Merge branch 'bugfix/correct_gcc_inner_functions' into 'master'

tests: refactoring of the gcc's inner functions, because clang doesn't support them

Closes LLVM-16

See merge request espressif/esp-idf!15046
This commit is contained in:
Ivan Grokhotkov 2021-09-10 18:45:12 +00:00
commit 10ccfbe4ff
7 changed files with 357 additions and 360 deletions

View File

@ -472,21 +472,20 @@ TEST_CASE("MCPWM timer swsync test", "[mcpwm]")
}
// -------------------------------------------------------------------------------------
typedef struct {
mcpwm_unit_t unit;
TaskHandle_t task_hdl;
} test_capture_callback_data_t;
static bool test_mcpwm_intr_handler(mcpwm_unit_t mcpwm, mcpwm_capture_channel_id_t cap_sig, const cap_event_data_t *edata, void *arg) {
BaseType_t high_task_wakeup = pdFALSE;
test_capture_callback_data_t *cb_data = (test_capture_callback_data_t *)arg;
vTaskNotifyGiveFromISR(cb_data->task_hdl, &high_task_wakeup);
return high_task_wakeup == pdTRUE;
}
static void mcpwm_capture_test(mcpwm_unit_t unit, mcpwm_capture_signal_t cap_chan)
{
typedef struct {
mcpwm_unit_t unit;
TaskHandle_t task_hdl;
} test_capture_callback_data_t;
bool test_mcpwm_intr_handler(mcpwm_unit_t mcpwm, mcpwm_capture_channel_id_t cap_sig, const cap_event_data_t *edata, void *arg) {
BaseType_t high_task_wakeup = pdFALSE;
test_capture_callback_data_t *cb_data = (test_capture_callback_data_t *)arg;
vTaskNotifyGiveFromISR(cb_data->task_hdl, &high_task_wakeup);
return high_task_wakeup == pdTRUE;
}
test_capture_callback_data_t callback_data = {
.unit = unit,
.task_hdl = xTaskGetCurrentTaskHandle(),

View File

@ -111,13 +111,13 @@ TEST_CASE("light sleep stress test", "[deepsleep]")
vSemaphoreDelete(done);
}
static void timer_func(void* arg)
{
esp_rom_delay_us(50);
}
TEST_CASE("light sleep stress test with periodic esp_timer", "[deepsleep]")
{
void timer_func(void* arg)
{
esp_rom_delay_us(50);
}
SemaphoreHandle_t done = xSemaphoreCreateCounting(2, 0);
esp_sleep_enable_timer_wakeup(1000);
esp_timer_handle_t timer;

