mirror of
https://github.com/espressif/esp-idf.git
synced 2024-10-05 20:47:46 -04:00
Merge branch 'feature/sync_adc_changes_from_c3_to_master' into 'master'
adc: sync adc changes from c3 to master See merge request espressif/esp-idf!11989
This commit is contained in:
commit
09cf76515b
@ -66,7 +66,9 @@ endif()
|
||||
if(IDF_TARGET STREQUAL "esp32c3")
|
||||
list(APPEND srcs "gdma.c"
|
||||
"spi_slave_hd.c"
|
||||
"esp32c3/adc.c")
|
||||
"esp32c3/adc.c"
|
||||
"esp32c3/adc2_init_cal.c"
|
||||
"esp32c3/rtc_tempsensor.c")
|
||||
endif()
|
||||
|
||||
idf_component_register(SRCS "${srcs}"
|
||||
|
@ -31,7 +31,6 @@
|
||||
#include "hal/adc_types.h"
|
||||
#include "hal/adc_hal.h"
|
||||
|
||||
#if !CONFIG_IDF_TARGET_ESP32C3
|
||||
#include "hal/dac_hal.h"
|
||||
#include "hal/adc_hal_conf.h"
|
||||
|
||||
@ -121,7 +120,7 @@ static esp_pm_lock_handle_t s_adc2_arbiter_lock;
|
||||
ADC Common
|
||||
---------------------------------------------------------------*/
|
||||
|
||||
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3 || CONFIG_IDF_TARGET_ESP32C3
|
||||
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
|
||||
static uint32_t get_calibration_offset(adc_ll_num_t adc_n, adc_channel_t chan)
|
||||
{
|
||||
adc_atten_t atten = adc_hal_get_atten(adc_n, chan);
|
||||
@ -372,7 +371,7 @@ int adc1_get_raw(adc1_channel_t channel)
|
||||
adc1_rtc_mode_acquire();
|
||||
adc_power_acquire();
|
||||
|
||||
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3 || CONFIG_IDF_TARGET_ESP32C3
|
||||
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
|
||||
// Get calibration value before going into critical section
|
||||
uint32_t cal_val = get_calibration_offset(ADC_NUM_1, channel);
|
||||
#endif
|
||||
@ -382,7 +381,7 @@ int adc1_get_raw(adc1_channel_t channel)
|
||||
adc_hal_hall_disable(); //Disable other peripherals.
|
||||
adc_hal_amp_disable(); //Currently the LNA is not open, close it by default.
|
||||
#endif
|
||||
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3 || CONFIG_IDF_TARGET_ESP32C3
|
||||
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
|
||||
adc_hal_set_calibration_param(ADC_NUM_1, cal_val);
|
||||
#endif
|
||||
adc_hal_set_controller(ADC_NUM_1, ADC_CTRL_RTC); //Set controller
|
||||
@ -528,7 +527,7 @@ esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *
|
||||
|
||||
adc_power_acquire(); //in critical section with whole rtc module
|
||||
|
||||
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3 || CONFIG_IDF_TARGET_ESP32C3
|
||||
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
|
||||
// Get calibration value before going into critical section
|
||||
uint32_t cal_val = get_calibration_offset(ADC_NUM_2, channel);
|
||||
#endif
|
||||
@ -544,7 +543,7 @@ esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *
|
||||
adc2_dac_disable(channel); //disable other peripherals
|
||||
#endif
|
||||
adc2_config_width(width_bit); // in critical section with whole rtc module. because the PWDET use the same registers, place it here.
|
||||
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3 || CONFIG_IDF_TARGET_ESP32C3
|
||||
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
|
||||
adc_hal_set_calibration_param(ADC_NUM_2, cal_val);
|
||||
#endif
|
||||
adc_hal_set_controller(ADC_NUM_2, ADC_CTRL_RTC);// set controller
|
||||
@ -629,5 +628,3 @@ esp_err_t adc_vref_to_gpio(adc_unit_t adc_unit, gpio_num_t gpio)
|
||||
adc_gpio_init(ADC_UNIT_2, ch);
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
#endif // !CONFIG_IDF_TARGET_ESP32C3
|
||||
|
@ -31,6 +31,7 @@
|
||||
#include "hal/adc_types.h"
|
||||
#include "hal/adc_hal.h"
|
||||
#include "hal/dma_types.h"
|
||||
#include "esp32c3/esp_efuse_rtc_calib.h"
|
||||
|
||||
#define ADC_CHECK_RET(fun_ret) ({ \
|
||||
if (fun_ret != ESP_OK) { \
|
||||
@ -89,13 +90,16 @@ typedef struct adc_digi_context_t {
|
||||
RingbufHandle_t ringbuf_hdl; //RX ringbuffer handler
|
||||
bool ringbuf_overflow_flag; //1: ringbuffer overflow
|
||||
bool driver_start_flag; //1: driver is started; 0: driver is stoped
|
||||
bool use_adc1; //1: ADC unit1 will be used; 0: ADC unit1 won't be used.
|
||||
bool use_adc2; //1: ADC unit2 will be used; 0: ADC unit2 won't be used. This determines whether to acquire sar_adc2_mutex lock or not.
|
||||
adc_atten_t adc1_atten; //Attenuation for ADC1. On this chip each ADC can only support one attenuation.
|
||||
adc_atten_t adc2_atten; //Attenuation for ADC2. On this chip each ADC can only support one attenuation.
