Merge branch 'master' into feature/modem_sleep

Conflicts:
	components/esp32/lib
This commit is contained in:
Xia Xiaotian 2016-11-25 15:27:46 +08:00
commit 16f2b119eb
184 changed files with 13095 additions and 1632 deletions

5
.gitignore vendored
View File

@ -24,3 +24,8 @@ examples/*/build
docs/_build/
docs/doxygen-warning-log.txt
docs/xml/
# Unit test app files
tools/unit-test-app/sdkconfig
tools/unit-test-app/sdkconfig.old
tools/unit-test-app/build

View File

@ -46,6 +46,10 @@ build_template_app:
- sed -i.bak -e's/CONFIG_OPTIMIZATION_LEVEL_DEBUG\=y/CONFIG_OPTIMIZATION_LEVEL_RELEASE=y/' sdkconfig
- make defconfig
- make all V=1
# Check if there are any stray printf/ets_printf references in WiFi libs
- cd ../components/esp32/lib
- test $(xtensa-esp32-elf-nm *.a | grep -w printf | wc -l) -eq 0
- test $(xtensa-esp32-elf-nm *.a | grep -w ets_printf | wc -l) -eq 0
.build_gitlab: &build_template
@ -63,10 +67,7 @@ build_ssc:
<<: *build_template
artifacts:
paths:
- ./SSC/build/*.bin
- ./SSC/build/*.elf
- ./SSC/build/*.map
- ./SSC/build/bootloader/*.bin
- ./SSC/ssc_bin
expire_in: 6 mos
script:
@ -81,18 +82,17 @@ build_esp_idf_tests:
<<: *build_template
artifacts:
paths:
- ./esp-idf-tests/build/*.bin
- ./esp-idf-tests/build/*.elf
- ./esp-idf-tests/build/*.map
- ./esp-idf-tests/build/bootloader/*.bin
- ./tools/unit-test-app/build/*.bin
- ./tools/unit-test-app/build/*.elf
- ./tools/unit-test-app/build/*.map
- ./tools/unit-test-app/build/bootloader/*.bin
expire_in: 6 mos
script:
- git clone $GITLAB_SSH_SERVER/idf/esp-idf-tests.git
- cd esp-idf-tests
- cd tools/unit-test-app
- git checkout ${CI_BUILD_REF_NAME} || echo "Using default branch..."
- make defconfig
- make
- make TESTS_ALL=1
build_examples:
<<: *build_template
@ -134,7 +134,7 @@ test_nvs_on_host:
tags:
- nvs_host_test
script:
- cd components/nvs_flash/test
- cd components/nvs_flash/test_nvs_host
- make test
test_build_system:
@ -233,7 +233,7 @@ deploy_docs:
variables:
# LOCAL_ENV_CONFIG_PATH: define in template and jobs can overwrite if required
LOCAL_ENV_CONFIG_PATH: /home/gitlab-runner/LocalConfig/ESP32_IDF
BIN_PATH: "$CI_PROJECT_DIR/SSC/build/"
BIN_PATH: "$CI_PROJECT_DIR/SSC/ssc_bin/SSC"
APP_NAME: "ssc"
LOG_PATH: "$CI_PROJECT_DIR/$CI_BUILD_REF"
# append test level folder to TEST_CASE_FILE_PATH in before_script of test job
@ -292,7 +292,7 @@ deploy_docs:
variables:
# jobs MUST set CONFIG_FILE in before_script, and overwrite the variables above if necessary
LOCAL_ENV_CONFIG_PATH: /home/gitlab-runner/LocalConfig/ESP32_IDF
BIN_PATH: "$CI_PROJECT_DIR/esp-idf-tests/build/"
BIN_PATH: "$CI_PROJECT_DIR/tools/unit-test-app/build/"
LOG_PATH: "$CI_PROJECT_DIR/$CI_BUILD_REF"
APP_NAME: "ut"
TEST_CASE_FILE_PATH: "$CI_PROJECT_DIR/components/idf_test/unit_test"

View File

@ -15,7 +15,9 @@ Before sending us a Pull Request, please consider this list of points:
* Is the contribution entirely your own work, or already licensed under an Apache License 2.0 compatible Open Source License? If not then we unfortunately cannot accept it.
* Does any new code conform to the esp-idf Style Guide? (Style Guide currently pending).
* Does any new code conform to the esp-idf :doc:`Style Guide <style-guide>`?
* Does the code documentation follow requirements in :doc:`documenting-code`?
* Is the code adequately commented for people to understand how it is structured?

View File

@ -20,7 +20,7 @@ export SECURE_BOOT_SIGNING_KEY # used by bootloader_support component
# Custom recursive make for bootloader sub-project
BOOTLOADER_MAKE=+$(MAKE) -C $(BOOTLOADER_COMPONENT_PATH)/src \
V=$(V) BUILD_DIR_BASE=$(BOOTLOADER_BUILD_DIR)
V=$(V) BUILD_DIR_BASE=$(BOOTLOADER_BUILD_DIR) TEST_COMPONENTS=
.PHONY: bootloader-clean bootloader-flash bootloader $(BOOTLOADER_BIN)

View File

@ -25,7 +25,6 @@
typedef SHA_CTX sha_context;
#else
#include "hwcrypto/sha.h"
typedef esp_sha_context sha_context;
#endif
typedef struct {
@ -42,7 +41,9 @@ extern const uint8_t signature_verification_key_end[] asm("_binary_signature_ver
esp_err_t esp_secure_boot_verify_signature(uint32_t src_addr, uint32_t length)
{
sha_context sha;
#ifdef BOOTLOADER_BUILD
SHA_CTX sha;
#endif
uint8_t digest[32];
ptrdiff_t keylen;
const uint8_t *data;
@ -83,12 +84,8 @@ esp_err_t esp_secure_boot_verify_signature(uint32_t src_addr, uint32_t length)
ets_sha_finish(&sha, SHA2_256, digest);
ets_sha_disable();
#else
/* Use thread-safe esp-idf SHA layer */
esp_sha256_init(&sha);
esp_sha256_start(&sha, false);
esp_sha256_update(&sha, data, length);
esp_sha256_finish(&sha, digest);
esp_sha256_free(&sha);
/* Use thread-safe esp-idf SHA function */
esp_sha(SHA2_256, data, length, digest);
#endif
keylen = signature_verification_key_end - signature_verification_key_start;

View File

@ -115,7 +115,7 @@ static struct osi_funcs_t osi_funcs = {
._mutex_create = mutex_create_wrapper,
._mutex_lock = mutex_lock_wrapper,
._mutex_unlock = mutex_unlock_wrapper,
._read_efuse_mac = system_efuse_read_mac,
._read_efuse_mac = esp_efuse_read_mac,
};
static void bt_controller_task(void *pvParam)

View File

@ -321,9 +321,9 @@ esp_err_t gpio_config(gpio_config_t *pGPIOConfig)
}
if(pGPIOConfig->pull_up_en) {
pu_en = 1;
REG_SET_BIT(gpio_pu_pd_desc[io_num].reg, gpio_pu_pd_desc[io_num].pd);
REG_SET_BIT(gpio_pu_pd_desc[io_num].reg, gpio_pu_pd_desc[io_num].pu);
} else {
REG_CLR_BIT(gpio_pu_pd_desc[io_num].reg, gpio_pu_pd_desc[io_num].pd);
REG_CLR_BIT(gpio_pu_pd_desc[io_num].reg, gpio_pu_pd_desc[io_num].pu);
}
if(pGPIOConfig->pull_down_en) {
pd_en = 1;

View File

@ -0,0 +1,359 @@
#ifndef __PCNT_H__
#define __PCNT_H__
#include <esp_types.h>
#include "esp_intr.h"
#include "esp_err.h"
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "freertos/xtensa_api.h"
#include "soc/soc.h"
#include "soc/pcnt_reg.h"
#include "soc/pcnt_struct.h"
#include "soc/gpio_sig_map.h"
#include "driver/gpio.h"
#ifdef __cplusplus
extern "C" {
#endif
#define PCNT_PIN_NOT_USED (-1) /*!< Pin are not used */
typedef enum {
PCNT_MODE_KEEP = 0, /*!< Control mode: won't change counter mode*/
PCNT_MODE_REVERSE = 1, /*!< Control mode: invert counter mode(increase -> decrease, decrease -> increase);*/
PCNT_MODE_DISABLE = 2, /*!< Control mode: Inhibit counter(counter value will not change in this condition)*/
PCNT_MODE_MAX
} pcnt_ctrl_mode_t;
typedef enum {
PCNT_COUNT_DIS = 0, /*!< Counter mode: Decrease counter value*/
PCNT_COUNT_INC = 1, /*!< Counter mode: Increase counter value*/
PCNT_COUNT_DEC = 2, /*!< Counter mode: Inhibit counter(counter value will not change in this condition)*/
PCNT_COUNT_MAX
} pcnt_count_mode_t;
typedef enum {
PCNT_UNIT_0 = 0, /*!< PCNT unit0 */
PCNT_UNIT_1 = 1, /*!< PCNT unit1 */
PCNT_UNIT_2 = 2, /*!< PCNT unit2 */
PCNT_UNIT_3 = 3, /*!< PCNT unit3 */
PCNT_UNIT_4 = 4, /*!< PCNT unit4 */
PCNT_UNIT_5 = 5, /*!< PCNT unit5 */
PCNT_UNIT_6 = 6, /*!< PCNT unit6 */
PCNT_UNIT_7 = 7, /*!< PCNT unit7 */
PCNT_UNIT_MAX,
} pcnt_unit_t;
typedef enum{
PCNT_CHANNEL_0 = 0x00, /*!< PCNT channel0 */
PCNT_CHANNEL_1 = 0x01, /*!< PCNT channel1 */
PCNT_CHANNEL_MAX,
} pcnt_channel_t;
typedef enum {
PCNT_EVT_L_LIM = 0, /*!< PCNT watch point event: Minimum counter value */
PCNT_EVT_H_LIM = 1, /*!< PCNT watch point event: Maximum counter value*/
PCNT_EVT_THRES_0 = 2, /*!< PCNT watch point event: threshold0 value event*/
PCNT_EVT_THRES_1 = 3, /*!< PCNT watch point event: threshold1 value event*/
PCNT_EVT_ZERO = 4, /*!< PCNT watch point event: counter value zero event*/
PCNT_EVT_MAX
} pcnt_evt_type_t;
/**
* @brief Pulse Counter configure struct
*/
typedef struct {
int pulse_gpio_num; /*!< Pulse input gpio_num, if you want to use gpio16, pulse_gpio_num = 16, a negative value will be ignored */
int ctrl_gpio_num; /*!< Contol signal input gpio_num, a negative value will be ignored*/
pcnt_ctrl_mode_t lctrl_mode; /*!< PCNT low control mode*/
pcnt_ctrl_mode_t hctrl_mode; /*!< PCNT high control mode*/
pcnt_count_mode_t pos_mode; /*!< PCNT positive edge count mode*/
pcnt_count_mode_t neg_mode; /*!< PCNT negative edge count mode*/
int16_t counter_h_lim; /*!< Maximum counter value */
int16_t counter_l_lim; /*!< Minimum counter value */
pcnt_unit_t unit; /*!< PCNT unit number */
pcnt_channel_t channel; /*!< the PCNT channel */
} pcnt_config_t;
/**
* @brief Configure Pulse Counter unit
*
* @param pcnt_config Pointer of Pulse Counter unit configure parameter
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t pcnt_unit_config(pcnt_config_t *pcnt_config);
/**
* @brief Get pulse counter value
*
* @param pcnt_unit Pulse Counter unit number
* @param count Pointer to accept counter value
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t pcnt_get_counter_value(pcnt_unit_t pcnt_unit, int16_t* count);
/**
* @brief Pause PCNT counter of PCNT unit
*
* @param pcnt_unit PCNT unit number
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t pcnt_counter_pause(pcnt_unit_t pcnt_unit);
/**
* @brief Resume counting for PCNT counter
*
* @param pcnt_unit PCNT unit number, select from pcnt_unit_t
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t pcnt_counter_resume(pcnt_unit_t pcnt_unit);
/**
* @brief Clear and reset PCNT counter value to zero
*
* @param pcnt_unit PCNT unit number, select from pcnt_unit_t
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t pcnt_counter_clear(pcnt_unit_t pcnt_unit);
/**
* @brief Enable PCNT interrupt for PCNT unit
* @note
* Each Pulse counter unit has five watch point events that share the same interrupt.
* Configure events with pcnt_event_enable() and pcnt_event_disable()
*
* @param pcnt_unit PCNT unit number
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t pcnt_intr_enable(pcnt_unit_t pcnt_unit);
/**
* @brief Disable PCNT interrupt for PCNT uint
*
* @param pcnt_unit PCNT unit number
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t pcnt_intr_disable(pcnt_unit_t pcnt_unit);
/**
* @brief Enable PCNT event of PCNT unit
*
* @param unit PCNT unit number
* @param evt_type Watch point event type.
* All enabled events share the same interrupt (one interrupt per pulse counter unit).
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t pcnt_event_enable(pcnt_unit_t unit, pcnt_evt_type_t evt_type);
/**
* @brief Disable PCNT event of PCNT unit
*
* @param unit PCNT unit number
* @param evt_type Watch point event type.
* All enabled events share the same interrupt (one interrupt per pulse counter unit).
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t pcnt_event_disable(pcnt_unit_t unit, pcnt_evt_type_t evt_type);
/**
* @brief Set PCNT event value of PCNT unit
*
* @param unit PCNT unit number
* @param evt_type Watch point event type.
* All enabled events share the same interrupt (one interrupt per pulse counter unit).
*
* @param value Counter value for PCNT event
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t pcnt_set_event_value(pcnt_unit_t unit, pcnt_evt_type_t evt_type, int16_t value);
/**
* @brief Get PCNT event value of PCNT unit
*
* @param unit PCNT unit number
* @param evt_type Watch point event type.
* All enabled events share the same interrupt (one interrupt per pulse counter unit).
* @param value Pointer to accept counter value for PCNT event
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t pcnt_get_event_value(pcnt_unit_t unit, pcnt_evt_type_t evt_type, int16_t *value);
/**
* @brief Register PCNT interrupt handler, the handler is an ISR.
* The handler will be attached to the same CPU core that this function is running on.
* @note
* Users should know that which CPU is running and then pick a INUM that is not used by system.
* We can find the information of INUM and interrupt level in soc.h.
*
* @param pcnt_intr_num PCNT interrupt number, check the info in soc.h, and please see the core-isa.h for more details
* @param fn Interrupt handler function.
* @note
* Note that the handler function MUST be defined with attribution of "IRAM_ATTR".
* @param arg Parameter for handler function
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Function pointer error.
*/
esp_err_t pcnt_isr_register(uint32_t pcnt_intr_num, void (*fn)(void*), void * arg);
/**
* @brief Configure PCNT pulse signal input pin and control input pin
*
* @param unit PCNT unit number
* @param channel PCNT channel number
* @param pulse_io Pulse signal input GPIO
* @note
* Set to PCNT_PIN_NOT_USED if unused.
* @param ctrl_io Control signal input GPIO
* @note
* Set to PCNT_PIN_NOT_USED if unused.
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t pcnt_set_pin(pcnt_unit_t unit, pcnt_channel_t channel, int pulse_io, int ctrl_io);
/**
* @brief Enable PCNT input filter
*
* @param unit PCNT unit number
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t pcnt_filter_enable(pcnt_unit_t unit);
/**
* @brief Disable PCNT input filter
*
* @param unit PCNT unit number
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t pcnt_filter_disable(pcnt_unit_t unit);
/**
* @brief Set PCNT filter value
*
* @param unit PCNT unit number
* @param filter_val PCNT signal filter value, counter in APB_CLK cycles.
* Any pulses lasting shorter than this will be ignored when the filter is enabled.
* @note
* filter_val is a 10-bit value, so the maximum filter_val should be limited to 1023.
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t pcnt_set_filter_value(pcnt_unit_t unit, uint16_t filter_val);
/**
* @brief Get PCNT filter value
*
* @param unit PCNT unit number
* @param filter_val Pointer to accept PCNT filter value.
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t pcnt_get_filter_value(pcnt_unit_t unit, uint16_t *filter_val);
/**
* @brief Set PCNT counter mode
*
* @param unit PCNT unit number
* @param channel PCNT channel number
* @param pos_mode Counter mode when detecting positive edge
* @param neg_mode Counter mode when detecting negative edge
* @param hctrl_mode Counter mode when control signal is high level
* @param lctrl_mode Counter mode when control signal is low level
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t pcnt_set_mode(pcnt_unit_t unit, pcnt_channel_t channel,
pcnt_count_mode_t pos_mode, pcnt_count_mode_t neg_mode,
pcnt_ctrl_mode_t hctrl_mode, pcnt_ctrl_mode_t lctrl_mode);
/**
* @addtogroup pcnt-examples
*
* @{
*
* EXAMPLE OF PCNT CONFIGURATION
* ==============================
* @code{c}
* //1. Config PCNT unit
* pcnt_config_t pcnt_config = {
* .pulse_gpio_num = 4, //set gpio4 as pulse input gpio
* .ctrl_gpio_num = 5, //set gpio5 as control gpio
* .channel = PCNT_CHANNEL_0, //use unit 0 channel 0
* .lctrl_mode = PCNT_MODE_REVERSE, //when control signal is low ,reverse the primary counter mode(inc->dec/dec->inc)
* .hctrl_mode = PCNT_MODE_KEEP, //when control signal is high,keep the primary counter mode
* .pos_mode = PCNT_COUNT_INC, //increment the counter
* .neg_mode = PCNT_COUNT_DIS, //keep the counter value
* .counter_h_lim = 10,
* .counter_l_lim = -10,
* };
* pcnt_unit_config(&pcnt_config); //init unit
* @endcode
*
* EXAMPLE OF PCNT EVENT SETTING
* ==============================
* @code{c}
* //2. Configure PCNT watchpoint event.
* pcnt_set_event_value(PCNT_UNIT_0, PCNT_EVT_THRES_1, 5); //set thres1 value
* pcnt_event_enable(PCNT_UNIT_0, PCNT_EVT_THRES_1); //enable thres1 event
* @endcode
*
* For more examples please refer to PCNT example code in IDF_PATH/examples
*
* @}
*/
#ifdef __cplusplus
}
#endif
#endif

View File

@ -39,6 +39,8 @@ typedef enum {
PERIPH_PWM3_MODULE,
PERIPH_UHCI0_MODULE,
PERIPH_UHCI1_MODULE,
PERIPH_RMT_MODULE,
PERIPH_PCNT_MODULE,
} periph_module_t;
/**

View File

@ -0,0 +1,794 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _DRIVER_RMT_CTRL_H_
#define _DRIVER_RMT_CTRL_H_
#include "esp_err.h"
#include "soc/rmt_reg.h"
#include "soc/dport_reg.h"
#include "soc/rmt_struct.h"
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "freertos/xtensa_api.h"
#include "freertos/ringbuf.h"
#include "driver/gpio.h"
#include "driver/periph_ctrl.h"
#ifdef __cplusplus
extern "C" {
#endif
#define RMT_MEM_BLOCK_BYTE_NUM (256)
#define RMT_MEM_ITEM_NUM (RMT_MEM_BLOCK_BYTE_NUM/4)
typedef enum {
RMT_CHANNEL_0=0, /*!< RMT Channel0 */
RMT_CHANNEL_1, /*!< RMT Channel1 */
RMT_CHANNEL_2, /*!< RMT Channel2 */
RMT_CHANNEL_3, /*!< RMT Channel3 */
RMT_CHANNEL_4, /*!< RMT Channel4 */
RMT_CHANNEL_5, /*!< RMT Channel5 */
RMT_CHANNEL_6, /*!< RMT Channel6 */
RMT_CHANNEL_7, /*!< RMT Channel7 */
RMT_CHANNEL_MAX
} rmt_channel_t;
typedef enum {
RMT_MEM_OWNER_TX = 0, /*!< RMT RX mode, RMT transmitter owns the memory block*/
RMT_MEM_OWNER_RX = 1, /*!< RMT RX mode, RMT receiver owns the memory block*/
RMT_MEM_OWNER_MAX,
}rmt_mem_owner_t;
typedef enum {
RMT_BASECLK_REF = 0, /*!< RMT source clock system reference tick, 1MHz by default(Not supported in this version) */
RMT_BASECLK_APB, /*!< RMT source clock is APB CLK, 80Mhz by default */
RMT_BASECLK_MAX,
} rmt_source_clk_t;
typedef enum {
RMT_DATA_MODE_FIFO = 0, /*<! RMT memory access in FIFO mode */
RMT_DATA_MODE_MEM = 1, /*<! RMT memory access in memory mode */
RMT_DATA_MODE_MAX,
} rmt_data_mode_t;
typedef enum {
RMT_MODE_TX=0, /*!< RMT TX mode */
RMT_MODE_RX, /*!< RMT RX mode */
RMT_MODE_MAX
} rmt_mode_t;
typedef enum {
RMT_IDLE_LEVEL_LOW=0, /*!< RMT TX idle level: low Level */
RMT_IDLE_LEVEL_HIGH, /*!< RMT TX idle level: high Level */
RMT_IDLE_LEVEL_MAX,
} rmt_idle_level_t;
typedef enum {
RMT_CARRIER_LEVEL_LOW=0, /*!< RMT carrier wave is modulated for low Level output */
RMT_CARRIER_LEVEL_HIGH, /*!< RMT carrier wave is modulated for high Level output */
RMT_CARRIER_LEVEL_MAX
} rmt_carrier_level_t;
/**
* @brief Data struct of RMT TX configure parameters
*/
typedef struct {
bool loop_en; /*!< RMT loop output mode*/
uint32_t carrier_freq_hz; /*!< RMT carrier frequency */
uint8_t carrier_duty_percent; /*!< RMT carrier duty (%) */
rmt_carrier_level_t carrier_level; /*!< RMT carrier level */
bool carrier_en; /*!< RMT carrier enable */
rmt_idle_level_t idle_level; /*!< RMT idle level */
bool idle_output_en; /*!< RMT idle level output enable*/
}rmt_tx_config_t;
/**
* @brief Data struct of RMT RX configure parameters
*/
typedef struct {
bool filter_en; /*!< RMT receiver filer enable*/
uint8_t filter_ticks_thresh; /*!< RMT filter tick number */
uint16_t idle_threshold; /*!< RMT RX idle threshold */
}rmt_rx_config_t;
/**
* @brief Data struct of RMT configure parameters
*/
typedef struct {
rmt_mode_t rmt_mode; /*!< RMT mode: transmitter or receiver */
rmt_channel_t channel; /*!< RMT channel */
uint8_t clk_div; /*!< RMT channel counter divider */
gpio_num_t gpio_num; /*!< RMT GPIO number */
uint8_t mem_block_num; /*!< RMT memory block number */
union{
rmt_tx_config_t tx_config; /*!< RMT TX parameter */
rmt_rx_config_t rx_config; /*!< RMT RX parameter */
};
} rmt_config_t;
/**
* @brief Set RMT clock divider, channel clock is divided from source clock.
*
* @param channel RMT channel (0-7)
*
* @param div_cnt RMT counter clock divider
*
* @return
* - ESP_ERR_INVALID_ARG Parameter error
* - ESP_OK Success
*/
esp_err_t rmt_set_clk_div(rmt_channel_t channel, uint8_t div_cnt);
/**
* @brief Get RMT clock divider, channel clock is divided from source clock.
*
* @param channel RMT channel (0-7)
*
* @param div_cnt pointer to accept RMT counter divider
*
* @return
* - ESP_ERR_INVALID_ARG Parameter error
* - ESP_OK Success
*/
esp_err_t rmt_get_clk_div(rmt_channel_t channel, uint8_t* div_cnt);
/**
* @brief Set RMT RX idle threshold value
*
* In receive mode, when no edge is detected on the input signal
* for longer than idle_thres channel clock cycles,
* the receive process is finished.
*
* @param channel RMT channel (0-7)
*
* @param thresh RMT RX idle threshold
*
* @return
* - ESP_ERR_INVALID_ARG Parameter error
* - ESP_OK Success
*/
esp_err_t rmt_set_rx_idle_thresh(rmt_channel_t channel, uint16_t thresh);
/**
* @brief Get RMT idle threshold value.
*
* In receive mode, when no edge is detected on the input signal
* for longer than idle_thres channel clock cycles,
* the receive process is finished.
*
* @param channel RMT channel (0-7)
*
* @param thresh pointer to accept RMT RX idle threshold value
*
* @return
* - ESP_ERR_INVALID_ARG Parameter error
* - ESP_OK Success
*/
esp_err_t rmt_get_rx_idle_thresh(rmt_channel_t channel, uint16_t *thresh);
/**
* @brief Set RMT memory block number for RMT channel
*
* This function is used to configure the amount of memory blocks allocated to channel n
* The 8 channels share a 512x32-bit RAM block which can be read and written
* by the processor cores over the APB bus, as well as read by the transmitters
* and written by the receivers.
* The RAM address range for channel n is start_addr_CHn to end_addr_CHn, which are defined by:
* Memory block start address is RMT_CHANNEL_MEM(n) (in soc/rmt_reg.h),
* that is, start_addr_chn = RMT base address + 0x800 + 64 4 n, and
* end_addr_chn = RMT base address + 0x800 + 64 4 n + 64 4 RMT_MEM_SIZE_CHn mod 512 4
* @note
* If memory block number of one channel is set to a value greater than 1, this channel will occupy the memory
* block of the next channel.
* Channel0 can use at most 8 blocks of memory, accordingly channel7 can only use one memory block.
*
* @param channel RMT channel (0-7)
*
* @param rmt_mem_num RMT RX memory block number, one block has 64 * 32 bits.
*
* @return
* - ESP_ERR_INVALID_ARG Parameter error
* - ESP_OK Success
*/
esp_err_t rmt_set_mem_block_num(rmt_channel_t channel, uint8_t rmt_mem_num);
/**
* @brief Get RMT memory block number
*
* @param channel RMT channel (0-7)
*
* @param rmt_mem_num Pointer to accept RMT RX memory block number
*
* @return
* - ESP_ERR_INVALID_ARG Parameter error
* - ESP_OK Success
*/
esp_err_t rmt_get_mem_block_num(rmt_channel_t channel, uint8_t* rmt_mem_num);
/**
* @brief Configure RMT carrier for TX signal.
*
* Set different values for carrier_high and carrier_low to set different frequency of carrier.
* The unit of carrier_high/low is the source clock tick, not the divided channel counter clock.
*
* @param channel RMT channel (0-7)
*
* @param carrier_en Whether to enable output carrier.
*
* @param high_level High level duration of carrier
*
* @param low_level Low level duration of carrier.
*
* @param carrier_level Configure the way carrier wave is modulated for channel0-7.
*
* 1'b1:transmit on low output level
*
* 1'b0:transmit on high output level
*
* @return
* - ESP_ERR_INVALID_ARG Parameter error
* - ESP_OK Success
*/
esp_err_t rmt_set_tx_carrier(rmt_channel_t channel, bool carrier_en, uint16_t high_level, uint16_t low_level, rmt_carrier_level_t carrier_level);
/**
* @brief Set RMT memory in low power mode.
*
* Reduce power consumed by memory. 1:memory is in low power state.
*
* @param channel RMT channel (0-7)
*
* @param pd_en RMT memory low power enable.
*
* @return
* - ESP_ERR_INVALID_ARG Parameter error
* - ESP_OK Success
*/
esp_err_t rmt_set_mem_pd(rmt_channel_t channel, bool pd_en);
/**
* @brief Get RMT memory low power mode.
*
* @param channel RMT channel (0-7)
*
* @param pd_en Pointer to accept RMT memory low power mode.
*
* @return
* - ESP_ERR_INVALID_ARG Parameter error
* - ESP_OK Success
*/
esp_err_t rmt_get_mem_pd(rmt_channel_t channel, bool* pd_en);
/**
* @brief Set RMT start sending data from memory.
*
* @param channel RMT channel (0-7)
*
* @param tx_idx_rst Set true to reset memory index for TX.
* Otherwise, transmitter will continue sending from the last index in memory.
*
* @return
* - ESP_ERR_INVALID_ARG Parameter error
* - ESP_OK Success
*/
esp_err_t rmt_tx_start(rmt_channel_t channel, bool tx_idx_rst);
/**
* @brief Set RMT stop sending.
*
* @param channel RMT channel (0-7)
*
* @return
* - ESP_ERR_INVALID_ARG Parameter error
* - ESP_OK Success
*/
esp_err_t rmt_tx_stop(rmt_channel_t channel);
/**
* @brief Set RMT start receiving data.
*
* @param channel RMT channel (0-7)
*
* @param rx_idx_rst Set true to reset memory index for receiver.
* Otherwise, receiver will continue receiving data to the last index in memory.
*
* @return
* - ESP_ERR_INVALID_ARG Parameter error
* - ESP_OK Success
*/
esp_err_t rmt_rx_start(rmt_channel_t channel, bool rx_idx_rst);
/**
* @brief Set RMT stop receiving data.
*
* @param channel RMT channel (0-7)
*
* @return
* - ESP_ERR_INVALID_ARG Parameter error
* - ESP_OK Success
*/
esp_err_t rmt_rx_stop(rmt_channel_t channel);
/**
* @brief Reset RMT TX/RX memory index.
*
* @param channel RMT channel (0-7)
*
* @return
* - ESP_ERR_INVALID_ARG Parameter error
* - ESP_OK Success
*/
esp_err_t rmt_memory_rw_rst(rmt_channel_t channel);
/**
* @brief Set RMT memory owner.
*
* @param channel RMT channel (0-7)
*
* @param owner To set when the transmitter or receiver can process the memory of channel.
*
* @return
* - ESP_ERR_INVALID_ARG Parameter error
* - ESP_OK Success
*/
esp_err_t rmt_set_memory_owner(rmt_channel_t channel, rmt_mem_owner_t owner);
/**
* @brief Get RMT memory owner.
*
* @param channel RMT channel (0-7)
*
* @param owner Pointer to get memory owner.
*
* @return
* - ESP_ERR_INVALID_ARG Parameter error
* - ESP_OK Success
*/
esp_err_t rmt_get_memory_owner(rmt_channel_t channel, rmt_mem_owner_t* owner);
/**
* @brief Set RMT tx loop mode.
*
* @param channel RMT channel (0-7)
*
* @param loop_en To enable RMT transmitter loop sending mode.
*
* If set true, transmitter will continue sending from the first data
* to the last data in channel0-7 again and again.
*
* @return
* - ESP_ERR_INVALID_ARG Parameter error
* - ESP_OK Success
*/
esp_err_t rmt_set_tx_loop_mode(rmt_channel_t channel, bool loop_en);
/**
* @brief Get RMT tx loop mode.
*
* @param channel RMT channel (0-7)
*
* @param loop_en Pointer to accept RMT transmitter loop sending mode.
*
* @return
* - ESP_ERR_INVALID_ARG Parameter error
* - ESP_OK Success
*/
esp_err_t rmt_get_tx_loop_mode(rmt_channel_t channel, bool* loop_en);
/**
* @brief Set RMT RX filter.
*
* In receive mode, channel0-7 will ignore input pulse when the pulse width is smaller than threshold.
* Counted in source clock, not divided counter clock.
*
* @param channel RMT channel (0-7)
*
* @param rx_filter_en To enable RMT receiver filter.
*
* @param thresh Threshold of pulse width for receiver.
*
* @return
* - ESP_ERR_INVALID_ARG Parameter error
* - ESP_OK Success
*/
esp_err_t rmt_set_rx_filter(rmt_channel_t channel, bool rx_filter_en, uint8_t thresh);
/**
* @brief Set RMT source clock
*
* RMT module has two source clock:
* 1. APB clock which is 80Mhz
* 2. REF tick clock, which would be 1Mhz( not supported in this version).
*
* @param channel RMT channel (0-7)
*
* @param base_clk To choose source clock for RMT module.
*
* @return
* - ESP_ERR_INVALID_ARG Parameter error
* - ESP_OK Success
*/
esp_err_t rmt_set_source_clk(rmt_channel_t channel, rmt_source_clk_t base_clk);
/**
* @brief Get RMT source clock
*
* RMT module has two source clock:
* 1. APB clock which is 80Mhz
* 2. REF tick clock, which would be 1Mhz( not supported in this version).
*
* @param channel RMT channel (0-7)
*
* @param src_clk Pointer to accept source clock for RMT module.
*
* @return
* - ESP_ERR_INVALID_ARG Parameter error
* - ESP_OK Success
*/
esp_err_t rmt_get_source_clk(rmt_channel_t channel, rmt_source_clk_t* src_clk);
/**
* @brief Set RMT idle output level for transmitter
*
* @param channel RMT channel (0-7)
*
* @param idle_out_en To enable idle level output.
*
* @param level To set the output signal's level for channel0-7 in idle state.
*
* @return
* - ESP_ERR_INVALID_ARG Parameter error
* - ESP_OK Success
*/
esp_err_t rmt_set_idle_level(rmt_channel_t channel, bool idle_out_en, rmt_idle_level_t level);
/**
* @brief Get RMT status
*
* @param channel RMT channel (0-7)
*
* @param status Pointer to accept channel status.
*
* @return
* - ESP_ERR_INVALID_ARG Parameter error
* - ESP_OK Success
*/
esp_err_t rmt_get_status(rmt_channel_t channel, uint32_t* status);
/**
* @brief Set mask value to RMT interrupt enable register.
*
* @param mask Bit mask to set to the register
*
*/
void rmt_set_intr_enable_mask(uint32_t mask);
/**
* @brief Clear mask value to RMT interrupt enable register.
*
* @param mask Bit mask to clear the register
*
*/
void rmt_clr_intr_enable_mask(uint32_t mask);
/**
* @brief Set RMT RX interrupt enable
*
* @param channel RMT channel (0 - 7)
*
* @param en enable or disable RX interrupt.
*
* @return
* - ESP_ERR_INVALID_ARG Parameter error
* - ESP_OK Success
*/
esp_err_t rmt_set_rx_intr_en(rmt_channel_t channel, bool en);
/**
* @brief Set RMT RX error interrupt enable
*
* @param channel RMT channel (0 - 7)
*
* @param en enable or disable RX err interrupt.
*
* @return
* - ESP_ERR_INVALID_ARG Parameter error
* - ESP_OK Success
*/
esp_err_t rmt_set_err_intr_en(rmt_channel_t channel, bool en);
/**
* @brief Set RMT TX interrupt enable
*
* @param channel RMT channel (0 - 7)
*
* @param en enable or disable TX interrupt.
*
* @return
* - ESP_ERR_INVALID_ARG Parameter error
* - ESP_OK Success
*/
esp_err_t rmt_set_tx_intr_en(rmt_channel_t channel, bool en);
/**
* @brief Set RMT TX event interrupt enable
*
* @param channel RMT channel (0 - 7)
*
* @param en enable or disable TX event interrupt.
*
* @param evt_thresh RMT event interrupt threshold value
*
* @return
* - ESP_ERR_INVALID_ARG Parameter error
* - ESP_OK Success
*/
esp_err_t rmt_set_evt_intr_en(rmt_channel_t channel, bool en, uint16_t evt_thresh);
/**
* @brief Set RMT pins
*
* @param channel RMT channel (0 - 7)
*
* @param mode TX or RX mode for RMT
*
* @param gpio_num GPIO number to transmit or receive the signal.
*
* @return
* - ESP_ERR_INVALID_ARG Parameter error
* - ESP_OK Success
*/
esp_err_t rmt_set_pin(rmt_channel_t channel, rmt_mode_t mode, gpio_num_t gpio_num);
/**
* @brief Configure RMT parameters
*
* @param rmt_param RMT parameter structor
*
* @return
* - ESP_ERR_INVALID_ARG Parameter error
* - ESP_OK Success
*/
esp_err_t rmt_config(rmt_config_t* rmt_param);
/**
* @brief register RMT interrupt handler, the handler is an ISR.
*
* The handler will be attached to the same CPU core that this function is running on.
* Users should know that which CPU is running and then pick a INUM that is not used by system.
* We can find the information of INUM and interrupt level in soc.h.
* @note
* If you already called rmt_driver_install to use system RMT driver,
* please do not register ISR handler again.
*
* @param rmt_intr_num RMT interrupt number, check the info in soc.h, and please see the core-isa.h for more details
*
* @param fn Interrupt handler function.
*
* @note
* the handler function MUST be defined with attribution of "IRAM_ATTR".
*
* @param arg Parameter for handler function
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Function pointer error.
* - ESP_FAIL System driver installed, can not register ISR handler for RMT
*/
esp_err_t rmt_isr_register(uint8_t rmt_intr_num, void (* fn)(void* ), void * arg);
/**
* @brief Fill memory data of channel with given RMT items.
*
* @param channel RMT channel (0 - 7)
*
* @param item Pointer of items.
*
* @param item_num RMT sending items number.
*
* @param mem_offset Index offset of memory.
*
* @return
* - ESP_ERR_INVALID_ARG Parameter error
* - ESP_OK Success
*/
esp_err_t rmt_fill_tx_items(rmt_channel_t channel, rmt_item32_t* item, uint16_t item_num, uint16_t mem_offset);
/**
* @brief Initialize RMT driver
*
* @param channel RMT channel (0 - 7)
*
* @param rx_buf_size Size of RMT RX ringbuffer.
*
* @note
* If we do not need RX ringbuffer, just set rx_buf_size to 0.
*
* @note
* When we call rmt_driver_install function, it will register a driver ISR handler,
* DO NOT REGISTER ISR HANDLER AGAIN.
*
* @param rmt_intr_num RMT interrupt number.
*
* @return
* - ESP_ERR_INVALID_ARG Parameter error
* - ESP_OK Success
*/
esp_err_t rmt_driver_install(rmt_channel_t channel, size_t rx_buf_size, int rmt_intr_num);
/**
* @brief Uninstall RMT driver.
*
* @param channel RMT channel (0 - 7)
*
* @return
* - ESP_ERR_INVALID_ARG Parameter error
* - ESP_OK Success
*/
esp_err_t rmt_driver_uninstall(rmt_channel_t channel);
/**
* @brief RMT send waveform from rmt_item array.
*
* This API allows user to send waveform with any length.
*
* @param channel RMT channel (0 - 7)
*
* @param rmt_item head point of RMT items array.
*
* @param item_num RMT data item number.
*
* @param wait_tx_done If set 1, it will block the task and wait for sending done.
*
* If set 0, it will not wait and return immediately.
*
* @note
* This function will not copy data, instead, it will point to the original items,
* and send the waveform items.
* If wait_tx_done is set to true, this function will block and will not return until
* all items have been sent out.
* If wait_tx_done is set to false, this function will return immediately, and the driver
* interrupt will continue sending the items. We must make sure the item data will not be
* damaged when the driver is still sending items in driver interrupt.
*
* @return
* - ESP_ERR_INVALID_ARG Parameter error
* - ESP_OK Success
*/
esp_err_t rmt_write_items(rmt_channel_t channel, rmt_item32_t* rmt_item, int item_num, bool wait_tx_done);
/**
* @brief Wait RMT TX finished.
*
* @param channel RMT channel (0 - 7)
*
* @return
* - ESP_ERR_INVALID_ARG Parameter error
* - ESP_OK Success
*/
esp_err_t rmt_wait_tx_done(rmt_channel_t channel);
/**
* @brief Get ringbuffer from UART.
*
* Users can get the RMT RX ringbuffer handler, and process the RX data.
*
* @param channel RMT channel (0 - 7)
*
* @param buf_handler Pointer to buffer handler to accept RX ringbuffer handler.
*
* @return
* - ESP_ERR_INVALID_ARG Parameter error
* - ESP_OK Success
*/
esp_err_t rmt_get_ringbuf_handler(rmt_channel_t channel, RingbufHandle_t* buf_handler);
/***************************EXAMPLE**********************************
*
* @note
* You can also refer to example/09_rmt_nec_tx_rx to have more information about how to use RMT module.
*
* ----------------EXAMPLE OF RMT SETTING ---------------------
* @code{c}
* //1. enable RMT
* //enable RMT module, or you can not set any register of it.
* //this will be done in rmt_config API.
* periph_module_enable(PERIPH_RMT_MODULE);
* @endcode
*
* @code{c}
* //2. set RMT transmitter
* void rmt_tx_init()
* {
* rmt_config_t rmt_tx;
* rmt_tx.channel = 0;
* rmt_tx.gpio_num = 16;
* rmt_tx.mem_block_num = 1;
* rmt_tx.clk_div = 100;
* rmt_tx.tx_config.loop_en = false;
* rmt_tx.tx_config.carrier_duty_percent = 50;
* rmt_tx.tx_config.carrier_freq_hz = 38000;
* rmt_tx.tx_config.carrier_level = 1;
* rmt_tx.tx_config.carrier_en = RMT_TX_CARRIER_EN;
* rmt_tx.tx_config.idle_level = 0;
* rmt_tx.tx_config.idle_output_en = true;
* rmt_tx.rmt_mode = 0;
* rmt_config(&rmt_tx);
*
* //install system RMT driver, disable rx ringbuffer for transmitter.
* rmt_driver_install(rmt_tx.channel, 0, RMT_INTR_NUM);
* }
*
* @endcode
* @code{c}
* //3. set RMT receiver
* void rmt_rx_init()
* {
* rmt_config_t rmt_rx;
* rmt_rx.channel = 1;
* rmt_rx.gpio_num = 19;
* rmt_rx.clk_div = 100;
* rmt_rx.mem_block_num = 1;
* rmt_rx.rmt_mode = RMT_MODE_RX;
* rmt_rx.rx_config.filter_en = true;
* rmt_rx.rx_config.filter_ticks_thresh = 100;
* rmt_rx.rx_config.idle_threshold = 0xffff;
* rmt_config(&rmt_rx);
*
* //install system RMT driver.
* rmt_driver_install(rmt_rx.channel, 1000, RMT_INTR_NUM);
* }
*
* ----------------EXAMPLE OF RMT INTERRUPT ------------------
* @code{c}
*
* rmt_isr_register(RMT_INTR_NUM, rmt_isr, NULL); //hook the ISR handler for RMT interrupt
* @endcode
* @note
* 0. If you have called rmt_driver_install, you don't need to set ISR handler any more.
* 1. the first parameter is INUM, you can pick one form interrupt level 1/2 which is not used by the system.
* 2. user should arrange the INUMs that used, better not to use a same INUM for different interrupt source.
* 3. do not pick the INUM that already occupied by the system.
* 4. refer to soc.h to check which INUMs that can be used.
*
* ----------------EXAMPLE OF INTERRUPT HANDLER ---------------
* @code{c}
* #include "esp_attr.h"
* //we should add 'IRAM_ATTR' attribution when we declare the isr function
* void IRAM_ATTR rmt_isr_handler(void* arg)
* {
* //read RMT interrupt status.
* uint32_t intr_st = RMT.int_st.val;
*
* //you will find which channels have triggered fade_end interrupt here,
* //then, you can post some event to RTOS queue to process the event.
* //later we will add a queue in the driver code.
*
* //clear RMT interrupt status.
* RMT.int_clr.val = intr_st;
* }
* @endcode
*
*--------------------------END OF EXAMPLE --------------------------
*/
#ifdef __cplusplus
}
#endif
#endif /* _DRIVER_RMT_CTRL_H_ */