View File

@ -57,12 +57,12 @@ static void teardown_overflow(void)
#endif // CONFIG_ESP_TIMER_IMPL_FRC2
static void dummy_cb(void* arg)
{
}
TEST_CASE("esp_timer orders timers correctly", "[esp_timer]")
{
void dummy_cb(void* arg)
{
}
uint64_t timeouts[] = { 10000, 1000, 10000, 5000, 20000, 1000 };
size_t indices[] = { 3, 0, 4, 2, 5, 1 };
const size_t num_timers = sizeof(timeouts)/sizeof(timeouts[0]);
@ -116,28 +116,28 @@ TEST_CASE("esp_timer orders timers correctly", "[esp_timer]")
fclose(stream);
}
static const int test_time_sec = 10;
static void set_alarm_task(void* arg)
{
SemaphoreHandle_t done = (SemaphoreHandle_t) arg;
int64_t start = esp_timer_impl_get_time();
int64_t now = start;
int count = 0;
const int delays[] = {50, 5000, 10000000};
const int delays_count = sizeof(delays)/sizeof(delays[0]);
while (now - start < test_time_sec * 1000000) {
now = esp_timer_impl_get_time();
esp_timer_impl_set_alarm(now + delays[count % delays_count]);
++count;
}
xSemaphoreGive(done);
vTaskDelete(NULL);
}
TEST_CASE("esp_timer_impl_set_alarm stress test", "[esp_timer]")
{
const int test_time_sec = 10;
void set_alarm_task(void* arg)
{
SemaphoreHandle_t done = (SemaphoreHandle_t) arg;
int64_t start = esp_timer_impl_get_time();
int64_t now = start;
int count = 0;
const int delays[] = {50, 5000, 10000000};
const int delays_count = sizeof(delays)/sizeof(delays[0]);
while (now - start < test_time_sec * 1000000) {
now = esp_timer_impl_get_time();
esp_timer_impl_set_alarm(now + delays[count % delays_count]);
++count;
}
xSemaphoreGive(done);
vTaskDelete(NULL);
}
SemaphoreHandle_t done = xSemaphoreCreateCounting(portNUM_PROCESSORS, 0);
setup_overflow();
xTaskCreatePinnedToCore(&set_alarm_task, "set_alarm_0", 4096, done, UNITY_FREERTOS_PRIORITY, NULL, 0);
@ -153,18 +153,18 @@ TEST_CASE("esp_timer_impl_set_alarm stress test", "[esp_timer]")
vSemaphoreDelete(done);
}
static void test_correct_delay_timer_func(void* arg)
{
int64_t* p_end = (int64_t*) arg;
*p_end = ref_clock_get();
}
TEST_CASE("esp_timer produces correct delay", "[esp_timer]")
{
void timer_func(void* arg)
{
int64_t* p_end = (int64_t*) arg;
*p_end = ref_clock_get();
}
int64_t t_end;
esp_timer_handle_t timer1;
esp_timer_create_args_t args = {
.callback = &timer_func,
.callback = &test_correct_delay_timer_func,
.arg = &t_end,
.name = "timer1"
};
@ -196,41 +196,41 @@ TEST_CASE("esp_timer produces correct delay", "[esp_timer]")
esp_timer_delete(timer1);
}
TEST_CASE("periodic esp_timer produces correct delays", "[esp_timer]")
{
// no, we can't make this a const size_t (§6.7.5.2)
// no, we can't make this a const size_t (§6.7.5.2)
#define NUM_INTERVALS 16
typedef struct {
esp_timer_handle_t timer;
size_t cur_interval;
int intervals[NUM_INTERVALS];
int64_t t_start;
SemaphoreHandle_t done;
} test_args_t;
typedef struct {
esp_timer_handle_t timer;
size_t cur_interval;
int intervals[NUM_INTERVALS];
int64_t t_start;
SemaphoreHandle_t done;
} test_periodic_correct_delays_args_t;
void timer_func(void* arg)
{
test_args_t* p_args = (test_args_t*) arg;
int64_t t_end = ref_clock_get();
int32_t ms_diff = (t_end - p_args->t_start) / 1000;
printf("timer #%d %dms\n", p_args->cur_interval, ms_diff);
p_args->intervals[p_args->cur_interval++] = ms_diff;
// Deliberately make timer handler run longer.
// We check that this doesn't affect the result.
esp_rom_delay_us(10*1000);
if (p_args->cur_interval == NUM_INTERVALS) {
printf("done\n");
TEST_ESP_OK(esp_timer_stop(p_args->timer));
xSemaphoreGive(p_args->done);
}
static void test_periodic_correct_delays_timer_func(void* arg)
{
test_periodic_correct_delays_args_t* p_args = (test_periodic_correct_delays_args_t*) arg;
int64_t t_end = ref_clock_get();
int32_t ms_diff = (t_end - p_args->t_start) / 1000;
printf("timer #%d %dms\n", p_args->cur_interval, ms_diff);
