );
if( wsize > 1 )
{
/*
* W[1 << (wsize - 1)] = W[1] ^ (wsize - 1)
*/
j = one << ( wsize - 1 );
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[j], N->n + 1 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[j], &W[1] ) );
for( i = 0; i < wsize - 1; i++ )
mpi_montmul( &W[j], &W[j], N, mm, &T );
/*
* W[i] = W[i - 1] * W[1]
*/
for( i = j + 1; i < ( one << wsize ); i++ )
{
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[i], N->n + 1 ) );
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[i], &W[i - 1] ) );
mpi_montmul( &W[i], &W[1], N, mm, &T );
}
if (num_words * 32 > 4096) {
return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
}
nblimbs = E->n;
bufsize = 0;
nbits = 0;
wbits = 0;
state = 0;
while( 1 )
{
if( bufsize == 0 )
{
if( nblimbs == 0 )
break;
nblimbs--;
bufsize = sizeof( mbedtls_mpi_uint ) << 3;
}
bufsize--;
ei = (E->p[nblimbs] >> bufsize) & 1;
/*
* skip leading 0s
*/
if( ei == 0 && state == 0 )
continue;
if( ei == 0 && state == 1 )
{
/*
* out of window, square X
*/
mpi_montmul( X, X, N, mm, &T );
continue;
}
/*
* add ei to current window
*/
state = 2;
nbits++;
wbits |= ( ei << ( wsize - nbits ) );
if( nbits == wsize )
{
/*
* X = X^wsize R^-1 mod N
*/
for( i = 0; i < wsize; i++ )
mpi_montmul( X, X, N, mm, &T );
/*
* X = X * W[wbits] R^-1 mod N
*/
mpi_montmul( X, &W[wbits], N, mm, &T );
state--;
nbits = 0;
wbits = 0;
}
/* Determine RR pointer, either _RR for cached value
or local RR_new */
if (_Rinv == NULL) {
mbedtls_mpi_init(&Rinv_new);
Rinv = &Rinv_new;
} else {
Rinv = _Rinv;
}
if (Rinv->p == NULL) {
MBEDTLS_MPI_CHK(calculate_rinv(Rinv, M, num_words));
}
/*
* process the remaining bits
*/
for( i = 0; i < nbits; i++ )
{
mpi_montmul( X, X, N, mm, &T );
Mprime = modular_inverse(M);
wbits <<= 1;
esp_mpi_acquire_hardware();
if( ( wbits & ( one << wsize ) ) != 0 )
mpi_montmul( X, &W[1], N, mm, &T );
/* "mode" register loaded with number of 512-bit blocks, minus 1 */
REG_WRITE(RSA_MODEXP_MODE_REG, (num_words / 16) - 1);
/* Load M, X, Rinv, M-prime (M-prime is mod 2^32) */
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
mpi_to_mem_block(RSA_MEM_Y_BLOCK_BASE, Y, num_words);
mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, num_words);
mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, Rinv, num_words);
REG_WRITE(RSA_M_DASH_REG, Mprime);
execute_op(RSA_START_MODEXP_REG);
ret = mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, num_words);
esp_mpi_release_hardware();
cleanup:
if (_Rinv == NULL) {
mbedtls_mpi_free(&Rinv_new);
}
/*
* X = A^E * R * R^-1 mod N = A^E mod N
*/
mpi_montred( X, N, mm, &T );
if( neg )
{
X->s = -1;
MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( X, N, X ) );
}
cleanup:
for( i = ( one << ( wsize - 1 ) ); i < ( one << wsize ); i++ )
mbedtls_mpi_free( &W[i] );
mbedtls_mpi_free( &W[1] ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &Apos );
if( _RR == NULL || _RR->p == NULL )
mbedtls_mpi_free( &RR );
return( ret );
return ret;
}
#endif /* MBEDTLS_MPI_EXP_MOD_ALT */
#endif /* MBEDTLS_MPI_MUL_MPI_ALT || MBEDTLS_MPI_EXP_MOD_ALT */
/* Second & final step of a modular multiply - load second multiplication
* factor Y, run the multiply, read back the result into Z.
*
* Called from both mbedtls_mpi_exp_mod and mbedtls_mpi_mod_mpi.
*
* @param Z result value
* @param X first multiplication factor (used to set sign of result).
* @param Y second multiplication factor.
* @param num_words size of modulo operation, in words (limbs).
* Should already be rounded up to a multiple of 16 words (512 bits) & range checked.
*
* Caller must have already called esp_mpi_acquire_hardware().
*/
static int modular_multiply_finish(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
{
int ret;
/* Load Y to X input memory block, rerun */
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, Y, num_words);
execute_op(RSA_MULT_START_REG);
/* Read result into Z */
ret = mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, num_words);
Z->s = X->s * Y->s;
return ret;
}
#if defined(MBEDTLS_MPI_MUL_MPI_ALT) /* MBEDTLS_MPI_MUL_MPI_ALT */
static int mpi_mult_mpi_failover_mod_mult(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words);
/* Z = X * Y */
int mbedtls_mpi_mul_mpi( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y )