View File

@ -0,0 +1,349 @@
// Copyright 2010-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _DRIVER_TIMER_H_
#define _DRIVER_TIMER_H_
#include "esp_err.h"
#include "esp_attr.h"
#include "soc/soc.h"
#include "soc/timer_group_reg.h"
#include "soc/timer_group_struct.h"
#ifdef __cplusplus
extern "C" {
#endif
#define TIMER_BASE_CLK (APB_CLK_FREQ)
/**
* @brief Selects a Timer-Group out of 2 available groups
*/
typedef enum {
TIMER_GROUP_0 = 0, /*!<Hw timer group 0*/
TIMER_GROUP_1 = 1, /*!<Hw timer group 1*/
TIMER_GROUP_MAX,
} timer_group_t;
/**
* @brief Select a hardware timer from timer groups
*/
typedef enum {
TIMER_0 = 0, /*!<Select timer0 of GROUPx*/
TIMER_1 = 1, /*!<Select timer1 of GROUPx*/
TIMER_MAX,
} timer_idx_t;
/**
* @brief Decides the direction of counter
*/
typedef enum {
TIMER_COUNT_DOWN = 0, /*!< Descending Count from cnt.high|cnt.low*/
TIMER_COUNT_UP = 1, /*!< Ascending Count from Zero*/
TIMER_COUNT_MAX
} timer_count_dir_t;
/**
* @brief Decides whether timer is on or paused
*/
typedef enum {
TIMER_PAUSE = 0, /*!<Pause timer counter*/
TIMER_START = 1, /*!<Start timer counter*/
} timer_start_t;
/**
* @brief Decides whether to enable alarm mode
*/
typedef enum {
TIMER_ALARM_DIS = 0, /*!< Disable timer alarm*/
TIMER_ALARM_EN = 1, /*!< Enable timer alarm*/
TIMER_ALARM_MAX
} timer_alarm_t;
/**
* @brief Select interrupt type if running in alarm mode.
*/
typedef enum {
TIMER_INTR_LEVEL = 0, /*!< Interrupt mode: level mode*/
//TIMER_INTR_EDGE = 1, /*!< Interrupt mode: edge mode, Not supported Now*/
TIMER_INTR_MAX
} timer_intr_mode_t;
/**
* @brief Select if Alarm needs to be loaded by software or automatically reload by hardware.
*/
typedef enum {
TIMER_AUTORELOAD_DIS = 0, /*!< Disable auto-reload: hardware will not load counter value after an alarm event*/
TIMER_AUTORELOAD_EN = 1, /*!< Enable auto-reload: hardware will load counter value after an alarm event*/
TIMER_AUTORELOAD_MAX,
} timer_autoreload_t;
/**
* @brief timer configure struct
*/
typedef struct {
bool alarm_en; /*!< Timer alarm enable */
bool counter_en; /*!< Counter enable */
timer_count_dir_t counter_dir; /*!< Counter direction */
timer_intr_mode_t intr_type; /*!< Interrupt mode */
bool auto_reload; /*!< Timer auto-reload */
uint16_t divider; /*!< Counter clock divider*/
} timer_config_t;
/**
* @brief Read the counter value of hardware timer.
*
* @param group_num Timer group, 0 for TIMERG0 or 1 for TIMERG1
* @param timer_num Timer index, 0 for hw_timer[0] & 1 for hw_timer[1]
* @param timer_val Pointer to accept timer counter value.
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t timer_get_counter_value(timer_group_t group_num, timer_idx_t timer_num, uint64_t* timer_val);
/**
* @brief Read the counter value of hardware timer, in unit of a given scale.
*
* @param group_num Timer group, 0 for TIMERG0 or 1 for TIMERG1
* @param timer_num Timer index, 0 for hw_timer[0] & 1 for hw_timer[1]
* @param time Pointer, type of double*, to accept timer counter value, in seconds.
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t timer_get_counter_time_sec(timer_group_t group_num, timer_idx_t timer_num, double* time);
/**
* @brief Set counter value to hardware timer.
*
* @param group_num Timer group, 0 for TIMERG0 or 1 for TIMERG1
* @param timer_num Timer index, 0 for hw_timer[0] & 1 for hw_timer[1]
* @param load_val Counter value to write to the hardware timer.
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t timer_set_counter_value(timer_group_t group_num, timer_idx_t timer_num, uint64_t load_val);
/**
* @brief Start the counter of hardware timer.
*
* @param group_num Timer group number, 0 for TIMERG0 or 1 for TIMERG1
* @param timer_num Timer index, 0 for hw_timer[0] & 1 for hw_timer[1]
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t timer_start(timer_group_t group_num, timer_idx_t timer_num);
/**
* @brief Pause the counter of hardware timer.
*
* @param group_num Timer group number, 0 for TIMERG0 or 1 for TIMERG1
* @param timer_num Timer index, 0 for hw_timer[0] & 1 for hw_timer[1]
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t timer_pause(timer_group_t group_num, timer_idx_t timer_num);
/**
* @brief Set counting mode for hardware timer.
*
* @param group_num Timer group number, 0 for TIMERG0 or 1 for TIMERG1
* @param timer_num Timer index, 0 for hw_timer[0] & 1 for hw_timer[1]
* @param counter_dir Counting direction of timer, count-up or count-down
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t timer_set_counter_mode(timer_group_t group_num, timer_idx_t timer_num, timer_count_dir_t counter_dir);
/**
* @brief Enable or disable counter reload function when alarm event occurs.
*
* @param group_num Timer group number, 0 for TIMERG0 or 1 for TIMERG1
* @param timer_num Timer index, 0 for hw_timer[0] & 1 for hw_timer[1]
* @param reload Counter reload mode.
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t timer_set_auto_reload(timer_group_t group_num, timer_idx_t timer_num, timer_autoreload_t reload);
/**
* @brief Set hardware timer source clock divider. Timer groups clock are divider from APB clock.
*
* @param group_num Timer group number, 0 for TIMERG0 or 1 for TIMERG1
* @param timer_num Timer index, 0 for hw_timer[0] & 1 for hw_timer[1]
* @param divider Timer clock divider value.
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t timer_set_divider(timer_group_t group_num, timer_idx_t timer_num, uint16_t divider);
/**
* @brief Set timer alarm value.
*
* @param group_num Timer group, 0 for TIMERG0 or 1 for TIMERG1
* @param timer_num Timer index, 0 for hw_timer[0] & 1 for hw_timer[1]
* @param alarm_value A 64-bit value to set the alarm value.
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t timer_set_alarm_value(timer_group_t group_num, timer_idx_t timer_num, uint64_t alarm_value);
/**
* @brief Get timer alarm value.
*
* @param group_num Timer group, 0 for TIMERG0 or 1 for TIMERG1
* @param timer_num Timer index, 0 for hw_timer[0] & 1 for hw_timer[1]
* @param alarm_value Pointer of A 64-bit value to accept the alarm value.
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t timer_get_alarm_value(timer_group_t group_num, timer_idx_t timer_num, uint64_t* alarm_value);
/**
* @brief Get timer alarm value.
*
* @param group_num Timer group, 0 for TIMERG0 or 1 for TIMERG1
* @param timer_num Timer index, 0 for hw_timer[0] & 1 for hw_timer[1]
* @param alarm_en To enable or disable timer alarm function.
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t timer_set_alarm(timer_group_t group_num, timer_idx_t timer_num, timer_alarm_t alarm_en);
/**
* @brief register Timer interrupt handler, the handler is an ISR.
* The handler will be attached to the same CPU core that this function is running on.
* @note
* Users should know that which CPU is running and then pick a INUM that is not used by system.
* We can find the information of INUM and interrupt level in soc.h.
*
* @param group_num Timer group number
* @param timer_num Timer index of timer group
* @param timer_intr_num TIMER interrupt number, check the info in soc.h, and please see the core-isa.h for more details
* @param intr_type Timer interrupt type
* @param fn Interrupt handler function.
* @note
* Code inside the handler function can only call functions in IRAM, so cannot call other timer APIs.
* Use direct register access to access timers from inside the ISR.
*
* @param arg Parameter for handler function
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Function pointer error.
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t timer_isr_register(timer_group_t group_num, timer_idx_t timer_num, int timer_intr_num, timer_intr_mode_t intr_type, void (*fn)(void*), void * arg);
/** @brief Initializes and configure the timer.
*
* @param group_num Timer group number, 0 for TIMERG0 or 1 for TIMERG1
* @param timer_num Timer index, 0 for hw_timer[0] & 1 for hw_timer[1]
* @param config Pointer to timer initialization parameters.
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t timer_init(timer_group_t group_num, timer_idx_t timer_num, timer_config_t* config);
/** @brief Get timer configure value.
*
* @param group_num Timer group number, 0 for TIMERG0 or 1 for TIMERG1
* @param timer_num Timer index, 0 for hw_timer[0] & 1 for hw_timer[1]
* @param config Pointer of struct to accept timer parameters.
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t timer_get_config(timer_group_t group_num, timer_idx_t timer_num, timer_config_t *config);
/** @brief Enable timer group interrupt, by enable mask
*
* @param group_num Timer group number, 0 for TIMERG0 or 1 for TIMERG1
* @param en_mask Timer interrupt enable mask.
* Use TIMG_T0_INT_ENA_M to enable t0 interrupt
* Use TIMG_T1_INT_ENA_M to enable t1 interrupt
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t timer_group_intr_enable(timer_group_t group_num, uint32_t en_mask);
/** @brief Disable timer group interrupt, by disable mask
*
* @param group_num Timer group number, 0 for TIMERG0 or 1 for TIMERG1
* @param disable_mask Timer interrupt disable mask.
* Use TIMG_T0_INT_ENA_M to disable t0 interrupt
* Use TIMG_T1_INT_ENA_M to disable t1 interrupt
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t timer_group_intr_disable(timer_group_t group_num, uint32_t disable_mask);
/** @brief Enable timer interrupt
*
* @param group_num Timer group number, 0 for TIMERG0 or 1 for TIMERG1
* @param timer_num Timer index.
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t timer_enable_intr(timer_group_t group_num, timer_idx_t timer_num);
/** @brief Disable timer interrupt
*
* @param group_num Timer group number, 0 for TIMERG0 or 1 for TIMERG1
* @param timer_num Timer index.
*
* @return
* - ESP_OK Success
* - ESP_ERR_INVALID_ARG Parameter error
*/
esp_err_t timer_disable_intr(timer_group_t group_num, timer_idx_t timer_num);
#ifdef __cplusplus
}
#endif
#endif /* _TIMER_H_ */

View File

@ -167,25 +167,25 @@ esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bi
* @brief Set UART stop bits.
*
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
* @param bit_num UART stop bits
* @param stop_bits UART stop bits
*
* @return
* - ESP_OK Success
* - ESP_FAIL Fail
*/
esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t bit_num);
esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bits);
/**
* @brief Set UART stop bits.
*
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
* @param stop_bit Pointer to accept value of UART stop bits.
* @param stop_bits Pointer to accept value of UART stop bits.
*
* @return
* - ESP_FAIL Parameter error
* - ESP_OK Success, result will be put in (*stop_bit)
*/
esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit);
esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bits);
/**
* @brief Set UART parity.
@ -216,13 +216,13 @@ esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode);
* @brief Set UART baud rate.
*
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
* @param baud_rate UART baud-rate.
* @param baudrate UART baud rate.
*
* @return
* - ESP_FAIL Parameter error
* - ESP_OK Success
*/
esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate);
esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baudrate);
/**
* @brief Get UART bit-rate.
@ -241,7 +241,7 @@ esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t* baudrate);
* @brief Set UART line inverse mode
*
* @param uart_num UART_NUM_0, UART_NUM_1 or UART_NUM_2
* @param inverse_mask Choose the wires that need to be inversed.
* @param inverse_mask Choose the wires that need to be inverted.
* Inverse_mask should be chosen from UART_INVERSE_RXD/UART_INVERSE_TXD/UART_INVERSE_RTS/UART_INVERSE_CTS, combine with OR operation.
*
* @return

View File

@ -137,29 +137,32 @@ esp_err_t ledc_timer_config(ledc_timer_config_t* timer_conf)
return ESP_ERR_INVALID_ARG;
}
if(timer_num > LEDC_TIMER_3) {
ESP_LOGE(LEDC_TAG, "Time Select %u", timer_num);
ESP_LOGE(LEDC_TAG, "invalid timer #%u", timer_num);
return ESP_ERR_INVALID_ARG;
}
esp_err_t ret = ESP_OK;
uint32_t precision = (0x1 << bit_num); //2**depth
uint64_t div_param = ((uint64_t) LEDC_APB_CLK_HZ << 8) / freq_hz / precision; //8bit fragment
int timer_clk_src;
/*Fail ,because the div_num overflow or too small*/
if(div_param <= 256 || div_param > LEDC_DIV_NUM_HSTIMER0_V) { //REF TICK
/*Selet the reference tick*/
div_param = ((uint64_t) LEDC_REF_CLK_HZ << 8) / freq_hz / precision;
if(div_param <= 256 || div_param > LEDC_DIV_NUM_HSTIMER0_V) {
ESP_LOGE(LEDC_TAG, "div param err,div_param=%u", (uint32_t)div_param);
uint32_t precision = (0x1 << bit_num); // 2**depth
// Try calculating divisor based on LEDC_APB_CLK
ledc_clk_src_t timer_clk_src = LEDC_APB_CLK;
// div_param is a Q10.8 fixed point value
uint64_t div_param = ((uint64_t) LEDC_APB_CLK_HZ << 8) / freq_hz / precision;
if (div_param < 256) {
// divisor is too low
ESP_LOGE(LEDC_TAG, "requested frequency and bit depth can not be achieved, try reducing freq_hz or bit_num. div_param=%d", (uint32_t) div_param);
ret = ESP_FAIL;
}
if (div_param > LEDC_DIV_NUM_HSTIMER0_V) {
// APB_CLK results in divisor which too high. Try using REF_TICK as clock source.
timer_clk_src = LEDC_REF_TICK;
} else { //APB TICK
timer_clk_src = LEDC_APB_CLK;
div_param = ((uint64_t) LEDC_REF_CLK_HZ << 8) / freq_hz / precision;
if(div_param < 256 || div_param > LEDC_DIV_NUM_HSTIMER0_V) {
ESP_LOGE(LEDC_TAG, "requested frequency and bit depth can not be achieved, try increasing freq_hz or bit_num. div_param=%d", (uint32_t) div_param);
ret = ESP_FAIL;
}
/*set timer parameters*/
/*timer settings decide the clk of counter and the period of PWM*/
}
// set timer parameters
ledc_timer_set(speed_mode, timer_num, div_param, bit_num, timer_clk_src);
/* reset timer.*/
// reset timer
ledc_timer_rst(speed_mode, timer_num);
return ret;
}
@ -174,7 +177,8 @@ esp_err_t ledc_set_pin(int gpio_num, ledc_mode_t speed_mode, ledc_channel_t ledc
if(speed_mode == LEDC_HIGH_SPEED_MODE) {
gpio_matrix_out(gpio_num, LEDC_HS_SIG_OUT0_IDX + ledc_channel, 0, 0);
} else {
ESP_LOGE(LEDC_TAG, "low speed mode is not implemented");
return ESP_ERR_NOT_SUPPORTED;
}
return ESP_OK;
}
@ -191,6 +195,7 @@ esp_err_t ledc_channel_config(ledc_channel_config_t* ledc_conf)
LEDC_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "ledc mode error", ESP_ERR_INVALID_ARG);
LEDC_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num), "ledc GPIO output number error", ESP_ERR_INVALID_ARG);
LEDC_CHECK(timer_select <= LEDC_TIMER_3, "ledc timer error", ESP_ERR_INVALID_ARG);
periph_module_enable(PERIPH_LEDC_MODULE);
esp_err_t ret = ESP_OK;
/*set channel parameters*/
/* channel parameters decide how the waveform looks like in one period*/

278
components/driver/pcnt.c Normal file
View File

@ -0,0 +1,278 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "esp_log.h"
#include "driver/pcnt.h"
#include "driver/periph_ctrl.h"
#define PCNT_CHANNEL_ERR_STR "PCNT CHANNEL ERROR"
#define PCNT_UNIT_ERR_STR "PCNT UNIT ERROR"
#define PCNT_GPIO_ERR_STR "PCNT GPIO NUM ERROR"
#define PCNT_ADDRESS_ERR_STR "PCNT ADDRESS ERROR"
#define PCNT_PARAM_ERR_STR "PCNT PARAM ERROR"
#define PCNT_COUNT_MODE_ERR_STR "PCNT COUNTER MODE ERROR"
#define PCNT_CTRL_MODE_ERR_STR "PCNT CTRL MODE ERROR"
#define PCNT_EVT_TYPE_ERR_STR "PCNT value type error"
#define PCNT_CHECK(a,str,ret_val) if(!(a)) { \
ESP_LOGE(PCNT_TAG,"%s:%d (%s):%s", __FILE__, __LINE__, __FUNCTION__, str); \
return (ret_val); \
}
static const char* PCNT_TAG = "PCNT";
static portMUX_TYPE pcnt_spinlock = portMUX_INITIALIZER_UNLOCKED;
#define PCNT_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
#define PCNT_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
#define PCNT_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
#define PCNT_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
esp_err_t pcnt_unit_config(pcnt_config_t *pcnt_config)
{
uint8_t unit = pcnt_config->channel;
uint8_t channel = pcnt_config->unit;
int input_io = pcnt_config->pulse_gpio_num;
int ctrl_io = pcnt_config->ctrl_gpio_num;
PCNT_CHECK(unit < PCNT_UNIT_MAX, PCNT_UNIT_ERR_STR, ESP_ERR_INVALID_ARG);
PCNT_CHECK(channel < PCNT_CHANNEL_MAX, PCNT_CHANNEL_ERR_STR, ESP_ERR_INVALID_ARG);
PCNT_CHECK(input_io < 0 || (GPIO_IS_VALID_GPIO(input_io) && (input_io != ctrl_io)), "PCNT pluse input io error", ESP_ERR_INVALID_ARG);
PCNT_CHECK(ctrl_io < 0 || GPIO_IS_VALID_GPIO(ctrl_io), "PCNT ctrl io error", ESP_ERR_INVALID_ARG);
PCNT_CHECK((pcnt_config->pos_mode < PCNT_COUNT_MAX) && (pcnt_config->neg_mode < PCNT_COUNT_MAX), PCNT_COUNT_MODE_ERR_STR, ESP_ERR_INVALID_ARG);
PCNT_CHECK((pcnt_config->hctrl_mode < PCNT_MODE_MAX) && (pcnt_config->lctrl_mode < PCNT_MODE_MAX), PCNT_CTRL_MODE_ERR_STR, ESP_ERR_INVALID_ARG);
/*Enalbe hardware module*/
periph_module_enable(PERIPH_PCNT_MODULE);
/*Set counter range*/
pcnt_set_event_value(unit, PCNT_EVT_H_LIM, pcnt_config->counter_h_lim);
pcnt_set_event_value(unit, PCNT_EVT_L_LIM, pcnt_config->counter_l_lim);
/*Default value after reboot is positive, we disable these events like others*/
pcnt_event_disable(unit, PCNT_EVT_H_LIM);
pcnt_event_disable(unit, PCNT_EVT_L_LIM);
pcnt_event_disable(unit, PCNT_EVT_ZERO);
pcnt_filter_disable(unit);
/*set pulse input and control mode*/
pcnt_set_mode(unit, channel, pcnt_config->pos_mode, pcnt_config->neg_mode, pcnt_config->hctrl_mode, pcnt_config->lctrl_mode);
/*Set pulse input and control pins*/
pcnt_set_pin(unit, channel, input_io, ctrl_io);
return ESP_OK;
}
esp_err_t pcnt_set_mode(pcnt_unit_t unit, pcnt_channel_t channel, pcnt_count_mode_t pos_mode, pcnt_count_mode_t neg_mode, pcnt_ctrl_mode_t hctrl_mode, pcnt_ctrl_mode_t lctrl_mode)
{
PCNT_CHECK(unit < PCNT_UNIT_MAX, PCNT_UNIT_ERR_STR, ESP_ERR_INVALID_ARG);
PCNT_CHECK(channel < PCNT_CHANNEL_MAX, PCNT_CHANNEL_ERR_STR, ESP_ERR_INVALID_ARG);
PCNT_CHECK((pos_mode < PCNT_COUNT_MAX) && (neg_mode < PCNT_COUNT_MAX), PCNT_COUNT_MODE_ERR_STR, ESP_ERR_INVALID_ARG);
PCNT_CHECK((hctrl_mode < PCNT_MODE_MAX) && (lctrl_mode < PCNT_MODE_MAX), PCNT_CTRL_MODE_ERR_STR, ESP_ERR_INVALID_ARG);
if(channel == 0) {
PCNT.conf_unit[unit].conf0.ch0_pos_mode = pos_mode;
PCNT.conf_unit[unit].conf0.ch0_neg_mode = neg_mode;
PCNT.conf_unit[unit].conf0.ch0_hctrl_mode = hctrl_mode;
PCNT.conf_unit[unit].conf0.ch0_lctrl_mode = lctrl_mode;
} else {
PCNT.conf_unit[unit].conf0.ch1_pos_mode = pos_mode;
PCNT.conf_unit[unit].conf0.ch1_neg_mode = neg_mode;
PCNT.conf_unit[unit].conf0.ch1_hctrl_mode = hctrl_mode;
PCNT.conf_unit[unit].conf0.ch1_lctrl_mode = lctrl_mode;
}
return ESP_OK;
}
esp_err_t pcnt_set_pin(pcnt_unit_t unit, pcnt_channel_t channel, int pulse_io, int ctrl_io)
{
PCNT_CHECK(unit < PCNT_UNIT_MAX, PCNT_UNIT_ERR_STR, ESP_ERR_INVALID_ARG);
PCNT_CHECK(channel < PCNT_CHANNEL_MAX, PCNT_CHANNEL_ERR_STR, ESP_ERR_INVALID_ARG);
PCNT_CHECK(GPIO_IS_VALID_GPIO(pulse_io) || pulse_io < 0, PCNT_GPIO_ERR_STR, ESP_ERR_INVALID_ARG);
PCNT_CHECK(GPIO_IS_VALID_GPIO(ctrl_io) || ctrl_io < 0, PCNT_GPIO_ERR_STR, ESP_ERR_INVALID_ARG);
int input_sig_index = (channel == 0 ? PCNT_SIG_CH0_IN0_IDX + 4 * unit : PCNT_SIG_CH1_IN0_IDX + 4 * unit);
int ctrl_sig_index = (channel == 0 ? PCNT_CTRL_CH0_IN0_IDX + 4 * unit : PCNT_CTRL_CH1_IN0_IDX + 4 * unit);
if(pulse_io >= 0) {
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[pulse_io], PIN_FUNC_GPIO);
gpio_set_direction(pulse_io, GPIO_MODE_INPUT);
gpio_set_pull_mode(pulse_io, GPIO_PULLUP_ONLY);
gpio_matrix_in(pulse_io, input_sig_index, 0);
}
if(ctrl_io >= 0) {
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[ctrl_io], PIN_FUNC_GPIO);
gpio_set_direction(ctrl_io, GPIO_MODE_INPUT);
gpio_set_pull_mode(ctrl_io, GPIO_PULLUP_ONLY);
gpio_matrix_in(ctrl_io, ctrl_sig_index, 0);
}
return ESP_OK;
}
esp_err_t pcnt_get_counter_value(pcnt_unit_t pcnt_unit, int16_t* count)
{
PCNT_CHECK(pcnt_unit < PCNT_UNIT_MAX, PCNT_UNIT_ERR_STR, ESP_ERR_INVALID_ARG);
PCNT_CHECK(count != NULL, PCNT_ADDRESS_ERR_STR, ESP_ERR_INVALID_ARG);
*count = (int16_t) PCNT.cnt_unit[pcnt_unit].cnt_val;
return ESP_OK;
}
esp_err_t pcnt_counter_pause(pcnt_unit_t pcnt_unit)
{
PCNT_CHECK(pcnt_unit < PCNT_UNIT_MAX, PCNT_UNIT_ERR_STR, ESP_ERR_INVALID_ARG);
PCNT_ENTER_CRITICAL(&pcnt_spinlock);
PCNT.ctrl.val |= BIT(PCNT_CNT_PAUSE_U0_S + (pcnt_unit * 2));
PCNT_EXIT_CRITICAL(&pcnt_spinlock);
return ESP_OK;
}
esp_err_t pcnt_counter_resume(pcnt_unit_t pcnt_unit)
{
PCNT_CHECK(pcnt_unit < PCNT_UNIT_MAX, PCNT_UNIT_ERR_STR, ESP_ERR_INVALID_ARG);
PCNT_ENTER_CRITICAL(&pcnt_spinlock);
PCNT.ctrl.val &= (~(BIT(PCNT_CNT_PAUSE_U0_S + (pcnt_unit * 2))));
PCNT_EXIT_CRITICAL(&pcnt_spinlock);
return ESP_OK;
}
esp_err_t pcnt_counter_clear(pcnt_unit_t pcnt_unit)
{
PCNT_CHECK(pcnt_unit < PCNT_UNIT_MAX, PCNT_UNIT_ERR_STR, ESP_ERR_INVALID_ARG);
PCNT_ENTER_CRITICAL(&pcnt_spinlock);
PCNT.ctrl.val &= (~(BIT(PCNT_PLUS_CNT_RST_U0_S + (pcnt_unit * 2))));
PCNT_EXIT_CRITICAL(&pcnt_spinlock);
return ESP_OK;
}
esp_err_t pcnt_intr_enable(pcnt_unit_t pcnt_unit)
{
PCNT_CHECK(pcnt_unit < PCNT_UNIT_MAX, PCNT_UNIT_ERR_STR, ESP_ERR_INVALID_ARG);
PCNT_ENTER_CRITICAL(&pcnt_spinlock);
PCNT.int_ena.val |= BIT(PCNT_CNT_THR_EVENT_U0_INT_ENA_S + pcnt_unit);
PCNT_EXIT_CRITICAL(&pcnt_spinlock);
return ESP_OK;
}
esp_err_t pcnt_intr_disable(pcnt_unit_t pcnt_unit)
{
PCNT_CHECK(pcnt_unit < PCNT_UNIT_MAX, PCNT_UNIT_ERR_STR, ESP_ERR_INVALID_ARG);
PCNT_ENTER_CRITICAL(&pcnt_spinlock);
PCNT.int_ena.val &= (~(BIT(PCNT_CNT_THR_EVENT_U0_INT_ENA_S + pcnt_unit)));
PCNT_EXIT_CRITICAL(&pcnt_spinlock);
return ESP_OK;
}
esp_err_t pcnt_event_enable(pcnt_unit_t unit, pcnt_evt_type_t evt_type)
{
PCNT_CHECK(unit < PCNT_UNIT_MAX, PCNT_UNIT_ERR_STR, ESP_ERR_INVALID_ARG);
PCNT_CHECK(evt_type < PCNT_EVT_MAX, PCNT_EVT_TYPE_ERR_STR, ESP_ERR_INVALID_ARG);
if(evt_type == PCNT_EVT_L_LIM) {
PCNT.conf_unit[unit].conf0.thr_l_lim_en = 1;
} else if(evt_type == PCNT_EVT_H_LIM) {
PCNT.conf_unit[unit].conf0.thr_h_lim_en = 1;
} else if(evt_type == PCNT_EVT_THRES_0) {
PCNT.conf_unit[unit].conf0.thr_thres0_en = 1;
} else if(evt_type == PCNT_EVT_THRES_1) {
PCNT.conf_unit[unit].conf0.thr_thres1_en = 1;
} else if(evt_type == PCNT_EVT_ZERO) {
PCNT.conf_unit[unit].conf0.thr_zero_en = 1;
}
return ESP_OK;
}
esp_err_t pcnt_event_disable(pcnt_unit_t unit, pcnt_evt_type_t evt_type)
{
PCNT_CHECK(unit < PCNT_UNIT_MAX, PCNT_UNIT_ERR_STR, ESP_ERR_INVALID_ARG);
PCNT_CHECK(evt_type < PCNT_EVT_MAX, PCNT_EVT_TYPE_ERR_STR, ESP_ERR_INVALID_ARG);
if(evt_type == PCNT_EVT_L_LIM) {
PCNT.conf_unit[unit].conf0.thr_l_lim_en = 0;
} else if(evt_type == PCNT_EVT_H_LIM) {
PCNT.conf_unit[unit].conf0.thr_h_lim_en = 0;
} else if(evt_type == PCNT_EVT_THRES_0) {
PCNT.conf_unit[unit].conf0.thr_thres0_en = 0;
} else if(evt_type == PCNT_EVT_THRES_1) {
PCNT.conf_unit[unit].conf0.thr_thres1_en = 0;
} else if(evt_type == PCNT_EVT_ZERO) {
PCNT.conf_unit[unit].conf0.thr_zero_en = 0;
}
return ESP_OK;
}
esp_err_t pcnt_set_event_value(pcnt_unit_t unit, pcnt_evt_type_t evt_type, int16_t value)
{
PCNT_CHECK(unit < PCNT_UNIT_MAX, PCNT_UNIT_ERR_STR, ESP_ERR_INVALID_ARG);
PCNT_CHECK(evt_type < PCNT_EVT_MAX, PCNT_EVT_TYPE_ERR_STR, ESP_ERR_INVALID_ARG);
if(evt_type == PCNT_EVT_L_LIM) {
PCNT.conf_unit[unit].conf2.cnt_l_lim = value;
} else if(evt_type == PCNT_EVT_H_LIM) {
PCNT.conf_unit[unit].conf2.cnt_h_lim = value;
} else if(evt_type == PCNT_EVT_THRES_0) {
PCNT.conf_unit[unit].conf1.cnt_thres0 = value;
} else if(evt_type == PCNT_EVT_THRES_1) {
PCNT.conf_unit[unit].conf1.cnt_thres1 = value;
}
return ESP_OK;
}
esp_err_t pcnt_get_event_value(pcnt_unit_t unit, pcnt_evt_type_t evt_type, int16_t *value)
{
PCNT_CHECK(unit < PCNT_UNIT_MAX, PCNT_UNIT_ERR_STR, ESP_ERR_INVALID_ARG);
PCNT_CHECK(evt_type < PCNT_EVT_MAX, PCNT_EVT_TYPE_ERR_STR, ESP_ERR_INVALID_ARG);
PCNT_CHECK(value != NULL, PCNT_ADDRESS_ERR_STR, ESP_ERR_INVALID_ARG);
if(evt_type == PCNT_EVT_L_LIM) {
*value = (int16_t) PCNT.conf_unit[unit].conf2.cnt_l_lim;
} else if(evt_type == PCNT_EVT_H_LIM) {
*value = (int16_t) PCNT.conf_unit[unit].conf2.cnt_h_lim;
} else if(evt_type == PCNT_EVT_THRES_0) {
*value = (int16_t) PCNT.conf_unit[unit].conf1.cnt_thres0;
} else if(evt_type == PCNT_EVT_THRES_1) {
*value = (int16_t) PCNT.conf_unit[unit].conf1.cnt_thres1;
} else {
*value = 0;
}
return ESP_OK;
}
esp_err_t pcnt_set_filter_value(pcnt_unit_t unit, uint16_t filter_val)
{
PCNT_CHECK(unit < PCNT_UNIT_MAX, PCNT_UNIT_ERR_STR, ESP_ERR_INVALID_ARG);
PCNT_CHECK(filter_val < 1024, PCNT_PARAM_ERR_STR, ESP_ERR_INVALID_ARG);
PCNT.conf_unit[unit].conf0.filter_thres = filter_val;
return ESP_OK;
}
esp_err_t pcnt_get_filter_value(pcnt_unit_t unit, uint16_t *filter_val)
{
PCNT_CHECK(unit < PCNT_UNIT_MAX, PCNT_UNIT_ERR_STR, ESP_ERR_INVALID_ARG);
PCNT_CHECK(filter_val != NULL, PCNT_ADDRESS_ERR_STR, ESP_ERR_INVALID_ARG);
*filter_val = PCNT.conf_unit[unit].conf0.filter_thres;
return ESP_OK;
}
esp_err_t pcnt_filter_enable(pcnt_unit_t unit)
{
PCNT_CHECK(unit < PCNT_UNIT_MAX, PCNT_UNIT_ERR_STR, ESP_ERR_INVALID_ARG);
PCNT.conf_unit[unit].conf0.filter_en = 1;
return ESP_OK;
}
esp_err_t pcnt_filter_disable(pcnt_unit_t unit)
{
PCNT_CHECK(unit < PCNT_UNIT_MAX, PCNT_UNIT_ERR_STR, ESP_ERR_INVALID_ARG);
PCNT.conf_unit[unit].conf0.filter_en = 0;
return ESP_OK;
}
esp_err_t pcnt_isr_register(uint32_t pcnt_intr_num, void (*fun)(void*), void * arg)
{
PCNT_CHECK(fun != NULL, PCNT_ADDRESS_ERR_STR, ESP_ERR_INVALID_ARG);
ESP_INTR_DISABLE(pcnt_intr_num);
intr_matrix_set(xPortGetCoreID(), ETS_PCNT_INTR_SOURCE, pcnt_intr_num);
xt_set_interrupt_handler(pcnt_intr_num, fun, arg);
ESP_INTR_ENABLE(pcnt_intr_num);
return ESP_OK;
}