|
||||
adc_digi_config_t digi_controller_config; //Digital Controller Configuration
|
||||
} adc_digi_context_t;
|
||||
|
||||
static const char* ADC_DMA_TAG = "ADC_DMA:";
|
||||
static adc_digi_context_t *s_adc_digi_ctx = NULL;
|
||||
|
||||
static uint32_t adc_get_calibration_offset(adc_ll_num_t adc_n, adc_channel_t chan, adc_atten_t atten);
|
||||
|
||||
/*---------------------------------------------------------------
|
||||
ADC Continuous Read Mode (via DMA)
|
||||
@ -238,6 +242,7 @@ static IRAM_ATTR void adc_dma_intr(void *arg)
|
||||
s_adc_digi_ctx->hal_dma_config.desc_cnt = 0;
|
||||
|
||||
//start next turns of dma operation
|
||||
adc_hal_digi_dma_multi_descriptor(&s_adc_digi_ctx->hal_dma_config, s_adc_digi_ctx->rx_dma_buf, s_adc_digi_ctx->bytes_between_intr, s_adc_digi_ctx->hal_dma_config.desc_max_num);
|
||||
adc_hal_digi_rxdma_start(&s_adc_digi_ctx->hal_dma, &s_adc_digi_ctx->hal_dma_config);
|
||||
}
|
||||
|
||||
@ -264,6 +269,16 @@ esp_err_t adc_digi_start(void)
|
||||
|
||||
adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
|
||||
adc_hal_init();
|
||||
|
||||
if (s_adc_digi_ctx->use_adc1) {
|
||||
uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_1, ADC_CHANNEL_MAX, s_adc_digi_ctx->adc1_atten);
|
||||
adc_hal_set_calibration_param(ADC_NUM_1, cal_val);
|
||||
}
|
||||
if (s_adc_digi_ctx->use_adc2) {
|
||||
uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_2, ADC_CHANNEL_MAX, s_adc_digi_ctx->adc2_atten);
|
||||
adc_hal_set_calibration_param(ADC_NUM_2, cal_val);
|
||||
}
|
||||
|
||||
adc_hal_arbiter_config(&config);
|
||||
adc_hal_digi_init(&s_adc_digi_ctx->hal_dma, &s_adc_digi_ctx->hal_dma_config);
|
||||
adc_hal_digi_controller_config(&s_adc_digi_ctx->digi_controller_config);
|
||||
@ -277,11 +292,13 @@ esp_err_t adc_digi_start(void)
|
||||
|
||||
//enable in suc eof intr
|
||||
adc_hal_digi_ena_intr(&s_adc_digi_ctx->hal_dma, &s_adc_digi_ctx->hal_dma_config, IN_SUC_EOF_BIT);
|
||||
//start DMA
|
||||
adc_hal_digi_rxdma_start(&s_adc_digi_ctx->hal_dma, &s_adc_digi_ctx->hal_dma_config);
|
||||
|
||||
//start ADC
|
||||
adc_hal_digi_start(&s_adc_digi_ctx->hal_dma, &s_adc_digi_ctx->hal_dma_config);
|
||||
|
||||
//start DMA
|
||||
adc_hal_digi_rxdma_start(&s_adc_digi_ctx->hal_dma, &s_adc_digi_ctx->hal_dma_config);
|
||||
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
@ -326,7 +343,7 @@ esp_err_t adc_digi_read_bytes(uint8_t *buf, uint32_t length_max, uint32_t *out_l
|
||||
|
||||
data = xRingbufferReceiveUpTo(s_adc_digi_ctx->ringbuf_hdl, &size, ticks_to_wait, length_max);
|
||||
if (!data) {
|
||||
ESP_LOGW(ADC_DMA_TAG, "No data, increase timeout or reduce conv_num_each_intr");
|
||||
ESP_LOGV(ADC_TAG, "No data, increase timeout or reduce conv_num_each_intr");
|
||||
ret = ESP_ERR_TIMEOUT;
|
||||
*out_length = 0;
|
||||
return ret;
|
||||
@ -340,6 +357,7 @@ esp_err_t adc_digi_read_bytes(uint8_t *buf, uint32_t length_max, uint32_t *out_l
|
||||
if (s_adc_digi_ctx->ringbuf_overflow_flag) {
|
||||
ret = ESP_ERR_INVALID_STATE;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
@ -363,6 +381,7 @@ esp_err_t adc_digi_deinitialize(void)
|
||||
s_adc_digi_ctx->ringbuf_hdl = NULL;
|
||||
}
|
||||
|
||||
free(s_adc_digi_ctx->rx_dma_buf);
|
||||
free(s_adc_digi_ctx->hal_dma_config.rx_desc);
|
||||
free(s_adc_digi_ctx->digi_controller_config.adc_pattern);
|
||||
free(s_adc_digi_ctx);
|
||||
@ -382,8 +401,8 @@ static adc_atten_t s_atten2_single[ADC2_CHANNEL_MAX]; //Array saving attenuat
|
||||
|
||||
esp_err_t adc1_config_width(adc_bits_width_t width_bit)
|
||||
{
|
||||
//On ESP32C3, the data width is always 13-bits.
|
||||
if (width_bit != ADC_WIDTH_BIT_13) {
|
||||
//On ESP32C3, the data width is always 12-bits.
|
||||
if (width_bit != ADC_WIDTH_BIT_12) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
|
||||
@ -404,40 +423,42 @@ esp_err_t adc1_config_channel_atten(adc1_channel_t channel, adc_atten_t atten)
|
||||
|
||||
int adc1_get_raw(adc1_channel_t channel)
|
||||
{
|
||||
int result = 0;
|
||||
int raw_out = 0;
|
||||
adc_digi_config_t dig_cfg = {
|
||||
.conv_limit_en = 0,
|
||||
.conv_limit_num = 250,
|
||||
.interval = 40,
|
||||
.dig_clk.use_apll = 0,
|
||||
.dig_clk.div_num = 1,
|
||||
.dig_clk.div_a = 0,
|
||||
.dig_clk.div_b = 1,
|
||||
.sample_freq_hz = SOC_ADC_SAMPLE_FREQ_THRES_HIGH,
|
||||
};
|
||||
|
||||
ADC_DIGI_LOCK_ACQUIRE();
|
||||
|
||||
periph_module_enable(PERIPH_SARADC_MODULE);
|
||||
|
||||
adc_atten_t atten = s_atten1_single[channel];
|
||||
uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_1, channel, atten);
|
||||
adc_hal_set_calibration_param(ADC_NUM_1, cal_val);
|
||||
|
||||
adc_hal_digi_controller_config(&dig_cfg);
|
||||
|
||||
adc_hal_intr_clear(ADC_EVENT_ADC1_DONE);
|
||||
|
||||
adc_hal_onetime_channel(ADC_NUM_1, channel);
|
||||
adc_hal_set_onetime_atten(s_atten1_single[channel]);
|
||||
adc_hal_set_onetime_atten(atten);
|
||||
|
||||
adc_hal_adc1_onetime_sample_enable(true);
|
||||
//Trigger single read.
|
||||
adc_hal_adc1_onetime_sample_enable(true);
|
||||
adc_hal_onetime_start(&dig_cfg);
|
||||
|
||||
while (!adc_hal_intr_get_raw(ADC_EVENT_ADC1_DONE));
|
||||
adc_hal_intr_clear(ADC_EVENT_ADC1_DONE);
|
||||
adc_hal_adc1_onetime_sample_enable(false);
|
||||
|
||||
result = adc_hal_adc1_read();
|
||||
adc_hal_single_read(ADC_NUM_1, &raw_out);
|
||||
adc_hal_digi_deinit();
|
||||
periph_module_disable(PERIPH_SARADC_MODULE);
|
||||
|
||||
ADC_DIGI_LOCK_RELEASE();
|
||||
|
||||
return result;
|
||||
return raw_out;
|
||||
}
|
||||
|
||||
esp_err_t adc2_config_channel_atten(adc2_channel_t channel, adc_atten_t atten)
|
||||
@ -454,41 +475,46 @@ esp_err_t adc2_config_channel_atten(adc2_channel_t channel, adc_atten_t atten)
|
||||
|
||||
esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *raw_out)
|
||||
{
|
||||
//On ESP32C3, the data width is always 13-bits.
|
||||
if (width_bit != ADC_WIDTH_BIT_13) {
|
||||
//On ESP32C3, the data width is always 12-bits.