{
int ret;
size_t bits_x, bits_y, words_x, words_y, words_mult, words_z;
/* Count words needed for X & Y in hardware */
bits_x = mbedtls_mpi_bitlen(X);
bits_y = mbedtls_mpi_bitlen(Y);
/* Convert bit counts to words, rounded up to 512-bit
(16 word) blocks */
words_x = bits_to_hardware_words(bits_x);
words_y = bits_to_hardware_words(bits_y);
/* Short-circuit eval if either argument is 0 or 1.
This is needed as the mpi modular division
argument will sometimes call in here when one
argument is too large for the hardware unit, but the other
argument is zero or one.
This leaks some timing information, although overall there is a
lot less timing variation than a software MPI approach.
*/
if (bits_x == 0 || bits_y == 0) {
mbedtls_mpi_lset(Z, 0);
return 0;
}
if (bits_x == 1) {
return mbedtls_mpi_copy(Z, Y);
}
if (bits_y == 1) {
return mbedtls_mpi_copy(Z, X);
}
words_mult = (words_x > words_y ? words_x : words_y);
/* Result Z has to have room for double the larger factor */
words_z = words_mult * 2;
/* If either factor is over 2048 bits, we can't use the standard hardware multiplier
(it assumes result is double longest factor, and result is max 4096 bits.)
However, we can fail over to mod_mult for up to 4096 bits of result (modulo
multiplication doesn't have the same restriction, so result is simply the
number of bits in X plus number of bits in in Y.)
*/
if (words_mult * 32 > 2048) {
/* Calculate new length of Z */
words_z = bits_to_hardware_words(bits_x + bits_y);
if (words_z * 32 > 4096) {
ESP_LOGE(TAG, "ERROR: %d bit result %d bits * %d bits too large for hardware unit\n", words_z * 32, bits_x, bits_y);
return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
}
else {
return mpi_mult_mpi_failover_mod_mult(Z, X, Y, words_z);
}
}
/* Otherwise, we can use the (faster) multiply hardware unit */
esp_mpi_acquire_hardware();
/* Copy X (right-extended) & Y (left-extended) to memory block */
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, words_mult);
mpi_to_mem_block(RSA_MEM_Z_BLOCK_BASE + words_mult * 4, Y, words_mult);
/* NB: as Y is left-extended, we don't zero the bottom words_mult words of Y block.
This is OK for now because zeroing is done by hardware when we do esp_mpi_acquire_hardware().
*/
REG_WRITE(RSA_M_DASH_REG, 0);
/* "mode" register loaded with number of 512-bit blocks in result,
plus 7 (for range 9-12). (this is ((N~ / 32) - 1) + 8))
*/
REG_WRITE(RSA_MULT_MODE_REG, (words_z / 16) + 7);
execute_op(RSA_MULT_START_REG);
/* Read back the result */
ret = mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, words_z);
Z->s = X->s * Y->s;
esp_mpi_release_hardware();
return ret;
}
/* Special-case of mbedtls_mpi_mult_mpi(), where we use hardware montgomery mod
multiplication to calculate an mbedtls_mpi_mult_mpi result where either
A or B are >2048 bits so can't use the standard multiplication method.
Result (A bits + B bits) must still be less than 4096 bits.
This case is simpler than the general case modulo multiply of
esp_mpi_mul_mpi_mod() because we can control the other arguments:
* Modulus is chosen with M=(2^num_bits - 1) (ie M=R-1), so output
isn't actually modulo anything.
* Mprime and Rinv are therefore predictable as follows:
Mprime = 1
Rinv = 1
(See RSA Accelerator section in Technical Reference for more about Mprime, Rinv)
*/
static int mpi_mult_mpi_failover_mod_mult(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
{
int ret = 0;
/* Load coefficients to hardware */
esp_mpi_acquire_hardware();
/* M = 2^num_words - 1, so block is entirely FF */
for(int i = 0; i < num_words; i++) {
REG_WRITE(RSA_MEM_M_BLOCK_BASE + i * 4, UINT32_MAX);
}
/* Mprime = 1 */
REG_WRITE(RSA_M_DASH_REG, 1);
/* "mode" register loaded with number of 512-bit blocks, minus 1 */
REG_WRITE(RSA_MULT_MODE_REG, (num_words / 16) - 1);
/* Load X */
mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
/* Rinv = 1 */
REG_WRITE(RSA_MEM_RB_BLOCK_BASE, 1);
for(int i = 1; i < num_words; i++) {
REG_WRITE(RSA_MEM_RB_BLOCK_BASE + i * 4, 0);
}
execute_op(RSA_MULT_START_REG);
/* finish the modular multiplication */
MBEDTLS_MPI_CHK( modular_multiply_finish(Z, X, Y, num_words) );
esp_mpi_release_hardware();
cleanup:
return ret;
}
#endif /* MBEDTLS_MPI_MUL_MPI_ALT */