View File

@ -25,6 +25,10 @@ void periph_module_enable(periph_module_t periph)
{
portENTER_CRITICAL(&periph_spinlock);
switch(periph) {
case PERIPH_RMT_MODULE:
SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_RMT_CLK_EN);
CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_RMT_RST);
break;
case PERIPH_LEDC_MODULE:
SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_LEDC_CLK_EN);
CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_LEDC_RST);
@ -89,6 +93,10 @@ void periph_module_enable(periph_module_t periph)
SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_UHCI1_CLK_EN);
CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_UHCI1_RST);
break;
case PERIPH_PCNT_MODULE:
SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_PCNT_CLK_EN);
CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_PCNT_RST);
break;
default:
break;
}
@ -99,6 +107,10 @@ void periph_module_disable(periph_module_t periph)
{
portENTER_CRITICAL(&periph_spinlock);
switch(periph) {
case PERIPH_RMT_MODULE:
CLEAR_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_RMT_CLK_EN);
SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_RMT_RST);
break;
case PERIPH_LEDC_MODULE:
CLEAR_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_LEDC_CLK_EN);
SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_LEDC_RST);
@ -163,6 +175,10 @@ void periph_module_disable(periph_module_t periph)
CLEAR_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_UHCI1_CLK_EN);
SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_UHCI1_RST);
break;
case PERIPH_PCNT_MODULE:
CLEAR_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_PCNT_CLK_EN);
SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_PCNT_RST);
break;
default:
break;
}

717
components/driver/rmt.c Normal file
View File

@ -0,0 +1,717 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <esp_types.h>
#include <string.h>
#include <stdlib.h>
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "freertos/xtensa_api.h"
#include "freertos/ringbuf.h"
#include "esp_intr.h"
#include "esp_log.h"
#include "esp_err.h"
#include "soc/gpio_sig_map.h"
#include "soc/rmt_struct.h"
#include "driver/periph_ctrl.h"
#include "driver/rmt.h"
#define RMT_SOUCCE_CLK_APB (APB_CLK_FREQ) /*!< RMT source clock is APB_CLK */
#define RMT_SOURCE_CLK_REF (1 * 1000000) /*!< not used yet */
#define RMT_SOURCE_CLK(select) ((select == RMT_BASECLK_REF) ? (RMT_SOURCE_CLK_REF) : (RMT_SOUCCE_CLK_APB)) /*! RMT source clock frequency */
#define RMT_CHANNEL_ERROR_STR "RMT CHANNEL ERR"
#define RMT_ADDR_ERROR_STR "RMT ADDRESS ERR"
#define RMT_MEM_CNT_ERROR_STR "RMT MEM BLOCK NUM ERR"
#define RMT_CARRIER_ERROR_STR "RMT CARRIER LEVEL ERR"
#define RMT_MEM_OWNER_ERROR_STR "RMT MEM OWNER_ERR"
#define RMT_BASECLK_ERROR_STR "RMT BASECLK ERR"
#define RMT_WR_MEM_OVF_ERROR_STR "RMT WR MEM OVERFLOW"
#define RMT_GPIO_ERROR_STR "RMT GPIO ERROR"
#define RMT_MODE_ERROR_STR "RMT MODE ERROR"
#define RMT_CLK_DIV_ERROR_STR "RMT CLK DIV ERR"
#define RMT_DRIVER_ERROR_STR "RMT DRIVER ERR"
#define RMT_DRIVER_LENGTH_ERROR_STR "RMT PARAM LEN ERROR"
static const char* RMT_TAG = "RMT";
static bool s_rmt_driver_installed = false;
#define RMT_CHECK(a, str, ret) if (!(a)) { \
ESP_LOGE(RMT_TAG,"%s:%d (%s):%s", __FILE__, __LINE__, __FUNCTION__, str); \
return (ret); \
}
static portMUX_TYPE rmt_spinlock = portMUX_INITIALIZER_UNLOCKED;
typedef struct {
int tx_offset;
int tx_len_rem;
int tx_sub_len;
rmt_channel_t channel;
rmt_item32_t* tx_data;
xSemaphoreHandle tx_sem;
RingbufHandle_t tx_buf;
RingbufHandle_t rx_buf;
} rmt_obj_t;
rmt_obj_t* p_rmt_obj[RMT_CHANNEL_MAX] = {0};
static void rmt_set_tx_wrap_en(rmt_channel_t channel, bool en)
{
portENTER_CRITICAL(&rmt_spinlock);
RMT.apb_conf.mem_tx_wrap_en = en;
portEXIT_CRITICAL(&rmt_spinlock);
}
static void rmt_set_data_mode(rmt_data_mode_t data_mode)
{
portENTER_CRITICAL(&rmt_spinlock);
RMT.apb_conf.fifo_mask = data_mode;
portEXIT_CRITICAL(&rmt_spinlock);
}
esp_err_t rmt_set_clk_div(rmt_channel_t channel, uint8_t div_cnt)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT.conf_ch[channel].conf0.div_cnt = div_cnt;
return ESP_OK;
}
esp_err_t rmt_get_clk_div(rmt_channel_t channel, uint8_t* div_cnt)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(div_cnt != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
*div_cnt = RMT.conf_ch[channel].conf0.div_cnt;
return ESP_OK;
}
esp_err_t rmt_set_rx_idle_thresh(rmt_channel_t channel, uint16_t thresh)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT.conf_ch[channel].conf0.idle_thres = thresh;
return ESP_OK;
}
esp_err_t rmt_get_rx_idle_thresh(rmt_channel_t channel, uint16_t *thresh)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(thresh != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
*thresh = RMT.conf_ch[channel].conf0.idle_thres;
return ESP_OK;
}
esp_err_t rmt_set_mem_block_num(rmt_channel_t channel, uint8_t rmt_mem_num)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(rmt_mem_num < 16, RMT_MEM_CNT_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT.conf_ch[channel].conf0.mem_size = rmt_mem_num;
return ESP_OK;
}
esp_err_t rmt_get_mem_block_num(rmt_channel_t channel, uint8_t* rmt_mem_num)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(rmt_mem_num != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
*rmt_mem_num = RMT.conf_ch[channel].conf0.mem_size;
return ESP_OK;
}
esp_err_t rmt_set_tx_carrier(rmt_channel_t channel, bool carrier_en, uint16_t high_level, uint16_t low_level,
rmt_carrier_level_t carrier_level)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(carrier_level < RMT_CARRIER_LEVEL_MAX, RMT_CARRIER_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT.carrier_duty_ch[channel].high = high_level;
RMT.carrier_duty_ch[channel].low = low_level;
RMT.conf_ch[channel].conf0.carrier_out_lv = carrier_level;
RMT.conf_ch[channel].conf0.carrier_en = carrier_en;
return ESP_OK;
}
esp_err_t rmt_set_mem_pd(rmt_channel_t channel, bool pd_en)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT.conf_ch[channel].conf0.mem_pd = pd_en;
return ESP_OK;
}
esp_err_t rmt_get_mem_pd(rmt_channel_t channel, bool* pd_en)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
*pd_en = (bool) RMT.conf_ch[channel].conf0.mem_pd;
return ESP_OK;
}
esp_err_t rmt_tx_start(rmt_channel_t channel, bool tx_idx_rst)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&rmt_spinlock);
if(tx_idx_rst) {
RMT.conf_ch[channel].conf1.mem_rd_rst = 1;
}
RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_TX;
RMT.conf_ch[channel].conf1.tx_start = 1;
portEXIT_CRITICAL(&rmt_spinlock);
return ESP_OK;
}
esp_err_t rmt_tx_stop(rmt_channel_t channel)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&rmt_spinlock);
RMT.conf_ch[channel].conf1.tx_start = 0;
portEXIT_CRITICAL(&rmt_spinlock);
return ESP_OK;
}
esp_err_t rmt_rx_start(rmt_channel_t channel, bool rx_idx_rst)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&rmt_spinlock);
if(rx_idx_rst) {
RMT.conf_ch[channel].conf1.mem_wr_rst = 1;
}
RMT.conf_ch[channel].conf1.rx_en = 0;
RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_RX;
RMT.conf_ch[channel].conf1.rx_en = 1;
portEXIT_CRITICAL(&rmt_spinlock);
return ESP_OK;
}
esp_err_t rmt_rx_stop(rmt_channel_t channel)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&rmt_spinlock);
RMT.conf_ch[channel].conf1.rx_en = 0;
portEXIT_CRITICAL(&rmt_spinlock);
return ESP_OK;
}
esp_err_t rmt_memory_rw_rst(rmt_channel_t channel)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&rmt_spinlock);
RMT.conf_ch[channel].conf1.mem_rd_rst = 1;
RMT.conf_ch[channel].conf1.mem_wr_rst = 1;
portEXIT_CRITICAL(&rmt_spinlock);
return ESP_OK;
}
esp_err_t rmt_set_memory_owner(rmt_channel_t channel, rmt_mem_owner_t owner)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(owner < RMT_MEM_OWNER_MAX, RMT_MEM_OWNER_ERROR_STR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&rmt_spinlock);
RMT.conf_ch[channel].conf1.mem_owner = owner;
portEXIT_CRITICAL(&rmt_spinlock);
return ESP_OK;
}
esp_err_t rmt_get_memory_owner(rmt_channel_t channel, rmt_mem_owner_t* owner)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(owner != NULL, RMT_MEM_OWNER_ERROR_STR, ESP_ERR_INVALID_ARG);
*owner = (rmt_mem_owner_t) RMT.conf_ch[channel].conf1.mem_owner;
return ESP_OK;
}
esp_err_t rmt_set_tx_loop_mode(rmt_channel_t channel, bool loop_en)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&rmt_spinlock);
RMT.conf_ch[channel].conf1.tx_conti_mode = loop_en;
portEXIT_CRITICAL(&rmt_spinlock);
return ESP_OK;
}
esp_err_t rmt_get_tx_loop_mode(rmt_channel_t channel, bool* loop_en)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
*loop_en = (bool) RMT.conf_ch[channel].conf1.tx_conti_mode;
return ESP_OK;
}
esp_err_t rmt_set_rx_filter(rmt_channel_t channel, bool rx_filter_en, uint8_t thresh)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&rmt_spinlock);
RMT.conf_ch[channel].conf1.rx_filter_en = rx_filter_en;
RMT.conf_ch[channel].conf1.rx_filter_thres = thresh;
portEXIT_CRITICAL(&rmt_spinlock);
return ESP_OK;
}
esp_err_t rmt_set_source_clk(rmt_channel_t channel, rmt_source_clk_t base_clk)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(base_clk < RMT_BASECLK_MAX, RMT_BASECLK_ERROR_STR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&rmt_spinlock);
RMT.conf_ch[channel].conf1.ref_always_on = base_clk;
portEXIT_CRITICAL(&rmt_spinlock);
return ESP_OK;
}
esp_err_t rmt_get_source_clk(rmt_channel_t channel, rmt_source_clk_t* src_clk)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
*src_clk = (rmt_source_clk_t) (RMT.conf_ch[channel].conf1.ref_always_on);
return ESP_OK;
}
esp_err_t rmt_set_idle_level(rmt_channel_t channel, bool idle_out_en, rmt_idle_level_t level)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(level < RMT_IDLE_LEVEL_MAX, "RMT IDLE LEVEL ERR", ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&rmt_spinlock);
RMT.conf_ch[channel].conf1.idle_out_en = idle_out_en;
RMT.conf_ch[channel].conf1.idle_out_lv = level;
portEXIT_CRITICAL(&rmt_spinlock);
return ESP_OK;
}
esp_err_t rmt_get_status(rmt_channel_t channel, uint32_t* status)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
*status = RMT.status_ch[channel];
return ESP_OK;
}
rmt_data_mode_t rmt_get_data_mode()
{
return (rmt_data_mode_t) (RMT.apb_conf.fifo_mask);
}
void rmt_set_intr_enable_mask(uint32_t mask)
{
portENTER_CRITICAL(&rmt_spinlock);
RMT.int_ena.val |= mask;
portEXIT_CRITICAL(&rmt_spinlock);
}
void rmt_clr_intr_enable_mask(uint32_t mask)
{
portENTER_CRITICAL(&rmt_spinlock);
RMT.int_ena.val &= (~mask);
portEXIT_CRITICAL(&rmt_spinlock);
}
esp_err_t rmt_set_rx_intr_en(rmt_channel_t channel, bool en)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
if(en) {
rmt_set_intr_enable_mask(BIT(channel * 3 + 1));
} else {
rmt_clr_intr_enable_mask(BIT(channel * 3 + 1));
}
return ESP_OK;
}
esp_err_t rmt_set_err_intr_en(rmt_channel_t channel, bool en)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
if(en) {
rmt_set_intr_enable_mask(BIT(channel * 3 + 2));
} else {
rmt_clr_intr_enable_mask(BIT(channel * 3 + 2));
}
return ESP_OK;
}
esp_err_t rmt_set_tx_intr_en(rmt_channel_t channel, bool en)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
if(en) {
rmt_set_intr_enable_mask(BIT(channel * 3));
} else {
rmt_clr_intr_enable_mask(BIT(channel * 3));
}
return ESP_OK;
}
esp_err_t rmt_set_evt_intr_en(rmt_channel_t channel, bool en, uint16_t evt_thresh)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(evt_thresh < 256, "RMT EVT THRESH ERR", ESP_ERR_INVALID_ARG);
if(en) {
RMT.tx_lim_ch[channel].limit = evt_thresh;
rmt_set_tx_wrap_en(channel, true);
rmt_set_intr_enable_mask(BIT(channel + 24));
} else {
rmt_clr_intr_enable_mask(BIT(channel + 24));
}
return ESP_OK;
}
esp_err_t rmt_set_pin(rmt_channel_t channel, rmt_mode_t mode, gpio_num_t gpio_num)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(mode < RMT_MODE_MAX, RMT_MODE_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(((GPIO_IS_VALID_GPIO(gpio_num) && (mode == RMT_MODE_RX)) || (GPIO_IS_VALID_OUTPUT_GPIO(gpio_num) && (mode == RMT_MODE_TX))),
RMT_GPIO_ERROR_STR, ESP_ERR_INVALID_ARG);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[gpio_num], 2);
if(mode == RMT_MODE_TX) {
gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT);
gpio_matrix_out(gpio_num, RMT_SIG_OUT0_IDX + channel, 0, 0);
} else {
gpio_set_direction(gpio_num, GPIO_MODE_INPUT);
gpio_matrix_in(gpio_num, RMT_SIG_IN0_IDX + channel, 0);
}
return ESP_OK;
}
esp_err_t rmt_config(rmt_config_t* rmt_param)
{
uint8_t mode = rmt_param->rmt_mode;
uint8_t channel = rmt_param->channel;
uint8_t gpio_num = rmt_param->gpio_num;
uint8_t mem_cnt = rmt_param->mem_block_num;
int clk_div = rmt_param->clk_div;
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(GPIO_IS_VALID_GPIO(gpio_num), RMT_GPIO_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK((mem_cnt + channel <= 8 && mem_cnt > 0), RMT_MEM_CNT_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK((clk_div > 0), RMT_CLK_DIV_ERROR_STR, ESP_ERR_INVALID_ARG);
periph_module_enable(PERIPH_RMT_MODULE);
RMT.conf_ch[channel].conf0.div_cnt = clk_div;
/*Visit data use memory not FIFO*/
rmt_set_data_mode(RMT_DATA_MODE_MEM);
/*Reset tx/rx memory index */
portENTER_CRITICAL(&rmt_spinlock);
RMT.conf_ch[channel].conf1.mem_rd_rst = 1;
RMT.conf_ch[channel].conf1.mem_wr_rst = 1;
portEXIT_CRITICAL(&rmt_spinlock);
if(mode == RMT_MODE_TX) {
uint32_t rmt_source_clk_hz = 0;
uint32_t carrier_freq_hz = rmt_param->tx_config.carrier_freq_hz;
uint16_t carrier_duty_percent = rmt_param->tx_config.carrier_duty_percent;
uint8_t carrier_level = rmt_param->tx_config.carrier_level;
uint8_t idle_level = rmt_param->tx_config.idle_level;
portENTER_CRITICAL(&rmt_spinlock);
RMT.conf_ch[channel].conf1.tx_conti_mode = rmt_param->tx_config.loop_en;
/*Memory set block number*/
RMT.conf_ch[channel].conf0.mem_size = mem_cnt;
RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_TX;
/*We use APB clock in this version, which is 80Mhz, later we will release system reference clock*/
RMT.conf_ch[channel].conf1.ref_always_on = RMT_BASECLK_APB;
rmt_source_clk_hz = RMT_SOURCE_CLK(RMT_BASECLK_APB);
/*Set idle level */
RMT.conf_ch[channel].conf1.idle_out_en = rmt_param->tx_config.idle_output_en;
RMT.conf_ch[channel].conf1.idle_out_lv = idle_level;
portEXIT_CRITICAL(&rmt_spinlock);
/*Set carrier*/
uint32_t duty_div, duty_h, duty_l;
duty_div = rmt_source_clk_hz / carrier_freq_hz;
duty_h = duty_div * carrier_duty_percent / 100;
duty_l = duty_div - duty_h;
RMT.conf_ch[channel].conf0.carrier_out_lv = carrier_level;
RMT.carrier_duty_ch[channel].high = duty_h;
RMT.carrier_duty_ch[channel].low = duty_l;
RMT.conf_ch[channel].conf0.carrier_en = rmt_param->tx_config.carrier_en;
ESP_LOGD(RMT_TAG, "Rmt Tx Channel %u|Gpio %u|Sclk_Hz %u|Div %u|Carrier_Hz %u|Duty %u",
channel, gpio_num, rmt_source_clk_hz, clk_div, carrier_freq_hz, carrier_duty_percent);
}
else if(RMT_MODE_RX == mode) {
uint8_t filter_cnt = rmt_param->rx_config.filter_ticks_thresh;
uint16_t threshold = rmt_param->rx_config.idle_threshold;
portENTER_CRITICAL(&rmt_spinlock);
/*clock init*/
RMT.conf_ch[channel].conf1.ref_always_on = RMT_BASECLK_APB;
uint32_t rmt_source_clk_hz = RMT_SOURCE_CLK(RMT_BASECLK_APB);
/*memory set block number and owner*/
RMT.conf_ch[channel].conf0.mem_size = mem_cnt;
RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_RX;
/*Set idle threshold*/
RMT.conf_ch[channel].conf0.idle_thres = threshold;
/* Set RX filter */
RMT.conf_ch[channel].conf1.rx_filter_thres = filter_cnt;
RMT.conf_ch[channel].conf1.rx_filter_en = rmt_param->rx_config.filter_en;
portEXIT_CRITICAL(&rmt_spinlock);
ESP_LOGD(RMT_TAG, "Rmt Rx Channel %u|Gpio %u|Sclk_Hz %u|Div %u|Thresold %u|Filter %u",
channel, gpio_num, rmt_source_clk_hz, clk_div, threshold, filter_cnt);
}
rmt_set_pin(channel, mode, gpio_num);
return ESP_OK;
}
static void IRAM_ATTR rmt_fill_memory(rmt_channel_t channel, rmt_item32_t* item, uint16_t item_num, uint16_t mem_offset)
{
portENTER_CRITICAL(&rmt_spinlock);
RMT.apb_conf.fifo_mask = RMT_DATA_MODE_MEM;
portEXIT_CRITICAL(&rmt_spinlock);
int i;
for(i = 0; i < item_num; i++) {
RMTMEM.chan[channel].data32[i + mem_offset].val = item[i].val;
}
}
esp_err_t rmt_fill_tx_items(rmt_channel_t channel, rmt_item32_t* item, uint16_t item_num, uint16_t mem_offset)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, (0));
RMT_CHECK((item != NULL), RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK((item_num > 0), RMT_DRIVER_LENGTH_ERROR_STR, ESP_ERR_INVALID_ARG);
/*Each block has 64 x 32 bits of data*/
uint8_t mem_cnt = RMT.conf_ch[channel].conf0.mem_size;
RMT_CHECK((mem_cnt * RMT_MEM_ITEM_NUM >= item_num), RMT_WR_MEM_OVF_ERROR_STR, ESP_ERR_INVALID_ARG);
rmt_fill_memory(channel, item, item_num, mem_offset);
return ESP_OK;
}
esp_err_t rmt_isr_register(uint8_t rmt_intr_num, void (*fn)(void*), void * arg)
{
RMT_CHECK((fn != NULL), RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(s_rmt_driver_installed == false, "RMT DRIVER INSTALLED, CAN NOT REG ISR HANDLER", ESP_FAIL);
portENTER_CRITICAL(&rmt_spinlock);
ESP_INTR_DISABLE(rmt_intr_num);
intr_matrix_set(xPortGetCoreID(), ETS_RMT_INTR_SOURCE, rmt_intr_num);
xt_set_interrupt_handler(rmt_intr_num, fn, arg);
ESP_INTR_ENABLE(rmt_intr_num);
portEXIT_CRITICAL(&rmt_spinlock);
return ESP_OK;
}
static int IRAM_ATTR rmt_get_mem_len(rmt_channel_t channel)
{
int block_num = RMT.conf_ch[channel].conf0.mem_size;
int item_block_len = block_num * RMT_MEM_ITEM_NUM;
volatile rmt_item32_t* data = RMTMEM.chan[channel].data32;
int idx;
for(idx = 0; idx < item_block_len; idx++) {
if(data[idx].duration0 == 0) {
return idx;
} else if(data[idx].duration1 == 0) {
return idx + 1;
}
}
return idx;
}
static void IRAM_ATTR rmt_driver_isr_default(void* arg)
{
uint32_t intr_st = RMT.int_st.val;
uint32_t i = 0;
uint8_t channel;
portBASE_TYPE HPTaskAwoken = 0;
for(i = 0; i < 32; i++) {
if(i < 24) {
if(intr_st & (BIT(i))) {
channel = i / 3;
rmt_obj_t* p_rmt = p_rmt_obj[channel];
switch(i % 3) {
//TX END
case 0:
ESP_EARLY_LOGD(RMT_TAG, "RMT INTR : TX END\n");
xSemaphoreGiveFromISR(p_rmt->tx_sem, &HPTaskAwoken);
if(HPTaskAwoken == pdTRUE) {
portYIELD_FROM_ISR();
}
p_rmt->tx_data = NULL;
p_rmt->tx_len_rem = 0;
p_rmt->tx_offset = 0;
p_rmt->tx_sub_len = 0;
break;
//RX_END
case 1:
ESP_EARLY_LOGD(RMT_TAG, "RMT INTR : RX END");
RMT.conf_ch[channel].conf1.rx_en = 0;
int item_len = rmt_get_mem_len(channel);
//change memory owner to protect data.
RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_TX;
if(p_rmt->rx_buf) {
BaseType_t res = xRingbufferSendFromISR(p_rmt->rx_buf, (void*) RMTMEM.chan[channel].data32, item_len * 4, &HPTaskAwoken);
if(res == pdFALSE) {
ESP_LOGE(RMT_TAG, "RMT RX BUFFER FULL");
} else {
}
if(HPTaskAwoken == pdTRUE) {
portYIELD_FROM_ISR();
}
} else {
ESP_EARLY_LOGE(RMT_TAG, "RMT RX BUFFER ERROR\n");
}
RMT.conf_ch[channel].conf1.mem_wr_rst = 1;
RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_RX;
RMT.conf_ch[channel].conf1.rx_en = 1;
break;
//ERR
case 2:
ESP_EARLY_LOGE(RMT_TAG, "RMT[%d] ERR", channel);
ESP_EARLY_LOGE(RMT_TAG, "status: 0x%08x", RMT.status_ch[channel]);
RMT.int_ena.val &= (~(BIT(i)));
break;
default:
break;
}
RMT.int_clr.val = BIT(i);
}
} else {
if(intr_st & (BIT(i))) {
channel = i - 24;
rmt_obj_t* p_rmt = p_rmt_obj[channel];
RMT.int_clr.val = BIT(i);
ESP_EARLY_LOGD(RMT_TAG, "RMT CH[%d]: EVT INTR", channel);
if(p_rmt->tx_data == NULL) {
//skip
} else {
rmt_item32_t* pdata = p_rmt->tx_data;
int len_rem = p_rmt->tx_len_rem;
if(len_rem >= p_rmt->tx_sub_len) {
rmt_fill_memory(channel, pdata, p_rmt->tx_sub_len, p_rmt->tx_offset);
p_rmt->tx_data += p_rmt->tx_sub_len;
p_rmt->tx_len_rem -= p_rmt->tx_sub_len;
} else if(len_rem == 0) {
RMTMEM.chan[channel].data32[p_rmt->tx_offset].val = 0;
} else {
rmt_fill_memory(channel, pdata, len_rem, p_rmt->tx_offset);
RMTMEM.chan[channel].data32[p_rmt->tx_offset + len_rem].val = 0;
p_rmt->tx_data += len_rem;
p_rmt->tx_len_rem -= len_rem;
}
if(p_rmt->tx_offset == 0) {
p_rmt->tx_offset = p_rmt->tx_sub_len;
} else {
p_rmt->tx_offset = 0;
}
}
}
}
}
}
esp_err_t rmt_driver_uninstall(rmt_channel_t channel)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
if(p_rmt_obj[channel] == NULL) {
return ESP_OK;
}
xSemaphoreTake(p_rmt_obj[channel]->tx_sem, portMAX_DELAY);
rmt_set_rx_intr_en(channel, 0);
rmt_set_err_intr_en(channel, 0);
rmt_set_tx_intr_en(channel, 0);
rmt_set_evt_intr_en(channel, 0, 0xffff);
if(p_rmt_obj[channel]->tx_sem) {
vSemaphoreDelete(p_rmt_obj[channel]->tx_sem);
p_rmt_obj[channel]->tx_sem = NULL;
}
if(p_rmt_obj[channel]->rx_buf) {
vRingbufferDelete(p_rmt_obj[channel]->rx_buf);
p_rmt_obj[channel]->rx_buf = NULL;
}
free(p_rmt_obj[channel]);
p_rmt_obj[channel] = NULL;
s_rmt_driver_installed = false;
return ESP_OK;
}
esp_err_t rmt_driver_install(rmt_channel_t channel, size_t rx_buf_size, int rmt_intr_num)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
if(p_rmt_obj[channel] != NULL) {
ESP_LOGD(RMT_TAG, "RMT DRIVER ALREADY INSTALLED");
return ESP_FAIL;
}
ESP_INTR_DISABLE(rmt_intr_num);
p_rmt_obj[channel] = (rmt_obj_t*) malloc(sizeof(rmt_obj_t));
if(p_rmt_obj[channel] == NULL) {
ESP_LOGE(RMT_TAG, "RMT driver malloc error");
return ESP_FAIL;
}
memset(p_rmt_obj[channel], 0, sizeof(rmt_obj_t));
p_rmt_obj[channel]->tx_len_rem = 0;
p_rmt_obj[channel]->tx_data = NULL;
p_rmt_obj[channel]->channel = channel;
p_rmt_obj[channel]->tx_offset = 0;
p_rmt_obj[channel]->tx_sub_len = 0;
if(p_rmt_obj[channel]->tx_sem == NULL) {
p_rmt_obj[channel]->tx_sem = xSemaphoreCreateBinary();
xSemaphoreGive(p_rmt_obj[channel]->tx_sem);
}
if(p_rmt_obj[channel]->rx_buf == NULL && rx_buf_size > 0) {
p_rmt_obj[channel]->rx_buf = xRingbufferCreate(rx_buf_size, RINGBUF_TYPE_NOSPLIT);
rmt_set_rx_intr_en(channel, 1);
rmt_set_err_intr_en(channel, 1);
}
if(s_rmt_driver_installed == false) {
rmt_isr_register(rmt_intr_num, rmt_driver_isr_default, NULL);
s_rmt_driver_installed = true;
}
rmt_set_tx_intr_en(channel, 1);
ESP_INTR_ENABLE(rmt_intr_num);
return ESP_OK;
}
esp_err_t rmt_write_items(rmt_channel_t channel, rmt_item32_t* rmt_item, int item_num, bool wait_tx_done)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
RMT_CHECK(rmt_item != NULL, RMT_ADDR_ERROR_STR, ESP_FAIL);
RMT_CHECK(item_num > 0, RMT_DRIVER_LENGTH_ERROR_STR, ESP_ERR_INVALID_ARG);
rmt_obj_t* p_rmt = p_rmt_obj[channel];
int block_num = RMT.conf_ch[channel].conf0.mem_size;
int item_block_len = block_num * RMT_MEM_ITEM_NUM;
int item_sub_len = block_num * RMT_MEM_ITEM_NUM / 2;
int len_rem = item_num;
xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
// fill the memory block first
if(item_num >= item_block_len) {
rmt_fill_memory(channel, rmt_item, item_block_len, 0);
RMT.tx_lim_ch[channel].limit = item_sub_len;
RMT.apb_conf.mem_tx_wrap_en = 1;
len_rem -= item_block_len;
RMT.conf_ch[channel].conf1.tx_conti_mode = 0;
rmt_set_evt_intr_en(channel, 1, item_sub_len);
p_rmt->tx_data = rmt_item + item_block_len;
p_rmt->tx_len_rem = len_rem;
p_rmt->tx_offset = 0;
p_rmt->tx_sub_len = item_sub_len;
} else {
rmt_fill_memory(channel, rmt_item, len_rem, 0);
RMTMEM.chan[channel].data32[len_rem].val = 0;
len_rem = 0;
}
rmt_tx_start(channel, true);
if(wait_tx_done) {
xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
xSemaphoreGive(p_rmt->tx_sem);
}
return ESP_OK;
}
esp_err_t rmt_wait_tx_done(rmt_channel_t channel)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
xSemaphoreTake(p_rmt_obj[channel]->tx_sem, portMAX_DELAY);
xSemaphoreGive(p_rmt_obj[channel]->tx_sem);
return ESP_OK;
}
esp_err_t rmt_get_ringbuf_handler(rmt_channel_t channel, RingbufHandle_t* buf_handler)
{
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
RMT_CHECK(buf_handler != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
*buf_handler = p_rmt_obj[channel]->rx_buf;
return ESP_OK;
}