p_args->intervals[p_args->cur_interval++] = ms_diff;
// Deliberately make timer handler run longer.
// We check that this doesn't affect the result.
esp_rom_delay_us(10*1000);
if (p_args->cur_interval == NUM_INTERVALS) {
printf("done\n");
TEST_ESP_OK(esp_timer_stop(p_args->timer));
xSemaphoreGive(p_args->done);
}
}
TEST_CASE("periodic esp_timer produces correct delays", "[esp_timer]")
{
const int delay_ms = 100;
test_args_t args = {0};
test_periodic_correct_delays_args_t args = {0};
esp_timer_handle_t timer1;
esp_timer_create_args_t create_args = {
.callback = &timer_func,
.callback = &test_periodic_correct_delays_timer_func,
.arg = &args,
.name = "timer1",
};
@ -254,58 +254,58 @@ TEST_CASE("periodic esp_timer produces correct delays", "[esp_timer]")
TEST_ESP_OK( esp_timer_delete(timer1) );
vSemaphoreDelete(args.done);
}
#undef NUM_INTERVALS
#define N 5
typedef struct {
const int order[N * 3];
size_t count;
} test_timers_ordered_correctly_common_t;
typedef struct {
int timer_index;
const int intervals[N];
size_t intervals_count;
esp_timer_handle_t timer;
test_timers_ordered_correctly_common_t* common;
bool pass;
SemaphoreHandle_t done;
int64_t t_start;
} test_timers_ordered_correctly_args_t;
static void test_timers_ordered_correctly_timer_func(void* arg)
{
test_timers_ordered_correctly_args_t* p_args = (test_timers_ordered_correctly_args_t*) arg;
// check order
size_t count = p_args->common->count;
int expected_index = p_args->common->order[count];
int ms_since_start = (ref_clock_get() - p_args->t_start) / 1000;
printf("Time %dms, at count %d, expected timer %d, got timer %d\n",
ms_since_start, count, expected_index, p_args->timer_index);
if (expected_index != p_args->timer_index) {
p_args->pass = false;
esp_timer_stop(p_args->timer);
xSemaphoreGive(p_args->done);
return;
}
p_args->common->count++;
if (++p_args->intervals_count == N) {
esp_timer_stop(p_args->timer);
xSemaphoreGive(p_args->done);
return;
}
int next_interval = p_args->intervals[p_args->intervals_count];
printf("starting timer %d interval #%d, %d ms\n",
p_args->timer_index, p_args->intervals_count, next_interval);
esp_timer_start_once(p_args->timer, next_interval * 1000);
}
TEST_CASE("multiple timers are ordered correctly", "[esp_timer]")
{
#define N 5
typedef struct {
const int order[N * 3];
size_t count;
} test_common_t;
typedef struct {
int timer_index;
const int intervals[N];
size_t intervals_count;
esp_timer_handle_t timer;
test_common_t* common;
bool pass;
SemaphoreHandle_t done;
int64_t t_start;
} test_args_t;
void timer_func(void* arg)
{
test_args_t* p_args = (test_args_t*) arg;
// check order
size_t count = p_args->common->count;
int expected_index = p_args->common->order[count];
int ms_since_start = (ref_clock_get() - p_args->t_start) / 1000;
printf("Time %dms, at count %d, expected timer %d, got timer %d\n",
ms_since_start, count, expected_index, p_args->timer_index);
if (expected_index != p_args->timer_index) {
p_args->pass = false;
esp_timer_stop(p_args->timer);
xSemaphoreGive(p_args->done);
return;
}
p_args->common->count++;
if (++p_args->intervals_count == N) {
esp_timer_stop(p_args->timer);
xSemaphoreGive(p_args->done);
return;
}
int next_interval = p_args->intervals[p_args->intervals_count];
printf("starting timer %d interval #%d, %d ms\n",
p_args->timer_index, p_args->intervals_count, next_interval);
esp_timer_start_once(p_args->timer, next_interval * 1000);
}
test_common_t common = {
test_timers_ordered_correctly_common_t common = {
.order = {1, 2, 3, 2, 1, 3, 1, 2, 1, 3, 2, 1, 3, 3, 2},
.count = 0
};
@ -315,7 +315,7 @@ TEST_CASE("multiple timers are ordered correctly", "[esp_timer]")
ref_clock_init();
int64_t now = ref_clock_get();
test_args_t args1 = {
test_timers_ordered_correctly_args_t args1 = {
.timer_index = 1,