|
||||
if (width_bit != ADC_WIDTH_BIT_12) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
|
||||
esp_err_t ret = ESP_OK;
|
||||
adc_digi_config_t dig_cfg = {
|
||||
.conv_limit_en = 0,
|
||||
.conv_limit_num = 250,
|
||||
.interval = 40,
|
||||
.dig_clk.use_apll = 0,
|
||||
.dig_clk.div_num = 1,
|
||||
.dig_clk.div_a = 0,
|
||||
.dig_clk.div_b = 1,
|
||||
.sample_freq_hz = SOC_ADC_SAMPLE_FREQ_THRES_HIGH,
|
||||
};
|
||||
|
||||
SAC_ADC2_LOCK_ACQUIRE();
|
||||
ADC_DIGI_LOCK_ACQUIRE();
|
||||
periph_module_enable(PERIPH_SARADC_MODULE);
|
||||
|
||||
adc_atten_t atten = s_atten2_single[channel];
|
||||
uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_2, channel, atten);
|
||||
adc_hal_set_calibration_param(ADC_NUM_2, cal_val);
|
||||
|
||||
adc_hal_digi_controller_config(&dig_cfg);
|
||||
|
||||
adc_hal_intr_clear(ADC_EVENT_ADC2_DONE);
|
||||
|
||||
adc_hal_onetime_channel(ADC_NUM_2, channel);
|
||||
adc_hal_set_onetime_atten(s_atten2_single[channel]);
|
||||
adc_hal_set_onetime_atten(atten);
|
||||
|
||||
adc_hal_adc2_onetime_sample_enable(true);
|
||||
//Trigger single read.
|
||||
adc_hal_adc2_onetime_sample_enable(true);
|
||||
adc_hal_onetime_start(&dig_cfg);
|
||||
|
||||
while (!adc_hal_intr_get_raw(ADC_EVENT_ADC2_DONE));
|
||||
adc_hal_intr_clear(ADC_EVENT_ADC2_DONE);
|
||||
adc_hal_adc2_onetime_sample_enable(false);
|
||||
|
||||
*raw_out = adc_hal_adc2_read();
|
||||
ret = adc_hal_single_read(ADC_NUM_2, raw_out);
|
||||
if (ret != ESP_OK) {
|
||||
return ret;
|
||||
}
|
||||
adc_hal_digi_deinit();
|
||||
periph_module_disable(PERIPH_SARADC_MODULE);
|
||||
|
||||
ADC_DIGI_LOCK_RELEASE();
|
||||
SAC_ADC2_LOCK_RELEASE();
|
||||
@ -505,20 +531,38 @@ esp_err_t adc_digi_controller_config(const adc_digi_config_t *config)
|
||||
if (!s_adc_digi_ctx) {
|
||||
return ESP_ERR_INVALID_STATE;
|
||||
}
|
||||
ADC_CHECK(config->sample_freq_hz <= SOC_ADC_SAMPLE_FREQ_THRES_HIGH && config->sample_freq_hz >= SOC_ADC_SAMPLE_FREQ_THRES_LOW, "ADC sampling frequency out of range", ESP_ERR_INVALID_ARG);
|
||||
|
||||
s_adc_digi_ctx->digi_controller_config.conv_limit_en = config->conv_limit_en;
|
||||
s_adc_digi_ctx->digi_controller_config.conv_limit_num = config->conv_limit_num;
|
||||
s_adc_digi_ctx->digi_controller_config.adc_pattern_len = config->adc_pattern_len;
|
||||
s_adc_digi_ctx->digi_controller_config.interval = config->interval;
|
||||
s_adc_digi_ctx->digi_controller_config.dig_clk = config-> dig_clk;
|
||||
s_adc_digi_ctx->digi_controller_config.dma_eof_num = config->dma_eof_num;
|
||||
s_adc_digi_ctx->digi_controller_config.sample_freq_hz = config->sample_freq_hz;
|
||||
memcpy(s_adc_digi_ctx->digi_controller_config.adc_pattern, config->adc_pattern, config->adc_pattern_len * sizeof(adc_digi_pattern_table_t));
|
||||
|
||||
//See whether ADC2 will be used or not. If yes, the ``sar_adc2_mutex`` should be acquired in the continuous read driver
|
||||
const int atten_uninitialised = 999;
|
||||
s_adc_digi_ctx->adc1_atten = atten_uninitialised;
|
||||
s_adc_digi_ctx->adc2_atten = atten_uninitialised;
|
||||
s_adc_digi_ctx->use_adc1 = 0;
|
||||
s_adc_digi_ctx->use_adc2 = 0;
|
||||
for (int i = 0; i < config->adc_pattern_len; i++) {
|
||||
if (config->adc_pattern->unit == ADC_NUM_2) {
|
||||
const adc_digi_pattern_table_t* pat = &config->adc_pattern[i];
|
||||
if (pat->unit == ADC_NUM_1) {
|
||||
s_adc_digi_ctx->use_adc1 = 1;
|
||||
|
||||
if (s_adc_digi_ctx->adc1_atten == atten_uninitialised) {
|
||||
s_adc_digi_ctx->adc1_atten = pat->atten;
|
||||
} else if (s_adc_digi_ctx->adc1_atten != pat->atten) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
} else if (pat->unit == ADC_NUM_2) {
|
||||
//See whether ADC2 will be used or not. If yes, the ``sar_adc2_mutex`` should be acquired in the continuous read driver
|
||||
s_adc_digi_ctx->use_adc2 = 1;
|
||||
|
||||
if (s_adc_digi_ctx->adc2_atten == atten_uninitialised) {
|
||||
s_adc_digi_ctx->adc2_atten = pat->atten;
|
||||
} else if (s_adc_digi_ctx->adc2_atten != pat->atten) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -547,12 +591,12 @@ esp_err_t adc_arbiter_config(adc_unit_t adc_unit, adc_arbiter_t *config)
|
||||
* @note For ADC1, Controller access is mutually exclusive.
|
||||
*
|
||||
* @param adc_unit ADC unit.
|
||||
* @param ctrl ADC controller, Refer to `adc_ll_controller_t`.
|
||||
* @param ctrl ADC controller, Refer to `adc_controller_t`.
|
||||
*
|
||||
* @return
|
||||
* - ESP_OK Success
|
||||
*/
|
||||
esp_err_t adc_set_controller(adc_unit_t adc_unit, adc_ll_controller_t ctrl)
|
||||
esp_err_t adc_set_controller(adc_unit_t adc_unit, adc_controller_t ctrl)
|
||||
{
|
||||
adc_arbiter_t config = {0};
|
||||
adc_arbiter_t cfg = ADC_ARBITER_CONFIG_DEFAULT();
|
||||
@ -611,34 +655,34 @@ esp_err_t adc_digi_reset(void)
|
||||
|
||||
esp_err_t adc_digi_filter_reset(adc_digi_filter_idx_t idx)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2528
|
||||
ADC_ENTER_CRITICAL();
|
||||
adc_hal_digi_filter_reset(idx);
|
||||
ADC_EXIT_CRITICAL();
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t adc_digi_filter_set_config(adc_digi_filter_idx_t idx, adc_digi_filter_t *config)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2528
|
||||
ADC_ENTER_CRITICAL();
|
||||
adc_hal_digi_filter_set_factor(idx, config);
|
||||
ADC_EXIT_CRITICAL();
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t adc_digi_filter_get_config(adc_digi_filter_idx_t idx, adc_digi_filter_t *config)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2528
|
||||
ADC_ENTER_CRITICAL();
|
||||
adc_hal_digi_filter_get_factor(idx, config);
|
||||
ADC_EXIT_CRITICAL();
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t adc_digi_filter_enable(adc_digi_filter_idx_t idx, bool enable)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2528
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Get the filtered data of adc digital controller filter. For debug.
|
||||
* The data after each measurement and filtering is updated to the DMA by the digital controller. But it can also be obtained manually through this API.
|
||||
*
|
||||
* @param idx Filter index.
|
||||
* @return Filtered data. if <0, the read data invalid.