275
components/driver/timer.c Normal file
View File

@ -0,0 +1,275 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include "esp_log.h"
#include "esp_err.h"
#include "esp_intr.h"
#include "freertos/FreeRTOS.h"
#include "freertos/xtensa_api.h"
#include "driver/timer.h"
#include "driver/periph_ctrl.h"
static const char* TIMER_TAG = "TIMER_GROUP";
#define TIMER_CHECK(a, str, ret_val) if (!(a)) { \
ESP_LOGE(TIMER_TAG,"%s:%d (%s):%s", __FILE__, __LINE__, __FUNCTION__, str); \
return (ret_val); \
}
#define TIMER_GROUP_NUM_ERROR "TIMER GROUP NUM ERROR"
#define TIMER_NUM_ERROR "HW TIMER NUM ERROR"
#define TIMER_PARAM_ADDR_ERROR "HW TIMER PARAM ADDR ERROR"
#define TIMER_COUNT_DIR_ERROR "HW TIMER COUNTER DIR ERROR"
#define TIMER_AUTORELOAD_ERROR "HW TIMER AUTORELOAD ERROR"
#define TIMER_SCALE_ERROR "HW TIMER SCALE ERROR"
#define TIMER_ALARM_ERROR "HW TIMER ALARM ERROR"
static timg_dev_t *TG[2] = {&TIMERG0, &TIMERG1};
static portMUX_TYPE timer_spinlock[TIMER_GROUP_MAX] = {portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED};
#define TIMER_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux);
#define TIMER_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux);
esp_err_t timer_get_counter_value(timer_group_t group_num, timer_idx_t timer_num, uint64_t* timer_val)
{
TIMER_CHECK(group_num < TIMER_GROUP_MAX, TIMER_GROUP_NUM_ERROR, ESP_ERR_INVALID_ARG);
TIMER_CHECK(timer_num < TIMER_MAX, TIMER_NUM_ERROR, ESP_ERR_INVALID_ARG);
TIMER_CHECK(timer_val != NULL, TIMER_PARAM_ADDR_ERROR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&timer_spinlock[group_num]);
TG[group_num]->hw_timer[timer_num].update = 1;
*timer_val = ((uint64_t) TG[group_num]->hw_timer[timer_num].cnt_high << 32)
| (TG[group_num]->hw_timer[timer_num].cnt_low);
portEXIT_CRITICAL(&timer_spinlock[group_num]);
return ESP_OK;
}
esp_err_t timer_get_counter_time_sec(timer_group_t group_num, timer_idx_t timer_num, double* time)
{
TIMER_CHECK(group_num < TIMER_GROUP_MAX, TIMER_GROUP_NUM_ERROR, ESP_ERR_INVALID_ARG);
TIMER_CHECK(timer_num < TIMER_MAX, TIMER_NUM_ERROR, ESP_ERR_INVALID_ARG);
TIMER_CHECK(time != NULL, TIMER_PARAM_ADDR_ERROR, ESP_ERR_INVALID_ARG);
uint64_t timer_val;
esp_err_t err = timer_get_counter_value(group_num, timer_num, &timer_val);
if (err == ESP_OK) {
uint16_t div = TG[group_num]->hw_timer[timer_num].config.divider;
*time = (double)timer_val * div / TIMER_BASE_CLK;
}
return err;
}
esp_err_t timer_set_counter_value(timer_group_t group_num, timer_idx_t timer_num, uint64_t load_val)
{
TIMER_CHECK(group_num < TIMER_GROUP_MAX, TIMER_GROUP_NUM_ERROR, ESP_ERR_INVALID_ARG);
TIMER_CHECK(timer_num < TIMER_MAX, TIMER_NUM_ERROR, ESP_ERR_INVALID_ARG);
TIMER_ENTER_CRITICAL(&timer_spinlock[group_num]);
TG[group_num]->hw_timer[timer_num].load_high = (uint32_t) (load_val >> 32);
TG[group_num]->hw_timer[timer_num].load_low = (uint32_t) load_val;
TG[group_num]->hw_timer[timer_num].reload = 1;
TIMER_EXIT_CRITICAL(&timer_spinlock[group_num]);
return ESP_OK;
}
esp_err_t timer_start(timer_group_t group_num, timer_idx_t timer_num)
{
TIMER_CHECK(group_num < TIMER_GROUP_MAX, TIMER_GROUP_NUM_ERROR, ESP_ERR_INVALID_ARG);
TIMER_CHECK(timer_num < TIMER_MAX, TIMER_NUM_ERROR, ESP_ERR_INVALID_ARG);
TIMER_ENTER_CRITICAL(&timer_spinlock[group_num]);
TG[group_num]->hw_timer[timer_num].config.enable = 1;
TIMER_EXIT_CRITICAL(&timer_spinlock[group_num]);
return ESP_OK;
}
esp_err_t timer_pause(timer_group_t group_num, timer_idx_t timer_num)
{
TIMER_CHECK(group_num < TIMER_GROUP_MAX, TIMER_GROUP_NUM_ERROR, ESP_ERR_INVALID_ARG);
TIMER_CHECK(timer_num < TIMER_MAX, TIMER_NUM_ERROR, ESP_ERR_INVALID_ARG);
TIMER_ENTER_CRITICAL(&timer_spinlock[group_num]);
TG[group_num]->hw_timer[timer_num].config.enable = 0;
TIMER_EXIT_CRITICAL(&timer_spinlock[group_num]);
return ESP_OK;
}
esp_err_t timer_set_counter_mode(timer_group_t group_num, timer_idx_t timer_num, timer_count_dir_t counter_dir)
{
TIMER_CHECK(group_num < TIMER_GROUP_MAX, TIMER_GROUP_NUM_ERROR, ESP_ERR_INVALID_ARG);
TIMER_CHECK(timer_num < TIMER_MAX, TIMER_NUM_ERROR, ESP_ERR_INVALID_ARG);
TIMER_CHECK(counter_dir < TIMER_COUNT_MAX, TIMER_COUNT_DIR_ERROR, ESP_ERR_INVALID_ARG);
TIMER_ENTER_CRITICAL(&timer_spinlock[group_num]);
TG[group_num]->hw_timer[timer_num].config.increase = counter_dir;
TIMER_EXIT_CRITICAL(&timer_spinlock[group_num]);
return ESP_OK;
}
esp_err_t timer_set_auto_reload(timer_group_t group_num, timer_idx_t timer_num, timer_autoreload_t reload)
{
TIMER_CHECK(group_num < TIMER_GROUP_MAX, TIMER_GROUP_NUM_ERROR, ESP_ERR_INVALID_ARG);
TIMER_CHECK(timer_num < TIMER_MAX, TIMER_NUM_ERROR, ESP_ERR_INVALID_ARG);
TIMER_CHECK(reload < TIMER_AUTORELOAD_MAX, TIMER_AUTORELOAD_ERROR, ESP_ERR_INVALID_ARG);
TIMER_ENTER_CRITICAL(&timer_spinlock[group_num]);
TG[group_num]->hw_timer[timer_num].config.autoreload = reload;
TIMER_EXIT_CRITICAL(&timer_spinlock[group_num]);
return ESP_OK;
}
esp_err_t timer_set_divider(timer_group_t group_num, timer_idx_t timer_num, uint16_t divider)
{
TIMER_CHECK(group_num < TIMER_GROUP_MAX, TIMER_GROUP_NUM_ERROR, ESP_ERR_INVALID_ARG);
TIMER_CHECK(timer_num < TIMER_MAX, TIMER_NUM_ERROR, ESP_ERR_INVALID_ARG);
TIMER_ENTER_CRITICAL(&timer_spinlock[group_num]);
int timer_en = TG[group_num]->hw_timer[timer_num].config.enable;
TG[group_num]->hw_timer[timer_num].config.enable = 0;
TG[group_num]->hw_timer[timer_num].config.divider = divider;
TG[group_num]->hw_timer[timer_num].config.enable = timer_en;
TIMER_EXIT_CRITICAL(&timer_spinlock[group_num]);
return ESP_OK;
}
esp_err_t timer_set_alarm_value(timer_group_t group_num, timer_idx_t timer_num, uint64_t alarm_value)
{
TIMER_CHECK(group_num < TIMER_GROUP_MAX, TIMER_GROUP_NUM_ERROR, ESP_ERR_INVALID_ARG);
TIMER_CHECK(timer_num < TIMER_MAX, TIMER_NUM_ERROR, ESP_ERR_INVALID_ARG);
TIMER_ENTER_CRITICAL(&timer_spinlock[group_num]);
TG[group_num]->hw_timer[timer_num].alarm_high = (uint32_t) (alarm_value >> 32);
TG[group_num]->hw_timer[timer_num].alarm_low = (uint32_t) alarm_value;
TIMER_EXIT_CRITICAL(&timer_spinlock[group_num]);
return ESP_OK;
}
esp_err_t timer_get_alarm_value(timer_group_t group_num, timer_idx_t timer_num, uint64_t* alarm_value)
{
TIMER_CHECK(group_num < TIMER_GROUP_MAX, TIMER_GROUP_NUM_ERROR, ESP_ERR_INVALID_ARG);
TIMER_CHECK(timer_num < TIMER_MAX, TIMER_NUM_ERROR, ESP_ERR_INVALID_ARG);
TIMER_CHECK(alarm_value != NULL, TIMER_PARAM_ADDR_ERROR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&timer_spinlock[group_num]);
*alarm_value = ((uint64_t) TG[group_num]->hw_timer[timer_num].alarm_high << 32)
| (TG[group_num]->hw_timer[timer_num].alarm_low);
portEXIT_CRITICAL(&timer_spinlock[group_num]);
return ESP_OK;
}
esp_err_t timer_set_alarm(timer_group_t group_num, timer_idx_t timer_num, timer_alarm_t alarm_en)
{
TIMER_CHECK(group_num < TIMER_GROUP_MAX, TIMER_GROUP_NUM_ERROR, ESP_ERR_INVALID_ARG);
TIMER_CHECK(timer_num < TIMER_MAX, TIMER_NUM_ERROR, ESP_ERR_INVALID_ARG);
TIMER_CHECK(alarm_en < TIMER_ALARM_MAX, TIMER_ALARM_ERROR, ESP_ERR_INVALID_ARG);
TIMER_ENTER_CRITICAL(&timer_spinlock[group_num]);
TG[group_num]->hw_timer[timer_num].config.alarm_en = alarm_en;
TIMER_EXIT_CRITICAL(&timer_spinlock[group_num]);
return ESP_OK;
}
esp_err_t timer_isr_register(timer_group_t group_num, timer_idx_t timer_num, int timer_intr_num,
timer_intr_mode_t intr_type, void (*fn)(void*), void * arg)
{
TIMER_CHECK(group_num < TIMER_GROUP_MAX, TIMER_GROUP_NUM_ERROR, ESP_ERR_INVALID_ARG);
TIMER_CHECK(timer_num < TIMER_MAX, TIMER_NUM_ERROR, ESP_ERR_INVALID_ARG);
TIMER_CHECK(fn != NULL, TIMER_PARAM_ADDR_ERROR, ESP_ERR_INVALID_ARG);
ESP_INTR_DISABLE(timer_intr_num);
int intr_source = 0;
switch(group_num) {
case TIMER_GROUP_0:
default:
if(intr_type == TIMER_INTR_LEVEL) {
intr_source = ETS_TG0_T0_LEVEL_INTR_SOURCE + timer_num;
} else {
intr_source = ETS_TG0_T0_EDGE_INTR_SOURCE + timer_num;
}
break;
case TIMER_GROUP_1:
if(intr_type == TIMER_INTR_LEVEL) {
intr_source = ETS_TG1_T0_LEVEL_INTR_SOURCE + timer_num;
} else {
intr_source = ETS_TG1_T0_EDGE_INTR_SOURCE + timer_num;
}
break;
}
intr_matrix_set(xPortGetCoreID(), intr_source, timer_intr_num);
xt_set_interrupt_handler(timer_intr_num, fn, arg);
ESP_INTR_ENABLE(timer_intr_num);
return ESP_OK;
}
esp_err_t timer_init(timer_group_t group_num, timer_idx_t timer_num, timer_config_t *config)
{
TIMER_CHECK(group_num < TIMER_GROUP_MAX, TIMER_GROUP_NUM_ERROR, ESP_ERR_INVALID_ARG);
TIMER_CHECK(timer_num < TIMER_MAX, TIMER_NUM_ERROR, ESP_ERR_INVALID_ARG);
TIMER_CHECK(config != NULL, TIMER_PARAM_ADDR_ERROR, ESP_ERR_INVALID_ARG);
if(group_num == 0) {
periph_module_enable(PERIPH_TIMG0_MODULE);
} else if(group_num == 1) {
periph_module_enable(PERIPH_TIMG1_MODULE);
}
TIMER_ENTER_CRITICAL(&timer_spinlock[group_num]);
TG[group_num]->hw_timer[timer_num].config.autoreload = config->auto_reload;
TG[group_num]->hw_timer[timer_num].config.divider = config->divider;
TG[group_num]->hw_timer[timer_num].config.enable = config->counter_en;
TG[group_num]->hw_timer[timer_num].config.increase = config->counter_dir;
TG[group_num]->hw_timer[timer_num].config.alarm_en = config->alarm_en;
TG[group_num]->hw_timer[timer_num].config.level_int_en = (config->intr_type == TIMER_INTR_LEVEL ? 1 : 0);
TG[group_num]->hw_timer[timer_num].config.edge_int_en = (config->intr_type == TIMER_INTR_LEVEL ? 0 : 1);
TIMER_EXIT_CRITICAL(&timer_spinlock[group_num]);
return ESP_OK;
}
esp_err_t timer_get_config(timer_group_t group_num, timer_idx_t timer_num, timer_config_t *config)
{
TIMER_CHECK(group_num < TIMER_GROUP_MAX, TIMER_GROUP_NUM_ERROR, ESP_ERR_INVALID_ARG);
TIMER_CHECK(timer_num < TIMER_MAX, TIMER_NUM_ERROR, ESP_ERR_INVALID_ARG);
TIMER_CHECK(config != NULL, TIMER_PARAM_ADDR_ERROR, ESP_ERR_INVALID_ARG);
TIMER_ENTER_CRITICAL(&timer_spinlock[group_num]);
config->alarm_en = TG[group_num]->hw_timer[timer_num].config.alarm_en;
config->auto_reload = TG[group_num]->hw_timer[timer_num].config.autoreload;
config->counter_dir = TG[group_num]->hw_timer[timer_num].config.increase;
config->counter_dir = TG[group_num]->hw_timer[timer_num].config.divider;
config->counter_en = TG[group_num]->hw_timer[timer_num].config.enable;
if(TG[group_num]->hw_timer[timer_num].config.level_int_en) {
config->intr_type =TIMER_INTR_LEVEL;
}
TIMER_EXIT_CRITICAL(&timer_spinlock[group_num]);
return ESP_OK;
}
esp_err_t timer_group_intr_enable(timer_group_t group_num, uint32_t en_mask)
{
TIMER_CHECK(group_num < TIMER_GROUP_MAX, TIMER_GROUP_NUM_ERROR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&timer_spinlock[group_num]);
TG[group_num]->int_ena.val |= en_mask;
portEXIT_CRITICAL(&timer_spinlock[group_num]);
return ESP_OK;
}
esp_err_t timer_group_intr_disable(timer_group_t group_num, uint32_t disable_mask)
{
TIMER_CHECK(group_num < TIMER_GROUP_MAX, TIMER_GROUP_NUM_ERROR, ESP_ERR_INVALID_ARG);
portENTER_CRITICAL(&timer_spinlock[group_num]);
TG[group_num]->int_ena.val &= (~disable_mask);
portEXIT_CRITICAL(&timer_spinlock[group_num]);
return ESP_OK;
}
esp_err_t timer_enable_intr(timer_group_t group_num, timer_idx_t timer_num)
{
TIMER_CHECK(group_num < TIMER_GROUP_MAX, TIMER_GROUP_NUM_ERROR, ESP_ERR_INVALID_ARG);
TIMER_CHECK(timer_num < TIMER_MAX, TIMER_NUM_ERROR, ESP_ERR_INVALID_ARG);
return timer_group_intr_enable(group_num, BIT(timer_num));
}
esp_err_t timer_disable_intr(timer_group_t group_num, timer_idx_t timer_num)
{
TIMER_CHECK(group_num < TIMER_GROUP_MAX, TIMER_GROUP_NUM_ERROR, ESP_ERR_INVALID_ARG);
TIMER_CHECK(timer_num < TIMER_MAX, TIMER_NUM_ERROR, ESP_ERR_INVALID_ARG);
return timer_group_intr_disable(group_num, BIT(timer_num));
}

View File

@ -84,7 +84,8 @@ typedef struct {
static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
static uart_dev_t* UART[UART_NUM_MAX] = {&UART0, &UART1, &UART2};
/* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {&UART0, &UART1, &UART2};
static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED};
esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)

View File

@ -16,25 +16,8 @@
#include "rom/ets_sys.h"
#include "rom/uart.h"
#include "sdkconfig.h"
typedef enum{
XTAL_40M = 40,
XTAL_26M = 26,
XTAL_24M = 24,
XTAL_AUTO = 0
} xtal_freq_t;
typedef enum{
CPU_80M = 1,
CPU_160M = 2,
CPU_240M = 3,
} cpu_freq_t;
extern void phy_get_romfunc_addr();
// TODO: these functions need to be moved from librtc to ESP-IDF
extern void rtc_init_lite();
extern void rtc_set_cpu_freq(xtal_freq_t xtal_freq, cpu_freq_t cpu_freq);
#include "phy.h"
#include "rtc.h"
/*
* This function is not exposed as an API at this point,
@ -52,7 +35,7 @@ void esp_set_cpu_freq(void)
// wait uart tx finish, otherwise some uart output will be lost
uart_tx_wait_idle(0);
rtc_init_lite();
rtc_init_lite(XTAL_AUTO);
cpu_freq_t freq = CPU_80M;
switch(freq_mhz) {
case 240:
@ -73,7 +56,7 @@ void esp_set_cpu_freq(void)
// wait uart tx finish, otherwise some uart output will be lost
uart_tx_wait_idle(0);
rtc_set_cpu_freq(XTAL_AUTO, freq);
rtc_set_cpu_freq(freq);
ets_update_cpu_frequency(freq_mhz);
}

View File

@ -116,9 +116,7 @@ void IRAM_ATTR call_start_cpu0()
//Flush and enable icache for APP CPU
Cache_Flush(1);
Cache_Read_Enable(1);
//Un-stall the app cpu; the panic handler may have stalled it.
CLEAR_PERI_REG_MASK(RTC_CNTL_SW_CPU_STALL_REG, RTC_CNTL_SW_STALL_APPCPU_C1_M);
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_SW_STALL_APPCPU_C0_M);
esp_cpu_unstall(1);
//Enable clock gating and reset the app cpu.
SET_PERI_REG_MASK(DPORT_APPCPU_CTRL_B_REG, DPORT_APPCPU_CLKGATE_EN);
CLEAR_PERI_REG_MASK(DPORT_APPCPU_CTRL_C_REG, DPORT_APPCPU_RUNSTALL);
@ -154,6 +152,7 @@ void IRAM_ATTR call_start_cpu1()
void start_cpu0_default(void)
{
esp_setup_syscall_table();
//Enable trace memory and immediately start trace.
#if CONFIG_MEMMAP_TRACEMEM
#if CONFIG_MEMMAP_TRACEMEM_TWOBANKS
@ -174,7 +173,6 @@ void start_cpu0_default(void)
#if CONFIG_TASK_WDT
esp_task_wdt_init();
#endif
esp_setup_syscall_table();
esp_setup_time_syscalls();
esp_vfs_dev_uart_register();
esp_reent_init(_GLOBAL_REENT);

View File

@ -0,0 +1,44 @@
// Copyright 2013-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "esp_attr.h"
#include "soc/cpu.h"
#include "soc/soc.h"
#include "soc/rtc_cntl_reg.h"
void IRAM_ATTR esp_cpu_stall(int cpu_id)
{
if (cpu_id == 1) {
CLEAR_PERI_REG_MASK(RTC_CNTL_SW_CPU_STALL_REG, RTC_CNTL_SW_STALL_APPCPU_C1_M);
SET_PERI_REG_MASK(RTC_CNTL_SW_CPU_STALL_REG, 0x21<<RTC_CNTL_SW_STALL_APPCPU_C1_S);
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_SW_STALL_APPCPU_C0_M);
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, 2<<RTC_CNTL_SW_STALL_APPCPU_C0_S);
} else {
CLEAR_PERI_REG_MASK(RTC_CNTL_SW_CPU_STALL_REG, RTC_CNTL_SW_STALL_PROCPU_C1_M);
SET_PERI_REG_MASK(RTC_CNTL_SW_CPU_STALL_REG, 0x21<<RTC_CNTL_SW_STALL_PROCPU_C1_S);
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_SW_STALL_PROCPU_C0_M);
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, 2<<RTC_CNTL_SW_STALL_PROCPU_C0_S);
}
}
void IRAM_ATTR esp_cpu_unstall(int cpu_id)
{
if (cpu_id == 1) {
CLEAR_PERI_REG_MASK(RTC_CNTL_SW_CPU_STALL_REG, RTC_CNTL_SW_STALL_APPCPU_C1_M);
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_SW_STALL_APPCPU_C0_M);
} else {
CLEAR_PERI_REG_MASK(RTC_CNTL_SW_CPU_STALL_REG, RTC_CNTL_SW_STALL_PROCPU_C1_M);
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_SW_STALL_PROCPU_C0_M);
}
}

View File

@ -10,6 +10,7 @@
#include "soc/dport_reg.h"
#include "esp_attr.h"
#include "esp_deepsleep.h"
#include "rtc.h"
/* Updating RTC_MEMORY_CRC_REG register via set_rtc_memory_crc()
is not thread-safe. */
@ -46,3 +47,21 @@ void RTC_IRAM_ATTR esp_default_wake_deep_sleep(void) {
}
void __attribute__((weak, alias("esp_default_wake_deep_sleep"))) esp_wake_deep_sleep(void);
void esp_deep_sleep(uint64_t time_in_us)
{
rtc_set_cpu_freq(CPU_XTAL);
if (esp_get_deep_sleep_wake_stub() == NULL) {
esp_set_deep_sleep_wake_stub(esp_wake_deep_sleep);
}
uint32_t period = rtc_slowck_cali(CALI_RTC_MUX, 128);
uint32_t cycle_l, cycle_h;
rtc_usec2rtc(time_in_us >> 32, time_in_us, period, &cycle_h, &cycle_l);
rtc_slp_prep_lite(1, 0);
rtc_sleep(cycle_h, cycle_l, TIMER_EXPIRE_EN, 0);
while (1) {
;
}
}
void system_deep_sleep(uint64_t) __attribute__((alias("esp_deep_sleep")));

View File

@ -0,0 +1,41 @@
// Copyright 2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include <stddef.h>
#include <string.h>
#include "esp_attr.h"
#include "soc/wdev_reg.h"
#include "freertos/FreeRTOSConfig.h"
#include "xtensa/core-macros.h"
uint32_t IRAM_ATTR esp_random(void)
{
/* The PRNG which implements WDEV_RANDOM register gets 2 bits
* of extra entropy from a hardware randomness source every APB clock cycle.
* To make sure entropy is not drained faster than it is added,
* this function needs to wait for at least 16 APB clock cycles after reading
* previous word. This implementation may actually wait a bit longer
* due to extra time spent in arithmetic and branch statements.
*/
static uint32_t last_ccount = 0;
uint32_t ccount;
do {
ccount = XTHAL_GET_CCOUNT();
} while (ccount - last_ccount < XT_CLOCK_FREQ / APB_CLK_FREQ * 16);
last_ccount = ccount;
return REG_READ(WDEV_RND_REG);
}

View File

@ -28,6 +28,7 @@
#include <string.h>
#include "hwcrypto/aes.h"
#include "rom/aes.h"
#include "soc/dport_reg.h"
#include <sys/lock.h>
static _lock_t aes_lock;
@ -36,14 +37,23 @@ void esp_aes_acquire_hardware( void )
{
/* newlib locks lazy initialize on ESP-IDF */
_lock_acquire(&aes_lock);
ets_aes_enable();
/* Enable AES hardware */
REG_SET_BIT(DPORT_PERI_CLK_EN_REG, DPORT_PERI_EN_AES);
/* Clear reset on digital signature & secure boot units,
otherwise AES unit is held in reset also. */
REG_CLR_BIT(DPORT_PERI_RST_EN_REG,
DPORT_PERI_EN_AES
| DPORT_PERI_EN_DIGITAL_SIGNATURE
| DPORT_PERI_EN_SECUREBOOT);
}
void esp_aes_release_hardware( void )
{
uint8_t zero[256/8] = { 0 };
ets_aes_setkey_enc(zero, AES256);
ets_aes_disable();
/* Disable AES hardware */
REG_SET_BIT(DPORT_PERI_RST_EN_REG, DPORT_PERI_EN_AES);
/* Don't return other units to reset, as this pulls
reset on RSA & SHA units, respectively. */
REG_CLR_BIT(DPORT_PERI_CLK_EN_REG, DPORT_PERI_EN_AES);
_lock_release(&aes_lock);
}

View File

@ -26,242 +26,264 @@
*/
#include <string.h>
#include <stdio.h>
#include <sys/lock.h>
#include <byteswap.h>
#include <assert.h>
#include "hwcrypto/sha.h"
#include "rom/ets_sys.h"
#include "soc/dport_reg.h"
#include "soc/hwcrypto_reg.h"
inline static uint32_t SHA_LOAD_REG(esp_sha_type sha_type) {
return SHA_1_LOAD_REG + sha_type * 0x10;
}
static _lock_t sha_lock;
inline static uint32_t SHA_BUSY_REG(esp_sha_type sha_type) {
return SHA_1_BUSY_REG + sha_type * 0x10;
}
void esp_sha_acquire_hardware( void )
inline static uint32_t SHA_START_REG(esp_sha_type sha_type) {
return SHA_1_START_REG + sha_type * 0x10;
}
inline static uint32_t SHA_CONTINUE_REG(esp_sha_type sha_type) {
return SHA_1_CONTINUE_REG + sha_type * 0x10;
}
/* Single lock for SHA engine memory block
*/
static _lock_t memory_block_lock;
typedef struct {
_lock_t lock;
bool in_use;
} sha_engine_state;
/* Pointer to state of each concurrent SHA engine.
Indexes:
0 = SHA1
1 = SHA2_256
2 = SHA2_384 or SHA2_512
*/
static sha_engine_state engine_states[3];
/* Index into the sha_engine_state array */
inline static size_t sha_engine_index(esp_sha_type type) {
switch(type) {
case SHA1:
return 0;
case SHA2_256:
return 1;
default:
return 2;
}
}
/* Return state & digest length (in bytes) for a given SHA type */
inline static size_t sha_length(esp_sha_type type) {
switch(type) {
case SHA1:
return 20;
case SHA2_256:
return 32;
case SHA2_384:
return 64;
case SHA2_512:
return 64;
default:
return 0;
}
}
/* Return block size (in bytes) for a given SHA type */
inline static size_t block_length(esp_sha_type type) {
switch(type) {
case SHA1:
case SHA2_256:
return 64;
case SHA2_384:
case SHA2_512:
return 128;
default:
return 0;
}
}
void esp_sha_lock_memory_block(void)
{
/* newlib locks lazy initialize on ESP-IDF */
_lock_acquire(&sha_lock);
_lock_acquire(&memory_block_lock);
}
void esp_sha_unlock_memory_block(void)
{
_lock_release(&memory_block_lock);
}
/* Lock to hold when changing SHA engine state,
allows checking of sha_engines_all_idle()
*/
static _lock_t state_change_lock;
inline static bool sha_engines_all_idle() {
return !engine_states[0].in_use
&& !engine_states[1].in_use
&& !engine_states[2].in_use;
}
static void esp_sha_lock_engine_inner(sha_engine_state *engine);
bool esp_sha_try_lock_engine(esp_sha_type sha_type)
{
sha_engine_state *engine = &engine_states[sha_engine_index(sha_type)];
if(_lock_try_acquire(&engine->lock) != 0) {
/* This SHA engine is already in use */
return false;
} else {
esp_sha_lock_engine_inner(engine);
return true;
}
}
void esp_sha_lock_engine(esp_sha_type sha_type)
{
sha_engine_state *engine = &engine_states[sha_engine_index(sha_type)];
_lock_acquire(&engine->lock);
esp_sha_lock_engine_inner(engine);
}
static void esp_sha_lock_engine_inner(sha_engine_state *engine)
{
_lock_acquire(&state_change_lock);
if (sha_engines_all_idle()) {
/* Enable SHA hardware */
REG_SET_BIT(DPORT_PERI_CLK_EN_REG, DPORT_PERI_EN_SHA);
/* also clear reset on secure boot, otherwise SHA is held in reset */
REG_CLR_BIT(DPORT_PERI_RST_EN_REG,
DPORT_PERI_EN_SHA
| DPORT_PERI_EN_SECUREBOOT);
ets_sha_enable();
}
_lock_release(&state_change_lock);
assert( !engine->in_use && "in_use flag should be cleared" );
engine->in_use = true;
}
void esp_sha_release_hardware( void )
void esp_sha_unlock_engine(esp_sha_type sha_type)
{
/* Want to empty internal SHA buffers where possible,
need to check if this is sufficient for this. */
SHA_CTX zero = { 0 };
ets_sha_init(&zero);
ets_sha_disable();
_lock_release(&sha_lock);
sha_engine_state *engine = &engine_states[sha_engine_index(sha_type)];
_lock_acquire(&state_change_lock);
assert( engine->in_use && "in_use flag should be set" );
engine->in_use = false;
if (sha_engines_all_idle()) {
/* Disable SHA hardware */
/* Don't assert reset on secure boot, otherwise AES is held in reset */
REG_SET_BIT(DPORT_PERI_RST_EN_REG, DPORT_PERI_EN_SHA);
REG_CLR_BIT(DPORT_PERI_CLK_EN_REG, DPORT_PERI_EN_SHA);
}
_lock_release(&state_change_lock);
_lock_release(&engine->lock);
}
/* Generic esp_shaX_update implementation */
static void esp_sha_update( esp_sha_context *ctx, const unsigned char *input, size_t ilen, size_t block_size)
void esp_sha_wait_idle(void)
{
/* Feed the SHA engine one block at a time */
while(REG_READ(SHA_1_BUSY_REG) == 1) {}
while(REG_READ(SHA_256_BUSY_REG) == 1) {}
while(REG_READ(SHA_384_BUSY_REG) == 1) {}
while(REG_READ(SHA_512_BUSY_REG) == 1) {}
}
void esp_sha_read_digest_state(esp_sha_type sha_type, void *digest_state)
{
sha_engine_state *engine = &engine_states[sha_engine_index(sha_type)];
assert(engine->in_use && "SHA engine should be locked" );
esp_sha_lock_memory_block();
esp_sha_wait_idle();
REG_WRITE(SHA_LOAD_REG(sha_type), 1);
while(REG_READ(SHA_BUSY_REG(sha_type)) == 1) { }
uint32_t *digest_state_words = (uint32_t *)digest_state;
uint32_t *reg_addr_buf = (uint32_t *)(SHA_TEXT_BASE);
if(sha_type == SHA2_384 || sha_type == SHA2_512) {
/* for these ciphers using 64-bit states, swap each pair of words */
for(int i = 0; i < sha_length(sha_type)/4; i += 2) {
digest_state_words[i+1] = reg_addr_buf[i];
digest_state_words[i]= reg_addr_buf[i+1];
}
} else {
memcpy(digest_state_words, reg_addr_buf, sha_length(sha_type));
}
asm volatile ("memw");
esp_sha_unlock_memory_block();
}
void esp_sha_block(esp_sha_type sha_type, const void *data_block, bool is_first_block)
{
sha_engine_state *engine = &engine_states[sha_engine_index(sha_type)];
assert(engine->in_use && "SHA engine should be locked" );
esp_sha_lock_memory_block();
esp_sha_wait_idle();
/* Fill the data block */
uint32_t *reg_addr_buf = (uint32_t *)(SHA_TEXT_BASE);
uint32_t *data_words = (uint32_t *)data_block;
for (int i = 0; i < block_length(sha_type) / 4; i++) {
reg_addr_buf[i] = __bswap_32(data_words[i]);
}
asm volatile ("memw");
if(is_first_block) {
REG_WRITE(SHA_START_REG(sha_type), 1);
} else {
REG_WRITE(SHA_CONTINUE_REG(sha_type), 1);
}
esp_sha_unlock_memory_block();
/* Note: deliberately not waiting for this operation to complete,
as a performance tweak - delay waiting until the next time we need the SHA
unit, instead.
*/
}
void esp_sha(esp_sha_type sha_type, const unsigned char *input, size_t ilen, unsigned char *output)
{
size_t block_len = block_length(sha_type);
esp_sha_lock_engine(sha_type);
SHA_CTX ctx;
ets_sha_init(&ctx);
while(ilen > 0) {
size_t chunk_len = (ilen > block_size) ? block_size : ilen;
ets_sha_update(&ctx->context, ctx->context_type, input, chunk_len * 8);
size_t chunk_len = (ilen > block_len) ? block_len : ilen;
esp_sha_lock_memory_block();
esp_sha_wait_idle();
ets_sha_update(&ctx, sha_type, input, chunk_len * 8);
esp_sha_unlock_memory_block();
input += chunk_len;
ilen -= chunk_len;
}
esp_sha_lock_memory_block();
esp_sha_wait_idle();
ets_sha_finish(&ctx, sha_type, output);
esp_sha_unlock_memory_block();
esp_sha_unlock_engine(sha_type);
}
void esp_sha1_init( esp_sha_context *ctx )
{
bzero( ctx, sizeof( esp_sha_context ) );
}
void esp_sha1_free( esp_sha_context *ctx )
{
if ( ctx == NULL ) {
return;
}
bzero( ctx, sizeof( esp_sha_context ) );
}
void esp_sha1_clone( esp_sha_context *dst, const esp_sha_context *src )
{
*dst = *src;
}
/*
* SHA-1 context setup
*/
void esp_sha1_start( esp_sha_context *ctx )
{
ctx->context_type = SHA1;
esp_sha_acquire_hardware();
ets_sha_init(&ctx->context);
}
/*
* SHA-1 process buffer
*/
void esp_sha1_update( esp_sha_context *ctx, const unsigned char *input, size_t ilen )
{
esp_sha_update(ctx, input, ilen, 64);
}
/*
* SHA-1 final digest
*/
void esp_sha1_finish( esp_sha_context *ctx, unsigned char output[20] )
{
ets_sha_finish(&ctx->context, ctx->context_type, output);
esp_sha_release_hardware();
}
/* Full SHA-1 calculation */
void esp_sha1( const unsigned char *input, size_t ilen, unsigned char output[20] )
{
esp_sha_context ctx;
esp_sha1_init( &ctx );
esp_sha1_start( &ctx );
esp_sha1_update( &ctx, input, ilen );
esp_sha1_finish( &ctx, output );
esp_sha1_free( &ctx );
}
void esp_sha256_init( esp_sha_context *ctx )
{
bzero( ctx, sizeof( esp_sha_context ) );
}
void esp_sha256_free( esp_sha_context *ctx )
{
if ( ctx == NULL ) {
return;
}
bzero( ctx, sizeof( esp_sha_context ) );
}
void esp_sha256_clone( esp_sha_context *dst, const esp_sha_context *src )
{
*dst = *src;
}
/*
* SHA-256 context setup
*/
void esp_sha256_start( esp_sha_context *ctx, int is224 )
{
if ( is224 == 0 ) {
/* SHA-256 */
ctx->context_type = SHA2_256;
esp_sha_acquire_hardware();
ets_sha_init(&ctx->context);
} else {
/* SHA-224 is not supported! */
ctx->context_type = SHA_INVALID;
}
}
/*
* SHA-256 process buffer
*/
void esp_sha256_update( esp_sha_context *ctx, const unsigned char *input, size_t ilen )
{
if( ctx->context_type == SHA2_256 ) {
esp_sha_update(ctx, input, ilen, 64);
}
/* SHA-224 is a no-op */
}
/*
* SHA-256 final digest
*/
void esp_sha256_finish( esp_sha_context *ctx, unsigned char output[32] )
{
if ( ctx->context_type == SHA2_256 ) {
ets_sha_finish(&ctx->context, ctx->context_type, output);
esp_sha_release_hardware();
} else {
/* No hardware SHA-224 support, but mbedTLS API doesn't allow failure.
For now, zero the output to make it clear it's not valid. */
bzero( output, 28 );
}
}
/*
* Full SHA-256 calculation
*/
void esp_sha256( const unsigned char *input, size_t ilen, unsigned char output[32], int is224 )
{
esp_sha_context ctx;
esp_sha256_init( &ctx );
esp_sha256_start( &ctx, is224 );
esp_sha256_update( &ctx, input, ilen );
esp_sha256_finish( &ctx, output );
esp_sha256_free( &ctx );
}
/////
void esp_sha512_init( esp_sha_context *ctx )
{
memset( ctx, 0, sizeof( esp_sha_context ) );
}
void esp_sha512_free( esp_sha_context *ctx )
{
if ( ctx == NULL ) {
return;
}
bzero( ctx, sizeof( esp_sha_context ) );
}
void esp_sha512_clone( esp_sha_context *dst, const esp_sha_context *src )
{
*dst = *src;
}
/*
* SHA-512 context setup
*/
void esp_sha512_start( esp_sha_context *ctx, int is384 )
{
if ( is384 == 0 ) {
/* SHA-512 */
ctx->context_type = SHA2_512;
} else {
/* SHA-384 */
ctx->context_type = SHA2_384;
}
esp_sha_acquire_hardware();
ets_sha_init(&ctx->context);
}
/*
* SHA-512 process buffer
*/
void esp_sha512_update( esp_sha_context *ctx, const unsigned char *input, size_t ilen )
{
esp_sha_update(ctx, input, ilen, 128);
}
/*
* SHA-512 final digest
*/
void esp_sha512_finish( esp_sha_context *ctx, unsigned char output[64] )
{
ets_sha_finish(&ctx->context, ctx->context_type, output);
esp_sha_release_hardware();
}
/*
* Full SHA-512 calculation
*/
void esp_sha512( const unsigned char *input, size_t ilen, unsigned char output[64], int is384 )
{
esp_sha_context ctx;
esp_sha512_init( &ctx );
esp_sha512_start( &ctx, is384 );
esp_sha512_update( &ctx, input, ilen );
esp_sha512_finish( &ctx, output );
esp_sha512_free( &ctx );
}
////

View File

@ -30,25 +30,34 @@ extern "C" {
*/
/**
* @brief Set the chip to deep-sleep mode.
* @brief Enter deep-sleep mode
*
* The device will automatically wake up after the deep-sleep time set
* by the users. Upon waking up, the device boots up from user_init.
* The device will automatically wake up after the deep-sleep time
* Upon waking up, the device calls deep sleep wake stub, and then proceeds
* to load application.
*
* @attention The parameter time_in_us to be "uint64" is for further development.
* Only the low 32 bits of parameter time_in_us are avalable now.
* This function does not return.
*
* @param uint64 time_in_us : deep-sleep time, only the low 32bits are avalable now. unit: microsecond
*
* @return null
* @param time_in_us deep-sleep time, unit: microsecond
*/
void system_deep_sleep(uint64_t time_in_us);
void esp_deep_sleep(uint64_t time_in_us) __attribute__((noreturn));
/**
* @brief Enter deep-sleep mode
*
* Function has been renamed to esp_deep_sleep.
* This name is deprecated and will be removed in a future version.
*
* @param time_in_us deep-sleep time, unit: microsecond
*/
void system_deep_sleep(uint64_t time_in_us) __attribute__((noreturn, deprecated));
/**
* @brief Default stub to run on wake from deep sleep.
*
* Allows for executing code immediately on wake from sleep, before
* the software bootloader or esp-idf app has started up.
* the software bootloader or ESP-IDF app has started up.
*
* This function is weak-linked, so you can implement your own version
* to run code immediately when the chip wakes from

View File

@ -44,6 +44,7 @@ typedef enum {
SYSTEM_EVENT_AP_STACONNECTED, /**< a station connected to ESP32 soft-AP */
SYSTEM_EVENT_AP_STADISCONNECTED, /**< a station disconnected from ESP32 soft-AP */
SYSTEM_EVENT_AP_PROBEREQRECVED, /**< Receive probe request packet in soft-AP interface */
SYSTEM_EVENT_AP_STA_GOT_IP6, /**< ESP32 station or ap interface v6IP addr is preferred */
SYSTEM_EVENT_MAX
} system_event_id_t;
@ -79,7 +80,11 @@ typedef struct {
typedef struct {
uint8_t pin_code[8]; /**< PIN code of station in enrollee mode */
}system_event_sta_wps_er_pin_t;
} system_event_sta_wps_er_pin_t;
typedef struct {
tcpip_adapter_ip6_info_t ip6_info;
} system_event_ap_sta_got_ip6_t;
typedef struct {
uint8_t mac[6]; /**< MAC address of the station connected to ESP32 soft-AP */
@ -106,6 +111,7 @@ typedef union {
system_event_ap_staconnected_t sta_connected; /**< a station connected to ESP32 soft-AP */
system_event_ap_stadisconnected_t sta_disconnected; /**< a station disconnected to ESP32 soft-AP */
system_event_ap_probe_req_rx_t ap_probereqrecved; /**< ESP32 soft-AP receive probe request packet */
system_event_ap_sta_got_ip6_t got_ip6; /**< ESP32 station or ap ipv6 addr state change to preferred */
} system_event_info_t;
typedef struct {

View File

@ -82,126 +82,6 @@ extern "C" {
#define ESP_INTR_DISABLE(inum) \
xt_ints_off((1<<inum))
#define ESP_CCOMPARE_INTR_ENBALE() \
ESP_INTR_ENABLE(ETS_CCOMPARE_INUM)
#define ESP_CCOMPARE_INTR_DISBALE() \
ESP_INTR_DISABLE(ETS_CCOMPARE_INUM)
#define ESP_SPI1_INTR_ENABLE() \
ESP_INTR_ENABLE(ETS_SPI1_INUM)
#define ESP_SPI1_INTR_DISABLE() \
ESP_INTR_DISABLE(ETS_SPI1_INUM)
#define ESP_SPI2_INTR_ENABLE() \
ESP_INTR_ENABLE(ETS_SPI2_INUM)
#define ESP_PWM_INTR_ENABLE() \
ESP_INTR_ENABLE(ETS_PWM_INUM)
#define ESP_PWM_INTR_DISABLE() \
ESP_INTR_DISABLE(ETS_PWM_INUM)
#define ESP_SPI2_INTR_DISABLE() \
ESP_INTR_DISABLE(ETS_SPI2_INUM)
#define ESP_SPI3_INTR_ENABLE() \
ESP_INTR_ENABLE(ETS_SPI3_INUM)
#define ESP_SPI3_INTR_DISABLE() \
ESP_INTR_DISABLE(ETS_SPI3_INUM)
#define ESP_I2S0_INTR_ENABLE() \
ESP_INTR_ENABLE(ETS_I2S0_INUM)
#define ESP_I2S0_INTR_DISABLE() \
ESP_INTR_DISABLE(ETS_I2S0_INUM)
#define ESP_I2S1_INTR_ENABLE() \
ESP_INTR_ENABLE(ETS_I2S1_INUM)
#define ESP_I2S1_INTR_DISABLE() \
ESP_INTR_DISABLE(ETS_I2S1_INUM)
#define ESP_MPWM_INTR_ENABLE() \
ESP_INTR_ENABLE(ETS_MPWM_INUM)
#define ESP_EPWM_INTR_ENABLE() \
ESP_INTR_ENABLE(ETS_EPWM_INUM)
#define ESP_MPWM_INTR_DISABLE() \
ESP_INTR_DISABLE(ETS_MPWM_INUM)
#define ESP_EPWM_INTR_DISABLE() \
ESP_INTR_DISABLE(ETS_EPWM_INUM)
#define ESP_BB_INTR_ENABLE() \
ESP_INTR_ENABLE(ETS_BB_INUM)
#define ESP_BB_INTR_DISABLE() \
ESP_INTR_DISABLE(ETS_BB_INUM)
#define ESP_UART0_INTR_ENABLE() \
ESP_INTR_ENABLE(ETS_UART0_INUM)
#define ESP_UART0_INTR_DISABLE() \
ESP_INTR_DISABLE(ETS_UART0_INUM)
#define ESP_LEDC_INTR_ENABLE() \
ESP_INTR_ENABLE(ETS_LEDC_INUM)
#define ESP_LEDC_INTR_DISABLE() \
ESP_INTR_DISABLE(ETS_LEDC_INUM)
#define ESP_GPIO_INTR_ENABLE() \
ESP_INTR_ENABLE(ETS_GPIO_INUM)
#define ESP_GPIO_INTR_DISABLE() \
ESP_INTR_DISABLE(ETS_GPIO_INUM)
#define ESP_WDT_INTR_ENABLE() \
ESP_INTR_ENABLE(ETS_WDT_INUM)
#define ESP_WDT_INTR_DISABLE() \
ESP_INTR_DISABLE(ETS_WDT_INUM)
#define ESP_FRC1_INTR_ENABLE() \
ESP_INTR_ENABLE(ETS_FRC_TIMER1_INUM)
#define ESP_FRC1_INTR_DISABLE() \
ESP_INTR_DISABLE(ETS_FRC_TIMER1_INUM)
#define ESP_FRC2_INTR_ENABLE() \
ESP_INTR_ENABLE(ETS_FRC_TIMER2_INUM)
#define ESP_FRC2_INTR_DISABLE() \
ESP_INTR_DISABLE(ETS_FRC_TIMER2_INUM)
#define ESP_RTC_INTR_ENABLE() \
ESP_INTR_ENABLE(ETS_RTC_INUM)
#define ESP_RTC_INTR_DISABLE() \
ESP_INTR_DISABLE(ETS_RTC_INUM)
#define ESP_SLC_INTR_ENABLE() \
ESP_INTR_ENABLE(ETS_SLC_INUM)
#define ESP_SLC_INTR_DISABLE() \
ESP_INTR_DISABLE(ETS_SLC_INUM)
#define ESP_PCNT_INTR_ENABLE() \
ESP_INTR_ENABLE(ETS_PCNT_INUM)
#define ESP_PCNT_INTR_DISABLE() \
ESP_INTR_DISABLE(ETS_PCNT_INUM)
#define ESP_RMT_CTRL_ENABLE() \
ESP_INTR_ENABLE(ETS_RMT_CTRL_INUM)
#define ESP_RMT_CTRL_DIABLE() \
ESP_INTR_DISABLE(ETS_RMT_CTRL_INUM)
#ifdef __cplusplus
}
#endif