.intervals = {10, 40, 20, 40, 30},
.common = &common,
@ -324,7 +324,7 @@ TEST_CASE("multiple timers are ordered correctly", "[esp_timer]")
.t_start = now
};
test_args_t args2 = {
test_timers_ordered_correctly_args_t args2 = {
.timer_index = 2,
.intervals = {20, 20, 60, 30, 40},
.common = &common,
@ -333,7 +333,7 @@ TEST_CASE("multiple timers are ordered correctly", "[esp_timer]")
.t_start = now
};
test_args_t args3 = {
test_timers_ordered_correctly_args_t args3 = {
.timer_index = 3,
.intervals = {30, 30, 60, 30, 10},
.common = &common,
@ -344,7 +344,7 @@ TEST_CASE("multiple timers are ordered correctly", "[esp_timer]")
esp_timer_create_args_t create_args = {
.callback = &timer_func,
.callback = &test_timers_ordered_correctly_timer_func,
.arg = &args1,
.name = "1"
};
@ -378,8 +378,14 @@ TEST_CASE("multiple timers are ordered correctly", "[esp_timer]")
TEST_ESP_OK( esp_timer_delete(args1.timer) );
TEST_ESP_OK( esp_timer_delete(args2.timer) );
TEST_ESP_OK( esp_timer_delete(args3.timer) );
}
#undef N
static void test_short_intervals_timer_func(void* arg) {
SemaphoreHandle_t done = (SemaphoreHandle_t) arg;
xSemaphoreGive(done);
printf(".");
}
/* Create two timers, start them around the same time, and search through
@ -390,14 +396,8 @@ TEST_CASE("esp_timer for very short intervals", "[esp_timer]")
{
SemaphoreHandle_t semaphore = xSemaphoreCreateCounting(2, 0);
void timer_func(void* arg) {
SemaphoreHandle_t done = (SemaphoreHandle_t) arg;
xSemaphoreGive(done);
printf(".");
}
esp_timer_create_args_t timer_args = {
.callback = &timer_func,
.callback = &test_short_intervals_timer_func,
.arg = (void*) semaphore,
.name = "foo"
};
@ -444,68 +444,68 @@ static int64_t IRAM_ATTR __attribute__((noinline)) get_clock_diff(void)
return hs_time - ref_time;
}
typedef struct {
SemaphoreHandle_t done;
bool pass;
int test_cnt;
int error_cnt;
int64_t max_error;
int64_t avg_diff;
int64_t dummy;
} test_monotonic_values_state_t;
static void timer_test_monotonic_values_task(void* arg) {
test_monotonic_values_state_t* state = (test_monotonic_values_state_t*) arg;
state->pass = true;
/* make sure both functions are in cache */
state->dummy = get_clock_diff();
/* calculate the difference between the two clocks */
portDISABLE_INTERRUPTS();
int64_t delta = get_clock_diff();
portENABLE_INTERRUPTS();
int64_t start_time = ref_clock_get();
int error_repeat_cnt = 0;
while (ref_clock_get() - start_time < 10000000) { /* 10 seconds */
/* Get values of both clocks again, and check that they are close to 'delta'.
* We don't disable interrupts here, because esp_timer_get_time doesn't lock
* interrupts internally, so we check if it can get "broken" by a well placed
* interrupt.
*/
int64_t diff = get_clock_diff() - delta;
/* Allow some difference due to rtos tick interrupting task between
* getting 'hs_now' and 'now'.
*/
if (abs(diff) > 100) {
error_repeat_cnt++;
state->error_cnt++;
} else {
error_repeat_cnt = 0;
}
if (error_repeat_cnt > 2) {
printf("diff=%lld\n", diff);
state->pass = false;
}
state->avg_diff += diff;
state->max_error = MAX(state->max_error, abs(diff));
state->test_cnt++;
}
state->avg_diff /= state->test_cnt;
xSemaphoreGive(state->done);
vTaskDelete(NULL);
}
TEST_CASE("esp_timer_get_time returns monotonic values", "[esp_timer]")
{
typedef struct {
SemaphoreHandle_t done;
bool pass;
int test_cnt;
int error_cnt;
int64_t max_error;
int64_t avg_diff;
int64_t dummy;
} test_state_t;
void timer_test_task(void* arg) {
test_state_t* state = (test_state_t*) arg;
state->pass = true;
/* make sure both functions are in cache */
state->dummy = get_clock_diff();
/* calculate the difference between the two clocks */
portDISABLE_INTERRUPTS();
int64_t delta = get_clock_diff();
portENABLE_INTERRUPTS();
int64_t start_time = ref_clock_get();
int error_repeat_cnt = 0;