|
||||
*/
|
||||
int adc_digi_filter_read_data(adc_digi_filter_idx_t idx)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2528
|
||||
ADC_ENTER_CRITICAL();
|
||||
adc_hal_digi_filter_enable(idx, enable);
|
||||
ADC_EXIT_CRITICAL();
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
/**************************************/
|
||||
@ -648,23 +692,16 @@ int adc_digi_filter_read_data(adc_digi_filter_idx_t idx)
|
||||
esp_err_t adc_digi_monitor_set_config(adc_digi_monitor_idx_t idx, adc_digi_monitor_t *config)
|
||||
{
|
||||
ADC_ENTER_CRITICAL();
|
||||
if (idx == ADC_DIGI_MONITOR_IDX0) {
|
||||
adc_hal_digi_monitor_config(ADC_NUM_1, config);
|
||||
} else if (idx == ADC_DIGI_MONITOR_IDX1) {
|
||||
adc_hal_digi_monitor_config(ADC_NUM_2, config);
|
||||
}
|
||||
adc_hal_digi_monitor_config(idx, config);
|
||||
ADC_EXIT_CRITICAL();
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t adc_digi_monitor_enable(adc_digi_monitor_idx_t idx, bool enable)
|
||||
{
|
||||
|
||||
ADC_ENTER_CRITICAL();
|
||||
if (idx == ADC_DIGI_MONITOR_IDX0) {
|
||||
adc_hal_digi_monitor_enable(ADC_NUM_1, enable);
|
||||
} else if (idx == ADC_DIGI_MONITOR_IDX1) {
|
||||
adc_hal_digi_monitor_enable(ADC_NUM_2, enable);
|
||||
}
|
||||
adc_hal_digi_monitor_enable(idx, enable);
|
||||
ADC_EXIT_CRITICAL();
|
||||
return ESP_OK;
|
||||
}
|
||||
@ -756,3 +793,40 @@ esp_err_t adc_digi_isr_deregister(void)
|
||||
/*---------------------------------------------------------------
|
||||
RTC controller setting
|
||||
---------------------------------------------------------------*/
|
||||
|
||||
static uint16_t s_adc_cali_param[ADC_ATTEN_MAX] = {};
|
||||
|
||||
//NOTE: according to calibration version, different types of lock may be taken during the process:
|
||||
// 1. Semaphore when reading efuse
|
||||
// 2. Lock (Spinlock, or Mutex) if we actually do ADC calibration in the future
|
||||
//This function shoudn't be called inside critical section or ISR
|
||||
static uint32_t adc_get_calibration_offset(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten)
|
||||
{
|
||||
const bool no_cal = false;
|
||||
if (s_adc_cali_param[atten]) {
|
||||
return (uint32_t)s_adc_cali_param[atten];
|
||||
}
|
||||
|
||||
if (no_cal) {
|
||||
return 0; //indicating failure
|
||||
}
|
||||
|
||||
// check if we can fetch the values from eFuse.
|
||||
int version = esp_efuse_rtc_calib_get_ver();
|
||||
assert(version == 1);
|
||||
uint32_t init_code = esp_efuse_rtc_calib_get_init_code(version, atten);
|
||||
|
||||
ESP_LOGD(ADC_TAG, "Calib(V%d) ADC%d atten=%d: %04X", version, adc_n, atten, init_code);
|
||||
s_adc_cali_param[atten] = init_code;
|
||||
return init_code;
|
||||
}
|
||||
|
||||
// Internal function to calibrate PWDET for WiFi
|
||||
esp_err_t adc_cal_offset(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten)
|
||||
{
|
||||
uint32_t cal_val = adc_get_calibration_offset(adc_n, channel, atten);
|
||||
ADC_ENTER_CRITICAL();
|
||||
adc_hal_set_calibration_param(adc_n, cal_val);
|
||||
ADC_EXIT_CRITICAL();
|
||||
return ESP_OK;
|
||||
}
|
||||
|
39
components/driver/esp32c3/adc2_init_cal.c
Normal file
39
components/driver/esp32c3/adc2_init_cal.c
Normal file
@ -0,0 +1,39 @@
|
||||
// Copyright 2016-2018 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
/* This file is used to get `adc2_init_code_calibration` executed before the APP when the ADC2 is used by Wi-Fi or other drivers.
|
||||
The linker will link constructor (adc2_init_code_calibration) only when any sections inside the same file (adc2_cal_include) is used.
|
||||
Don't put any other code into this file. */
|
||||
|
||||
#include "adc2_wifi_private.h"
|
||||
#include "hal/adc_hal.h"
|
||||
#include "esp_private/adc_cali.h"
|
||||
|
||||
/**
|
||||
* @brief Set initial code to ADC2 after calibration. ADC2 RTC and ADC2 PWDET controller share the initial code.
|
||||
* This API be called in before `app_main()`.
|
||||
*/
|
||||
static __attribute__((constructor)) void adc2_init_code_calibration(void)
|
||||
{
|
||||
const adc_ll_num_t adc_n = ADC_NUM_2;
|
||||
const adc_atten_t atten = ADC_ATTEN_DB_11;
|
||||
const adc_channel_t channel = 0;
|
||||
adc_cal_offset(adc_n, channel, atten);
|
||||
}
|
||||
|
||||
/** Don't call `adc2_cal_include` in user code. */
|
||||
void adc2_cal_include(void)
|
||||
{
|
||||
/* When this empty function is called, the `adc2_init_code_calibration` constructor will be linked and executed before the app.*/
|
||||
}
|
99
components/driver/esp32c3/include/driver/temp_sensor.h
Normal file
99
components/driver/esp32c3/include/driver/temp_sensor.h
Normal file
@ -0,0 +1,99 @@
|
||||
// Copyright 2010-2018 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <stdint.h>
|
||||
#include "esp_err.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
typedef enum {
|
||||
TSENS_DAC_L0 = 0, /*!< offset = -2, measure range: 50℃ ~ 125℃, error < 3℃. */
|
||||
TSENS_DAC_L1, /*!< offset = -1, measure range: 20℃ ~ 100℃, error < 2℃. */
|
||||
TSENS_DAC_L2, /*!< offset = 0, measure range:-10℃ ~ 80℃, error < 1℃. */
|
||||
TSENS_DAC_L3, /*!< offset = 1, measure range:-30℃ ~ 50℃, error < 2℃. */
|
||||
TSENS_DAC_L4, /*!< offset = 2, measure range:-40℃ ~ 20℃, error < 3℃. */
|
||||
TSENS_DAC_MAX,
|
||||
TSENS_DAC_DEFAULT = TSENS_DAC_L2,
|
||||
} temp_sensor_dac_offset_t;
|
||||
|
||||
/**
|
||||
* @brief Configuration for temperature sensor reading
|
||||
*/
|
||||
typedef struct {
|
||||
temp_sensor_dac_offset_t dac_offset; /*!< The temperature measurement range is configured with a built-in temperature offset DAC. */
|
||||
uint8_t clk_div; /*!< Default: 6 */
|
||||
} temp_sensor_config_t;
|
||||
|
||||
#define TSENS_CONFIG_DEFAULT() {.dac_offset = TSENS_DAC_L2, \
|
||||
.clk_div = 6}
|
||||
|
||||
/**
|
||||
* @brief Set parameter of temperature sensor.