View File

@ -16,7 +16,7 @@
#define __ESP_SYSTEM_H__
#include <stdint.h>
#include <stdbool.h>
#include "esp_err.h"
#include "esp_deepsleep.h"
@ -24,166 +24,107 @@
extern "C" {
#endif
/** \defgroup System_APIs System APIs
* @brief System APIs
*/
/** @addtogroup System_APIs
* @{
*/
/**
* @attention application don't need to call this function anymore. It do nothing and will
* be removed in future version.
*/
void system_init(void) __attribute__ ((deprecated));
/**
* @brief Get information of the SDK version.
*
* @param null
*
* @return Information of the SDK version.
*/
const char *system_get_sdk_version(void);
/**
* @brief Reset to default settings.
*
* Reset to default settings of the following APIs : wifi_station_set_auto_connect,
* wifi_set_phy_mode, wifi_softap_set_config related, wifi_station_set_config
* related, and wifi_set_opmode.
*
* @param null
*
* @return null
* Function has been deprecated, please use esp_wifi_restore instead.
* This name will be removed in a future release.
*/
void system_restore(void);
void system_restore(void) __attribute__ ((deprecated));
/**
* @brief Restart PRO and APP CPUs.
*
* This function can be called both from PRO and APP CPUs.
* After successful restart, CPU reset reason will be SW_CPU_RESET.
* Peripherals (except for WiFi, BT, UART0, SPI1, and legacy timers) are not reset.
* This function does not return.
*/
void esp_restart(void) __attribute__ ((noreturn));
/**
* @brief Restart system.
*
* @param null
*
* @return null
* Function has been renamed to esp_restart.
* This name will be removed in a future release.
*/
void system_restart(void);
void system_restart(void) __attribute__ ((deprecated, noreturn));
/**
* @brief Get system time, unit: microsecond.
*
* @param null
*
* @return System time, unit: microsecond.
* This function is deprecated. Use 'gettimeofday' function for 64-bit precision.
* This definition will be removed in a future release.
*/
uint32_t system_get_time(void);
uint32_t system_get_time(void) __attribute__ ((deprecated));
/**
* @brief Get the size of available heap.
*
* @param null
* Note that the returned value may be larger than the maximum contiguous block
* which can be allocated.
*
* @return Available heap size.
* @return Available heap size, in bytes.
*/
uint32_t system_get_free_heap_size(void);
uint32_t esp_get_free_heap_size(void);
/**
* @brief Get RTC time, unit: RTC clock cycle.
* @brief Get the size of available heap.
*
* @param null
* Function has been renamed to esp_get_free_heap_size.
* This name will be removed in a future release.
*
* @return RTC time.
* @return Available heap size, in bytes.
*/
uint64_t system_get_rtc_time(void);
uint32_t system_get_free_heap_size(void) __attribute__ ((deprecated));
/**
* @brief Read user data from the RTC memory.
* @brief Get one random 32-bit word from hardware RNG
*
* The user data segment (1024 bytes, as shown below) is used to store user data.
*
* |<---- system data(512 bytes) ---->|<----------- user data(1024 bytes) --------->|
*
* @attention Read and write unit for data stored in the RTC memory is 4 bytes.
* @attention src_addr is the block number (4 bytes per block). So when reading data
* at the beginning of the user data segment, src_addr will be 512/4 = 128,
* n will be data length.
*
* @param uint16 src : source address of rtc memory, src_addr >= 128
* @param void *dst : data pointer
* @param uint16 n : data length, unit: byte
*
* @return true : succeed
* @return false : fail
*/
bool system_rtc_mem_read(uint16_t src, void *dst, uint16_t n);
/**
* @brief Write user data to the RTC memory.
*
* During deep-sleep, only RTC is working. So users can store their data
* in RTC memory if it is needed. The user data segment below (1024 bytes)
* is used to store the user data.
*
* |<---- system data(512 bytes) ---->|<----------- user data(1024 bytes) --------->|
*
* @attention Read and write unit for data stored in the RTC memory is 4 bytes.
* @attention src_addr is the block number (4 bytes per block). So when storing data
* at the beginning of the user data segment, src_addr will be 512/4 = 128,
* n will be data length.
*
* @param uint16 src : source address of rtc memory, src_addr >= 128
* @param void *dst : data pointer
* @param uint16 n : data length, unit: byte
*
* @return true : succeed
* @return false : fail
*/
bool system_rtc_mem_write(uint16_t dst, const void *src, uint16_t n);
/** \defgroup System_boot_APIs Boot APIs
* @brief boot APIs
*/
/** @addtogroup System_boot_APIs
* @{
*/
/**
* @}
*/
/** \defgroup Hardware_MAC_APIs Hardware MAC APIs
* @brief Hardware MAC address APIs
*
* In WiFi MAC, only ESP32 station MAC is the hardware MAC, ESP32 softAP MAC is a software MAC
* calculated from ESP32 station MAC.
* So users need to call wifi_get_macaddr to query the ESP32 softAP MAC if ESP32 station MAC changed.
*
*/
/** @addtogroup Hardware_MAC_APIs
* @{
* @return random value between 0 and UINT32_MAX
*/
uint32_t esp_random(void);
/**
* @brief Read hardware MAC address.
*
* @param uint8 mac[6] : the hardware MAC address, length: 6 bytes.
* In WiFi MAC, only ESP32 station MAC is the hardware MAC, ESP32 softAP MAC is a software MAC
* calculated from ESP32 station MAC.
* So users need to call esp_wifi_get_macaddr to query the ESP32 softAP MAC if ESP32 station MAC changed.
*
* @return esp_err_t
* @param mac hardware MAC address, length: 6 bytes.
*
* @return ESP_OK on success
*/
esp_err_t system_efuse_read_mac(uint8_t mac[6]);
esp_err_t esp_efuse_read_mac(uint8_t* mac);
/**
* @}
* @brief Read hardware MAC address.
*
* Function has been renamed to esp_efuse_read_mac.
* This name will be removed in a future release.
*
* @param mac hardware MAC address, length: 6 bytes.
* @return ESP_OK on success
*/
esp_err_t system_efuse_read_mac(uint8_t mac[6]) __attribute__ ((deprecated));
/**
* @}
* Get SDK version
*
* This function is deprecated and will be removed in a future release.
*
* @return constant string "master"
*/
const char* system_get_sdk_version(void) __attribute__ ((deprecated));
#ifdef __cplusplus
}

View File

@ -22,52 +22,4 @@
#include <stdbool.h>
#include <stddef.h>
#define __ATTRIB_PACK __attribute__ ((packed))
#define __ATTRIB_PRINTF __attribute__ ((format (printf, 1, 2)))
#define __ATTRIB_NORETURN __attribute__ ((noreturn))
#define __ATTRIB_ALIGN(x) __attribute__ ((aligned((x))))
#define INLINE __inline__
#define LOCAL static
/* probably should not put STATUS here */
typedef enum {
OK = 0,
FAIL,
PENDING,
BUSY,
CANCEL,
} STATUS;
//#define _LITTLE_ENDIAN 1234
//#define _BYTE_ORDER == _LITTLE_ENDIAN
#define ASSERT( x ) do { \
if (!(x)) { \
printf("%s %u\n", __FILE__, __LINE__); \
while (1) { \
asm volatile("nop"); \
}; \
} \
} while (0)
/* #if __GNUC_PREREQ__(4, 1) */
#ifndef __GNUC__
#if 1
#define __offsetof(type, field) __builtin_offsetof(type, field)
#else
#define __offsetof(type, field) ((size_t)(&((type *)0)->field))
#endif
#endif /* __GNUC__ */
/* Macros for counting and rounding. */
#ifndef howmany
#define howmany(x, y) (((x)+((y)-1))/(y))
#endif
#define container_of(ptr, type, member) ({ \
const typeof( ((type *)0)->member ) *__mptr = (ptr); \
(type *)( (char *)__mptr - __offsetof(type,member) );})
#endif /* __ESP_TYPES_H__ */

View File

@ -186,6 +186,21 @@ esp_err_t esp_wifi_start(void);
*/
esp_err_t esp_wifi_stop(void);
/**
* @brief Restore WiFi stack persistent settings to default values
*
* This function will reset settings made using the following APIs:
* - esp_wifi_get_auto_connect,
* - esp_wifi_set_protocol,
* - esp_wifi_set_config related
* - esp_wifi_set_mode
*
* @return
* - ESP_OK: succeed
* - ESP_ERR_WIFI_NOT_INIT: WiFi is not initialized by eps_wifi_init
*/
esp_err_t esp_wifi_restore(void);
/**
* @brief Connect the ESP32 WiFi station to the AP.
*

View File

@ -43,10 +43,9 @@ extern "C" {
/**
* @brief get whether the wifi driver is allowed to transmit data or not
*
* @param none
*
* @return true : upper layer should stop to transmit data to wifi driver
* @return false : upper layer can transmit data to wifi driver
* @return
* - true : upper layer should stop to transmit data to wifi driver
* - false : upper layer can transmit data to wifi driver
*/
bool esp_wifi_internal_tx_is_stop(void);
@ -54,8 +53,6 @@ bool esp_wifi_internal_tx_is_stop(void);
* @brief free the rx buffer which allocated by wifi driver
*
* @param void* buffer: rx buffer pointer
*
* @return nonoe
*/
void esp_wifi_internal_free_rx_buffer(void* buffer);
@ -78,7 +75,6 @@ int esp_wifi_internal_tx(wifi_interface_t wifi_if, void *buffer, u16_t len);
* @brief The WiFi RX callback function
*
* Each time the WiFi need to forward the packets to high layer, the callback function will be called
*
*/
typedef esp_err_t (*wifi_rxcb_t)(void *buffer, uint16_t len, void *eb);
@ -90,18 +86,18 @@ typedef esp_err_t (*wifi_rxcb_t)(void *buffer, uint16_t len, void *eb);
* @param wifi_interface_t ifx : interface
* @param wifi_rxcb_t fn : WiFi RX callback
*
* @return ESP_OK : succeed
* @return others : fail
* @return
* - ESP_OK : succeed
* - others : fail
*/
esp_err_t esp_wifi_internal_reg_rxcb(wifi_interface_t ifx, wifi_rxcb_t fn);
/**
* @brief Notify WIFI driver that the station got ip successfully
*
* @param none
*
* @return ESP_OK : succeed
* @return others : fail
* @return
* - ESP_OK : succeed
* - others : fail
*/
esp_err_t esp_wifi_internal_set_sta_ip(void);

View File

@ -1,246 +1,200 @@
/*
* ESP32 hardware accelerated SHA1/256/512 implementation
* based on mbedTLS FIPS-197 compliant version.
*
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
* Additions Copyright (C) 2016, Espressif Systems (Shanghai) PTE Ltd
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _ESP_SHA_H_
#define _ESP_SHA_H_
#include "rom/sha.h"
#include "esp_types.h"
/** @brief Low-level support functions for the hardware SHA engine
*
* @note If you're looking for a SHA API to use, try mbedtls component
* mbedtls/shaXX.h. That API supports hardware acceleration.
*
* The API in this header provides some building blocks for implementing a
* full SHA API such as the one in mbedtls, and also a basic SHA function esp_sha().
*
* Some technical details about the hardware SHA engine:
*
* - SHA accelerator engine calculates one digest at a time, per SHA
* algorithm type. It initialises and maintains the digest state
* internally. It is possible to read out an in-progress SHA digest
* state, but it is not possible to restore a SHA digest state
* into the engine.
*
* - The memory block SHA_TEXT_BASE is shared between all SHA digest
* engines, so all engines must be idle before this memory block is
* modified.
*
*/
#ifdef __cplusplus
extern "C" {
#endif
/**
* \brief SHA-1 context structure
*/
typedef struct {
/* both types defined in rom/sha.h */
SHA_CTX context;
enum SHA_TYPE context_type;
} esp_sha_context;
/* Defined in rom/sha.h */
typedef enum SHA_TYPE esp_sha_type;
/**
* \brief Lock access to SHA hardware unit
/** @brief Calculate SHA1 or SHA2 sum of some data, using hardware SHA engine
*
* SHA hardware unit can only be used by one
* consumer at a time.
* @note For more versatile SHA calculations, where data doesn't need
* to be passed all at once, try the mbedTLS mbedtls/shaX.h APIs. The
* hardware-accelerated mbedTLS implementation is also faster when
* hashing large amounts of data.
*
* esp_sha_xxx API calls automatically manage locking & unlocking of
* hardware, this function is only needed if you want to call
* ets_sha_xxx functions directly.
*/
void esp_sha_acquire_hardware( void );
/**
* \brief Unlock access to SHA hardware unit
* @note It is not necessary to lock any SHA hardware before calling
* this function, thread safety is managed internally.
*
* esp_sha_xxx API calls automatically manage locking & unlocking of
* hardware, this function is only needed if you want to call
* ets_sha_xxx functions directly.
*/
void esp_sha_release_hardware( void );
/**
* \brief Initialize SHA-1 context
* @note If a TLS connection is open then this function may block
* indefinitely waiting for a SHA engine to become available. Use the
* mbedTLS SHA API to avoid this problem.
*
* \param ctx SHA-1 context to be initialized
*/
void esp_sha1_init( esp_sha_context *ctx );
/**
* \brief Clear SHA-1 context
* @param sha_type SHA algorithm to use.
*
* \param ctx SHA-1 context to be cleared
*/
void esp_sha1_free( esp_sha_context *ctx );
/**
* \brief Clone (the state of) a SHA-1 context
* @param input Input data buffer.
*
* \param dst The destination context
* \param src The context to be cloned
*/
void esp_sha1_clone( esp_sha_context *dst, const esp_sha_context *src );
/**
* \brief SHA-1 context setup
* @param ilen Length of input data in bytes.
*
* \param ctx context to be initialized
* @param output Buffer for output SHA digest. Output is 20 bytes for
* sha_type SHA1, 32 bytes for sha_type SHA2_256, 48 bytes for
* sha_type SHA2_384, 64 bytes for sha_type SHA2_512.
*/
void esp_sha1_start( esp_sha_context *ctx );
void esp_sha(esp_sha_type sha_type, const unsigned char *input, size_t ilen, unsigned char *output);
/**
* \brief SHA-1 process buffer
/* @brief Begin to execute a single SHA block operation
*
* \param ctx SHA-1 context
* \param input buffer holding the data
* \param ilen length of the input data
*/
void esp_sha1_update( esp_sha_context *ctx, const unsigned char *input, size_t ilen );
/**
* \brief SHA-1 final digest
* @note This is a piece of a SHA algorithm, rather than an entire SHA
* algorithm.
*
* \param ctx SHA-1 context
* \param output SHA-1 checksum result
*/
void esp_sha1_finish( esp_sha_context *ctx, unsigned char output[20] );
/**
* \brief Calculate SHA-1 of input buffer
* @note Call esp_sha_try_lock_engine() before calling this
* function. Do not call esp_sha_lock_memory_block() beforehand, this
* is done inside the function.
*
* \param input buffer holding the data
* \param ilen length of the input data
* \param output SHA-1 checksum result
*/
void esp_sha1( const unsigned char *input, size_t ilen, unsigned char output[20] );
/**
* \brief SHA-256 context structure
*/
/**
* \brief Initialize SHA-256 context
* @param sha_type SHA algorithm to use.
*
* \param ctx SHA-256 context to be initialized
*/
void esp_sha256_init( esp_sha_context *ctx );
/**
* \brief Clear SHA-256 context
* @param data_block Pointer to block of data. Block size is
* determined by algorithm (SHA1/SHA2_256 = 64 bytes,
* SHA2_384/SHA2_512 = 128 bytes)
*
* \param ctx SHA-256 context to be cleared
*/
void esp_sha256_free( esp_sha_context *ctx );
/**
* \brief Clone (the state of) a SHA-256 context
* @param is_first_block If this parameter is true, the SHA state will
* be initialised (with the initial state of the given SHA algorithm)
* before the block is calculated. If false, the existing state of the
* SHA engine will be used.
*
* \param dst The destination context
* \param src The context to be cloned
* @return As a performance optimisation, this function returns before
* the SHA block operation is complete. Both this function and
* esp_sha_read_state() will automatically wait for any previous
* operation to complete before they begin. If using the SHA registers
* directly in another way, call esp_sha_wait_idle() after calling this
* function but before accessing the SHA registers.
*/
void esp_sha256_clone( esp_sha_context *dst, const esp_sha_context *src );
void esp_sha_block(esp_sha_type sha_type, const void *data_block, bool is_first_block);
/**
* \brief SHA-256 context setup
/** @brief Read out the current state of the SHA digest loaded in the engine.
*
* \param ctx context to be initialized
* \param is224 0 = use SHA256, 1 = use SHA224
*/
void esp_sha256_start( esp_sha_context *ctx, int is224 );
/**
* \brief SHA-256 process buffer
* @note This is a piece of a SHA algorithm, rather than an entire SHA algorithm.
*
* \param ctx SHA-256 context
* \param input buffer holding the data
* \param ilen length of the input data
*/
void esp_sha256_update( esp_sha_context *ctx, const unsigned char *input, size_t ilen );
/**
* \brief SHA-256 final digest
* @note Call esp_sha_try_lock_engine() before calling this
* function. Do not call esp_sha_lock_memory_block() beforehand, this
* is done inside the function.
*
* \param ctx SHA-256 context
* \param output SHA-224/256 checksum result
*/
void esp_sha256_finish( esp_sha_context *ctx, unsigned char output[32] );
/**
* \brief Calculate SHA-256 of input buffer
* If the SHA suffix padding block has been executed already, the
* value that is read is the SHA digest (in big endian
* format). Otherwise, the value that is read is an interim SHA state.
*
* \param input buffer holding the data
* \param ilen length of the input data
* \param output SHA-224/256 checksum result
* \param is224 0 = use SHA256, 1 = use SHA224
*/
void esp_sha256( const unsigned char *input, size_t ilen, unsigned char output[32], int is224 );
//
/**
* \brief SHA-512 context structure
*/
/**
* \brief Initialize SHA-512 context
* @param sha_type SHA algorithm in use.
*
* @param state Pointer to a memory buffer to hold the SHA state. Size
* is 20 bytes (SHA1), 64 bytes (SHA2_256), or 128 bytes (SHA2_384 or
* SHA2_512).
*
* \param ctx SHA-512 context to be initialized
*/
void esp_sha512_init( esp_sha_context *ctx );
void esp_sha_read_digest_state(esp_sha_type sha_type, void *digest_state);
/**
* \brief Clear SHA-512 context
* @brief Obtain exclusive access to a particular SHA engine
*
* \param ctx SHA-512 context to be cleared
* @param sha_type Type of SHA engine to use.
*
* Blocks until engine is available. Note: Can block indefinitely
* while a TLS connection is open, suggest using
* esp_sha_try_lock_engine() and failing over to software SHA.
*/
void esp_sha512_free( esp_sha_context *ctx );
void esp_sha_lock_engine(esp_sha_type sha_type);
/**
* \brief Clone (the state of) a SHA-512 context
* @brief Try and obtain exclusive access to a particular SHA engine
*
* \param dst The destination context
* \param src The context to be cloned
* @param sha_type Type of SHA engine to use.
*
* @return Returns true if the SHA engine is locked for exclusive
* use. Call esp_sha_unlock_sha_engine() when done. Returns false if
* the SHA engine is already in use, caller should use software SHA
* algorithm for this digest.
*/
void esp_sha512_clone( esp_sha_context *dst, const esp_sha_context *src );
bool esp_sha_try_lock_engine(esp_sha_type sha_type);
/**
* \brief SHA-512 context setup
* @brief Unlock an engine previously locked with esp_sha_lock_engine() or esp_sha_try_lock_engine()
*
* \param ctx context to be initialized
* \param is384 0 = use SHA512, 1 = use SHA384
* @param sha_type Type of engine to release.
*/
void esp_sha512_start( esp_sha_context *ctx, int is384 );
void esp_sha_unlock_engine(esp_sha_type sha_type);
/**
* \brief SHA-512 process buffer
* @brief Acquire exclusive access to the SHA shared memory block at SHA_TEXT_BASE
*
* \param ctx SHA-512 context
* \param input buffer holding the data
* \param ilen length of the input data
* This memory block is shared across all the SHA algorithm types.
*
* Caller should have already locked a SHA engine before calling this function.
*
* Note that it is possible to obtain exclusive access to the memory block even
* while it is in use by the SHA engine. Caller should use esp_sha_wait_idle()
* to ensure the SHA engine is not reading from the memory block in hardware.
*
* @note You do not need to lock the memory block before calling esp_sha_block() or esp_sha_read_digest_state(), these functions handle memory block locking internally.
*
* Call esp_sha_unlock_memory_block() when done.
*/
void esp_sha512_update( esp_sha_context *ctx, const unsigned char *input, size_t ilen );
void esp_sha_lock_memory_block(void);
/**
* \brief SHA-512 final digest
* @brief Release exclusive access to the SHA register memory block at SHA_TEXT_BASE
*
* \param ctx SHA-512 context
* \param output SHA-384/512 checksum result
*/
void esp_sha512_finish( esp_sha_context *ctx, unsigned char output[64] );
/**
* \brief Calculate SHA-512 of input buffer.
* Caller should have already locked a SHA engine before calling this function.
*
* \param input buffer holding the data
* \param ilen length of the input data
* \param output SHA-384/512 checksum result
* \param is384 0 = use SHA512, 1 = use SHA384
* Call following esp_sha_lock_memory_block().
*/
void esp_sha512( const unsigned char *input, size_t ilen, unsigned char output[64], int is384 );
void esp_sha_unlock_memory_block(void);
//
/** @brief Wait for the SHA engine to finish any current operation
*
* @note This function does not ensure exclusive access to any SHA
* engine. Caller should use esp_sha_try_lock_engine() and
* esp_sha_lock_memory_block() as required.
*
* @note Functions declared in this header file wait for SHA engine
* completion automatically, so you don't need to use this API for
* these. However if accessing SHA registers directly, you will need
* to call this before accessing SHA registers if using the
* esp_sha_block() function.
*
* @note This function busy-waits, so wastes CPU resources.
* Best to delay calling until you are about to need it.
*
*/
void esp_sha_wait_idle(void);
#ifdef __cplusplus
}

View File

@ -605,6 +605,14 @@ void intr_matrix_set(int cpu_no, uint32_t model_num, uint32_t intr_num);
#define ETS_MEM_BAR() asm volatile ( "" : : : "memory" )
typedef enum {
OK = 0,
FAIL,
PENDING,
BUSY,
CANCEL,
} STATUS;
/**
* @}
*/

View File

@ -1,9 +1,10 @@
/*
ROM functions for hardware SHA support.
It is not recommended to use these functions directly,
use the wrapper functions in hwcrypto/sha.h instead.
It is not recommended to use these functions directly. If using
them from esp-idf then use the esp_sha_lock_engine() and
esp_sha_lock_memory_block() functions in hwcrypto/sha.h to ensure
exclusive access.
*/
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
@ -38,6 +39,8 @@ enum SHA_TYPE {
SHA2_256,
SHA2_384,
SHA2_512,
SHA_INVALID = -1,
};

View File

@ -384,7 +384,8 @@ SpiFlashOpResult SPIParamCfg(uint32_t deviceId, uint32_t chip_size, uint32_t blo
SpiFlashOpResult SPIEraseChip(void);
/**
* @brief Erase a block of flash.
* @brief Erase a 32KB block of flash
* Uses SPI flash command 52h.
* Please do not call this function in SDK.
*
* @param uint32_t block_num : Which block to erase.
@ -411,6 +412,12 @@ SpiFlashOpResult SPIEraseSector(uint32_t sector_num);
* @brief Erase some sectors.
* Please do not call this function in SDK.
*
* @note If calling this function, first set
* g_rom_flashchip.block_size = 32768; or call SPIParamCfg()
* with appropriate parameters. This is due to a ROM bug, the
* block erase command in use is a 32KB erase but after reset
* the block_size field is incorrectly set to 65536.
*
* @param uint32_t start_addr : Start addr to erase, should be sector aligned.
*
* @param uint32_t area_len : Length to erase, should be sector aligned.

View File

@ -17,6 +17,7 @@
#include "esp_types.h"
#include "esp_attr.h"
#include "ets_sys.h"
#ifdef __cplusplus
extern "C" {

View File

@ -51,7 +51,10 @@ static inline void cpu_write_itlb(unsigned vpn, unsigned attr)
asm volatile ("witlb %1, %0; isync\n" :: "r" (vpn), "r" (attr));
}
/* Make page 0 access raise an exception.
/**
* @brief Configure memory region protection
*
* Make page 0 access raise an exception.
* Also protect some other unused pages so we can catch weirdness.
* Useful attribute values:
* 0 cached, RW
@ -70,9 +73,7 @@ static inline void cpu_configure_region_protection()
cpu_write_itlb(0x20000000, 0);
}
/*
/**
* @brief Set CPU frequency to the value defined in menuconfig
*
* Called from cpu_start.c, not intended to be called from other places.
@ -81,4 +82,16 @@ static inline void cpu_configure_region_protection()
*/
void esp_set_cpu_freq(void);
/**
* @brief Stall CPU using RTC controller
* @param cpu_id ID of the CPU to stall (0 = PRO, 1 = APP)
*/
void esp_cpu_stall(int cpu_id);
/**
* @brief Un-stall CPU using RTC controller
* @param cpu_id ID of the CPU to un-stall (0 = PRO, 1 = APP)
*/
void esp_cpu_unstall(int cpu_id);
#endif

View File

@ -94,6 +94,16 @@
#define DPORT_PERI_RST_EN_V 0xFFFFFFFF
#define DPORT_PERI_RST_EN_S 0
/* The following bits apply to DPORT_PERI_CLK_EN_REG, DPORT_PERI_RST_EN_REG
*/
#define DPORT_PERI_EN_AES (1<<0)
#define DPORT_PERI_EN_SHA (1<<1)
#define DPORT_PERI_EN_RSA (1<<2)
/* NB: Secure boot reset will hold SHA & AES in reset */
#define DPORT_PERI_EN_SECUREBOOT (1<<3)
/* NB: Digital signature reset will hold AES & RSA in reset */
#define DPORT_PERI_EN_DIGITAL_SIGNATURE (1<<4)
#define DPORT_WIFI_BB_CFG_REG (DR_REG_DPORT_BASE + 0x024)
/* DPORT_WIFI_BB_CFG : R/W ;bitpos:[31:0] ;default: 32'h0 ; */
/*description: */

View File

@ -0,0 +1,60 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef __HWCRYPTO_REG_H__
#define __HWCRYPTO_REG_H__
#include "soc.h"
/* registers for RSA acceleration via Multiple Precision Integer ops */
#define RSA_MEM_M_BLOCK_BASE ((DR_REG_RSA_BASE)+0x000)
/* RB & Z use the same memory block, depending on phase of operation */
#define RSA_MEM_RB_BLOCK_BASE ((DR_REG_RSA_BASE)+0x200)
#define RSA_MEM_Z_BLOCK_BASE ((DR_REG_RSA_BASE)+0x200)
#define RSA_MEM_Y_BLOCK_BASE ((DR_REG_RSA_BASE)+0x400)
#define RSA_MEM_X_BLOCK_BASE ((DR_REG_RSA_BASE)+0x600)
#define RSA_M_DASH_REG (DR_REG_RSA_BASE + 0x800)
#define RSA_MODEXP_MODE_REG (DR_REG_RSA_BASE + 0x804)
#define RSA_START_MODEXP_REG (DR_REG_RSA_BASE + 0x808)
#define RSA_MULT_MODE_REG (DR_REG_RSA_BASE + 0x80c)
#define RSA_MULT_START_REG (DR_REG_RSA_BASE + 0x810)
#define RSA_INTERRUPT_REG (DR_REG_RSA_BASE + 0x814)
#define RSA_CLEAN_REG (DR_REG_RSA_BASE + 0x818)
/* SHA acceleration registers */
#define SHA_TEXT_BASE ((DR_REG_SHA_BASE) + 0x00)
#define SHA_1_START_REG ((DR_REG_SHA_BASE) + 0x80)
#define SHA_1_CONTINUE_REG ((DR_REG_SHA_BASE) + 0x84)
#define SHA_1_LOAD_REG ((DR_REG_SHA_BASE) + 0x88)
#define SHA_1_BUSY_REG ((DR_REG_SHA_BASE) + 0x8c)
#define SHA_256_START_REG ((DR_REG_SHA_BASE) + 0x90)
#define SHA_256_CONTINUE_REG ((DR_REG_SHA_BASE) + 0x94)
#define SHA_256_LOAD_REG ((DR_REG_SHA_BASE) + 0x98)
#define SHA_256_BUSY_REG ((DR_REG_SHA_BASE) + 0x9c)
#define SHA_384_START_REG ((DR_REG_SHA_BASE) + 0xa0)
#define SHA_384_CONTINUE_REG ((DR_REG_SHA_BASE) + 0xa4)
#define SHA_384_LOAD_REG ((DR_REG_SHA_BASE) + 0xa8)
#define SHA_384_BUSY_REG ((DR_REG_SHA_BASE) + 0xac)
#define SHA_512_START_REG ((DR_REG_SHA_BASE) + 0xb0)
#define SHA_512_CONTINUE_REG ((DR_REG_SHA_BASE) + 0xb4)
#define SHA_512_LOAD_REG ((DR_REG_SHA_BASE) + 0xb8)
#define SHA_512_BUSY_REG ((DR_REG_SHA_BASE) + 0xbc)
#endif

View File

@ -1319,6 +1319,36 @@
#define PCNT_CORE_STATUS_U0_M ((PCNT_CORE_STATUS_U0_V)<<(PCNT_CORE_STATUS_U0_S))
#define PCNT_CORE_STATUS_U0_V 0xFFFFFFFF
#define PCNT_CORE_STATUS_U0_S 0
/*0: positive value to zero; 1: negative value to zero; 2: counter value negative ; 3: counter value positive*/
#define PCNT_STATUS_CNT_MODE 0x3
#define PCNT_STATUS_CNT_MODE_M ((PCNT_STATUS_CNT_MODE_V)<<(PCNT_STATUS_CNT_MODE_S))
#define PCNT_STATUS_CNT_MODE_V 0x3
#define PCNT_STATUS_CNT_MODE_S 0
/* counter value equals to thresh1*/
#define PCNT_STATUS_THRES1 BIT(2)
#define PCNT_STATUS_THRES1_M BIT(2)
#define PCNT_STATUS_THRES1_V 0x1
#define PCNT_STATUS_THRES1_S 2
/* counter value equals to thresh0*/
#define PCNT_STATUS_THRES0 BIT(3)
#define PCNT_STATUS_THRES0_M BIT(3)
#define PCNT_STATUS_THRES0_V 0x1
#define PCNT_STATUS_THRES0_S 3
/* counter value reaches h_lim*/
#define PCNT_STATUS_L_LIM BIT(4)
#define PCNT_STATUS_L_LIM_M BIT(4)
#define PCNT_STATUS_L_LIM_V 0x1
#define PCNT_STATUS_L_LIM_S 4
/* counter value reaches l_lim*/
#define PCNT_STATUS_H_LIM BIT(5)
#define PCNT_STATUS_H_LIM_M BIT(5)
#define PCNT_STATUS_H_LIM_V 0x1
#define PCNT_STATUS_H_LIM_S 5
/* counter value equals to zero*/
#define PCNT_STATUS_ZERO BIT(6)
#define PCNT_STATUS_ZERO_M BIT(6)
#define PCNT_STATUS_ZERO_V 0x1
#define PCNT_STATUS_ZERO_S 6
#define PCNT_U1_STATUS_REG (DR_REG_PCNT_BASE + 0x0094)
/* PCNT_CORE_STATUS_U1 : RO ;bitpos:[31:0] ;default: 32'h0 ; */

View File

@ -113,7 +113,18 @@ typedef volatile struct {
};
uint32_t val;
} int_clr;
uint32_t status_unit[8];
union {
struct {
uint32_t cnt_mode:2; /*0: positive value to zero; 1: negative value to zero; 2: counter value negative ; 3: counter value positive*/
uint32_t thres1_lat:1; /* counter value equals to thresh1*/
uint32_t thres0_lat:1; /* counter value equals to thresh0*/
uint32_t l_lim_lat:1; /* counter value reaches h_lim*/
uint32_t h_lim_lat:1; /* counter value reaches l_lim*/
uint32_t zero_lat:1; /* counter value equals zero*/
uint32_t reserved7:25;
};
uint32_t val;
} status_unit[8];
union {
struct {
uint32_t cnt_rst_u0: 1; /*Set this bit to clear unit0's counter.*/

View File

@ -2163,7 +2163,8 @@
#define RMT_DATE_V 0xFFFFFFFF
#define RMT_DATE_S 0
/* RMT memory block address */
#define RMT_CHANNEL_MEM(i) (DR_REG_RMT_BASE + 0x800 + 64 * 4 * (i))
#endif /*_SOC_RMT_REG_H_ */

View File

@ -226,18 +226,35 @@ typedef volatile struct {
} rmt_dev_t;
extern rmt_dev_t RMT;
//Allow access to RMT memory using RMTMEM.chan[0].data[8]
typedef struct {
union {
struct {
uint32_t duration0 :15;
uint32_t level0 :1;
uint32_t duration1 :15;
uint32_t level1 :1;
};
uint32_t val;
};
} rmt_item32_t;
typedef struct {
union {
struct {
uint16_t duration :15;
uint16_t level :1;
};
uint16_t val;
};
} rmt_item16_t;
//Allow access to RMT memory using RMTMEM.chan[0].data32[8]
typedef volatile struct {
struct {
union {
struct {
uint32_t duration0: 15;
uint32_t level0: 1;
uint32_t duration1: 15;
uint32_t level1: 1;
rmt_item32_t data32[64];
rmt_item16_t data16[128];
};
uint32_t val;
} data[64];
} chan[8];
} rmt_mem_t;
extern rmt_mem_t RMTMEM;

View File

@ -129,10 +129,10 @@
//}}
//Periheral Clock {{
#define APB_CLK_FREQ_ROM 26*1000000
#define APB_CLK_FREQ_ROM ( 26*1000000 )
#define CPU_CLK_FREQ_ROM APB_CLK_FREQ_ROM
#define CPU_CLK_FREQ APB_CLK_FREQ
#define APB_CLK_FREQ 80*1000000 //unit: Hz
#define APB_CLK_FREQ ( 80*1000000 ) //unit: Hz
#define UART_CLK_FREQ APB_CLK_FREQ
#define WDT_CLK_FREQ APB_CLK_FREQ
#define TIMER_CLK_FREQ (80000000>>4) //80MHz divided by 16
@ -141,6 +141,8 @@
//}}
#define DR_REG_DPORT_BASE 0x3ff00000
#define DR_REG_RSA_BASE 0x3ff02000
#define DR_REG_SHA_BASE 0x3ff03000
#define DR_REG_UART_BASE 0x3ff40000
#define DR_REG_SPI1_BASE 0x3ff42000
#define DR_REG_SPI0_BASE 0x3ff43000

View File

@ -0,0 +1,18 @@
// Copyright 2010-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
/* Hardware random number generator register */
#define WDEV_RND_REG 0x60035144

View File

@ -42,7 +42,7 @@
* share the name with the existing functions from hal.h.
* Including this header file will define XTHAL_USE_CACHE_MACROS
* which directs hal.h not to use the functions.
*
*/
/*
* Single-cache-line operations in C-callable inline assembly.