while (ref_clock_get() - start_time < 10000000) { /* 10 seconds */
/* Get values of both clocks again, and check that they are close to 'delta'.
* We don't disable interrupts here, because esp_timer_get_time doesn't lock
* interrupts internally, so we check if it can get "broken" by a well placed
* interrupt.
*/
int64_t diff = get_clock_diff() - delta;
/* Allow some difference due to rtos tick interrupting task between
* getting 'hs_now' and 'now'.
*/
if (abs(diff) > 100) {
error_repeat_cnt++;
state->error_cnt++;
} else {
error_repeat_cnt = 0;
}
if (error_repeat_cnt > 2) {
printf("diff=%lld\n", diff);
state->pass = false;
}
state->avg_diff += diff;
state->max_error = MAX(state->max_error, abs(diff));
state->test_cnt++;
}
state->avg_diff /= state->test_cnt;
xSemaphoreGive(state->done);
vTaskDelete(NULL);
}
ref_clock_init();
setup_overflow();
test_state_t states[portNUM_PROCESSORS] = {0};
test_monotonic_values_state_t states[portNUM_PROCESSORS] = {0};
SemaphoreHandle_t done = xSemaphoreCreateCounting(portNUM_PROCESSORS, 0);
for (int i = 0; i < portNUM_PROCESSORS; ++i) {
states[i].done = done;
xTaskCreatePinnedToCore(&timer_test_task, "test", 4096, &states[i], 6, NULL, i);
xTaskCreatePinnedToCore(&timer_test_monotonic_values_task, "test", 4096, &states[i], 6, NULL, i);
}
for (int i = 0; i < portNUM_PROCESSORS; ++i) {
@ -530,27 +530,27 @@ TEST_CASE("Can dump esp_timer stats", "[esp_timer]")
esp_timer_dump(stdout);
}
typedef struct {
SemaphoreHandle_t notify_from_timer_cb;
esp_timer_handle_t timer;
} test_delete_from_callback_arg_t;
static void test_delete_from_callback_timer_func(void* varg)
{
test_delete_from_callback_arg_t arg = *(test_delete_from_callback_arg_t*) varg;
esp_timer_delete(arg.timer);
printf("Timer %p is deleted\n", arg.timer);
xSemaphoreGive(arg.notify_from_timer_cb);
}
TEST_CASE("Can delete timer from callback", "[esp_timer]")
{
typedef struct {
SemaphoreHandle_t notify_from_timer_cb;
esp_timer_handle_t timer;
} test_arg_t;
void timer_func(void* varg)
{
test_arg_t arg = *(test_arg_t*) varg;
esp_timer_delete(arg.timer);
printf("Timer %p is deleted\n", arg.timer);
xSemaphoreGive(arg.notify_from_timer_cb);
}
test_arg_t args = {
test_delete_from_callback_arg_t args = {
.notify_from_timer_cb = xSemaphoreCreateBinary(),
};
esp_timer_create_args_t timer_args = {
.callback = &timer_func,
.callback = &test_delete_from_callback_timer_func,
.arg = &args,
.name = "self_deleter"
};
@ -630,24 +630,23 @@ TEST_CASE("esp_timer_impl_advance moves time base correctly", "[esp_timer]")
TEST_ASSERT_INT_WITHIN(1000, diff_us, (int) t_delta);
}
typedef struct {
int64_t cb_time;
} test_run_when_expected_state_t;
static void test_run_when_expected_timer_func(void* varg) {
test_run_when_expected_state_t* arg = (test_run_when_expected_state_t*) varg;
arg->cb_time = ref_clock_get();
}
TEST_CASE("after esp_timer_impl_advance, timers run when expected", "[esp_timer]")
{
typedef struct {
int64_t cb_time;
} test_state_t;
void timer_func(void* varg) {
test_state_t* arg = (test_state_t*) varg;
arg->cb_time = ref_clock_get();
}
ref_clock_init();
test_state_t state = { 0 };
test_run_when_expected_state_t state = { 0 };
esp_timer_create_args_t timer_args = {
.callback = &timer_func,
.callback = &test_run_when_expected_timer_func,
.arg = &state
};
esp_timer_handle_t timer;
@ -695,15 +694,15 @@ static void IRAM_ATTR test_tick_hook(void)
}
}
static void test_start_stop_timer_func(void* arg)
{
printf("timer cb\n");
}
TEST_CASE("Can start/stop timer from ISR context", "[esp_timer]")
{
void timer_func(void* arg)
{
printf("timer cb\n");
}
esp_timer_create_args_t create_args = {
.callback = &timer_func,
.callback = &test_start_stop_timer_func,
};
TEST_ESP_OK(esp_timer_create(&create_args, &timer1));
sem = xSemaphoreCreateBinary();