View File

@ -20,7 +20,6 @@
*
*
*/
#ifndef AES_ALT_H
#define AES_ALT_H
@ -56,4 +55,4 @@ typedef esp_aes_context mbedtls_aes_context;
}
#endif
#endif /* aes.h */
#endif

View File

@ -0,0 +1,78 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef __ESP_MBEDTLS_BIGNUM_H__
#define __ESP_MBEDTLS_BIGNUM_H__
#include_next "mbedtls/bignum.h"
/**
* This is a wrapper for the main mbedtls/bignum.h. This wrapper
* provides a few additional ESP32-only functions.
*
* This is because we don't set MBEDTLS_BIGNUM_ALT in the same way we
* do for AES, SHA, etc. Because we still use most of the bignum.h
* implementation and just replace a few hardware accelerated
* functions (see MBEDTLS_MPI_EXP_MOD_ALT & MBEDTLS_MPI_MUL_MPI_ALT in
* esp_config.h).
*
* @note Unlike the other hardware accelerator support functions in esp32/hwcrypto, there is no
* generic "hwcrypto/bignum.h" header for using these functions without mbedTLS. The reason for this
* is that all of the function implementations depend strongly upon the mbedTLS MPI implementation.
*/
/**
* @brief Lock access to RSA Accelerator (MPI/bignum operations)
*
* RSA Accelerator hardware unit can only be used by one
* consumer at a time.
*
* @note This function is non-recursive (do not call it twice from the
* same task.)
*
* @note You do not need to call this if you are using the mbedTLS bignum.h
* API or esp_mpi_xxx functions. This function is only needed if you
* want to call ROM RSA functions or access the registers directly.
*
*/
void esp_mpi_acquire_hardware(void);
/**
* @brief Unlock access to RSA Accelerator (MPI/bignum operations)
*
* Has to be called once for each call to esp_mpi_acquire_hardware().
*
* @note You do not need to call this if you are using the mbedTLS bignum.h
* API or esp_mpi_xxx functions. This function is only needed if you
* want to call ROM RSA functions or access the registers directly.
*/
void esp_mpi_release_hardware(void);
/* @brief MPI modular mupltiplication function
*
* Calculates Z = (X * Y) mod M using MPI hardware acceleration.
*
* This is not part of the standard mbedTLS bignum API.
*
* @note All of X, Y & Z should be less than 4096 bit long or an error is returned.
*
* @param Z Result bignum, should be pre-initialised with mbedtls_mpi_init().
* @param X First multiplication argument.
* @param Y Second multiplication argument.
* @param M Modulus value for result.
*
* @return 0 on success, mbedTLS MPI error codes on failure.
*/
int esp_mpi_mul_mpi_mod(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M);
#endif