View File

@ -28,6 +28,7 @@
#include "esp_freertos_hooks.h"
#include "soc/timer_group_struct.h"
#include "soc/timer_group_reg.h"
#include "driver/timer.h"
#include "esp_int_wdt.h"
@ -85,7 +86,7 @@ void esp_int_wdt_init() {
TIMERG1.wdt_feed=1;
TIMERG1.wdt_wprotect=0;
TIMERG1.int_clr_timers.wdt=1;
TIMERG1.int_ena.wdt=1;
timer_group_intr_enable(TIMER_GROUP_1, TIMG_WDT_INT_ENA_M);
esp_register_freertos_tick_hook(tick_hook);
ESP_INTR_DISABLE(WDT_INT_NUM);
intr_matrix_set(xPortGetCoreID(), ETS_TG1_WDT_LEVEL_INTR_SOURCE, WDT_INT_NUM);

@ -1 +1 @@
Subproject commit 3ee7a22306abf73aa4d270f566b273929de98d60
Subproject commit 1ef5197246db363681ca78c1e3edc2d2cca92bbe

View File

@ -0,0 +1,124 @@
// Copyright 2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* @file lib_printf.c
*
* This file contains library-specific printf functions
* used by WiFi libraries in the `lib` directory.
* These function are used to catch any output which gets printed
* by libraries, and redirect it to ESP_LOG macros.
*
* Eventually WiFi libraries will use ESP_LOG functions internally
* and these definitions will be removed.
*/
#include <stdio.h>
#include <stdlib.h>
#include "esp_log.h"
#include "esp_attr.h"
#define VPRINTF_STACK_BUFFER_SIZE 80
static int lib_printf(const char* tag, const char* format, va_list arg)
{
char temp[VPRINTF_STACK_BUFFER_SIZE];
int len = vsnprintf(temp, sizeof(temp) - 1, format, arg);
temp[sizeof(temp) - 1] = 0;
int i;
for (i = len - 1; i >= 0; --i) {
if (temp[i] != '\n' && temp[i] != '\r' && temp[i] != ' ') {
break;
}
temp[i] = 0;
}
if (i > 0) {
ESP_EARLY_LOGI(tag, "%s", temp);
}
va_end(arg);
return len;
}
int phy_printf(const char* format, ...)
{
va_list arg;
va_start(arg, format);
int res = lib_printf("phy", format, arg);
va_end(arg);
return res;
}
int rtc_printf(const char* format, ...)
{
va_list arg;
va_start(arg, format);
int res = lib_printf("rtc", format, arg);
va_end(arg);
return res;
}
int wpa_printf(const char* format, ...)
{
va_list arg;
va_start(arg, format);
int res = lib_printf("wpa", format, arg);
va_end(arg);
return res;
}
int wps_printf(const char* format, ...)
{
va_list arg;
va_start(arg, format);
int res = lib_printf("wps", format, arg);
va_end(arg);
return res;
}
int pp_printf(const char* format, ...)
{
va_list arg;
va_start(arg, format);
int res = lib_printf("pp", format, arg);
va_end(arg);
return res;
}
int sc_printf(const char* format, ...)
{
va_list arg;
va_start(arg, format);
int res = lib_printf("smartconfig", format, arg);
va_end(arg);
return res;
}
int core_printf(const char* format, ...)
{
va_list arg;
va_start(arg, format);
int res = lib_printf("core", format, arg);
va_end(arg);
return res;
}
int net80211_printf(const char* format, ...)
{
va_list arg;
va_start(arg, format);
int res = lib_printf("net80211", format, arg);
va_end(arg);
return res;
}

View File

@ -27,6 +27,7 @@
#include "soc/rtc_cntl_reg.h"
#include "soc/timer_group_struct.h"
#include "soc/timer_group_reg.h"
#include "soc/cpu.h"
#include "esp_gdbstub.h"
#include "esp_panic.h"
@ -108,21 +109,10 @@ static const char *edesc[]={
void commonErrorHandler(XtExcFrame *frame);
//The fact that we've panic'ed probably means the other CPU is now running wild, possibly
//messing up the serial output, so we kill it here.
static void haltOtherCore() {
if (xPortGetCoreID()==0) {
//Kill app cpu
CLEAR_PERI_REG_MASK(RTC_CNTL_SW_CPU_STALL_REG, RTC_CNTL_SW_STALL_APPCPU_C1_M);
SET_PERI_REG_MASK(RTC_CNTL_SW_CPU_STALL_REG, 0x21<<RTC_CNTL_SW_STALL_APPCPU_C1_S);
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_SW_STALL_APPCPU_C0_M);
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, 2<<RTC_CNTL_SW_STALL_APPCPU_C0_S);
} else {
//Kill pro cpu
CLEAR_PERI_REG_MASK(RTC_CNTL_SW_CPU_STALL_REG, RTC_CNTL_SW_STALL_PROCPU_C1_M);
SET_PERI_REG_MASK(RTC_CNTL_SW_CPU_STALL_REG, 0x21<<RTC_CNTL_SW_STALL_PROCPU_C1_S);
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_SW_STALL_PROCPU_C0_M);
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, 2<<RTC_CNTL_SW_STALL_PROCPU_C0_S);
}
//messing up the serial output, so we stall it here.
static void haltOtherCore()
{
esp_cpu_stall( xPortGetCoreID() == 0 ? 1 : 0 );
}
//Returns true when a debugger is attached using JTAG.

View File

@ -179,7 +179,7 @@ static esp_err_t load_cal_data_from_nvs_handle(nvs_handle handle,
return ESP_ERR_INVALID_SIZE;
}
uint8_t sta_mac[6];
system_efuse_read_mac(sta_mac);
esp_efuse_read_mac(sta_mac);
if (memcmp(sta_mac, cal_data_mac, sizeof(sta_mac)) != 0) {
ESP_LOGE(TAG, "%s: calibration data MAC check failed: expected " \
MACSTR ", found " MACSTR,
@ -210,7 +210,7 @@ static esp_err_t store_cal_data_to_nvs_handle(nvs_handle handle,
return err;
}
uint8_t sta_mac[6];
system_efuse_read_mac(sta_mac);
esp_efuse_read_mac(sta_mac);
err = nvs_set_blob(handle, PHY_CAL_MAC_KEY, sta_mac, sizeof(sta_mac));
if (err != ESP_OK) {
return err;

142
components/esp32/rtc.h Normal file
View File

@ -0,0 +1,142 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* @file rtc.h
* @brief Declarations of APIs provided by librtc.a
*
* This file is not in the include directory of esp32 component, so it is not
* part of the public API. As the source code of librtc.a is gradually moved
* into the ESP-IDF, some of these APIs will be exposed to applications.
*
* For now, only esp_deep_sleep function declared in esp_deepsleep.h
* is part of public API.
*/
#pragma once
#include <stdint.h>
#include <stddef.h>
#include "soc/soc.h"
#ifdef __cplusplus
extern "C" {
#endif
typedef enum{
XTAL_40M = 40,
XTAL_26M = 26,
XTAL_24M = 24,
XTAL_AUTO = 0
} xtal_freq_t;
typedef enum{
CPU_XTAL = 0,
CPU_80M = 1,
CPU_160M = 2,
CPU_240M = 3,
CPU_2M = 4
} cpu_freq_t;
typedef enum {
CALI_RTC_MUX = 0,
CALI_8MD256 = 1,
CALI_32K_XTAL = 2
} cali_clk_t;
/**
* This function must be called to initialize RTC library
* @param xtal_freq Frequency of main crystal
*/
void rtc_init_lite(xtal_freq_t xtal_freq);
/**
* Switch CPU frequency
* @param cpu_freq new CPU frequency
*/
void rtc_set_cpu_freq(cpu_freq_t cpu_freq);
/**
* @brief Return RTC slow clock's period
* @param cali_clk clock to calibrate
* @param slow_clk_cycles number of slow clock cycles to average
* @param xtal_freq chip's main XTAL freq
* @return average slow clock period in microseconds, Q13.19 fixed point format
*/
uint32_t rtc_slowck_cali(cali_clk_t cali_clk, uint32_t slow_clk_cycles);
/**
* @brief Convert from microseconds to slow clock cycles
* @param time_in_us_h Time in microseconds, higher 32 bit part
* @param time_in_us_l Time in microseconds, lower 32 bit part
* @param slow_clk_period Period of slow clock in microseconds, Q13.19 fixed point format (as returned by rtc_slowck_cali).
* @param[out] cylces_h output, higher 32 bit part of number of slow clock cycles
* @param[out] cycles_l output, lower 32 bit part of number of slow clock cycles
*/
void rtc_usec2rtc(uint32_t time_in_us_h, uint32_t time_in_us_l, uint32_t slow_clk_period, uint32_t *cylces_h, uint32_t *cycles_l);
#define DEEP_SLEEP_PD_NORMAL BIT(0) /*!< Base deep sleep mode */
#define DEEP_SLEEP_PD_RTC_PERIPH BIT(1) /*!< Power down RTC peripherals */
#define DEEP_SLEEP_PD_RTC_SLOW_MEM BIT(2) /*!< Power down RTC SLOW memory */
#define DEEP_SLEEP_PD_RTC_FAST_MEM BIT(3) /*!< Power down RTC FAST memory */
/**
* @brief Prepare for entering sleep mode
* @param deep_slp DEEP_SLEEP_PD_ flags combined with OR (DEEP_SLEEP_PD_NORMAL must be included)
* @param cpu_lp_mode for deep sleep, should be 0
*/
void rtc_slp_prep_lite(uint32_t deep_slp, uint32_t cpu_lp_mode);
#define RTC_EXT_EVENT0_TRIG BIT(0)
#define RTC_EXT_EVENT1_TRIG BIT(1)
#define RTC_GPIO_TRIG BIT(2)
#define RTC_TIMER_EXPIRE BIT(3)
#define RTC_SDIO_TRIG BIT(4)
#define RTC_MAC_TRIG BIT(5)
#define RTC_UART0_TRIG BIT(6)
#define RTC_UART1_TRIG BIT(7)
#define RTC_TOUCH_TRIG BIT(8)
#define RTC_SAR_TRIG BIT(9)
#define RTC_BT_TRIG BIT(10)
#define RTC_EXT_EVENT0_TRIG_EN RTC_EXT_EVENT0_TRIG
#define RTC_EXT_EVENT1_TRIG_EN RTC_EXT_EVENT1_TRIG
#define RTC_GPIO_TRIG_EN RTC_GPIO_TRIG
#define RTC_TIMER_EXPIRE_EN RTC_TIMER_EXPIRE
#define RTC_SDIO_TRIG_EN RTC_SDIO_TRIG
#define RTC_MAC_TRIG_EN RTC_MAC_TRIG
#define RTC_UART0_TRIG_EN RTC_UART0_TRIG
#define RTC_UART1_TRIG_EN RTC_UART1_TRIG
#define RTC_TOUCH_TRIG_EN RTC_TOUCH_TRIG
#define RTC_SAR_TRIG_EN RTC_SAR_TRIG
#define RTC_BT_TRIG_EN RTC_BT_TRIG
/**
* @brief Enter sleep mode for given number of cycles
* @param cycles_h higher 32 bit part of number of slow clock cycles
* @param cycles_l lower 32 bit part of number of slow clock cycles
* @param wakeup_opt wake up reason to enable (RTC_xxx_EN flags combined with OR)
* @param reject_opt reserved, should be 0
* @return TBD
*/
uint32_t rtc_sleep(uint32_t cycles_h, uint32_t cycles_l, uint32_t wakeup_opt, uint32_t reject_opt);
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,158 @@
// Copyright 2013-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "esp_system.h"
#include "esp_attr.h"
#include "esp_wifi.h"
#include "esp_wifi_internal.h"
#include "esp_log.h"
#include "rom/efuse.h"
#include "rom/cache.h"
#include "rom/uart.h"
#include "soc/dport_reg.h"
#include "soc/efuse_reg.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/timer_group_reg.h"
#include "soc/timer_group_struct.h"
#include "soc/cpu.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/xtensa_api.h"
static const char* TAG = "system_api";
void system_init()
{
}
esp_err_t esp_efuse_read_mac(uint8_t* mac)
{
uint8_t efuse_crc;
uint8_t calc_crc;
uint32_t mac_low = REG_READ(EFUSE_BLK0_RDATA1_REG);
uint32_t mac_high = REG_READ(EFUSE_BLK0_RDATA2_REG);
mac[0] = mac_high >> 8;
mac[1] = mac_high;
mac[2] = mac_low >> 24;
mac[3] = mac_low >> 16;
mac[4] = mac_low >> 8;
mac[5] = mac_low;
efuse_crc = mac_high >> 16;
calc_crc = esp_crc8(mac, 6);
if (efuse_crc != calc_crc) {
// Small range of MAC addresses are accepted even if CRC is invalid.
// These addresses are reserved for Espressif internal use.
if ((mac_high & 0xFFFF) == 0x18fe) {
if ((mac_low >= 0x346a85c7) && (mac_low <= 0x346a85f8)) {
return ESP_OK;
}
} else {
ESP_LOGE(TAG, "MAC address CRC error, efuse_crc = 0x%02x; calc_crc = 0x%02x", efuse_crc, calc_crc);
abort();
}
}
return ESP_OK;
}
esp_err_t system_efuse_read_mac(uint8_t mac[6]) __attribute__((alias("esp_efuse_read_mac")));
void IRAM_ATTR esp_restart(void)
{
esp_wifi_stop();
// Disable scheduler on this core.
vTaskSuspendAll();
const uint32_t core_id = xPortGetCoreID();
const uint32_t other_core_id = core_id == 0 ? 1 : 0;
esp_cpu_stall(other_core_id);
// We need to disable TG0/TG1 watchdogs
// First enable RTC watchdog to be on the safe side
REG_WRITE(RTC_CNTL_WDTWPROTECT_REG, RTC_CNTL_WDT_WKEY_VALUE);
REG_WRITE(RTC_CNTL_WDTCONFIG0_REG,
RTC_CNTL_WDT_FLASHBOOT_MOD_EN_M |
(1 << RTC_CNTL_WDT_SYS_RESET_LENGTH_S) |
(1 << RTC_CNTL_WDT_CPU_RESET_LENGTH_S) );
REG_WRITE(RTC_CNTL_WDTCONFIG1_REG, 128000);
// Disable TG0/TG1 watchdogs
TIMERG0.wdt_wprotect=TIMG_WDT_WKEY_VALUE;
TIMERG0.wdt_config0.en = 0;
TIMERG0.wdt_wprotect=0;
TIMERG1.wdt_wprotect=TIMG_WDT_WKEY_VALUE;
TIMERG1.wdt_config0.en = 0;
TIMERG1.wdt_wprotect=0;
// Disable all interrupts
xt_ints_off(0xFFFFFFFF);
// Disable cache
Cache_Read_Disable(0);
Cache_Read_Disable(1);
// Flush any data left in UART FIFO
uart_tx_flush(0);
uart_tx_flush(1);
uart_tx_flush(2);
// Reset wifi/bluetooth (bb/mac)
SET_PERI_REG_MASK(DPORT_WIFI_RST_EN_REG, 0x1f);
REG_WRITE(DPORT_WIFI_RST_EN_REG, 0);
// Reset timer/spi/uart
SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG,
DPORT_TIMERS_RST | DPORT_SPI_RST_1 | DPORT_UART_RST);
REG_WRITE(DPORT_PERIP_RST_EN_REG, 0);
// Reset CPUs
if (core_id == 0) {
// Running on PRO CPU: APP CPU is stalled. Can reset both CPUs.
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG,
RTC_CNTL_SW_PROCPU_RST_M | RTC_CNTL_SW_APPCPU_RST_M);
} else {
// Running on APP CPU: need to reset PRO CPU and unstall it,
// then stall APP CPU
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_SW_PROCPU_RST_M);
esp_cpu_unstall(0);
esp_cpu_stall(1);
}
while(true) {
;
}
}
void system_restart(void) __attribute__((alias("esp_restart")));
void system_restore(void)
{
esp_wifi_restore();
}
uint32_t esp_get_free_heap_size(void)
{
return xPortGetFreeHeapSize();
}
uint32_t system_get_free_heap_size(void) __attribute__((alias("esp_get_free_heap_size")));
const char* system_get_sdk_version(void)
{
return "master";
}

View File

@ -32,6 +32,7 @@
#include "soc/timer_group_struct.h"
#include "soc/timer_group_reg.h"
#include "esp_log.h"
#include "driver/timer.h"
#include "esp_task_wdt.h"
@ -204,7 +205,7 @@ void esp_task_wdt_init() {
intr_matrix_set(xPortGetCoreID(), ETS_TG0_WDT_LEVEL_INTR_SOURCE, ETS_T0_WDT_INUM);
xt_set_interrupt_handler(ETS_T0_WDT_INUM, task_wdt_isr, NULL);
TIMERG0.int_clr_timers.wdt=1;
TIMERG0.int_ena.wdt=1;
timer_group_intr_enable(TIMER_GROUP_0, TIMG_WDT_INT_ENA_M);
ESP_INTR_ENABLE(ETS_T0_WDT_INUM);
}

View File

@ -0,0 +1,17 @@
#
#Component Makefile
#
COMPONENT_EXTRA_CLEAN := test_tjpgd_logo.h
COMPONENT_ADD_LDFLAGS = -Wl,--whole-archive -l$(COMPONENT_NAME) -Wl,--no-whole-archive
COMPONENT_SRCDIRS := . test_vectors
include $(IDF_PATH)/make/component_common.mk
test_tjpgd.o: test_tjpgd_logo.h
test_tjpgd_logo.h: $(COMPONENT_PATH)/logo.jpg
$(summary) XXD logo.jpg
$(Q) cd $(COMPONENT_PATH); xxd -i logo.jpg $(COMPONENT_BUILD_DIR)/test_tjpgd_logo.h

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.4 KiB

View File

@ -0,0 +1,293 @@
#include <esp_types.h>
#include <stdio.h>
#include <stdlib.h>
#include "rom/ets_sys.h"
#include "rom/lldesc.h"
#include "rom/gpio.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "freertos/queue.h"
#include "freertos/xtensa_api.h"
#include "unity.h"
#include "soc/uart_reg.h"
#include "soc/dport_reg.h"
#include "soc/io_mux_reg.h"
#include "soc/gpio_sig_map.h"
#include "soc/gpio_reg.h"
#include "soc/i2s_reg.h"
#define DPORT_I2S0_CLK_EN (BIT(4))
#define DPORT_I2S0_RST (BIT(4))
/*
This test tests the s32c1i instruction when the AHB bus is also used. To create some AHB traffic, we use the I2S interface
to copy bytes over from one memory location to another. DO NOT USE the i2s routines inhere, they've been trial-and-error'ed until
the point where they happened to do what I want.
*/
static void lcdIfaceInit()
{
SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_I2S0_CLK_EN);
CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_I2S0_RST);
//Init pins to i2s functions
SET_PERI_REG_MASK(GPIO_ENABLE_W1TS_REG, (1 << 11) | (1 << 3) | (1 << 0) | (1 << 2) | (1 << 5) | (1 << 16) | (1 << 17) | (1 << 18) | (1 << 19) | (1 << 20)); //ENABLE GPIO oe_enable
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO0_U, 0);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO2_U, 0);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO5_U, 0);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO16_U, 0);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO17_U, 0);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO18_U, 0);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO19_U, 0);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO20_U, 0);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_CMD_U, 2); //11
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO26_U, 0); //RS
WRITE_PERI_REG(GPIO_FUNC0_OUT_SEL_CFG_REG, (148 << GPIO_FUNC0_OUT_SEL_S));
WRITE_PERI_REG(GPIO_FUNC2_OUT_SEL_CFG_REG, (149 << GPIO_FUNC0_OUT_SEL_S));
WRITE_PERI_REG(GPIO_FUNC5_OUT_SEL_CFG_REG, (150 << GPIO_FUNC0_OUT_SEL_S));
WRITE_PERI_REG(GPIO_FUNC16_OUT_SEL_CFG_REG, (151 << GPIO_FUNC0_OUT_SEL_S));
WRITE_PERI_REG(GPIO_FUNC17_OUT_SEL_CFG_REG, (152 << GPIO_FUNC0_OUT_SEL_S));
WRITE_PERI_REG(GPIO_FUNC18_OUT_SEL_CFG_REG, (153 << GPIO_FUNC0_OUT_SEL_S));
WRITE_PERI_REG(GPIO_FUNC19_OUT_SEL_CFG_REG, (154 << GPIO_FUNC0_OUT_SEL_S));
WRITE_PERI_REG(GPIO_FUNC20_OUT_SEL_CFG_REG, (155 << GPIO_FUNC0_OUT_SEL_S));
WRITE_PERI_REG(GPIO_FUNC26_OUT_SEL_CFG_REG, (156 << GPIO_FUNC0_OUT_SEL_S)); //RS
WRITE_PERI_REG(GPIO_FUNC11_OUT_SEL_CFG_REG, (I2S0O_WS_OUT_IDX << GPIO_FUNC0_OUT_SEL_S));
// WRITE_PERI_REG(GPIO_FUNC11_OUT_SEL_CFG, (I2S0O_BCK_OUT_IDX<<GPIO_GPIO_FUNC0_OUT_SEL_S));
//GPIO_SET_GPIO_FUNC11_OUT_INV_SEL(1); //old
WRITE_PERI_REG(GPIO_FUNC11_OUT_SEL_CFG_REG, READ_PERI_REG(GPIO_FUNC11_OUT_SEL_CFG_REG) | GPIO_FUNC11_OUT_INV_SEL);
//Reset I2S subsystem
CLEAR_PERI_REG_MASK(I2S_CONF_REG(0), I2S_RX_RESET | I2S_TX_RESET);
SET_PERI_REG_MASK(I2S_CONF_REG(0), I2S_RX_RESET | I2S_TX_RESET);
CLEAR_PERI_REG_MASK(I2S_CONF_REG(0), I2S_RX_RESET | I2S_TX_RESET);
WRITE_PERI_REG(I2S_CONF_REG(0), 0);//I2S_SIG_LOOPBACK);
WRITE_PERI_REG(I2S_CONF2_REG(0), 0);
WRITE_PERI_REG(I2S_SAMPLE_RATE_CONF_REG(0),
(16 << I2S_RX_BITS_MOD_S) |
(16 << I2S_TX_BITS_MOD_S) |
(1 << I2S_RX_BCK_DIV_NUM_S) |
(1 << I2S_TX_BCK_DIV_NUM_S));
WRITE_PERI_REG(I2S_CLKM_CONF_REG(0),
I2S_CLKA_ENA | I2S_CLK_EN |
(1 << I2S_CLKM_DIV_A_S) |
(1 << I2S_CLKM_DIV_B_S) |
(1 << I2S_CLKM_DIV_NUM_S));
WRITE_PERI_REG(I2S_FIFO_CONF_REG(0),
(32 << I2S_TX_DATA_NUM_S) | //Low watermark for IRQ
(32 << I2S_RX_DATA_NUM_S));
WRITE_PERI_REG(I2S_CONF1_REG(0), I2S_RX_PCM_BYPASS | I2S_TX_PCM_BYPASS);
WRITE_PERI_REG(I2S_CONF_CHAN_REG(0), (2 << I2S_TX_CHAN_MOD_S) | (2 << I2S_RX_CHAN_MOD_S));
//Invert WS to active-low
SET_PERI_REG_MASK(I2S_CONF_REG(0), I2S_TX_RIGHT_FIRST | I2S_RX_RIGHT_FIRST);
WRITE_PERI_REG(I2S_TIMING_REG(0), 0);
}
static volatile lldesc_t dmaDesc[2];
static void finishDma()
{
//No need to finish if no DMA transfer going on
if (!(READ_PERI_REG(I2S_FIFO_CONF_REG(0))&I2S_DSCR_EN)) {
return;
}
//Wait till fifo done
while (!(READ_PERI_REG(I2S_INT_RAW_REG(0))&I2S_TX_REMPTY_INT_RAW)) ;
//Wait for last bytes to leave i2s xmit thing
//ToDo: poll bit in next hw
// for (i=0; i<(1<<8); i++);
while (!(READ_PERI_REG(I2S_STATE_REG(0))&I2S_TX_IDLE));
//Reset I2S for next transfer
CLEAR_PERI_REG_MASK(I2S_CONF_REG(0), I2S_TX_START | I2S_RX_START);
CLEAR_PERI_REG_MASK(I2S_OUT_LINK_REG(0), I2S_OUTLINK_START | I2S_INLINK_START);
SET_PERI_REG_MASK(I2S_CONF_REG(0), I2S_TX_RESET | I2S_TX_FIFO_RESET | I2S_RX_RESET | I2S_RX_FIFO_RESET);
CLEAR_PERI_REG_MASK(I2S_CONF_REG(0), I2S_TX_RESET | I2S_TX_FIFO_RESET | I2S_RX_RESET | I2S_RX_FIFO_RESET);
// for (i=0; i<(1<<8); i++);
while ((READ_PERI_REG(I2S_STATE_REG(0))&I2S_TX_FIFO_RESET_BACK));
}
/*
This is a very, very, very hacked up LCD routine which ends up basically doing a memcpy from sbuf to rbuf.
*/
static void sendRecvBufDma(uint16_t *sbuf, uint16_t *rbuf, int len)
{
//Fill DMA descriptor
dmaDesc[0].length = len * 2;
dmaDesc[0].size = len * 2;
dmaDesc[0].owner = 1;
dmaDesc[0].sosf = 0;
dmaDesc[0].buf = (uint8_t *)sbuf;
dmaDesc[0].offset = 0; //unused in hw
dmaDesc[0].empty = 0;
dmaDesc[0].eof = 1;
dmaDesc[1].length = len * 2;
dmaDesc[1].size = len * 2;
dmaDesc[1].owner = 1;
dmaDesc[1].sosf = 0;
dmaDesc[1].buf = (uint8_t *)rbuf;
dmaDesc[1].offset = 0; //unused in hw
dmaDesc[1].empty = 0;
dmaDesc[1].eof = 1;
//Reset DMA
SET_PERI_REG_MASK(I2S_LC_CONF_REG(0), I2S_IN_RST | I2S_OUT_RST | I2S_AHBM_RST | I2S_AHBM_FIFO_RST);
CLEAR_PERI_REG_MASK(I2S_LC_CONF_REG(0), I2S_IN_RST | I2S_OUT_RST | I2S_AHBM_RST | I2S_AHBM_FIFO_RST);
//Reset I2S FIFO
SET_PERI_REG_MASK(I2S_CONF_REG(0), I2S_RX_RESET | I2S_TX_RESET | I2S_TX_FIFO_RESET | I2S_RX_FIFO_RESET);
CLEAR_PERI_REG_MASK(I2S_CONF_REG(0), I2S_RX_RESET | I2S_TX_RESET | I2S_TX_FIFO_RESET | I2S_RX_FIFO_RESET);
//Set desc addr
CLEAR_PERI_REG_MASK(I2S_OUT_LINK_REG(0), I2S_OUTLINK_ADDR);
SET_PERI_REG_MASK(I2S_OUT_LINK_REG(0), ((uint32_t)(&dmaDesc[0]))&I2S_OUTLINK_ADDR);
CLEAR_PERI_REG_MASK(I2S_IN_LINK_REG(0), I2S_INLINK_ADDR);
SET_PERI_REG_MASK(I2S_IN_LINK_REG(0), ((uint32_t)(&dmaDesc[1]))&I2S_INLINK_ADDR);
SET_PERI_REG_MASK(I2S_FIFO_CONF_REG(0), I2S_DSCR_EN); //Enable DMA mode
WRITE_PERI_REG(I2S_RXEOF_NUM_REG(0), len);
//Enable and configure DMA
WRITE_PERI_REG(I2S_LC_CONF_REG(0), I2S_OUT_DATA_BURST_EN |
I2S_OUT_EOF_MODE | I2S_OUTDSCR_BURST_EN | I2S_OUT_DATA_BURST_EN |
I2S_INDSCR_BURST_EN | I2S_MEM_TRANS_EN);
//Start transmission
SET_PERI_REG_MASK(I2S_OUT_LINK_REG(0), I2S_OUTLINK_START);
SET_PERI_REG_MASK(I2S_IN_LINK_REG(0), I2S_INLINK_START);
SET_PERI_REG_MASK(I2S_CONF_REG(0), I2S_TX_START | I2S_RX_START);
//Clear int flags
WRITE_PERI_REG(I2S_INT_CLR_REG(0), 0xFFFFFFFF);
}
#define DMALEN (2048-2)
static void tskLcd(void *pvParameters)
{
uint16_t *sbuf = malloc(DMALEN * 2);
uint16_t *rbuf = malloc(DMALEN * 2);
uint16_t xorval = 0;
int x;
lcdIfaceInit();
// lcdFlush();
while (1) {
for (x = 0; x < DMALEN; x++) {
sbuf[x] = x ^ xorval;
}
for (x = 0; x < DMALEN; x++) {
rbuf[x] = 0; //clear rbuf
}
sendRecvBufDma(sbuf, rbuf, DMALEN);
vTaskDelay(20 / portTICK_PERIOD_MS);
finishDma();
for (x = 0; x < DMALEN; x++) if (rbuf[x] != (x ^ xorval)) {
printf("Rxbuf err! pos %d val %x xor %x", x, (int)rbuf[x], (int)xorval);
}
printf(".");
fflush(stdout);
xorval++;
}
}
void test_s32c1i_lock(volatile int *lockvar, int lockval, int unlockval, volatile int *ctr);
static volatile int ctr = 0, state = 0;
static volatile int lock = 0;
static void tskOne(void *pvParameters)
{
int x;
int err = 0, run = 0;
while (1) {
ctr = 0; lock = 0;
state = 1;
for (x = 0; x < 16 * 1024; x++) {
test_s32c1i_lock(&lock, 1, 0, &ctr);
}
vTaskDelay(60 / portTICK_PERIOD_MS);
state = 2;
if (ctr != 16 * 1024 * 2) {
printf("Lock malfunction detected! Ctr=0x%x instead of %x\n", ctr, 16 * 1024 * 2);
err++;
}
run++;
printf("Run %d err %d\n", run, err);
vTaskDelay(20 / portTICK_PERIOD_MS);
}
}
#define FB2ADDR 0x40098000
static void tskTwo(void *pvParameters)
{
int x;
int *p = (int *)FB2ADDR;
int *s = (int *)test_s32c1i_lock;
void (*test_s32c1i_lock2)(volatile int * lockvar, int lockval, int unlockval, volatile int * ctr) = (void *)FB2ADDR;
volatile int w;
int delay;
for (x = 0; x < 100; x++) {
*p++ = *s++; //copy routine to different pool
}
while (1) {
while (state != 1) ;
for (x = 0; x < 16 * 1024; x++) {
test_s32c1i_lock2(&lock, 2, 0, &ctr);
//Some random delay to increase chance of weirdness
if ((x & 0x1f) == 0) {
delay = rand() & 0x1f;
for (w = 0; w < delay; w++);
}
}
while (state != 2);
}
}
TEST_CASE("S32C1I vs AHB test (needs I2S)", "[hw]")
{
int i;
TaskHandle_t th[3];
state = 0;
printf("Creating tasks\n");
xTaskCreatePinnedToCore(tskTwo , "tsktwo" , 2048, NULL, 3, &th[1], 1);
xTaskCreatePinnedToCore(tskOne , "tskone" , 2048, NULL, 3, &th[0], 0);
xTaskCreatePinnedToCore(tskLcd , "tsklcd" , 2048, NULL, 3, &th[2], 0);
// Let stuff run for 20s
while (1) {
vTaskDelay(20000 / portTICK_PERIOD_MS);
}
//Shut down all the tasks
for (i = 0; i < 3; i++) {
vTaskDelete(th[i]);
}
}

View File

@ -0,0 +1,51 @@
/*
This little bit of code is executed in-place by one CPU, but copied to a different memory region
by the other CPU. Make sure it stays position-independent.
*/
.text
.align 4
.global test_s32c1i_lock
.type test_s32c1i_lock,@function
//Args:
//a2 - lock addr
//a3 - val to lock with
//a4 - val to unlock with
//a5 - addr to increase
test_s32c1i_lock:
entry a1, 64
wsr a4, SCOMPARE1
lockloop:
mov a6, a3
s32c1i a6, a2, 0
bne a4, a6, lockloop
l32i a6, a5, 0
//Give other CPU the time to mess up the inc if the lock somehow malfunctions
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
addi a6, a6, 1
s32i a6, a5, 0
//No need to actually let this loop but hey, a hang indicates an error, right?
wsr a3, SCOMPARE1
unlockloop:
mov a6, a4
s32c1i a6, a2, 0
bne a3, a6, unlockloop
retw

View File

@ -0,0 +1,132 @@
#include <esp_types.h>
#include <stdio.h>
#include "rom/ets_sys.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "freertos/queue.h"
#include "freertos/xtensa_api.h"
#include "unity.h"
#include "soc/uart_reg.h"
#include "soc/dport_reg.h"
#include "soc/io_mux_reg.h"
/*
This test tests the 'fast' peripherial bus at 0x3ff40000. This bus is connected directly to the core, and as such
can receive 'speculative' reads, that is, reads that may or may not actually be executed in the code flow. This
may mess with any FIFOs mapped in the region: if a byte gets dropped due to a missed speculative read, the fifo
may advance to the next byte anyway.
This code tests reading/writing from the UART1 FIFO, using both cores. For this to work, it's required that the
UARTs RX and TX lines are connected.
*/
void test_fastbus_cp(int fifo_addr, unsigned char *buf, int len, int *dummy);
static volatile int state = 0;
static volatile int xor = 0;
static unsigned char res[128];
static void tskOne(void *pvParameters)
{
int run = 0, err = 0;
int x;
int ct[256];
volatile int w;
int dummy;
while (1) {
state = 1;
for (x = 0; x < 64; x++) {
WRITE_PERI_REG(UART_FIFO_REG(1), x ^ xor);
}
for (w = 0; w < (1 << 14); w++); //delay
state = 2;
test_fastbus_cp(UART_FIFO_REG(1), &res[0], 64, &dummy);
for (w = 0; w < (1 << 10); w++); //delay
for (x = 0; x < 255; x++) {
ct[x] = 0; //zero ctrs
}
for (x = 0; x < 128; x++) {
ct[(int)res[x]^xor]++; //count values
}
for (x = 0; x < 255; x++) { //check counts
if (ct[x] != (x < 128 ? 1 : 0)) {
//Disregard first few loops; there may be crap in the fifo.
if (run > 2) {
err++;
printf("Error! Received value %d %d times!\n", x, ct[x]);
}
}
}
run++;
if ((run & 255) == 0) {
printf("Loop %d errct %d\n", run, err);
}
xor = (xor + 1) & 0xff;
}
}
#define FB2ADDR 0x40098000
static void tskTwo(void *pvParameters)
{
int x;
int dummy;
int *p = (int *)FB2ADDR;
int *s = (int *)test_fastbus_cp;
for (x = 0; x < 100; x++) {
*p++ = *s++;
}
void (*test_fastbus_cp2)(int fifo_addr, unsigned char * buf, int len, int * dummy) = (void *)FB2ADDR;
while (1) {
while (state != 1) ;
for (x = 64; x < 128; x++) {
WRITE_PERI_REG(UART_FIFO_REG(1), x ^ xor);
}
while (state != 2);
test_fastbus_cp2(UART_FIFO_REG(1), &res[64], 64, &dummy);
}
}
// TODO: split this thing into separate orthogonal tests
TEST_CASE("Fast I/O bus test", "[hw]")
{
int i;
if ((REG_UART_BASE(0) >> 16) != 0x3ff4) {
printf("Error! Uart base isn't on fast bus.\n");
TEST_ASSERT(0);
}
PIN_PULLUP_DIS(PERIPHS_IO_MUX_SD_DATA3_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_DATA2_U, FUNC_SD_DATA2_U1RXD);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_DATA3_U, FUNC_SD_DATA3_U1TXD);
int reg_val = (1 << UART_RXFIFO_FULL_THRHD_S);
WRITE_PERI_REG(UART_CONF1_REG(1), reg_val);
WRITE_PERI_REG(UART_CLKDIV_REG(1), 0x30); //semi-random
// CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(1), UART_TXFIFO_EMPTY_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
TaskHandle_t th[2];
printf("Creating tasks\n");
xTaskCreatePinnedToCore(tskOne , "tskone" , 2048, NULL, 3, &th[0], 0);
xTaskCreatePinnedToCore(tskTwo , "tsktwo" , 2048, NULL, 3, &th[1], 1);
// Let stuff run for 20s
while (1) {
vTaskDelay(20000 / portTICK_PERIOD_MS);
}
//Shut down all the tasks
for (i = 0; i < 2; i++) {
vTaskDelete(th[i]);
}
xt_ints_off(1 << ETS_UART0_INUM);
}

View File

@ -0,0 +1,32 @@
/*
This little bit of code is executed in-place by one CPU, but copied to a different memory region
by the other CPU. Make sure it stays position-independent.
*/
.text
.align 4
.global test_fastbus_cp
.type test_fastbus_cp,@function
//Args:
//a2 - fifo addr
//a3 - buf addr
//a4 - len
//a5 - ptr to int to use
test_fastbus_cp:
entry a1,64
back:
beqi a4, 0, out //check if loop done
s32i a4, a5, 0 //store value, for shits and/or giggles
memw //make sure write happens
l32i a4, a5, 0 //load value again, to thwart any prediction in the pipeline
bbsi a4, 0, pred //Random jump to check predictive reads. Both branches should do the same.
l32i a6, a2, 0 //read from fifo 1
j predout
pred:
l32i a6, a2, 0 //read from fifo 2
predout:
s8i a6, a3, 0 //store result
addi a3, a3, 1 //inc ptr
addi a4, a4, -1 //next
j back //loop again
out:
retw //and we are done