View File

@ -20,14 +20,14 @@
#include "esp32h2/rom/ets_sys.h"
#endif
static void test_correct_delay_timer_func(void* arg)
{
struct timeval* ptv = (struct timeval*) arg;
gettimeofday(ptv, NULL);
}
TEST_CASE("ets_timer produces correct delay", "[ets_timer]")
{
void timer_func(void* arg)
{
struct timeval* ptv = (struct timeval*) arg;
gettimeofday(ptv, NULL);
}
ETSTimer timer1 = {0};
const int delays_ms[] = {20, 100, 200, 250};
@ -36,7 +36,7 @@ TEST_CASE("ets_timer produces correct delay", "[ets_timer]")
for (size_t i = 0; i < delays_count; ++i) {
struct timeval tv_end = {0};
ets_timer_setfn(&timer1, &timer_func, &tv_end);
ets_timer_setfn(&timer1, &test_correct_delay_timer_func, &tv_end);
struct timeval tv_start;
gettimeofday(&tv_start, NULL);
@ -54,42 +54,43 @@ TEST_CASE("ets_timer produces correct delay", "[ets_timer]")
ets_timer_done(&timer1);
}
TEST_CASE("periodic ets_timer produces correct delays", "[ets_timer]")
{
// no, we can't make this a const size_t (§6.7.5.2)
// no, we can't make this a const size_t (§6.7.5.2)
#define NUM_INTERVALS 16
typedef struct {
ETSTimer *timer;
size_t cur_interval;
int intervals[NUM_INTERVALS];
struct timeval tv_start;
} test_args_t;
typedef struct {
ETSTimer *timer;
size_t cur_interval;
int intervals[NUM_INTERVALS];
struct timeval tv_start;
} test_periodic_correct_delays_args_t;
void timer_func(void *arg) {
test_args_t *p_args = (test_args_t *) arg;
struct timeval tv_now;
gettimeofday(&tv_now, NULL);
int32_t ms_diff = (tv_now.tv_sec - p_args->tv_start.tv_sec) * 1000 +
(tv_now.tv_usec - p_args->tv_start.tv_usec) / 1000;
printf("timer #%d %dms\n", p_args->cur_interval, ms_diff);
p_args->intervals[p_args->cur_interval++] = ms_diff;
// Deliberately make timer handler run longer.
// We check that this doesn't affect the result.
esp_rom_delay_us(10 * 1000);
if (p_args->cur_interval == NUM_INTERVALS) {
printf("done\n");
ets_timer_disarm(p_args->timer);
}
static void test_periodic_correct_delays_timer_func(void* arg)
{
test_periodic_correct_delays_args_t *p_args = (test_periodic_correct_delays_args_t *) arg;
struct timeval tv_now;
gettimeofday(&tv_now, NULL);
int32_t ms_diff = (tv_now.tv_sec - p_args->tv_start.tv_sec) * 1000 +
(tv_now.tv_usec - p_args->tv_start.tv_usec) / 1000;
printf("timer #%d %dms\n", p_args->cur_interval, ms_diff);
p_args->intervals[p_args->cur_interval++] = ms_diff;
// Deliberately make timer handler run longer.
// We check that this doesn't affect the result.
esp_rom_delay_us(10 * 1000);
if (p_args->cur_interval == NUM_INTERVALS) {
printf("done\n");
ets_timer_disarm(p_args->timer);
}
}
TEST_CASE("periodic ets_timer produces correct delays", "[ets_timer]")
{
const int delay_ms = 100;
ETSTimer timer1 = {0};
test_args_t args = {0};
test_periodic_correct_delays_args_t args = {0};
args.timer = &timer1;
gettimeofday(&args.tv_start, NULL);
ets_timer_setfn(&timer1, &timer_func, &args);
ets_timer_setfn(&timer1, &test_periodic_correct_delays_timer_func, &args);
ets_timer_arm(&timer1, delay_ms, true);
vTaskDelay(delay_ms * (NUM_INTERVALS + 1));
@ -98,67 +99,66 @@ TEST_CASE("periodic ets_timer produces correct delays", "[ets_timer]")
TEST_ASSERT_INT32_WITHIN(portTICK_PERIOD_MS, (i + 1) * delay_ms, args.intervals[i]);
}
ets_timer_done(&timer1);
}
#undef NUM_INTERVALS
#define N 5
typedef struct {
const int order[N * 3];
size_t count;
} test_timers_ordered_correctly_common_t;
typedef struct {
int timer_index;
const int intervals[N];
size_t intervals_count;
ETSTimer* timer;
test_timers_ordered_correctly_common_t* common;
bool pass;
SemaphoreHandle_t done;
} test_timers_ordered_correctly_args_t;
static void test_timers_ordered_correctly_timer_func(void* arg)
{
test_timers_ordered_correctly_args_t* p_args = (test_timers_ordered_correctly_args_t*) arg;
// check order
size_t count = p_args->common->count;
int expected_index = p_args->common->order[count];
printf("At count %d, expected timer %d, got timer %d\n",