View File

@ -239,7 +239,9 @@
/* The following units have ESP32 hardware support,
uncommenting each _ALT macro will use the
hardware-accelerated implementation. */
#ifdef CONFIG_MBEDTLS_HARDWARE_AES
#define MBEDTLS_AES_ALT
#endif
/* Currently hardware SHA does not work with TLS handshake,
due to concurrency issue. Internal TW#7111. */
@ -250,11 +252,11 @@
/* The following MPI (bignum) functions have ESP32 hardware support,
Uncommenting these macros will use the hardware-accelerated
implementations.
Disabled as number of limbs limited by bug. Internal TW#7112.
*/
//#define MBEDTLS_MPI_EXP_MOD_ALT
//#define MBEDTLS_MPI_MUL_MPI_ALT
#ifdef CONFIG_MBEDTLS_HARDWARE_MPI
#define MBEDTLS_MPI_EXP_MOD_ALT
#define MBEDTLS_MPI_MUL_MPI_ALT
#endif
/**
* \def MBEDTLS_MD2_PROCESS_ALT

View File

@ -1,7 +1,16 @@
/*
* copyright (c) 2010 - 2012 Espressif System
*
*/
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _SHA1_ALT_H_
#define _SHA1_ALT_H_

View File

@ -1,8 +1,16 @@
/*
* copyright (c) 2010 - 2012 Espressif System
*
*/
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _SHA256_ALT_H_
#define _SHA256_ALT_H_
@ -30,4 +38,4 @@ typedef esp_sha_context mbedtls_sha256_context;
}
#endif
#endif /* sha256.h */
#endif

View File

@ -1,9 +1,16 @@
/*
* copyright (c) 2010 - 2012 Espressif System
*
* esf Link List Descriptor
*/
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _SHA512_ALT_H_
#define _SHA512_ALT_H_
@ -30,4 +37,4 @@ typedef esp_sha_context mbedtls_sha512_context;
}
#endif
#endif /* sha512.h */
#endif

View File

@ -0,0 +1,8 @@
# only compile the micro-ecc/uECC.c source file
# (SRCDIRS is needed so build system can find the source file)
COMPONENT_SRCDIRS := micro-ecc
COMPONENT_OBJS := micro-ecc/uECC.o
COMPONENT_ADD_INCLUDEDIRS := micro-ecc
COMPONENT_SUBMODULES := micro-ecc

@ -0,0 +1 @@
Subproject commit 14222e062d77f45321676e813d9525f32a88e8fa

View File

@ -1,5 +1,4 @@
COMPONENT_ADD_LDFLAGS := $(abspath lib/libc.a) $(abspath lib/libm.a) -lnewlib
COMPONENT_ADD_LDFLAGS := $(COMPONENT_PATH)/lib/libc.a $(COMPONENT_PATH)/lib/libm.a -lnewlib
COMPONENT_ADD_INCLUDEDIRS := include platform_include
include $(IDF_PATH)/make/component_common.mk

View File

@ -5,5 +5,3 @@
COMPONENT_ADD_INCLUDEDIRS := port/include include
COMPONENT_SRCDIRS := library port
include $(IDF_PATH)/make/component_common.mk

View File

@ -6,4 +6,3 @@ COMPONENT_ADD_INCLUDEDIRS := include
COMPONENT_SRCDIRS := src
include $(IDF_PATH)/make/component_common.mk