View File

@ -0,0 +1,193 @@
#include <math.h>
#include <stdio.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "unity.h"
static float addsf(float a, float b)
{
float result;
asm volatile (
"wfr f0, %1\n"
"wfr f1, %2\n"
"add.s f2, f0, f1\n"
"rfr %0, f2\n"
:"=r"(result):"r"(a), "r"(b)
);
return result;
}
static float mulsf(float a, float b)
{
float result;
asm volatile (
"wfr f0, %1\n"
"wfr f1, %2\n"
"mul.s f2, f0, f1\n"
"rfr %0, f2\n"
:"=r"(result):"r"(a), "r"(b)
);
return result;
}
static float divsf(float a, float b)
{
float result;
asm volatile (
"wfr f0, %1\n"
"wfr f1, %2\n"
"div0.s f3, f1 \n"
"nexp01.s f4, f1 \n"
"const.s f5, 1 \n"
"maddn.s f5, f4, f3 \n"
"mov.s f6, f3 \n"
"mov.s f7, f1 \n"
"nexp01.s f8, f0 \n"
"maddn.s f6, f5, f3 \n"
"const.s f5, 1 \n"
"const.s f2, 0 \n"
"neg.s f9, f8 \n"
"maddn.s f5,f4,f6 \n"
"maddn.s f2, f0, f3 \n"
"mkdadj.s f7, f0 \n"
"maddn.s f6,f5,f6 \n"
"maddn.s f9,f4,f2 \n"
"const.s f5, 1 \n"
"maddn.s f5,f4,f6 \n"
"maddn.s f2,f9,f6 \n"
"neg.s f9, f8 \n"
"maddn.s f6,f5,f6 \n"
"maddn.s f9,f4,f2 \n"
"addexpm.s f2, f7 \n"
"addexp.s f6, f7 \n"
"divn.s f2,f9,f6\n"
"rfr %0, f2\n"
:"=r"(result):"r"(a), "r"(b)
);
return result;
}
static float sqrtsf(float a)
{
float result;
asm volatile (
"wfr f0, %1\n"
"sqrt0.s f2, f0\n"
"const.s f5, 0\n"
"maddn.s f5, f2, f2\n"
"nexp01.s f3, f0\n"
"const.s f4, 3\n"
"addexp.s f3, f4\n"
"maddn.s f4, f5, f3\n"
"nexp01.s f5, f0\n"
"neg.s f6, f5\n"
"maddn.s f2, f4, f2\n"
"const.s f1, 0\n"
"const.s f4, 0\n"
"const.s f7, 0\n"
"maddn.s f1, f6, f2\n"
"maddn.s f4, f2, f3\n"
"const.s f6, 3\n"
"maddn.s f7, f6, f2\n"
"maddn.s f5, f1, f1\n"
"maddn.s f6, f4, f2\n"
"neg.s f3, f7\n"
"maddn.s f1, f5, f3\n"
"maddn.s f7, f6, f7\n"
"mksadj.s f2, f0\n"
"nexp01.s f5, f0\n"
"maddn.s f5, f1, f1\n"
"neg.s f3, f7\n"
"addexpm.s f1, f2\n"
"addexp.s f3, f2\n"
"divn.s f1, f5, f3\n"
"rfr %0, f1\n"
:"=r"(result):"r"(a)
);
return result;
}
TEST_CASE("test FP add", "[fp]")
{
float a = 100.0f;
float b = 0.5f;
float c = addsf(a, b);
float eps = c - 100.5f;
printf("a=%g b=%g c=%g eps=%g\r\n", a, b, c, eps);
TEST_ASSERT_TRUE(fabs(eps) < 0.000001);
}
TEST_CASE("test FP mul", "[fp]")
{
float a = 100.0f;
float b = 0.05f;
float c = mulsf(a, b);
float eps = c - 5.0f;
printf("a=%g b=%g c=%g eps=%g\r\n", a, b, c, eps);
TEST_ASSERT_TRUE(fabs(eps) < 0.000001);
}
TEST_CASE("test FP div", "[fp]")
{
float a = 100.0f;
float b = 5.0f;
float c = divsf(a, b);
float eps = c - 20.0f;
printf("a=%g b=%g c=%g eps=%g\r\n", a, b, c, eps);
TEST_ASSERT_TRUE(fabs(eps) < 0.000001);
}
TEST_CASE("test FP sqrt", "[fp]")
{
float a = 100.0f;
float c = sqrtsf(a);
float eps = c - 10.0f;
printf("a=%g c=%g eps=%g\r\n", a, c, eps);
TEST_ASSERT_TRUE(fabs(eps) < 0.000001);
}
struct TestFPState {
int fail;
int done;
};
static const int testFpIter = 100000;
static void tskTestFP(void *pvParameters)
{
struct TestFPState *state = (struct TestFPState *) pvParameters;
for (int i = 0; i < testFpIter; ++i) {
// calculate zero in a slightly obscure way
float y = sqrtsf(addsf(1.0f, divsf(mulsf(sqrtsf(2), sqrtsf(2)), 2.0f)));
y = mulsf(y, y);
y = addsf(y, -2.0f);
// check that result is not far from zero
float eps = fabs(y);
if (eps > 1e-6f) {
state->fail++;
printf("%s: i=%d y=%f eps=%f\r\n", __func__, i, y, eps);
}
}
state->done++;
vTaskDelete(NULL);
}
TEST_CASE("context switch saves FP registers", "[fp]")
{
struct TestFPState state;
state.done = 0;
state.fail = 0;
xTaskCreatePinnedToCore(tskTestFP, "tsk1", 2048, &state, 3, NULL, 0);
xTaskCreatePinnedToCore(tskTestFP, "tsk2", 2048, &state, 3, NULL, 0);
xTaskCreatePinnedToCore(tskTestFP, "tsk3", 2048, &state, 3, NULL, 1);
xTaskCreatePinnedToCore(tskTestFP, "tsk4", 2048, &state, 3, NULL, 0);
while (state.done != 4) {
vTaskDelay(100 / portTICK_PERIOD_MS);
}
if (state.fail) {
const int total = testFpIter * 4;
printf("Failed: %d, total: %d\r\n", state.fail, total);
}
TEST_ASSERT(state.fail == 0);
}

View File

@ -0,0 +1,77 @@
#include <stdio.h>
#include "rom/miniz.h"
#include "unity.h"
#define DATASIZE (1024*64)
TEST_CASE("Test miniz compression/decompression", "[miniz]")
{
int x;
char b;
char *inbuf, *outbuf;
tdefl_compressor *comp;
tinfl_decompressor *decomp;
tdefl_status status;
size_t inbytes = 0, outbytes = 0, inpos = 0, outpos = 0, compsz;
printf("Allocating data buffer and filling it with semi-random data\n");
inbuf = malloc(DATASIZE);
TEST_ASSERT(inbuf != NULL);
srand(0);
for (x = 0; x < DATASIZE; x++) {
inbuf[x] = (x & 1) ? rand() & 0xff : 0;
}
printf("Allocating compressor & outbuf (%d bytes)\n", sizeof(tdefl_compressor));
comp = malloc(sizeof(tdefl_compressor));
TEST_ASSERT(comp != NULL);
outbuf = malloc(DATASIZE);
TEST_ASSERT(outbuf != NULL);
printf("Compressing...\n");
status = tdefl_init(comp, NULL, NULL, TDEFL_WRITE_ZLIB_HEADER | 1500);
TEST_ASSERT(status == TDEFL_STATUS_OKAY);
while (inbytes != DATASIZE) {
outbytes = DATASIZE - outpos;
inbytes = DATASIZE - inpos;
tdefl_compress(comp, &inbuf[inpos], &inbytes, &outbuf[outpos], &outbytes, TDEFL_FINISH);
printf("...Compressed %d into %d bytes\n", inbytes, outbytes);
inpos += inbytes; outpos += outbytes;
}
compsz = outpos;
free(comp);
//Kill inbuffer
for (x = 0; x < DATASIZE; x++) {
inbuf[x] = 0;
}
free(inbuf);
inbuf = outbuf;
outbuf = malloc(DATASIZE);
TEST_ASSERT(outbuf != NULL);
printf("Reinflating...\n");
decomp = malloc(sizeof(tinfl_decompressor));
TEST_ASSERT(decomp != NULL);
tinfl_init(decomp);
inpos = 0; outpos = 0;
while (inbytes != compsz) {
outbytes = DATASIZE - outpos;
inbytes = compsz - inpos;
tinfl_decompress(decomp, (const mz_uint8 *)&inbuf[inpos], &inbytes, (uint8_t *)outbuf, (mz_uint8 *)&outbuf[outpos], &outbytes, TINFL_FLAG_PARSE_ZLIB_HEADER);
printf("...Decompressed %d into %d bytes\n", inbytes, outbytes);
inpos += inbytes; outpos += outbytes;
}
printf("Checking if same...\n");
srand(0);
for (x = 0; x < DATASIZE; x++) {
b = (x & 1) ? rand() & 0xff : 0;
if (outbuf[x] != b) {
printf("Pos %x: %hhx!=%hhx\n", x, outbuf[x], b);
TEST_ASSERT(0);
}
}
printf("Great Success!\n");
free(inbuf);
free(outbuf);
free(decomp);
}

View File

@ -0,0 +1,91 @@
#include <stdio.h>
#include "rom/tjpgd.h"
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include "unity.h"
#include "test_tjpgd_logo.h"
typedef struct {
const unsigned char *inData;
int inPos;
unsigned char *outData;
int outW;
int outH;
} JpegDev;
static UINT infunc(JDEC *decoder, BYTE *buf, UINT len)
{
JpegDev *jd = (JpegDev *)decoder->device;
printf("Reading %d bytes from pos %d\n", len, jd->inPos);
if (buf != NULL) {
memcpy(buf, jd->inData + jd->inPos, len);
}
jd->inPos += len;
return len;
}
static UINT outfunc(JDEC *decoder, void *bitmap, JRECT *rect)
{
unsigned char *in = (unsigned char *)bitmap;
unsigned char *out;
int y;
printf("Rect %d,%d - %d,%d\n", rect->top, rect->left, rect->bottom, rect->right);
JpegDev *jd = (JpegDev *)decoder->device;
for (y = rect->top; y <= rect->bottom; y++) {
out = jd->outData + ((jd->outW * y) + rect->left) * 3;
memcpy(out, in, ((rect->right - rect->left) + 1) * 3);
in += ((rect->right - rect->left) + 1) * 3;
}
return 1;
}
#define TESTW 48
#define TESTH 48
#define WORKSZ 3100
TEST_CASE("Test JPEG decompression library", "[tjpgd]")
{
char aapix[] = " .:;+=xX$$";
unsigned char *decoded, *p;
char *work;
int r;
int x, y, v;
JDEC decoder;
JpegDev jd;
decoded = malloc(48 * 48 * 3);
for (x = 0; x < 48 * 48 * 3; x += 2) {
decoded[x] = 0; decoded[x + 1] = 0xff;
}
work = malloc(WORKSZ);
memset(work, 0, WORKSZ);
jd.inData = logo_jpg;
jd.inPos = 0;
jd.outData = decoded;
jd.outW = TESTW;
jd.outH = TESTH;
r = jd_prepare(&decoder, infunc, work, WORKSZ, (void *)&jd);
TEST_ASSERT_EQUAL(r, JDR_OK);
r = jd_decomp(&decoder, outfunc, 0);
TEST_ASSERT_EQUAL(r, JDR_OK);
p = decoded + 2;
for (y = 0; y < TESTH; y++) {
for (x = 0; x < TESTH; x++) {
v = ((*p) * (sizeof(aapix) - 2) * 2) / 256;
printf("%c%c", aapix[v / 2], aapix[(v + 1) / 2]);
p += 3;
}
printf("%c%c", ' ', '\n');
}
free(work);
free(decoded);
}

View File

@ -0,0 +1,205 @@
#include <esp_types.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "rom/ets_sys.h"
#include "rom/lldesc.h"
#include "rom/gpio.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "freertos/queue.h"
#include "freertos/xtensa_api.h"
#include "unity.h"
#include "soc/uart_reg.h"
#include "soc/dport_reg.h"
#include "soc/io_mux_reg.h"
#include "soc/gpio_sig_map.h"
#include "soc/gpio_reg.h"
#include "soc/i2s_reg.h"
#define DPORT_I2S0_CLK_EN (BIT(4))
#define DPORT_I2S0_RST (BIT(4))
static volatile lldesc_t dmaDesc[2];
//hacked up routine to essentially do a memcpy() using dma. Supports max 4K-1 bytes.
static void dmaMemcpy(void *in, void *out, int len)
{
volatile int i;
SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_I2S0_CLK_EN);
CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_I2S0_RST);
//Init pins to i2s functions
SET_PERI_REG_MASK(GPIO_ENABLE_W1TS_REG, (1 << 11) | (1 << 3) | (1 << 0) | (1 << 2) | (1 << 5) | (1 << 16) | (1 << 17) | (1 << 18) | (1 << 19) | (1 << 20)); //ENABLE GPIO oe_enable
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO0_U, 0);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO2_U, 0);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO5_U, 0);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO16_U, 0);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO17_U, 0);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO18_U, 0);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO19_U, 0);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO20_U, 0);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_CMD_U, 2); //11
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO26_U, 0); //RS
WRITE_PERI_REG(GPIO_FUNC0_OUT_SEL_CFG_REG, (148 << GPIO_FUNC0_OUT_SEL_S));
WRITE_PERI_REG(GPIO_FUNC2_OUT_SEL_CFG_REG, (149 << GPIO_FUNC0_OUT_SEL_S));
WRITE_PERI_REG(GPIO_FUNC5_OUT_SEL_CFG_REG, (150 << GPIO_FUNC0_OUT_SEL_S));
WRITE_PERI_REG(GPIO_FUNC16_OUT_SEL_CFG_REG, (151 << GPIO_FUNC0_OUT_SEL_S));
WRITE_PERI_REG(GPIO_FUNC17_OUT_SEL_CFG_REG, (152 << GPIO_FUNC0_OUT_SEL_S));
WRITE_PERI_REG(GPIO_FUNC18_OUT_SEL_CFG_REG, (153 << GPIO_FUNC0_OUT_SEL_S));
WRITE_PERI_REG(GPIO_FUNC19_OUT_SEL_CFG_REG, (154 << GPIO_FUNC0_OUT_SEL_S));
WRITE_PERI_REG(GPIO_FUNC20_OUT_SEL_CFG_REG, (155 << GPIO_FUNC0_OUT_SEL_S));
WRITE_PERI_REG(GPIO_FUNC26_OUT_SEL_CFG_REG, (156 << GPIO_FUNC0_OUT_SEL_S)); //RS
WRITE_PERI_REG(GPIO_FUNC11_OUT_SEL_CFG_REG, (I2S0O_WS_OUT_IDX << GPIO_FUNC0_OUT_SEL_S));
// WRITE_PERI_REG(GPIO_FUNC11_OUT_SEL_CFG, (I2S0O_BCK_OUT_IDX<<GPIO_GPIO_FUNC0_OUT_SEL_S));
//GPIO_SET_GPIO_FUNC11_OUT_INV_SEL(1); //old
WRITE_PERI_REG(GPIO_FUNC11_OUT_SEL_CFG_REG, READ_PERI_REG(GPIO_FUNC11_OUT_SEL_CFG_REG) | GPIO_FUNC11_OUT_INV_SEL);
//Reset I2S subsystem
CLEAR_PERI_REG_MASK(I2S_CONF_REG(0), I2S_RX_RESET | I2S_TX_RESET);
SET_PERI_REG_MASK(I2S_CONF_REG(0), I2S_RX_RESET | I2S_TX_RESET);
CLEAR_PERI_REG_MASK(I2S_CONF_REG(0), I2S_RX_RESET | I2S_TX_RESET);
WRITE_PERI_REG(I2S_CONF_REG(0), 0);//I2S_I2S_SIG_LOOPBACK);
WRITE_PERI_REG(I2S_CONF2_REG(0), 0);
WRITE_PERI_REG(I2S_SAMPLE_RATE_CONF_REG(0),
(16 << I2S_RX_BITS_MOD_S) |
(16 << I2S_TX_BITS_MOD_S) |
(1 << I2S_RX_BCK_DIV_NUM_S) |
(1 << I2S_TX_BCK_DIV_NUM_S));
WRITE_PERI_REG(I2S_CLKM_CONF_REG(0),
I2S_CLKA_ENA | I2S_CLK_EN |
(1 << I2S_CLKM_DIV_A_S) |
(1 << I2S_CLKM_DIV_B_S) |
(1 << I2S_CLKM_DIV_NUM_S));
WRITE_PERI_REG(I2S_FIFO_CONF_REG(0),
(32 << I2S_TX_DATA_NUM_S) | //Low watermark for IRQ
(32 << I2S_RX_DATA_NUM_S));
WRITE_PERI_REG(I2S_CONF1_REG(0), I2S_RX_PCM_BYPASS | I2S_TX_PCM_BYPASS);
WRITE_PERI_REG(I2S_CONF_CHAN_REG(0), (2 << I2S_TX_CHAN_MOD_S) | (2 << I2S_RX_CHAN_MOD_S));
//Invert WS to active-low
SET_PERI_REG_MASK(I2S_CONF_REG(0), I2S_TX_RIGHT_FIRST | I2S_RX_RIGHT_FIRST);
WRITE_PERI_REG(I2S_TIMING_REG(0), 0);
//--
//Fill DMA descriptor
dmaDesc[0].length = len;
dmaDesc[0].size = len;
dmaDesc[0].owner = 1;
dmaDesc[0].sosf = 0;
dmaDesc[0].buf = (uint8_t *)in;
dmaDesc[0].offset = 0; //unused in hw
dmaDesc[0].empty = 0;
dmaDesc[0].eof = 1;
dmaDesc[1].length = len;
dmaDesc[1].size = len;
dmaDesc[1].owner = 1;
dmaDesc[1].sosf = 0;
dmaDesc[1].buf = (uint8_t *)out;
dmaDesc[1].offset = 0; //unused in hw
dmaDesc[1].empty = 0;
dmaDesc[1].eof = 1;
//Reset DMA
SET_PERI_REG_MASK(I2S_LC_CONF_REG(0), I2S_IN_RST | I2S_OUT_RST | I2S_AHBM_RST | I2S_AHBM_FIFO_RST);
CLEAR_PERI_REG_MASK(I2S_LC_CONF_REG(0), I2S_IN_RST | I2S_OUT_RST | I2S_AHBM_RST | I2S_AHBM_FIFO_RST);
//Reset I2S FIFO
SET_PERI_REG_MASK(I2S_CONF_REG(0), I2S_RX_RESET | I2S_TX_RESET | I2S_TX_FIFO_RESET | I2S_RX_FIFO_RESET);
CLEAR_PERI_REG_MASK(I2S_CONF_REG(0), I2S_RX_RESET | I2S_TX_RESET | I2S_TX_FIFO_RESET | I2S_RX_FIFO_RESET);
//Set desc addr
CLEAR_PERI_REG_MASK(I2S_OUT_LINK_REG(0), I2S_OUTLINK_ADDR);
SET_PERI_REG_MASK(I2S_OUT_LINK_REG(0), ((uint32_t)(&dmaDesc[0]))&I2S_OUTLINK_ADDR);
CLEAR_PERI_REG_MASK(I2S_IN_LINK_REG(0), I2S_INLINK_ADDR);
SET_PERI_REG_MASK(I2S_IN_LINK_REG(0), ((uint32_t)(&dmaDesc[1]))&I2S_INLINK_ADDR);
SET_PERI_REG_MASK(I2S_FIFO_CONF_REG(0), I2S_DSCR_EN); //Enable DMA mode
WRITE_PERI_REG(I2S_RXEOF_NUM_REG(0), len);
//Enable and configure DMA
WRITE_PERI_REG(I2S_LC_CONF_REG(0), I2S_OUT_DATA_BURST_EN |
I2S_OUT_EOF_MODE | I2S_OUTDSCR_BURST_EN | I2S_OUT_DATA_BURST_EN |
I2S_INDSCR_BURST_EN | I2S_MEM_TRANS_EN);
//Start transmission
SET_PERI_REG_MASK(I2S_OUT_LINK_REG(0), I2S_OUTLINK_START);
SET_PERI_REG_MASK(I2S_IN_LINK_REG(0), I2S_INLINK_START);
SET_PERI_REG_MASK(I2S_CONF_REG(0), I2S_TX_START | I2S_RX_START);
//Clear int flags
WRITE_PERI_REG(I2S_INT_CLR_REG(0), 0xFFFFFFFF);
//--
//No need to finish if no DMA transfer going on
if (!(READ_PERI_REG(I2S_FIFO_CONF_REG(0))&I2S_DSCR_EN)) {
return;
}
//Wait till fifo done
while (!(READ_PERI_REG(I2S_INT_RAW_REG(0))&I2S_TX_REMPTY_INT_RAW)) ;
//Wait for last bytes to leave i2s xmit thing
//ToDo: poll bit in next hw
for (i = 0; i < (1 << 8); i++);
while (!(READ_PERI_REG(I2S_STATE_REG(0))&I2S_TX_IDLE));
//Reset I2S for next transfer
CLEAR_PERI_REG_MASK(I2S_CONF_REG(0), I2S_TX_START | I2S_RX_START);
CLEAR_PERI_REG_MASK(I2S_OUT_LINK_REG(0), I2S_OUTLINK_START | I2S_INLINK_START);
SET_PERI_REG_MASK(I2S_CONF_REG(0), I2S_TX_RESET | I2S_TX_FIFO_RESET | I2S_RX_RESET | I2S_RX_FIFO_RESET);
CLEAR_PERI_REG_MASK(I2S_CONF_REG(0), I2S_TX_RESET | I2S_TX_FIFO_RESET | I2S_RX_RESET | I2S_RX_FIFO_RESET);
// for (i=0; i<(1<<8); i++);
while ((READ_PERI_REG(I2S_STATE_REG(0))&I2S_TX_FIFO_RESET_BACK));
}
int mymemcmp(char *a, char *b, int len)
{
int x;
for (x = 0; x < len; x++) {
if (a[x] != b[x]) {
printf("Not equal at byte %d. a=%x, b=%x\n", x, (int)a[x], (int)b[x]);
return 1;
}
}
return 0;
}
TEST_CASE("Unaligned DMA test (needs I2S)", "[hw]")
{
int x;
char src[2049], dest[2049];
for (x = 0; x < sizeof(src); x++) {
src[x] = x & 0xff;
}
printf("Aligned dma\n");
memset(dest, 0, 2049);
dmaMemcpy(src, dest, 2048 + 1);
TEST_ASSERT(mymemcmp(src, dest, 2048) == 0);
printf("Src unaligned\n");
dmaMemcpy(src + 1, dest, 2048 + 1);
TEST_ASSERT(mymemcmp(src + 1, dest, 2048) == 0);
printf("Dst unaligned\n");
dmaMemcpy(src, dest + 1, 2048 + 2);
TEST_ASSERT(mymemcmp(src, dest + 1, 2048) == 0);
}

View File

@ -895,7 +895,8 @@ typedef struct xSTATIC_TCB
uint32_t ulDummy18;
uint32_t ucDummy19;
#endif
#if( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
#if( ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) \
|| ( portUSING_MPU_WRAPPERS == 1 ) )
uint8_t uxDummy20;
#endif
@ -927,7 +928,6 @@ typedef struct xSTATIC_QUEUE
StaticList_t xDummy3[ 2 ];
UBaseType_t uxDummy4[ 3 ];
BaseType_t ucDummy5[ 2 ];
#if( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
uint8_t ucDummy6;
@ -943,12 +943,12 @@ typedef struct xSTATIC_QUEUE
#endif
struct {
volatile uint32_t mux;
volatile uint32_t ucDummy10;
#ifdef CONFIG_FREERTOS_PORTMUX_DEBUG
const char *lastLockedFn;
int lastLockedLine;
void *pvDummy8;
UBaseType_t uxDummy11;
#endif
} mux;
} sDummy12;
} StaticQueue_t;
typedef StaticQueue_t StaticSemaphore_t;

View File

@ -108,6 +108,7 @@
/* configASSERT behaviour */
#ifndef __ASSEMBLER__
#include <stdlib.h> /* for abort() */
#include "rom/ets_sys.h"
#if defined(CONFIG_FREERTOS_ASSERT_DISABLE)
@ -126,8 +127,6 @@
#endif
#if CONFIG_FREERTOS_ASSERT_ON_UNTESTED_FUNCTION
#include <stdlib.h>
#include "rom/ets_sys.h"
#define UNTESTED_FUNCTION() { ets_printf("Untested FreeRTOS function %s\r\n", __FUNCTION__); configASSERT(false); } while(0)
#else
#define UNTESTED_FUNCTION()

View File

@ -190,6 +190,10 @@ struct xLIST_ITEM
};
typedef struct xLIST_ITEM ListItem_t; /* For some reason lint wants this as two separate definitions. */
#if __GNUC_PREREQ(4, 6)
_Static_assert(sizeof(StaticListItem_t) == sizeof(ListItem_t), "StaticListItem_t != ListItem_t");
#endif
struct xMINI_LIST_ITEM
{
listFIRST_LIST_ITEM_INTEGRITY_CHECK_VALUE /*< Set to a known value if configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES is set to 1. */
@ -199,6 +203,11 @@ struct xMINI_LIST_ITEM
};
typedef struct xMINI_LIST_ITEM MiniListItem_t;
#if __GNUC_PREREQ(4, 6)
_Static_assert(sizeof(StaticMiniListItem_t) == sizeof(MiniListItem_t), "StaticMiniListItem_t != MiniListItem_t");
#endif
/*
* Definition of the type of queue used by the scheduler.
*/
@ -211,6 +220,10 @@ typedef struct xLIST
listSECOND_LIST_INTEGRITY_CHECK_VALUE /*< Set to a known value if configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES is set to 1. */
} List_t;
#if __GNUC_PREREQ(4, 6)
_Static_assert(sizeof(StaticList_t) == sizeof(List_t), "StaticList_t != List_t");
#endif
/*
* Access macro to set the owner of a list item. The owner of a list item
* is the object (usually a TCB) that contains the list item.

View File

@ -179,6 +179,11 @@ typedef struct QueueDefinition
name below to enable the use of older kernel aware debuggers. */
typedef xQUEUE Queue_t;
#if __GNUC_PREREQ(4, 6)
_Static_assert(sizeof(StaticQueue_t) == sizeof(Queue_t), "StaticQueue_t != Queue_t");
#endif
/*-----------------------------------------------------------*/
/*

View File

@ -609,9 +609,9 @@ void *xRingbufferReceiveUpToFromISR(RingbufHandle_t ringbuf, size_t *item_size,
void vRingbufferReturnItem(RingbufHandle_t ringbuf, void *item)
{
ringbuf_t *rb=(ringbuf_t *)ringbuf;
portENTER_CRITICAL_ISR(&rb->mux);
portENTER_CRITICAL(&rb->mux);
rb->returnItemToRingbufImpl(rb, item);
portEXIT_CRITICAL_ISR(&rb->mux);
portEXIT_CRITICAL(&rb->mux);
xSemaphoreGive(rb->free_space_sem);
}

View File

@ -242,6 +242,10 @@ typedef struct tskTaskControlBlock
below to enable the use of older kernel aware debuggers. */
typedef tskTCB TCB_t;
#if __GNUC_PREREQ(4, 6)
_Static_assert(sizeof(StaticTask_t) == sizeof(TCB_t), "StaticTask_t != TCB_t");
#endif
/*
* Some kernel aware debuggers require the data the debugger needs access to to
* be global, rather than file scope.

View File

@ -0,0 +1,5 @@
#
#Component Makefile
#
COMPONENT_ADD_LDFLAGS = -Wl,--whole-archive -l$(COMPONENT_NAME) -Wl,--no-whole-archive

View File

@ -0,0 +1,229 @@
/*
Test for multicore FreeRTOS. This test spins up threads, fiddles with queues etc.
*/
#include <esp_types.h>
#include <stdio.h>
#include "rom/ets_sys.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "freertos/queue.h"
#include "freertos/xtensa_api.h"
#include "unity.h"
#include "soc/uart_reg.h"
#include "soc/dport_reg.h"
#include "soc/io_mux_reg.h"
void ets_isr_unmask(uint32_t unmask);
static xQueueHandle myQueue;
static xQueueHandle uartRxQueue;
int ctr;
#if 1
//Idle-loop for delay. Tests involuntary yielding
static void cvTaskDelay(int dummy)
{
volatile int i;
for (i = 0; i < (1 << 17); i++);
}
#else
//Delay task execution using FreeRTOS methods. Tests voluntary yielding.
#define cvTaskDelay(x) vTaskDelay(x)
#endif
#if 0
static void dosegfault3(int i)
{
volatile char *p = (volatile char *)0;
*p = i;
}
static void dosegfault2(int i)
{
if (i > 3) {
dosegfault3(i);
}
}
static void dosegfault(int i)
{
if (i < 5) {
dosegfault(i + 1);
}
dosegfault2(i);
}
#endif
static void queueSender(void *pvParameters)
{
int myCtr = xPortGetCoreID() * 100000;
while (1) {
printf("Core %d: Send to queue: %d\n", xPortGetCoreID(), myCtr);
xQueueSend(myQueue, (void *)(&myCtr), portMAX_DELAY);
printf("Send to queue done.\n");
cvTaskDelay(100);
myCtr++;
}
}
static void queueReceiver(void *pvParameters)
{
int theCtr;
while (1) {
xQueueReceive(myQueue, &theCtr, portMAX_DELAY);
printf("Core %d: Receive from queue: %d\n", xPortGetCoreID(), theCtr);
}
}
static void tskone(void *pvParameters)
{
// char *p=(char *)0;
while (1) {
ctr++;
// if (ctr>60) dosegfault(3);
printf("Task1, core %d, ctr=%d\n", xPortGetCoreID(), ctr);
cvTaskDelay(500);
}
}
static void tsktwo(void *pvParameters)
{
while (1) {
ctr++;
printf("Task2, core %d, ctr=%d\n", xPortGetCoreID(), ctr);
cvTaskDelay(500);
}
}
static void tskthree(void *pvParameters)
{
while (1) {
ctr++;
printf("Task3, core %d, ctr=%d\n", xPortGetCoreID(), ctr);
cvTaskDelay(500);
}
}
static void tskfour(void *pvParameters)
{
while (1) {
ctr++;
printf("Task4, core %d, ctr=%d\n", xPortGetCoreID(), ctr);
cvTaskDelay(500);
}
}
static void tskfive(void *pvParameters)
{
while (1) {
ctr++;
printf("Task5, core %d, ctr=%d\n", xPortGetCoreID(), ctr);
cvTaskDelay(500);
}
}
static void tskyield(void *pvParameters)
{
while (1) {
portYIELD();
}
}
static void tskUartRecv(void *pvParameters)
{
char c;
while (1) {
xQueueReceive(uartRxQueue, &c, portMAX_DELAY);
printf("Uart received %c!\n", c);
}
}
static void uartIsrHdl(void *arg)
{
char c;
BaseType_t xHigherPriorityTaskWoken;
SET_PERI_REG_MASK(UART_INT_CLR_REG(0), UART_RXFIFO_FULL_INT_CLR);
while (READ_PERI_REG(UART_STATUS_REG(0)) & (UART_RXFIFO_CNT << UART_RXFIFO_CNT_S)) {
c = READ_PERI_REG(UART_FIFO_REG(0));
xQueueSendFromISR(uartRxQueue, &c, &xHigherPriorityTaskWoken);
printf("ISR: %c\n", c);
}
if (xHigherPriorityTaskWoken) {
portYIELD_FROM_ISR();
}
}
static void uartRxInit(xQueueHandle q)
{
uint32_t reg_val;
PIN_PULLUP_DIS(PERIPHS_IO_MUX_U0TXD_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_U0RXD_U0RXD);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD_U0TXD);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_U0RXD_U0RXD);
// reg_val = READ_PERI_REG(UART_CONF1(0));
reg_val = (1 << UART_RXFIFO_FULL_THRHD_S);
WRITE_PERI_REG(UART_CONF1_REG(0), reg_val);
CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(0), UART_TXFIFO_EMPTY_INT_ENA | UART_RXFIFO_TOUT_INT_ENA);
SET_PERI_REG_MASK(UART_INT_ENA_REG(0), UART_RXFIFO_FULL_INT_ENA);
printf("Enabling int %d\n", ETS_UART0_INUM);
REG_SET_FIELD(DPORT_PRO_UART_INTR_MAP_REG, DPORT_PRO_UART_INTR_MAP, ETS_UART0_INUM);
REG_SET_FIELD(DPORT_PRO_UART1_INTR_MAP_REG, DPORT_PRO_UART1_INTR_MAP, ETS_UART0_INUM);
xt_set_interrupt_handler(ETS_UART0_INUM, uartIsrHdl, NULL);
xt_ints_on(1 << ETS_UART0_INUM);
}
// TODO: split this thing into separate orthogonal tests
TEST_CASE("Bunch of FreeRTOS tests", "[freertos]")
{
char *tst;
TaskHandle_t th[12];
int i;
printf("%s\n", __FUNCTION__);
tst = pvPortMalloc(16);
printf("Test malloc returns addr %p\n", tst);
printf("Free heap: %u\n", xPortGetFreeHeapSize());
myQueue = xQueueCreate(10, sizeof(int));
uartRxQueue = xQueueCreate(256, sizeof(char));
printf("Free heap: %u\n", xPortGetFreeHeapSize());
printf("Creating tasks\n");
xTaskCreatePinnedToCore(tskyield , "tskyield1" , 2048, NULL, 3, &th[0], 0);
xTaskCreatePinnedToCore(tskyield , "tskyield2" , 2048, NULL, 3, &th[1], 1);
xTaskCreatePinnedToCore(tskone , "tskone" , 2048, NULL, 3, &th[2], 0);
xTaskCreatePinnedToCore(tsktwo , "tsktwo" , 2048, NULL, 3, &th[3], 1);
xTaskCreatePinnedToCore(tskthree, "tskthree", 2048, NULL, 3, &th[4], 0);
xTaskCreatePinnedToCore(tskfour , "tskfour" , 2048, NULL, 3, &th[5], tskNO_AFFINITY);
xTaskCreatePinnedToCore(tskfive , "tskfive" , 2048, NULL, 3, &th[6], tskNO_AFFINITY);
xTaskCreatePinnedToCore(queueSender , "qsend1" , 2048, NULL, 3, &th[7], 0);
xTaskCreatePinnedToCore(queueSender , "qsend2" , 2048, NULL, 3, &th[8], 1);
xTaskCreatePinnedToCore(queueReceiver , "qrecv1" , 2048, NULL, 3, &th[9], 1);
xTaskCreatePinnedToCore(queueReceiver , "qrecv2" , 2048, NULL, 3, &th[10], 0);
xTaskCreatePinnedToCore(tskUartRecv , "tskuart" , 2048, NULL, 4, &th[11], 1);
printf("Free heap: %u\n", xPortGetFreeHeapSize());
uartRxInit(uartRxQueue);
// Let stuff run for 20s
vTaskDelay(20000 / portTICK_PERIOD_MS);
//Shut down all the tasks
for (i = 0; i < 12; i++) {
vTaskDelete(th[i]);
}
xt_ints_off(1 << ETS_UART0_INUM);
}

View File

@ -0,0 +1,105 @@
#include <stdio.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "freertos/queue.h"
#include "freertos/event_groups.h"
#include "unity.h"
#define BIT_CALL (1 << 0)
#define BIT_RESPONSE(TASK) (1 << (TASK+1))
#define ALL_RESPONSE_BITS (((1 << NUM_TASKS) - 1) << 1)
static const int NUM_TASKS = 4;
static const int COUNT = 4000;
static EventGroupHandle_t eg;
static void task_event_group_call_response(void *param)
{
int task_num = (int)param;
printf("Started %d\n", task_num);
for (int i = 0; i < COUNT; i++) {
/* Wait until the common "call" bit is set, starts off all tasks
(clear on return) */
while (!xEventGroupWaitBits(eg, BIT_CALL, true, false, portMAX_DELAY)) {
}
/* Set our individual "response" bit */
xEventGroupSetBits(eg, BIT_RESPONSE(task_num));
}
printf("Task %d done\n", task_num);
/* Delay is due to not-yet-fixed bug with deleting tasks at same time */
vTaskDelay(100 / portTICK_RATE_MS);
vTaskDelete(NULL);
}
TEST_CASE("FreeRTOS Event Groups", "[freertos]")
{
eg = xEventGroupCreate();
/* Note: task_event_group_call_response all have higher priority than us, so will block together.
This is important because we need to know they'll all have blocked on BIT_CALL each time we
signal it, or they get out of sync.
*/
for (int c = 0; c < NUM_TASKS; c++) {
xTaskCreatePinnedToCore(task_event_group_call_response, "tsk_call_resp", 4096, (void *)c, configMAX_PRIORITIES - 1, NULL, c % portNUM_PROCESSORS);
}
/* Scheduler weirdness, if we don't sleep a few ticks here then the tasks on the other CPU aren't running yet... */
vTaskDelay(10);
for (int i = 0; i < COUNT; i++) {
if (i % 100 == 0) {
//printf("Call %d\n", i);
}
/* signal all tasks with "CALL" bit... */
xEventGroupSetBits(eg, BIT_CALL);
while (xEventGroupWaitBits(eg, ALL_RESPONSE_BITS, true, true, portMAX_DELAY) != ALL_RESPONSE_BITS) {
}
}
}
#define BIT_DONE(X) (1<<(NUM_TASKS+1+X))
static void task_test_sync(void *param)
{
int task_num = (int)param;
printf("Started %d\n", task_num);
for (int i = 0; i < COUNT; i++) {
/* set our bit, and wait on all tasks to set their bits */
xEventGroupSync(eg, BIT_RESPONSE(task_num), ALL_RESPONSE_BITS, portMAX_DELAY);
/* clear our bit */
xEventGroupClearBits(eg, BIT_RESPONSE(task_num));
}
int after_done = xEventGroupSetBits(eg, BIT_DONE(task_num));
printf("Done %d = %x\n", task_num, after_done);
/* Delay is due to not-yet-fixed bug with deleting tasks at same time */
vTaskDelay(100 / portTICK_RATE_MS);
vTaskDelete(NULL);
}
TEST_CASE("FreeRTOS Event Group Sync", "[freertos]")
{
eg = xEventGroupCreate();
for (int c = 0; c < NUM_TASKS; c++) {
xTaskCreatePinnedToCore(task_test_sync, "task_test_sync", 4096, (void *)c, configMAX_PRIORITIES - 1, NULL, c % portNUM_PROCESSORS);
}
for (int c = 0; c < NUM_TASKS; c++) {
printf("Waiting on %d (%x)\n", c, BIT_DONE(c));
xEventGroupWaitBits(eg, BIT_DONE(c), false, false, portMAX_DELAY);
}
}

View File

@ -0,0 +1,22 @@
#include <stdio.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "freertos/queue.h"
#include "freertos/event_groups.h"
#include "unity.h"
static void task_delete_self(void *param)
{
printf("Task %p running on core %d. Deleting shortly...\n", xTaskGetCurrentTaskHandle(), xPortGetCoreID());
vTaskDelete(NULL);
}
TEST_CASE("FreeRTOS Delete Tasks", "[freertos]")
{
xTaskCreatePinnedToCore(task_delete_self, "tsk_self_a", 4096, NULL, configMAX_PRIORITIES - 1, NULL, 0);
xTaskCreatePinnedToCore(task_delete_self, "tsk_self_a", 4096, NULL, configMAX_PRIORITIES - 1, NULL, 0);
vTaskDelay(200 / portTICK_PERIOD_MS);
printf("Done?\n");
}