|
||||
* @param tsens
|
||||
* @return
|
||||
* - ESP_OK Success
|
||||
*/
|
||||
esp_err_t temp_sensor_set_config(temp_sensor_config_t tsens);
|
||||
|
||||
/**
|
||||
* @brief Get parameter of temperature sensor.
|
||||
* @param tsens
|
||||
* @return
|
||||
* - ESP_OK Success
|
||||
*/
|
||||
esp_err_t temp_sensor_get_config(temp_sensor_config_t *tsens);
|
||||
|
||||
/**
|
||||
* @brief Start temperature sensor measure.
|
||||
* @return
|
||||
* - ESP_OK Success
|
||||
* - ESP_ERR_INVALID_ARG
|
||||
*/
|
||||
esp_err_t temp_sensor_start(void);
|
||||
|
||||
/**
|
||||
* @brief Stop temperature sensor measure.
|
||||
* @return
|
||||
* - ESP_OK Success
|
||||
*/
|
||||
esp_err_t temp_sensor_stop(void);
|
||||
|
||||
/**
|
||||
* @brief Read temperature sensor raw data.
|
||||
* @param tsens_out Pointer to raw data, Range: 0 ~ 255
|
||||
* @return
|
||||
* - ESP_OK Success
|
||||
* - ESP_ERR_INVALID_ARG `tsens_out` is NULL
|
||||
* - ESP_ERR_INVALID_STATE temperature sensor dont start
|
||||
*/
|
||||
esp_err_t temp_sensor_read_raw(uint32_t *tsens_out);
|
||||
|
||||
/**
|
||||
* @brief Read temperature sensor data that is converted to degrees Celsius.
|
||||
* @note Should not be called from interrupt.
|
||||
* @param celsius The measure output value.
|
||||
* @return
|
||||
* - ESP_OK Success
|
||||
* - ESP_ERR_INVALID_ARG ARG is NULL.
|
||||
* - ESP_ERR_INVALID_STATE The ambient temperature is out of range.
|
||||
*/
|
||||
esp_err_t temp_sensor_read_celsius(float *celsius);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
133
components/driver/esp32c3/rtc_tempsensor.c
Normal file
133
components/driver/esp32c3/rtc_tempsensor.c
Normal file
@ -0,0 +1,133 @@
|
||||
// Copyright 2016-2018 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <esp_types.h>
|
||||
#include <stdlib.h>
|
||||
#include <ctype.h>
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#include "freertos/semphr.h"
|
||||
#include "esp_log.h"
|
||||
#include "hal/adc_ll.h"
|
||||
#include "soc/rtc_cntl_reg.h"
|
||||
#include "soc/apb_saradc_struct.h"
|
||||
#include "soc/apb_saradc_reg.h"
|
||||
#include "soc/system_reg.h"
|
||||
#include "driver/temp_sensor.h"
|
||||
#include "regi2c_ctrl.h"
|
||||
#include "esp32c3/rom/ets_sys.h"
|
||||
|
||||
static const char *TAG = "tsens";
|
||||
|
||||
#define TSENS_CHECK(res, ret_val) ({ \
|
||||
if (!(res)) { \
|
||||
ESP_LOGE(TAG, "%s:%d (%s)", __FILE__, __LINE__, __FUNCTION__); \
|
||||
return (ret_val); \
|
||||
} \
|
||||
})
|
||||
#define TSENS_XPD_WAIT_DEFAULT 0xFF /* Set wait cycle time(8MHz) from power up to reset enable. */
|
||||
#define TSENS_ADC_FACTOR (0.4386)
|
||||
#define TSENS_DAC_FACTOR (27.88)
|
||||
#define TSENS_SYS_OFFSET (20.52)
|
||||
|
||||
typedef struct {
|
||||
int index;
|
||||
int offset;
|
||||
int set_val;
|
||||
int range_min;
|
||||
int range_max;
|
||||
int error_max;
|
||||
} tsens_dac_offset_t;
|
||||
|
||||
static const tsens_dac_offset_t dac_offset[TSENS_DAC_MAX] = {
|
||||
/* DAC Offset reg_val min max error */
|
||||
{TSENS_DAC_L0, -2, 5, 50, 125, 3},
|
||||
{TSENS_DAC_L1, -1, 7, 20, 100, 2},
|
||||
{TSENS_DAC_L2, 0, 15, -10, 80, 1},
|
||||
{TSENS_DAC_L3, 1, 11, -30, 50, 2},
|
||||
{TSENS_DAC_L4, 2, 10, -40, 20, 3},
|
||||
};
|
||||
|
||||
esp_err_t temp_sensor_set_config(temp_sensor_config_t tsens)
|
||||
{
|
||||
REG_SET_BIT(SYSTEM_PERIP_CLK_EN1_REG, SYSTEM_TSENS_CLK_EN);
|
||||
CLEAR_PERI_REG_MASK(ANA_CONFIG_REG, ANA_I2C_SAR_FORCE_PD);
|
||||
SET_PERI_REG_MASK(ANA_CONFIG2_REG, ANA_I2C_SAR_FORCE_PU);
|
||||
REGI2C_WRITE_MASK(I2C_SAR_ADC, I2C_SARADC_TSENS_DAC, dac_offset[tsens.dac_offset].set_val);
|
||||
APB_SARADC.apb_tsens_ctrl.tsens_clk_div = tsens.clk_div;
|
||||
APB_SARADC.apb_tsens_ctrl2.tsens_xpd_wait = TSENS_XPD_WAIT_DEFAULT;
|
||||
APB_SARADC.apb_tsens_ctrl2.tsens_xpd_force = 1;
|
||||
ESP_LOGD(TAG, "Config temperature range [%d°C ~ %d°C], error < %d°C",
|
||||
dac_offset[tsens.dac_offset].range_min,
|
||||
dac_offset[tsens.dac_offset].range_max,
|
||||
dac_offset[tsens.dac_offset].error_max);
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t temp_sensor_get_config(temp_sensor_config_t *tsens)
|
||||
{
|
||||
TSENS_CHECK(tsens != NULL, ESP_ERR_INVALID_ARG);
|
||||
CLEAR_PERI_REG_MASK(ANA_CONFIG_REG, ANA_I2C_SAR_FORCE_PD);
|
||||
SET_PERI_REG_MASK(ANA_CONFIG2_REG, ANA_I2C_SAR_FORCE_PU);
|
||||
tsens->dac_offset = REGI2C_READ_MASK(I2C_SAR_ADC, I2C_SARADC_TSENS_DAC);
|
||||
for (int i = TSENS_DAC_L0; i < TSENS_DAC_MAX; i++) {
|
||||
if (tsens->dac_offset == dac_offset[i].set_val) {
|
||||
tsens->dac_offset = dac_offset[i].index;
|
||||
break;
|
||||
}
|
||||
}
|
||||
tsens->clk_div = APB_SARADC.apb_tsens_ctrl.tsens_clk_div;
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t temp_sensor_start(void)
|
||||
{
|
||||
REG_SET_BIT(SYSTEM_PERIP_CLK_EN1_REG, SYSTEM_TSENS_CLK_EN);
|
||||
APB_SARADC.apb_tsens_ctrl2.tsens_clk_sel = 1;
|
||||
APB_SARADC.apb_tsens_ctrl.tsens_pu = 1;
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t temp_sensor_stop(void)
|
||||
{
|
||||
APB_SARADC.apb_tsens_ctrl.tsens_pu = 0;
|
||||
APB_SARADC.apb_tsens_ctrl2.tsens_clk_sel = 0;
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t temp_sensor_read_raw(uint32_t *tsens_out)
|
||||
{
|
||||
TSENS_CHECK(tsens_out != NULL, ESP_ERR_INVALID_ARG);
|
||||
*tsens_out = APB_SARADC.apb_tsens_ctrl.tsens_out;
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t temp_sensor_read_celsius(float *celsius)
|
||||
{
|
||||
TSENS_CHECK(celsius != NULL, ESP_ERR_INVALID_ARG);
|
||||
temp_sensor_config_t tsens;
|
||||
uint32_t tsens_out = 0;
|
||||
esp_err_t ret = temp_sensor_get_config(&tsens);
|
||||
if (ret == ESP_OK) {
|
||||
ret = temp_sensor_read_raw(&tsens_out);
|
||||
printf("tsens_out %d\r\n", tsens_out);
|
||||
TSENS_CHECK(ret == ESP_OK, ret);
|
||||
const tsens_dac_offset_t *dac = &dac_offset[tsens.dac_offset];
|
||||
*celsius = (TSENS_ADC_FACTOR * (float)tsens_out - TSENS_DAC_FACTOR * dac->offset - TSENS_SYS_OFFSET);
|
||||
if (*celsius < dac->range_min || *celsius > dac->range_max) {
|
||||
ESP_LOGW(TAG, "Exceeding the temperature range!");
|
||||
ret = ESP_ERR_INVALID_STATE;
|
||||
}
|
||||
}
|
||||
return ret;
|
||||
}
|
@ -18,6 +18,7 @@ Don't put any other code into this file. */
|
||||
|
||||
#include "adc2_wifi_private.h"
|
||||
#include "hal/adc_hal.h"
|
||||
#include "esp_private/adc_cali.h"
|
||||
|
||||
/**
|
||||
* @brief Set initial code to ADC2 after calibration. ADC2 RTC and ADC2 PWDET controller share the initial code.