View File

@ -77,8 +77,9 @@ typedef enum {
*/
esp_err_t nvs_open(const char* name, nvs_open_mode open_mode, nvs_handle *out_handle);
/**@{*/
/**
* @brief nvs_set_X - set value for given key
* @brief set value for given key
*
* This family of functions set value for the key, given its name. Note that
* actual storage will not be updated until nvs_commit function is called.
@ -89,7 +90,6 @@ esp_err_t nvs_open(const char* name, nvs_open_mode open_mode, nvs_handle *out_ha
* implementation, but is guaranteed to be at least
* 16 characters. Shouldn't be empty.
* @param[in] value The value to set.
* @param[in] length For nvs_set_blob: length of binary value to set, in bytes.
*
* @return
* - ESP_OK if value was set successfully
@ -112,10 +112,39 @@ esp_err_t nvs_set_u32 (nvs_handle handle, const char* key, uint32_t value);
esp_err_t nvs_set_i64 (nvs_handle handle, const char* key, int64_t value);
esp_err_t nvs_set_u64 (nvs_handle handle, const char* key, uint64_t value);
esp_err_t nvs_set_str (nvs_handle handle, const char* key, const char* value);
esp_err_t nvs_set_blob(nvs_handle handle, const char* key, const void* value, size_t length);
/**@}*/
/**
* @brief nvs_get_X - get value for given key
* @brief set variable length binary value for given key
*
* This family of functions set value for the key, given its name. Note that
* actual storage will not be updated until nvs_commit function is called.
*
* @param[in] handle Handle obtained from nvs_open function.
* Handles that were opened read only cannot be used.
* @param[in] key Key name. Maximal length is determined by the underlying
* implementation, but is guaranteed to be at least
* 16 characters. Shouldn't be empty.
* @param[in] value The value to set.
* @param[in] length length of binary value to set, in bytes.
*
* @return
* - ESP_OK if value was set successfully
* - ESP_ERR_NVS_INVALID_HANDLE if handle has been closed or is NULL
* - ESP_ERR_NVS_READ_ONLY if storage handle was opened as read only
* - ESP_ERR_NVS_INVALID_NAME if key name doesn't satisfy constraints
* - ESP_ERR_NVS_NOT_ENOUGH_SPACE if there is not enough space in the
* underlying storage to save the value
* - ESP_ERR_NVS_REMOVE_FAILED if the value wasn't updated because flash
* write operation has failed. The value was written however, and
* update will be finished after re-initialization of nvs, provided that
* flash operation doesn't fail again.
*/
esp_err_t nvs_set_blob(nvs_handle handle, const char* key, const void* value, size_t length);
/**@{*/
/**
* @brief get value for given key
*
* These functions retrieve value for the key, given its name. If key does not
* exist, or the requested variable type doesn't match the type which was used
@ -125,7 +154,55 @@ esp_err_t nvs_set_blob(nvs_handle handle, const char* key, const void* value, si
*
* All functions expect out_value to be a pointer to an already allocated variable
* of the given type.
* Additionally, nvs_get_str and nvs_get_blob support WinAPI-style length queries.
*
* \code{c}
* // Example of using nvs_get_i32:
* int32_t max_buffer_size = 4096; // default value
* esp_err_t err = nvs_get_i32(my_handle, "max_buffer_size", &max_buffer_size);
* assert(err == ESP_OK || err == ESP_ERR_NVS_NOT_FOUND);
* // if ESP_ERR_NVS_NOT_FOUND was returned, max_buffer_size will still
* // have its default value.
*
* \endcode
*
* @param[in] handle Handle obtained from nvs_open function.
* @param[in] key Key name. Maximal length is determined by the underlying
* implementation, but is guaranteed to be at least
* 16 characters. Shouldn't be empty.
* @param out_value Pointer to the output value.
* May be NULL for nvs_get_str and nvs_get_blob, in this
* case required length will be returned in length argument.
*
* @return
* - ESP_OK if the value was retrieved successfully
* - ESP_ERR_NVS_NOT_FOUND if the requested key doesn't exist
* - ESP_ERR_NVS_INVALID_HANDLE if handle has been closed or is NULL
* - ESP_ERR_NVS_INVALID_NAME if key name doesn't satisfy constraints