View File

@ -0,0 +1,60 @@
/*
Test for multicore FreeRTOS. This test spins up threads, fiddles with queues etc.
*/
#include <esp_types.h>
#include <stdio.h>
#include <stdlib.h>
#include "rom/ets_sys.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "freertos/queue.h"
#include "freertos/xtensa_api.h"
#include "unity.h"
#include "soc/uart_reg.h"
#include "soc/dport_reg.h"
#include "soc/io_mux_reg.h"
volatile static int done;
volatile static int error;
static void tskTestRand(void *pvParameters)
{
int l;
srand(0x1234);
vTaskDelay((int)pvParameters / portTICK_PERIOD_MS);
l = rand();
printf("Rand1: %d\n", l);
if (l != 869320854) {
error++;
}
vTaskDelay((int)pvParameters / portTICK_PERIOD_MS);
l = rand();
printf("Rand2: %d\n", l);
if (l != 1148737841) {
error++;
}
done++;
vTaskDelete(NULL);
}
// TODO: split this thing into separate orthogonal tests
TEST_CASE("Test for per-task non-reentrant tasks", "[freertos]")
{
done = 0;
error = 0;
xTaskCreatePinnedToCore(tskTestRand, "tsk1", 2048, (void *)100, 3, NULL, 0);
xTaskCreatePinnedToCore(tskTestRand, "tsk2", 2048, (void *)200, 3, NULL, 0);
xTaskCreatePinnedToCore(tskTestRand, "tsk3", 2048, (void *)300, 3, NULL, 1);
xTaskCreatePinnedToCore(tskTestRand, "tsk4", 2048, (void *)400, 3, NULL, 0);
while (done != 4) {
vTaskDelay(1000 / portTICK_PERIOD_MS);
}
TEST_ASSERT(error == 0);
}

View File

@ -0,0 +1,26 @@
/*
Test for multicore FreeRTOS. This test spins up threads, fiddles with queues etc.
*/
#include <esp_types.h>
#include <stdio.h>
#include "rom/ets_sys.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "freertos/queue.h"
#include "freertos/xtensa_api.h"
#include "unity.h"
#include "soc/uart_reg.h"
#include "soc/dport_reg.h"
#include "soc/io_mux_reg.h"
TEST_CASE("Panic handler", "[freertos]")
{
volatile int *i;
i = (volatile int *)0x0;
*i = 1;
}

View File

@ -0,0 +1,197 @@
/*
Test for multicore FreeRTOS ringbuffer.
*/
#include <esp_types.h>
#include <stdio.h>
#include "rom/ets_sys.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "freertos/queue.h"
#include "freertos/ringbuf.h"
#include "freertos/xtensa_api.h"
#include "unity.h"
#include "soc/uart_reg.h"
#include "soc/dport_reg.h"
#include "soc/io_mux_reg.h"
#include <string.h>
#include <stdio.h>
void ets_isr_unmask(uint32_t unmask);
static RingbufHandle_t rb;
typedef enum {
TST_MOSTLYFILLED,
TST_MOSTLYEMPTY,
TST_INTTOTASK,
TST_TASKTOINT,
} testtype_t;
static volatile testtype_t testtype;
static void task1(void *arg)
{
testtype_t oldtest;
char buf[100];
int i = 0;
int x, r;
while (1) {
oldtest = testtype;
if (testtype == TST_MOSTLYFILLED || testtype == TST_MOSTLYEMPTY) {
for (x = 0; x < 10; x++) {
sprintf(buf, "This is test %d item %d.", (int)testtype, i++);
ets_printf("TSK w");
xRingbufferPrintInfo(rb);
r = xRingbufferSend(rb, buf, strlen(buf) + 1, 2000 / portTICK_PERIOD_MS);
if (!r) {
printf("Test %d: Timeout on send!\n", (int)testtype);
}
if (testtype == TST_MOSTLYEMPTY) {
vTaskDelay(1000 / portTICK_PERIOD_MS);
}
}
//Send NULL event to stop other side.
r = xRingbufferSend(rb, NULL, 0, 10000 / portTICK_PERIOD_MS);
}
while (oldtest == testtype) {
vTaskDelay(1000 / portTICK_PERIOD_MS);
}
}
}
static void task2(void *arg)
{
testtype_t oldtest;
char *buf;
size_t len;
while (1) {
oldtest = testtype;
if (testtype == TST_MOSTLYFILLED || testtype == TST_MOSTLYEMPTY) {
while (1) {
ets_printf("TSK r");
xRingbufferPrintInfo(rb);
buf = xRingbufferReceive(rb, &len, 2000 / portTICK_PERIOD_MS);
if (buf == NULL) {
printf("Test %d: Timeout on recv!\n", (int)testtype);
} else if (len == 0) {
printf("End packet received.\n");
vRingbufferReturnItem(rb, buf);
break;
} else {
printf("Received: %s (%d bytes, %p)\n", buf, len, buf);
vRingbufferReturnItem(rb, buf);
}
if (testtype == TST_MOSTLYFILLED) {
vTaskDelay(1000 / portTICK_PERIOD_MS);
}
}
}
while (oldtest == testtype) {
vTaskDelay(1000 / portTICK_PERIOD_MS);
}
}
}
static void uartIsrHdl(void *arg)
{
char c;
char buf[50];
char *item;
int r;
size_t len;
BaseType_t xHigherPriorityTaskWoken;
SET_PERI_REG_MASK(UART_INT_CLR_REG(0), UART_RXFIFO_FULL_INT_CLR);
while (READ_PERI_REG(UART_STATUS_REG(0)) & (UART_RXFIFO_CNT << UART_RXFIFO_CNT_S)) {
c = READ_PERI_REG(UART_FIFO_REG(0));
if (c == 'r') {
ets_printf("ISR r");
xRingbufferPrintInfo(rb);
item = xRingbufferReceiveFromISR(rb, &len);
if (item == NULL) {
ets_printf("ISR recv fail!\n");
} else if (len == 0) {
ets_printf("ISR recv NULL!\n");
vRingbufferReturnItemFromISR(rb, item, &xHigherPriorityTaskWoken);
} else {
ets_printf("ISR recv '%s' (%d bytes, %p)\n", buf, len, buf);
vRingbufferReturnItemFromISR(rb, item, &xHigherPriorityTaskWoken);
}
} else {
sprintf(buf, "UART: %c", c);
ets_printf("ISR w");
xRingbufferPrintInfo(rb);
r = xRingbufferSendFromISR(rb, buf, strlen(buf) + 1, &xHigherPriorityTaskWoken);
if (!r) {
ets_printf("ISR send fail\n");
}
}
}
if (xHigherPriorityTaskWoken) {
portYIELD_FROM_ISR();
}
}
static void uartRxInit()
{
uint32_t reg_val;
PIN_PULLUP_DIS(PERIPHS_IO_MUX_U0TXD_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_U0RXD_U0RXD);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD_U0TXD);
// reg_val = READ_PERI_REG(UART_CONF1(0));
reg_val = (1 << UART_RXFIFO_FULL_THRHD_S);
WRITE_PERI_REG(UART_CONF1_REG(0), reg_val);
CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(0), UART_TXFIFO_EMPTY_INT_ENA | UART_RXFIFO_TOUT_INT_ENA);
SET_PERI_REG_MASK(UART_INT_ENA_REG(0), UART_RXFIFO_FULL_INT_ENA);
printf("Enabling int %d\n", ETS_UART0_INUM);
REG_SET_FIELD(DPORT_PRO_UART_INTR_MAP_REG, DPORT_PRO_UART_INTR_MAP, ETS_UART0_INUM);
REG_SET_FIELD(DPORT_PRO_UART1_INTR_MAP_REG, DPORT_PRO_UART1_INTR_MAP, ETS_UART0_INUM);
xt_set_interrupt_handler(ETS_UART0_INUM, uartIsrHdl, NULL);
xt_ints_on(1 << ETS_UART0_INUM);
}
static void testRingbuffer(int type)
{
TaskHandle_t th[2];
int i;
rb = xRingbufferCreate(32 * 3, type);
testtype = TST_MOSTLYFILLED;
xTaskCreatePinnedToCore(task1 , "tskone" , 2048, NULL, 3, &th[0], 0);
xTaskCreatePinnedToCore(task2 , "tsktwo" , 2048, NULL, 3, &th[1], 0);
uartRxInit();
printf("Press 'r' to read an event in isr, any other key to write one.\n");
printf("Test: mostlyfilled; putting 10 items in ringbuff ASAP, reading 1 a second\n");
vTaskDelay(15000 / portTICK_PERIOD_MS);
printf("Test: mostlyempty; putting 10 items in ringbuff @ 1/sec, reading as fast as possible\n");
testtype = TST_MOSTLYEMPTY;
vTaskDelay(15000 / portTICK_PERIOD_MS);
//Shut down all the tasks
for (i = 0; i < 2; i++) {
vTaskDelete(th[i]);
}
xt_ints_off(1 << ETS_UART0_INUM);
}
// TODO: split this thing into separate orthogonal tests
TEST_CASE("FreeRTOS ringbuffer test, no splitting items", "[freertos]")
{
testRingbuffer(0);
}
TEST_CASE("FreeRTOS ringbuffer test, w/ splitting items", "[freertos]")
{
testRingbuffer(1);
}

View File

@ -0,0 +1,58 @@
#include <esp_types.h>
#include <stdio.h>
#include "rom/ets_sys.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "freertos/queue.h"
#include "freertos/xtensa_api.h"
#include "unity.h"
#include "soc/uart_reg.h"
#include "soc/dport_reg.h"
#include "soc/io_mux_reg.h"
static void tskdelcb(int no, void *arg)
{
printf("Delete callback: %d = %p!\n", no, arg);
}
static void tska(void *pvParameters)
{
vTaskSetThreadLocalStoragePointerAndDelCallback(xTaskGetCurrentTaskHandle(), 0, (void *)0xAAAAAAAA, tskdelcb);
while (1) {
vTaskDelay(10000000 / portTICK_PERIOD_MS);
}
}
static void tskb(void *pvParameters)
{
vTaskSetThreadLocalStoragePointerAndDelCallback(xTaskGetCurrentTaskHandle(), 0, (void *)0xBBBBBBBB, tskdelcb);
vTaskDelay(2000 / portTICK_PERIOD_MS);
TaskHandle_t a = (TaskHandle_t)pvParameters;
printf("Killing task A\n");
vTaskDelete(a);
while (1) {
vTaskDelay(10000000 / portTICK_PERIOD_MS);
}
}
// TODO: split this thing into separate orthogonal tests
TEST_CASE("Freertos TLS delete cb", "[freertos]")
{
TaskHandle_t a, b;
xTaskCreatePinnedToCore(tska , "tska" , 2048, NULL, 3, &a, 0);
xTaskCreatePinnedToCore(tskb , "tska" , 2048, a, 3, &b, 0);
// Let stuff run for 20s
vTaskDelay(5000 / portTICK_PERIOD_MS);
printf("Killing task B\n");
//Shut down b
vTaskDelete(b);
}

View File

@ -2,7 +2,6 @@ Config: {execute count: 1, execute order: in order}
DUT: [UT1]
Filter:
- Add:
ID: [SYS_OS_0102, SYS_MISC_0103, SYS_MISC_0102, SYS_MISC_0105, SYS_MISC_0104,
SYS_MISC_0107, SYS_MISC_0106, SYS_MISC_0109, SYS_MISC_0108, SYS_MISC_0112, SYS_MISC_0113,
SYS_MISC_0110, SYS_MISC_0111, SYS_MISC_0115, SYS_LIB_0103, SYS_LIB_0102, SYS_LIB_0101,
SYS_LIB_0106, SYS_LIB_0105, SYS_LIB_0104]
ID: [SYS_OS_0102, SYS_MISC_0102, SYS_MISC_0107, SYS_MISC_0106, SYS_MISC_0109,
SYS_MISC_0108, SYS_MISC_0112, SYS_MISC_0113, SYS_MISC_0110, SYS_MISC_0111, SYS_LIB_0103,
SYS_LIB_0102, SYS_LIB_0101, SYS_LIB_0106, SYS_LIB_0105, SYS_LIB_0104]

View File

@ -18,10 +18,7 @@
#include <stdint.h>
#include <stdarg.h>
#include "sdkconfig.h"
#ifdef BOOTLOADER_BUILD
#include <rom/ets_sys.h>
#endif
#ifdef __cplusplus
extern "C" {

View File

@ -18,6 +18,8 @@
#include "lwip/tcp.h"
#include "lwip/udp.h"
#include "lwip/priv/tcp_priv.h"
#include "lwip/priv/memp_priv.h"
#include "lwip/memp.h"
#define DBG_LWIP_IP_SHOW(info, ip) printf("%s type=%d ip=%x\n", (info), (ip).type, (ip).u_addr.ip4.addr)
#define DBG_LWIP_IP_PCB_SHOW(pcb) \
@ -127,3 +129,22 @@ void dbg_lwip_udp_rxtx_show(void)
printf("TBC\n");
}
#if (ESP_CNT_DEBUG == 1)
uint32_t g_lwip_mem_cnt[MEMP_MAX][2];
extern const struct memp_desc * const memp_pools[MEMP_MAX];
void dbg_lwip_cnt_show(void)
{
int i=0;
printf("-----lwip memory counter-----\n");
printf("%6s %8s %8s\n", "index", "alloc", "free");
for (i=0; i<MEMP_MAX; i++){
printf("%6u %8u %8u\n", i, g_lwip_mem_cnt[i][0], g_lwip_mem_cnt[i][1]);
}
}
#endif

View File

@ -2776,7 +2776,11 @@ lwip_setsockopt_impl(int s, int level, int optname, const void *optval, socklen_
switch (optname) {
case IPV6_V6ONLY:
/* @todo: this does not work for datagram sockets, yet */
#if CONFIG_MDNS
//LWIP_SOCKOPT_CHECK_OPTLEN_CONN_PCB_TYPE(sock, optlen, int, NETCONN_TCP);
#else
LWIP_SOCKOPT_CHECK_OPTLEN_CONN_PCB_TYPE(sock, optlen, int, NETCONN_TCP);
#endif
if (*(const int*)optval) {
netconn_set_ipv6only(sock->conn, 1);
} else {

View File

@ -72,6 +72,7 @@
#include "lwip/netif.h"
#include "lwip/autoip.h"
#include "netif/etharp.h"
#include "lwip/dhcp.h"
#include <stdlib.h>
#include <string.h>
@ -269,6 +270,12 @@ autoip_bind(struct netif *netif)
netif_set_addr(netif, &autoip->llipaddr, &sn_mask, &gw_addr);
/* interface is used by routing now that an address is set */
#if ESP_LWIP
struct dhcp *dhcp = netif->dhcp;
if (dhcp->cb != NULL) {
dhcp->cb();
}
#endif
return ERR_OK;
}

View File

@ -632,6 +632,22 @@ nd6_input(struct pbuf *p, struct netif *inp)
pbuf_free(p);
}
#ifdef ESP_LWIP
/** Set callback for ipv6 addr status changed .
*
* @param netif the netif from which to remove the struct dhcp
* @param cb callback for dhcp
*/
void nd6_set_cb(struct netif *netif, void (*cb)(struct netif *netif, u8_t ip_index))
{
LWIP_ASSERT("netif != NULL", netif != NULL);
if (netif != NULL && netif_is_up(netif)) {
netif->ipv6_addr_cb = cb;
}
}
#endif
/**
* Periodic timer for Neighbor discovery functions:
@ -797,6 +813,12 @@ nd6_tmr(void)
if ((netif->ip6_addr_state[i] & 0x07) >= LWIP_IPV6_DUP_DETECT_ATTEMPTS) {
/* No NA received in response. Mark address as valid. */
netif->ip6_addr_state[i] = IP6_ADDR_PREFERRED;
#ifdef ESP_LWIP
if (netif->ipv6_addr_cb != NULL) {
netif->ipv6_addr_cb(netif, i);
}
#endif
/* TODO implement preferred and valid lifetimes. */
} else if (netif->flags & NETIF_FLAG_UP) {
#if LWIP_IPV6_MLD

View File

@ -968,9 +968,6 @@ netif_create_ip6_linklocal_address(struct netif *netif, u8_t from_mac_48bit)
}
}
#if ESP_LWIP
ip6_addr_set( ip_2_ip6(&netif->link_local_addr), ip_2_ip6(&netif->ip6_addr[0]) );
#endif
/* Set address state. */
#if LWIP_IPV6_DUP_DETECT_ATTEMPTS
@ -1022,44 +1019,6 @@ netif_add_ip6_address(struct netif *netif, const ip6_addr_t *ip6addr, s8_t *chos
return ERR_VAL;
}
#if ESP_LWIP
void
netif_create_ip4_linklocal_address(struct netif * netif)
{
#if 1
ip_addr_t linklocal;
ip_addr_t linklocal_mask;
ip4_addr_t addr = {0};
/* Link-local prefix and mask. */
IP4_ADDR(ip_2_ip4(&linklocal), 169, 254, 0, 0);
IP4_ADDR(ip_2_ip4(&linklocal_mask), 255, 255, 0, 0);
if (!ip4_addr_netcmp( ip_2_ip4(&linklocal), ip_2_ip4(&netif->link_local_addr), ip_2_ip4(&linklocal_mask) ) &&
!ip4_addr_isany(ip_2_ip4(&netif->ip_addr)) ) {
IP4_ADDR( ip_2_ip4(&netif->link_local_addr), 169, 254, ip4_addr3( ip_2_ip4(&netif->ip_addr) )
, ip4_addr4( ip_2_ip4(&netif->ip_addr) ) );
return;
}
while ( !(addr.addr) || !ip4_addr4(&addr) )
//os_get_random((unsigned char *)&addr, sizeof(addr));
addr.addr = LWIP_RAND();
if ( ip_2_ip4(&netif->netmask)->addr > IP_CLASSB_NET &&
!ip4_addr_isany( ip_2_ip4(&netif->ip_addr) )) { // random host address
IP4_ADDR( ip_2_ip4(&netif->link_local_addr), 169, 254, ip4_addr3( ip_2_ip4(&netif->ip_addr))
, ip4_addr4(&addr));
} else {
IP4_ADDR( ip_2_ip4(&netif->link_local_addr), 169, 254, ip4_addr3(&addr), ip4_addr4(&addr) );
}
#endif
}
#endif
/** Dummy IPv6 output function for netifs not supporting IPv6
*/
static err_t

View File

@ -1389,59 +1389,58 @@ tcp_kill_timewait(void)
}
#if ESP_LWIP
/**
* Kills the oldest connection that is in FIN_WAIT_2 state.
* Called from tcp_alloc() if no more connections are available.
*/
static void tcp_kill_finwait2(void)
{
struct tcp_pcb *pcb, *inactive;
u32_t inactivity;
/* Go through the list of FIN_WAIT_2 pcbs and get the oldest pcb. */
inactivity = 0;
inactive = NULL;
for (pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) {
if (pcb->state == FIN_WAIT_2) {
if ((u32_t) (tcp_ticks - pcb->tmr) >= inactivity) {
inactivity = tcp_ticks - pcb->tmr;
inactive = pcb;
}
}
}
if (inactive != NULL) {
tcp_pcb_remove(&tcp_active_pcbs, inactive);
memp_free(MEMP_TCP_PCB, inactive);
}
}
typedef struct {
u8_t time_wait;
u8_t closing;
u8_t fin_wait2;
u8_t last_ack;
u8_t fin_wait1;
u8_t listen;
u8_t bound;
u8_t total;
}tcp_pcb_num_t;
/**
* Kills the oldest connection that is in LAST_ACK state.
* Called from tcp_alloc() if no more connections are available.
*/
static void tcp_kill_lastack(void)
void tcp_pcb_num_cal(tcp_pcb_num_t *tcp_pcb_num)
{
struct tcp_pcb *pcb, *inactive;
u32_t inactivity;
/* Go through the list of LAST_ACK pcbs and get the oldest pcb. */
inactivity = 0;
inactive = NULL;
for (pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next) {
if (pcb->state == LAST_ACK) {
if ((u32_t) (tcp_ticks - pcb->tmr) >= inactivity) {
inactivity = tcp_ticks - pcb->tmr;
inactive = pcb;
struct tcp_pcb_listen *listen;
struct tcp_pcb *pcb;
if (!tcp_pcb_num){
return;
}
memset(tcp_pcb_num, 0, sizeof(*tcp_pcb_num));
for(pcb = tcp_tw_pcbs; pcb != NULL; pcb = pcb->next) {
tcp_pcb_num->total ++;
tcp_pcb_num->time_wait ++;
}
for (pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next){
tcp_pcb_num->total ++;
if (pcb->state == FIN_WAIT_2){
tcp_pcb_num->fin_wait2 ++;
} else if (pcb->state == LAST_ACK) {
tcp_pcb_num->last_ack ++;
} else if (pcb->state == CLOSING) {
tcp_pcb_num->closing ++;
} else if (pcb->state == FIN_WAIT_1){
tcp_pcb_num->fin_wait1 ++;
}
}
for (listen = tcp_listen_pcbs.listen_pcbs; listen != NULL; listen = listen->next){
tcp_pcb_num->total ++;
tcp_pcb_num->listen ++;
}
if (inactive != NULL) {
tcp_pcb_remove(&tcp_active_pcbs, inactive);
memp_free(MEMP_TCP_PCB, inactive);
for (pcb = tcp_bound_pcbs; pcb != NULL; pcb = pcb->next){
tcp_pcb_num->total ++;
tcp_pcb_num->bound ++;
}
}
#endif
/**
* Allocate a new tcp_pcb structure.
*
@ -1455,34 +1454,34 @@ tcp_alloc(u8_t prio)
u32_t iss;
#if ESP_LWIP
/*Kills the oldest connection that is in TIME_WAIT state.*/
u8_t time_wait_num = 0;
for(pcb = tcp_tw_pcbs; pcb != NULL; pcb = pcb->next) {
time_wait_num ++;
}
tcp_pcb_num_t tcp_pcb_num;
if (time_wait_num >= MEMP_NUM_TCP_PCB)
tcp_pcb_num_cal(&tcp_pcb_num);
if (tcp_pcb_num.total >= MEMP_NUM_TCP_PCB){
if (tcp_pcb_num.time_wait > 0){
tcp_kill_timewait();
/*Kills the oldest connection that is in FIN_WAIT_2 state.*/
time_wait_num = 0;
for (pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next){
if (pcb->state == FIN_WAIT_2)
time_wait_num ++;
} else if (tcp_pcb_num.last_ack > 0){
tcp_kill_state(LAST_ACK);
} else if (tcp_pcb_num.closing > 0){
tcp_kill_state(CLOSING);
} else if (tcp_pcb_num.fin_wait2 > 0){
tcp_kill_state(FIN_WAIT_2);
} else if (tcp_pcb_num.fin_wait1 > 0){
tcp_kill_state(FIN_WAIT_1);
} else {
tcp_kill_prio(prio);
}
}
if (time_wait_num >= MEMP_NUM_TCP_PCB)
tcp_kill_finwait2();
/*Kills the oldest connection that is in LAST_ACK state.*/
time_wait_num = 0;
for (pcb = tcp_active_pcbs; pcb != NULL; pcb = pcb->next){
if (pcb->state == LAST_ACK)
time_wait_num ++;
tcp_pcb_num_cal(&tcp_pcb_num);
if (tcp_pcb_num.total >= MEMP_NUM_TCP_PCB){
LWIP_DEBUGF(TCP_DEBUG, ("tcp_alloc: no available tcp pcb %d %d %d %d %d %d %d %d\n",
tcp_pcb_num.total, tcp_pcb_num.time_wait, tcp_pcb_num.last_ack, tcp_pcb_num.closing,
tcp_pcb_num.fin_wait2, tcp_pcb_num.fin_wait1, tcp_pcb_num.listen, tcp_pcb_num.bound));
return NULL;
}
if (time_wait_num >= MEMP_NUM_TCP_PCB)
tcp_kill_lastack();
#endif
pcb = (struct tcp_pcb *)memp_malloc(MEMP_TCP_PCB);

View File

@ -176,7 +176,8 @@ tcp_create_segment(struct tcp_pcb *pcb, struct pbuf *p, u8_t flags, u32_t seqno,
struct tcp_seg *seg;
u8_t optlen = LWIP_TCP_OPT_LENGTH(optflags);
if ((seg = (struct tcp_seg *)memp_malloc(MEMP_TCP_SEG)) == NULL) {
seg = (struct tcp_seg *)memp_malloc(MEMP_TCP_SEG);
if (seg == NULL) {
LWIP_DEBUGF(TCP_OUTPUT_DEBUG | LWIP_DBG_LEVEL_SERIOUS, ("tcp_create_segment: no memory.\n"));
pbuf_free(p);
return NULL;

View File

@ -68,8 +68,13 @@ extern "C" {
#define ANNOUNCE_NUM 2 /* (number of announcement packets) */
#define ANNOUNCE_INTERVAL 2 /* seconds (time between announcement packets) */
#define ANNOUNCE_WAIT 2 /* seconds (delay before announcing) */
#if CONFIG_MDNS
#define MAX_CONFLICTS 9 /* (max conflicts before rate limiting) */
#define RATE_LIMIT_INTERVAL 20 /* seconds (delay between successive attempts) */
#else
#define MAX_CONFLICTS 10 /* (max conflicts before rate limiting) */
#define RATE_LIMIT_INTERVAL 60 /* seconds (delay between successive attempts) */
#endif
#define DEFEND_INTERVAL 10 /* seconds (min. wait between defensive ARPs) */
/* AutoIP client states */

View File

@ -20,5 +20,6 @@ void dbg_lwip_tcp_pcb_show(void);
void dbg_lwip_udp_pcb_show(void);
void dbg_lwip_tcp_rxtx_show(void);
void dbg_lwip_udp_rxtx_show(void);
void dbg_lwip_mem_cnt_show(void);
#endif

View File

@ -71,8 +71,25 @@ extern const struct memp_desc* const memp_pools[MEMP_MAX];
#include "lwip/mem.h"
#define memp_init()
#if ESP_CNT_DEBUG
static inline void* memp_malloc(int type)
{
ESP_CNT_MEM_MALLOC_INC(type);
return mem_malloc(memp_pools[type]->size);
}
static inline void memp_free(int type, void *mem)
{
ESP_CNT_MEM_FREE_INC(type);
mem_free(mem);
}
//#define memp_malloc(type) mem_malloc(memp_pools[type]->size); ESP_CNT_MEM_MALLOC_INC(type)
//#define memp_free(type, mem) mem_free(mem); ESP_CNT_MEM_FREE_INC(type)
#else
#define memp_malloc(type) mem_malloc(memp_pools[type]->size)
#define memp_free(type, mem) mem_free(mem)
#endif
#define LWIP_MEMPOOL_DECLARE(name,num,size,desc) \
const struct memp_desc memp_ ## name = { \

View File

@ -352,6 +352,10 @@ err_t nd6_queue_packet(s8_t neighbor_index, struct pbuf * p);
void nd6_reachability_hint(const ip6_addr_t * ip6addr);
#endif /* LWIP_ND6_TCP_REACHABILITY_HINTS */
#if ESP_LWIP
/** set nd6 callback when ipv6 addr state pref*/
void nd6_set_cb(struct netif *netif, void (*cb)(struct netif *netif, u8_t ip_index));
#endif
#ifdef __cplusplus
}
#endif

View File

@ -190,11 +190,6 @@ struct netif {
/** pointer to next in linked list */
struct netif *next;
#if ESP_LWIP
//ip_addr_t is changed by marco IPV4, IPV6
ip_addr_t link_local_addr;
#endif
#if LWIP_IPV4
/** IP address configuration in network byte order */
ip_addr_t ip_addr;
@ -207,6 +202,10 @@ struct netif {
/** The state of each IPv6 address (Tentative, Preferred, etc).
* @see ip6_addr.h */
u8_t ip6_addr_state[LWIP_IPV6_NUM_ADDRESSES];
#if ESP_LWIP
void (*ipv6_addr_cb)(struct netif* netif, u8_t ip_idex); /* callback for ipv6 addr states changed */
#endif
#endif /* LWIP_IPV6 */
/** This function is called by the network device driver
* to pass a packet up the TCP/IP stack. */

View File

@ -140,6 +140,16 @@ struct memp_desc {
#endif /* MEMP_MEM_MALLOC */
};
#if (ESP_CNT_DEBUG == 1)
extern uint32_t g_lwip_mem_cnt[MEMP_MAX][2];
#define ESP_CNT_MEM_MALLOC_INC(type) g_lwip_mem_cnt[type][0]++
#define ESP_CNT_MEM_FREE_INC(type) g_lwip_mem_cnt[type][1]++
#else
#define ESP_CNT_MEM_MALLOC_INC(type)
#define ESP_CNT_MEM_FREE_INC(type)
#endif
#ifdef LWIP_DEBUG
#define DECLARE_LWIP_MEMPOOL_DESC(desc) (desc),
#else

View File

@ -65,8 +65,8 @@
*/
#define SMEMCPY(dst,src,len) memcpy(dst,src,len)
extern unsigned long os_random(void);
#define LWIP_RAND rand
/*
------------------------------------
---------- Memory options ----------
@ -200,13 +200,35 @@ extern unsigned long os_random(void);
*/
#define LWIP_DHCP 1
#define DHCP_MAXRTX 0
#define DHCP_MAXRTX 0 //(*(volatile uint32*)0x600011E0)
/*
------------------------------------
---------- AUTOIP options ----------
------------------------------------
*/
#if CONFIG_MDNS
/**
* LWIP_AUTOIP==1: Enable AUTOIP module.
*/
#define LWIP_AUTOIP 1
/**
* LWIP_DHCP_AUTOIP_COOP==1: Allow DHCP and AUTOIP to be both enabled on
* the same interface at the same time.
*/
#define LWIP_DHCP_AUTOIP_COOP 1
/**
* LWIP_DHCP_AUTOIP_COOP_TRIES: Set to the number of DHCP DISCOVER probes
* that should be sent before falling back on AUTOIP. This can be set
* as low as 1 to get an AutoIP address very quickly, but you should
* be prepared to handle a changing IP address when DHCP overrides
* AutoIP.
*/
#define LWIP_DHCP_AUTOIP_COOP_TRIES 2
#endif
/*
----------------------------------
---------- SNMP options ----------
@ -308,6 +330,19 @@ extern unsigned long os_random(void);
---------- LOOPIF options ----------
------------------------------------
*/
#if CONFIG_MDNS
/**
* LWIP_NETIF_LOOPBACK==1: Support sending packets with a destination IP
* address equal to the netif IP address, looping them back up the stack.
*/
#define LWIP_NETIF_LOOPBACK 1
/**
* LWIP_LOOPBACK_MAX_PBUFS: Maximum number of pbufs on queue for loopback
* sending for each netif (0 = disabled)
*/
#define LWIP_LOOPBACK_MAX_PBUFS 8
#endif
/*
------------------------------------
@ -414,6 +449,15 @@ extern unsigned long os_random(void);
*/
#define SO_REUSE CONFIG_LWIP_SO_REUSE
#if CONFIG_MDNS
/**
* SO_REUSE_RXTOALL==1: Pass a copy of incoming broadcast/multicast packets
* to all local matches if SO_REUSEADDR is turned on.
* WARNING: Adds a memcpy for every packet if passing to more than one pcb!
*/
#define SO_REUSE_RXTOALL 1
#endif
/*
----------------------------------------
---------- Statistics options ----------
@ -515,6 +559,7 @@ extern unsigned long os_random(void);
/* Enable all Espressif-only options */
#define ESP_LWIP 1
#define ESP_LWIP_ARP 1
#define ESP_PER_SOC_TCP_WND 1
#define ESP_THREAD_SAFE 1
#define ESP_THREAD_SAFE_DEBUG LWIP_DBG_OFF
@ -526,6 +571,7 @@ extern unsigned long os_random(void);
#define ESP_IP4_ATON 1
#define ESP_LIGHT_SLEEP 1
#define ESP_L2_TO_L3_COPY CONFIG_L2_TO_L3_COPY
#define ESP_CNT_DEBUG 0
#define TCP_WND_DEFAULT (4*TCP_MSS)
#define TCP_SND_BUF_DEFAULT (2*TCP_MSS)

View File

@ -1192,11 +1192,28 @@ etharp_query(struct netif *netif, const ip4_addr_t *ipaddr, struct pbuf *q)
}
#if ARP_QUEUE_LEN
if (qlen >= ARP_QUEUE_LEN) {
#if ESP_LWIP_ARP
int l;
struct etharp_q_entry *r;
l = qlen - 1;
r = arp_table[i].q;
while (l--)
r = r->next;
r->next = NULL;
pbuf_free(new_entry->p);
memp_free(MEMP_ARP_QUEUE, new_entry);
LWIP_DEBUGF(ETHARP_DEBUG | LWIP_DBG_TRACE, ("etharp_query: could not queue the packet %p (queue is full)\n", (void *)q));
return ERR_MEM;
#else
struct etharp_q_entry *old;
old = arp_table[i].q;
arp_table[i].q = arp_table[i].q->next;
pbuf_free(old->p);
memp_free(MEMP_ARP_QUEUE, old);
#endif
}
#endif
LWIP_DEBUGF(ETHARP_DEBUG | LWIP_DBG_TRACE, ("etharp_query: queued packet %p on ARP entry %"S16_F"\n", (void *)q, (s16_t)i));

View File

@ -118,37 +118,29 @@ low_level_init(struct netif *netif)
static err_t
low_level_output(struct netif *netif, struct pbuf *p)
{
struct pbuf *q;
wifi_interface_t wifi_if = tcpip_adapter_get_wifi_if(netif);
struct pbuf *q = p;
err_t ret;
if (wifi_if >= WIFI_IF_MAX) {
return ERR_IF;
}
#if ESP_LWIP
q = p;
u16_t pbuf_x_len = 0;
pbuf_x_len = q->len;
if(q->next !=NULL)
{
//char cnt = 0;
struct pbuf *tmp = q->next;
while(tmp != NULL)
{
memcpy( (u8_t *)( (u8_t *)(q->payload) + pbuf_x_len), (u8_t *)tmp->payload , tmp->len );
pbuf_x_len += tmp->len;
//cnt++;
tmp = tmp->next;
if(q->next == NULL) {
ret = esp_wifi_internal_tx(wifi_if, q->payload, q->len);
} else {
LWIP_DEBUGF(PBUF_DEBUG, ("low_level_output: pbuf is a list, application may has bug"));
q = pbuf_alloc(PBUF_RAW_TX, p->tot_len, PBUF_RAM);
if (q != NULL) {
pbuf_copy(q, p);
} else {
return ERR_MEM;
}
ret = esp_wifi_internal_tx(wifi_if, q->payload, q->len);
pbuf_free(q);
}
return esp_wifi_internal_tx(wifi_if, q->payload, pbuf_x_len);
#else
for(q = p; q != NULL; q = q->next) {
esp_wifi_internal_tx(wifi_if, q->payload, q->len);
}
return ERR_OK;
#endif
return ret;
}
/**

View File

@ -22,7 +22,7 @@ config MBEDTLS_SSL_MAX_CONTENT_LEN
config MBEDTLS_DEBUG
bool "Enable mbedTLS debugging"
default "no"
default n
help
Enable mbedTLS debugging functions.
@ -34,4 +34,51 @@ config MBEDTLS_DEBUG
functionality. See the "https_request_main" example for a
sample function which connects the two together.
config MBEDTLS_HARDWARE_AES
bool "Enable hardware AES acceleration"
default y
help
Enable hardware accelerated AES encryption & decryption.
config MBEDTLS_HARDWARE_MPI
bool "Enable hardware MPI (bignum) acceleration"
default y
help
Enable hardware accelerated multiple precision integer operations.
Hardware accelerated multiplication, modulo multiplication,
and modular exponentiation for up to 4096 bit results.
These operations are used by RSA.
config MBEDTLS_MPI_USE_INTERRUPT
bool "Use interrupt for MPI operations"
depends on MBEDTLS_HARDWARE_MPI
default y
help
Use an interrupt to coordinate MPI operations.
This allows other code to run on the CPU while an MPI operation is pending.
Otherwise the CPU busy-waits.
config MBEDTLS_MPI_INTERRUPT_NUM
int "MPI Interrupt number"
depends on MBEDTLS_MPI_USE_INTERRUPT
default 18
help
CPU interrupt number for MPI interrupt to connect to. Must be otherwise unused.
Eventually this assignment will be handled automatically at runtime.
config MBEDTLS_HARDWARE_SHA
bool "Enable hardware SHA acceleration"
default y
help
Enable hardware accelerated SHA1, SHA256, SHA384 & SHA512 in mbedTLS.
Due to a hardware limitation, hardware acceleration is only
guaranteed if SHA digests are calculated one at a time. If more
than one SHA digest is calculated at the same time, only will
be calculated fully in hardware and the rest will be calculated
(at least partially calculated) in software.
endmenu

View File

@ -5,4 +5,3 @@
COMPONENT_ADD_INCLUDEDIRS := port/include include
COMPONENT_SRCDIRS := library port

View File

@ -1092,6 +1092,8 @@ int mbedtls_mpi_sub_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint
return( mbedtls_mpi_sub_mpi( X, A, &_B ) );
}
#if !defined(MBEDTLS_MPI_MUL_MPI_ALT) || !defined(MBEDTLS_MPI_EXP_MOD_ALT)
/*
* Helper for mbedtls_mpi multiplication
*/
@ -1103,6 +1105,7 @@ static
*/
__attribute__ ((noinline))
#endif
void mpi_mul_hlp( size_t i, mbedtls_mpi_uint *s, mbedtls_mpi_uint *d, mbedtls_mpi_uint b )
{
mbedtls_mpi_uint c = 0, t = 0;
@ -1164,6 +1167,8 @@ void mpi_mul_hlp( size_t i, mbedtls_mpi_uint *s, mbedtls_mpi_uint *d, mbedtls_mp
while( c != 0 );
}
#endif
#if !defined(MBEDTLS_MPI_MUL_MPI_ALT)
/*
* Baseline multiplication: X = A * B (HAC 14.12)
@ -1526,6 +1531,8 @@ int mbedtls_mpi_mod_int( mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_
return( 0 );
}
#if !defined(MBEDTLS_MPI_EXP_MOD_ALT)
/*
* Fast Montgomery initialization (thanks to Tom St Denis)
*/
@ -1600,7 +1607,6 @@ static int mpi_montred( mbedtls_mpi *A, const mbedtls_mpi *N, mbedtls_mpi_uint m
return( mpi_montmul( A, &U, N, mm, T ) );
}
#if !defined(MBEDTLS_MPI_EXP_MOD_ALT)
/*
* Sliding-window exponentiation: X = A^E mod N (HAC 14.85)
*/

Some files were not shown because too many files have changed in this diff Show More