|
||||
@ -28,7 +29,6 @@ static __attribute__((constructor)) void adc2_init_code_calibration(void)
|
||||
const adc_ll_num_t adc_n = ADC_NUM_2;
|
||||
const adc_atten_t atten = ADC_ATTEN_DB_11;
|
||||
const adc_channel_t channel = 0;
|
||||
extern esp_err_t adc_cal_offset(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten);
|
||||
adc_cal_offset(adc_n, channel, atten);
|
||||
}
|
||||
|
||||
|
@ -17,6 +17,7 @@
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#include "esp_err.h"
|
||||
#include "sdkconfig.h"
|
||||
#include "driver/gpio.h"
|
||||
#include "hal/adc_types.h"
|
||||
|
||||
@ -97,6 +98,13 @@ typedef enum {
|
||||
#define ADC_ATTEN_2_5db ADC_ATTEN_DB_2_5
|
||||
#define ADC_ATTEN_6db ADC_ATTEN_DB_6
|
||||
#define ADC_ATTEN_11db ADC_ATTEN_DB_11
|
||||
|
||||
/**
|
||||
* The default (max) bit width of the ADC of current version. You can also get the maximum bitwidth
|
||||
* by `SOC_ADC_MAX_BITWIDTH` defined in soc_caps.h.
|
||||
*/
|
||||
#define ADC_WIDTH_BIT_DEFAULT (ADC_WIDTH_MAX-1)
|
||||
|
||||
//this definitions are only for being back-compatible
|
||||
#define ADC_WIDTH_9Bit ADC_WIDTH_BIT_9
|
||||
#define ADC_WIDTH_10Bit ADC_WIDTH_BIT_10
|
||||
@ -469,6 +477,7 @@ esp_err_t adc_digi_deinit(void);
|
||||
*
|
||||
* @return
|
||||
* - ESP_ERR_INVALID_STATE Driver state is invalid.
|
||||
* - ESP_ERR_INVALID_ARG If the combination of arguments is invalid.
|
||||
* - ESP_OK On success
|
||||
*/
|
||||
esp_err_t adc_digi_controller_config(const adc_digi_config_t *config);
|
||||
|
41
components/driver/include/esp_private/adc_cali.h
Normal file
41
components/driver/include/esp_private/adc_cali.h
Normal file
@ -0,0 +1,41 @@
|
||||
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
// Internal header for calibration, don't use in app
|
||||
|
||||
#include "sdkconfig.h"
|
||||
#include "esp_err.h"
|
||||
#include "hal/adc_hal.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#if !CONFIG_IDF_TARGET_ESP32
|
||||
|
||||
/**
|
||||
* @brief Calibrate the offset of ADC. (Based on the pre-stored efuse or actual calibration)
|
||||
*
|
||||
* @param adc_n ADC unit to calibrate
|
||||
* @param channel Target channel if really do calibration
|
||||
* @param atten Attenuation to use
|
||||
* @return Always ESP_OK
|
||||
*/
|
||||
extern esp_err_t adc_cal_offset(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten);
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
@ -18,7 +18,6 @@
|
||||
#include "esp_types.h"
|
||||
#include "esp_log.h"
|
||||
#include "soc/rtc_periph.h"
|
||||
#include "soc/sens_periph.h"
|
||||
#include "soc/syscon_periph.h"
|
||||
#include "soc/rtc.h"
|
||||
#include "soc/periph_defs.h"
|
||||
|
272
components/driver/test/test_adc_dma.c
Normal file
272
components/driver/test/test_adc_dma.c
Normal file
@ -0,0 +1,272 @@
|
||||
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <sys/param.h>
|
||||
#include <string.h>
|
||||
#include "test_utils.h"
|
||||
|
||||
#if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32, ESP32S2, ESP32S3)
|
||||
//API only supported for C3 now.