count, expected_index, p_args->timer_index);
if (expected_index != p_args->timer_index) {
p_args->pass = false;
ets_timer_disarm(p_args->timer);
xSemaphoreGive(p_args->done);
return;
}
p_args->common->count++;
if (++p_args->intervals_count == N) {
ets_timer_disarm(p_args->timer);
xSemaphoreGive(p_args->done);
return;
}
int next_interval = p_args->intervals[p_args->intervals_count];
printf("timer %d interval #%d, %d ms\n",
p_args->timer_index, p_args->intervals_count, next_interval);
ets_timer_arm(p_args->timer, next_interval, false);
}
TEST_CASE("multiple ETSTimers are ordered correctly", "[ets_timer]")
{
#define N 5
typedef struct {
const int order[N * 3];
size_t count;
} test_common_t;
typedef struct {
int timer_index;
const int intervals[N];
size_t intervals_count;
ETSTimer* timer;
test_common_t* common;
bool pass;
SemaphoreHandle_t done;
} test_args_t;
void timer_func(void* arg)
{
test_args_t* p_args = (test_args_t*) arg;
// check order
size_t count = p_args->common->count;
int expected_index = p_args->common->order[count];
printf("At count %d, expected timer %d, got timer %d\n",
count, expected_index, p_args->timer_index);
if (expected_index != p_args->timer_index) {
p_args->pass = false;
ets_timer_disarm(p_args->timer);
xSemaphoreGive(p_args->done);
return;
}
p_args->common->count++;
if (++p_args->intervals_count == N) {
ets_timer_disarm(p_args->timer);
xSemaphoreGive(p_args->done);
return;
}
int next_interval = p_args->intervals[p_args->intervals_count];
printf("timer %d interval #%d, %d ms\n",
p_args->timer_index, p_args->intervals_count, next_interval);
ets_timer_arm(p_args->timer, next_interval, false);
}
ETSTimer timer1;
ETSTimer timer2;
ETSTimer timer3;
test_common_t common = {
test_timers_ordered_correctly_common_t common = {
.order = {1, 2, 3, 2, 1, 3, 1, 2, 1, 3, 2, 1, 3, 3, 2},
.count = 0
};
SemaphoreHandle_t done = xSemaphoreCreateCounting(3, 0);
test_args_t args1 = {
test_timers_ordered_correctly_args_t args1 = {
.timer_index = 1,
.intervals = {10, 40, 20, 40, 30},
.timer = &timer1,
@ -167,7 +167,7 @@ TEST_CASE("multiple ETSTimers are ordered correctly", "[ets_timer]")
.done = done
};
test_args_t args2 = {
test_timers_ordered_correctly_args_t args2 = {
.timer_index = 2,
.intervals = {20, 20, 60, 30, 40},
.timer = &timer2,
@ -176,7 +176,7 @@ TEST_CASE("multiple ETSTimers are ordered correctly", "[ets_timer]")
.done = done
};
test_args_t args3 = {
test_timers_ordered_correctly_args_t args3 = {
.timer_index = 3,
.intervals = {30, 30, 60, 30, 10},
.timer = &timer3,
@ -185,9 +185,9 @@ TEST_CASE("multiple ETSTimers are ordered correctly", "[ets_timer]")
.done = done
};
ets_timer_setfn(&timer1, &timer_func, &args1);
ets_timer_setfn(&timer2, &timer_func, &args2);
ets_timer_setfn(&timer3, &timer_func, &args3);
ets_timer_setfn(&timer1, &test_timers_ordered_correctly_timer_func, &args1);
ets_timer_setfn(&timer2, &test_timers_ordered_correctly_timer_func, &args2);
ets_timer_setfn(&timer3, &test_timers_ordered_correctly_timer_func, &args3);
ets_timer_arm(&timer1, args1.intervals[0], false);
ets_timer_arm(&timer2, args2.intervals[0], false);
@ -204,25 +204,24 @@ TEST_CASE("multiple ETSTimers are ordered correctly", "[ets_timer]")
ets_timer_done(&timer1);
ets_timer_done(&timer2);
ets_timer_done(&timer3);
}
#undef N
static void IRAM_ATTR test_iram_timer_func(void* arg)
{
volatile bool *b = (volatile bool *)arg;
*b = true;
}
/* WiFi/BT coexistence will sometimes arm/disarm
timers from an ISR where flash may be disabled. */
IRAM_ATTR TEST_CASE("ETSTimers arm & disarm run from IRAM", "[ets_timer]")
{
void timer_func(void* arg)
{
volatile bool *b = (volatile bool *)arg;
*b = true;
}
volatile bool flag = false;
ETSTimer timer1;
const int INTERVAL = 5;
ets_timer_setfn(&timer1, &timer_func, (void *)&flag);
ets_timer_setfn(&timer1, &test_iram_timer_func, (void *)&flag);
/* arm a disabled timer, then disarm a live timer */