* - ESP_ERR_NVS_INVALID_LENGTH if length is not sufficient to store data
*/
esp_err_t nvs_get_i8 (nvs_handle handle, const char* key, int8_t* out_value);
esp_err_t nvs_get_u8 (nvs_handle handle, const char* key, uint8_t* out_value);
esp_err_t nvs_get_i16 (nvs_handle handle, const char* key, int16_t* out_value);
esp_err_t nvs_get_u16 (nvs_handle handle, const char* key, uint16_t* out_value);
esp_err_t nvs_get_i32 (nvs_handle handle, const char* key, int32_t* out_value);
esp_err_t nvs_get_u32 (nvs_handle handle, const char* key, uint32_t* out_value);
esp_err_t nvs_get_i64 (nvs_handle handle, const char* key, int64_t* out_value);
esp_err_t nvs_get_u64 (nvs_handle handle, const char* key, uint64_t* out_value);
/**@}*/
/**
* @brief get value for given key
*
* These functions retrieve value for the key, given its name. If key does not
* exist, or the requested variable type doesn't match the type which was used
* when setting a value, an error is returned.
*
* In case of any error, out_value is not modified.
*
* All functions expect out_value to be a pointer to an already allocated variable
* of the given type.
*
* nvs_get_str and nvs_get_blob functions support WinAPI-style length queries.
* To get the size necessary to store the value, call nvs_get_str or nvs_get_blob
* with zero out_value and non-zero pointer to length. Variable pointed to
* by length argument will be set to the required length. For nvs_get_str,
@ -136,13 +213,6 @@ esp_err_t nvs_set_blob(nvs_handle handle, const char* key, const void* value, si
* nvs_get/set_blob used for arbitrary data structures.
*
* \code{c}
* // Example of using nvs_get_i32:
* int32_t max_buffer_size = 4096; // default value
* esp_err_t err = nvs_get_i32(my_handle, "max_buffer_size", &max_buffer_size);
* assert(err == ESP_OK || err == ESP_ERR_NVS_NOT_FOUND);
* // if ESP_ERR_NVS_NOT_FOUND was returned, max_buffer_size will still
* // have its default value.
*
* // Example (without error checking) of using nvs_get_str to get a string into dynamic array:
* size_t required_size;
* nvs_get_str(my_handle, "server_name", NULL, &required_size);
@ -163,8 +233,7 @@ esp_err_t nvs_set_blob(nvs_handle handle, const char* key, const void* value, si
* @param out_value Pointer to the output value.
* May be NULL for nvs_get_str and nvs_get_blob, in this
* case required length will be returned in length argument.
* @param[inout] length For nvs_get_str and nvs_get_blob, non-zero pointer
* to the variable holding the length of out_value.
* @param[inout] length A non-zero pointer to the variable holding the length of out_value.
* In case out_value a zero, will be set to the length
* required to hold the value. In case out_value is not
* zero, will be set to the actual length of the value
@ -177,16 +246,10 @@ esp_err_t nvs_set_blob(nvs_handle handle, const char* key, const void* value, si
* - ESP_ERR_NVS_INVALID_NAME if key name doesn't satisfy constraints
* - ESP_ERR_NVS_INVALID_LENGTH if length is not sufficient to store data
*/
esp_err_t nvs_get_i8 (nvs_handle handle, const char* key, int8_t* out_value);
esp_err_t nvs_get_u8 (nvs_handle handle, const char* key, uint8_t* out_value);
esp_err_t nvs_get_i16 (nvs_handle handle, const char* key, int16_t* out_value);
esp_err_t nvs_get_u16 (nvs_handle handle, const char* key, uint16_t* out_value);
esp_err_t nvs_get_i32 (nvs_handle handle, const char* key, int32_t* out_value);
esp_err_t nvs_get_u32 (nvs_handle handle, const char* key, uint32_t* out_value);
esp_err_t nvs_get_i64 (nvs_handle handle, const char* key, int64_t* out_value);
esp_err_t nvs_get_u64 (nvs_handle handle, const char* key, uint64_t* out_value);
/**@{*/
esp_err_t nvs_get_str (nvs_handle handle, const char* key, char* out_value, size_t* length);
esp_err_t nvs_get_blob(nvs_handle handle, const char* key, void* out_value, size_t* length);
/**@}*/
/**
* @brief Erase key-value pair with given key name.

Some files were not shown because too many files have changed in this diff Show More