|
||||
|
||||
#include "driver/adc.h"
|
||||
#include "esp_adc_cal.h"
|
||||
#include "esp_log.h"
|
||||
|
||||
#define TEST_COUNT 4096
|
||||
#define MAX_ARRAY_SIZE 4096
|
||||
#define TEST_ATTEN ADC_ATTEN_MAX //Set to ADC_ATTEN_*db to test a single attenuation only
|
||||
|
||||
static int s_adc_count[MAX_ARRAY_SIZE]={};
|
||||
static int s_adc_offset = -1;
|
||||
|
||||
static int insert_point(uint32_t value)
|
||||
{
|
||||
const bool fixed_size = true;
|
||||
|
||||
if (s_adc_offset < 0) {
|
||||
if (fixed_size) {
|
||||
TEST_ASSERT_GREATER_OR_EQUAL(4096, MAX_ARRAY_SIZE);
|
||||
s_adc_offset = 0; //Fixed to 0 because the array can hold all the data in 12 bits
|
||||
} else {
|
||||
s_adc_offset = MAX((int)value - MAX_ARRAY_SIZE/2, 0);
|
||||
}
|
||||
}
|
||||
|
||||
if (!fixed_size && (value < s_adc_offset || value >= s_adc_offset + MAX_ARRAY_SIZE)) {
|
||||
TEST_ASSERT_GREATER_OR_EQUAL(s_adc_offset, value);
|
||||
TEST_ASSERT_LESS_THAN(s_adc_offset + MAX_ARRAY_SIZE, value);
|
||||
}
|
||||
|
||||
s_adc_count[value - s_adc_offset] ++;
|
||||
return value - s_adc_offset;
|
||||
}
|
||||
|
||||
static void reset_array(void)
|
||||
{
|
||||
memset(s_adc_count, 0, sizeof(s_adc_count));
|
||||
s_adc_offset = -1;
|
||||
}
|
||||
|
||||
static uint32_t get_average(void)
|
||||
{
|
||||
uint32_t sum = 0;
|
||||
int count = 0;
|
||||
for (int i = 0; i < MAX_ARRAY_SIZE; i++) {
|
||||
sum += s_adc_count[i] * (s_adc_offset+i);
|
||||
count += s_adc_count[i];
|
||||
}
|
||||
return sum/count;
|
||||
}
|
||||
|
||||
static void print_summary(bool figure)
|
||||
{
|
||||
const int MAX_WIDTH=20;
|
||||
int max_count = 0;
|
||||
int start = -1;
|
||||
int end = -1;
|
||||
uint32_t sum = 0;
|
||||
int count = 0;
|
||||
for (int i = 0; i < MAX_ARRAY_SIZE; i++) {
|
||||
if (s_adc_count[i] > max_count) {
|
||||
max_count = s_adc_count[i];
|
||||
}
|
||||
if (s_adc_count[i] > 0 && start < 0) {
|
||||
start = i;
|
||||
}
|
||||
if (s_adc_count[i] > 0) {
|
||||
end = i;
|
||||
}
|
||||
count += s_adc_count[i];
|
||||
sum += s_adc_count[i] * (s_adc_offset+i);
|
||||
}
|
||||
|
||||
if (figure) {
|
||||
for (int i = start; i <= end; i++) {
|
||||
printf("%4d ", i+s_adc_offset);
|
||||
int count = s_adc_count[i] * MAX_WIDTH / max_count;
|
||||
for (int j = 0; j < count; j++) {
|
||||
putchar('|');
|
||||
}
|
||||
printf(" %d\n", s_adc_count[i]);
|
||||
}
|
||||
}
|
||||
float average = (float)sum/count;
|
||||
|
||||
float variation_square = 0;
|
||||
for (int i = start; i <= end; i ++) {
|
||||
if (s_adc_count[i] == 0) {
|
||||
continue;
|
||||
}
|
||||
float delta = i + s_adc_offset - average;
|
||||
variation_square += (delta * delta) * s_adc_count[i];
|
||||
}
|
||||
|
||||
printf("%d points.\n", count);
|
||||
printf("average: %.1f\n", (float)sum/count);
|
||||
printf("std: %.2f\n", sqrt(variation_square/count));
|
||||
}
|
||||
|
||||
static void continuous_adc_init(uint16_t adc1_chan_mask, uint16_t adc2_chan_mask, adc_channel_t *channel, uint8_t channel_num, adc_atten_t atten)
|
||||
{
|
||||
adc_digi_init_config_t adc_dma_config = {
|
||||
.max_store_buf_size = TEST_COUNT*2,
|
||||
.conv_num_each_intr = 128,
|
||||
.dma_chan = SOC_GDMA_ADC_DMA_CHANNEL,
|
||||
.adc1_chan_mask = adc1_chan_mask,
|
||||
.adc2_chan_mask = adc2_chan_mask,
|
||||
};
|
||||
TEST_ESP_OK(adc_digi_initialize(&adc_dma_config));
|
||||
|
||||
adc_digi_pattern_table_t adc_pattern[10] = {0};
|
||||
adc_digi_config_t dig_cfg = {
|
||||
.conv_limit_en = 0,
|
||||
.conv_limit_num = 250,
|
||||
.sample_freq_hz = 83333,
|
||||
};
|
||||
|
||||
dig_cfg.adc_pattern_len = channel_num;
|
||||
for (int i = 0; i < channel_num; i++) {
|
||||
uint8_t unit = ((channel[i] >> 3) & 0x1);
|
||||
uint8_t ch = channel[i] & 0x7;
|
||||
adc_pattern[i].atten = atten;
|
||||
adc_pattern[i].channel = ch;
|
||||
adc_pattern[i].unit = unit;
|
||||
}
|
||||
dig_cfg.adc_pattern = adc_pattern;
|
||||
TEST_ESP_OK(adc_digi_controller_config(&dig_cfg));
|
||||
}
|
||||
|
||||
TEST_CASE("test_adc_dma", "[adc][ignore][manual]")
|
||||
{
|
||||
uint16_t adc1_chan_mask = BIT(2);
|
||||
uint16_t adc2_chan_mask = 0;
|
||||
adc_channel_t channel[1] = {ADC1_CHANNEL_2};
|
||||
adc_atten_t target_atten = TEST_ATTEN;
|
||||
|
||||
const int output_data_size = sizeof(adc_digi_output_data_t);
|
||||
|
||||
int buffer_size = TEST_COUNT*output_data_size;
|
||||
uint8_t* read_buf = malloc(buffer_size);
|
||||
TEST_ASSERT_NOT_NULL(read_buf);
|
||||
|
||||
adc_atten_t atten;
|
||||
bool print_figure;
|
||||
if (target_atten == ADC_ATTEN_MAX) {
|
||||
atten = ADC_ATTEN_DB_0;
|
||||
target_atten = ADC_ATTEN_DB_11;
|
||||
print_figure = false;
|
||||
} else {
|
||||
atten = target_atten;
|
||||
print_figure = true;
|
||||
}
|
||||
|
||||
while (1) {
|
||||
ESP_LOGI("TEST_ADC", "Test with atten: %d", atten);
|
||||
memset(read_buf, 0xce, buffer_size);
|
||||
|
||||
esp_adc_cal_characteristics_t chan1_char = {};
|
||||
esp_adc_cal_value_t cal_ret = esp_adc_cal_characterize(ADC_UNIT_1, atten, ADC_WIDTH_12Bit, 0, &chan1_char);
|
||||
TEST_ASSERT(cal_ret == ESP_ADC_CAL_VAL_EFUSE_TP);
|
||||
|
||||
continuous_adc_init(adc1_chan_mask, adc2_chan_mask, channel, sizeof(channel) / sizeof(adc_channel_t), atten);
|
||||
adc_digi_start();
|
||||
|
||||
int remain_count = TEST_COUNT;
|
||||
while (remain_count) {
|
||||
int already_got = TEST_COUNT - remain_count;
|
||||
uint32_t ret_num;
|
||||