View File

@ -46,26 +46,26 @@
#if portNUM_PROCESSORS == 2
// This runs on APP CPU:
static void time_adc_test_task(void* arg)
{
for (int i = 0; i < 200000; ++i) {
// wait for 20us, reading one of RTC registers
uint32_t ccount = xthal_get_ccount();
while (xthal_get_ccount() - ccount < 20 * TARGET_DEFAULT_CPU_FREQ_MHZ) {
volatile uint32_t val = REG_READ(RTC_CNTL_STATE0_REG);
(void) val;
}
}
SemaphoreHandle_t * p_done = (SemaphoreHandle_t *) arg;
xSemaphoreGive(*p_done);
vTaskDelay(1);
vTaskDelete(NULL);
}
// https://github.com/espressif/arduino-esp32/issues/120
TEST_CASE("Reading RTC registers on APP CPU doesn't affect clock", "[newlib]")
{
// This runs on APP CPU:
void time_adc_test_task(void* arg)
{
for (int i = 0; i < 200000; ++i) {
// wait for 20us, reading one of RTC registers
uint32_t ccount = xthal_get_ccount();
while (xthal_get_ccount() - ccount < 20 * TARGET_DEFAULT_CPU_FREQ_MHZ) {
volatile uint32_t val = REG_READ(RTC_CNTL_STATE0_REG);
(void) val;
}
}
SemaphoreHandle_t * p_done = (SemaphoreHandle_t *) arg;
xSemaphoreGive(*p_done);
vTaskDelay(1);
vTaskDelete(NULL);
}
SemaphoreHandle_t done = xSemaphoreCreateBinary();
xTaskCreatePinnedToCore(&time_adc_test_task, "time_adc", 4096, &done, 5, NULL, 1);

View File

@ -131,38 +131,38 @@ TEST_CASE("CRs are removed from the stdin correctly", "[vfs]")
TEST_ASSERT_EQUAL_UINT8_ARRAY("4\n", dst, 2);
}
struct read_task_arg_t {
char* out_buffer;
size_t out_buffer_len;
SemaphoreHandle_t ready;
SemaphoreHandle_t done;
};
struct write_task_arg_t {
const char* str;
SemaphoreHandle_t done;
};
static void read_task_fn(void* varg)
{
struct read_task_arg_t* parg = (struct read_task_arg_t*) varg;
parg->out_buffer[0] = 0;
fgets(parg->out_buffer, parg->out_buffer_len, stdin);
xSemaphoreGive(parg->done);
vTaskDelete(NULL);
}
static void write_task_fn(void* varg)
{
struct write_task_arg_t* parg = (struct write_task_arg_t*) varg;
fwrite_str_loopback(parg->str, strlen(parg->str));
xSemaphoreGive(parg->done);
vTaskDelete(NULL);
}
TEST_CASE("can write to UART while another task is reading", "[vfs]")
{
struct read_task_arg_t {
char* out_buffer;
size_t out_buffer_len;
SemaphoreHandle_t ready;
SemaphoreHandle_t done;
};
struct write_task_arg_t {
const char* str;
SemaphoreHandle_t done;
};
void read_task_fn(void* varg)
{
struct read_task_arg_t* parg = (struct read_task_arg_t*) varg;
parg->out_buffer[0] = 0;
fgets(parg->out_buffer, parg->out_buffer_len, stdin);
xSemaphoreGive(parg->done);
vTaskDelete(NULL);
}
void write_task_fn(void* varg)
{
struct write_task_arg_t* parg = (struct write_task_arg_t*) varg;
fwrite_str_loopback(parg->str, strlen(parg->str));
xSemaphoreGive(parg->done);
vTaskDelete(NULL);
}
char out_buffer[32];
size_t out_buffer_len = sizeof(out_buffer);

View File

@ -78,7 +78,7 @@ extern "C" {
* @param value : the performance value.
*/
#define IDF_LOG_PERFORMANCE(item, value_fmt, value, ...) \
printf("[Performance][%s]: "value_fmt"\n", item, value, ##__VA_ARGS__)
printf("[Performance][%s]: " value_fmt "\n", item, value, ##__VA_ARGS__)
/* Some definitions applicable to Unity running in FreeRTOS */