TEST_ESP_OK(adc_digi_read_bytes(read_buf + already_got*output_data_size,
|
||||
remain_count*output_data_size, &ret_num, ADC_MAX_DELAY));
|
||||
|
||||
TEST_ASSERT((ret_num % output_data_size) == 0);
|
||||
remain_count -= ret_num / output_data_size;
|
||||
}
|
||||
|
||||
adc_digi_output_data_t *p = (void*)read_buf;
|
||||
reset_array();
|
||||
for (int i = 0; i < TEST_COUNT; i++) {
|
||||
insert_point(p[i].type2.data);
|
||||
}
|
||||
|
||||
print_summary(print_figure);
|
||||
|
||||
uint32_t raw = get_average();
|
||||
uint32_t voltage_mv = esp_adc_cal_raw_to_voltage(raw, &chan1_char);
|
||||
printf("Voltage = %d mV\n", voltage_mv);
|
||||
|
||||
adc_digi_stop();
|
||||
TEST_ESP_OK(adc_digi_deinitialize());
|
||||
|
||||
if (atten == target_atten) {
|
||||
break;
|
||||
}
|
||||
|
||||
atten++;
|
||||
}
|
||||
|
||||
free(read_buf);
|
||||
}
|
||||
|
||||
TEST_CASE("test_adc_single", "[adc][ignore][manual]")
|
||||
{
|
||||
adc_atten_t target_atten = TEST_ATTEN;
|
||||
adc_atten_t atten;
|
||||
bool print_figure;
|
||||
if (target_atten == ADC_ATTEN_MAX) {
|
||||
atten = ADC_ATTEN_DB_0;
|
||||
target_atten = ADC_ATTEN_DB_11;
|
||||
print_figure = false;
|
||||
} else {
|
||||
atten = target_atten;
|
||||
print_figure = true;
|
||||
}
|
||||
|
||||
adc1_config_width(ADC_WIDTH_BIT_12);
|
||||
|
||||
|
||||
while (1) {
|
||||
ESP_LOGI("TEST_ADC", "Test with atten: %d", atten);
|
||||
|
||||
adc1_config_channel_atten(ADC1_CHANNEL_2, atten);
|
||||
|
||||
esp_adc_cal_characteristics_t chan1_char = {};
|
||||
esp_adc_cal_value_t cal_ret = esp_adc_cal_characterize(ADC_UNIT_1, atten, ADC_WIDTH_12Bit, 0, &chan1_char);
|
||||
TEST_ASSERT(cal_ret == ESP_ADC_CAL_VAL_EFUSE_TP);
|
||||
|
||||
|
||||
const int test_count = TEST_COUNT;
|
||||
adc1_channel_t channel = ADC1_CHANNEL_2;
|
||||
while (1) {
|
||||
|
||||
reset_array();
|
||||
|
||||
for (int i = 0; i < test_count; i++) {
|
||||
uint32_t raw = adc1_get_raw(channel);
|
||||
insert_point(raw);
|
||||
}
|
||||
print_summary(print_figure);
|
||||
break;
|
||||
}
|
||||
uint32_t raw = get_average();
|
||||
uint32_t voltage_mv = esp_adc_cal_raw_to_voltage(raw, &chan1_char);
|
||||
printf("Voltage = %d mV\n", voltage_mv);
|
||||
|
||||
if (atten == target_atten) {
|
||||
break;
|
||||
}
|
||||
atten++;
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
@ -11,6 +11,9 @@ if(EXISTS "${COMPONENT_DIR}/${target}")
|
||||
if("esp32s2" STREQUAL "${target}")
|
||||
list(APPEND srcs "src/${target}/esp_efuse_rtc_table.c")
|
||||
endif()
|
||||
if("esp32c3" STREQUAL "${target}")
|
||||
list(APPEND srcs "src/${target}/esp_efuse_rtc_calib.c")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
list(APPEND srcs "src/esp_efuse_api.c"
|
||||
|
@ -17,7 +17,7 @@
|
||||
#include <assert.h>
|
||||
#include "esp_efuse_table.h"
|
||||
|
||||
// md5_digest_table 2c7ba2aa68a2748d3de9a5d1fed59b9f
|
||||
// md5_digest_table 96cd6235ddc0947b4a296add3f942acb
|
||||
// This file was generated from the file esp_efuse_table.csv. DO NOT CHANGE THIS FILE MANUALLY.
|
||||
// If you want to change some fields, you need to change esp_efuse_table.csv file
|
||||
// then run `efuse_common_table` or `efuse_custom_table` command it will generate this file.
|
||||
@ -392,8 +392,48 @@ static const esp_efuse_desc_t SPI_PAD_CONFIG_D7[] = {
|
||||
{EFUSE_BLK1, 108, 6}, // SPI_PAD_configure D7,
|
||||
};
|
||||
|
||||
static const esp_efuse_desc_t SYS_DATA_PART1[] = {
|
||||
{EFUSE_BLK2, 0, 256}, // System configuration,
|
||||
static const esp_efuse_desc_t BLOCK2_VERSION[] = {
|
||||
{EFUSE_BLK2, 128, 3}, // Version of Block2,
|
||||
};
|
||||
|
||||
static const esp_efuse_desc_t TEMP_CALIB[] = {
|
||||
{EFUSE_BLK2, 131, 9}, // Temperature calibration data,
|
||||
};
|
||||
|
||||
static const esp_efuse_desc_t OCODE[] = {
|
||||
{EFUSE_BLK2, 140, 8}, // ADC OCode,
|
||||
};
|
||||
|
||||
static const esp_efuse_desc_t ADC1_INIT_CODE_ATTEN0[] = {
|
||||
{EFUSE_BLK2, 148, 10}, // ADC1 init code at atten0,
|
||||
};
|
||||
|
||||
static const esp_efuse_desc_t ADC1_INIT_CODE_ATTEN1[] = {
|
||||
{EFUSE_BLK2, 158, 10}, // ADC1 init code at atten1,
|
||||
};
|
||||
|
||||
static const esp_efuse_desc_t ADC1_INIT_CODE_ATTEN2[] = {
|
||||
{EFUSE_BLK2, 168, 10}, // ADC1 init code at atten2,
|
||||
};
|
||||
|
||||
static const esp_efuse_desc_t ADC1_INIT_CODE_ATTEN3[] = {
|
||||
{EFUSE_BLK2, 178, 10}, // ADC1 init code at atten3,
|
||||
};
|
||||
|
||||
static const esp_efuse_desc_t ADC1_CAL_VOL_ATTEN0[] = {
|
||||
{EFUSE_BLK2, 188, 10}, // ADC1 calibration voltage at atten0,
|
||||
};
|
||||
|
||||
static const esp_efuse_desc_t ADC1_CAL_VOL_ATTEN1[] = {
|
||||
{EFUSE_BLK2, 198, 10}, // ADC1 calibration voltage at atten1,
|
||||
};
|
||||
|
||||
static const esp_efuse_desc_t ADC1_CAL_VOL_ATTEN2[] = {
|
||||
{EFUSE_BLK2, 208, 10}, // ADC1 calibration voltage at atten2,
|
||||
};
|
||||
|
||||
static const esp_efuse_desc_t ADC1_CAL_VOL_ATTEN3[] = {
|
||||
{EFUSE_BLK2, 218, 10}, // ADC1 calibration voltage at atten3,
|
||||
};
|
||||
|
||||
static const esp_efuse_desc_t USER_DATA[] = {
|
||||
@ -892,8 +932,58 @@ const esp_efuse_desc_t* ESP_EFUSE_SPI_PAD_CONFIG_D7[] = {
|
||||
NULL
|
||||
};
|
||||
|
||||
const esp_efuse_desc_t* ESP_EFUSE_SYS_DATA_PART1[] = {
|
||||
&SYS_DATA_PART1[0], // System configuration
|
||||
const esp_efuse_desc_t* ESP_EFUSE_BLOCK2_VERSION[] = {
|
||||
&BLOCK2_VERSION[0], // Version of Block2
|
||||
NULL
|
||||
};
|
||||
|
||||
const esp_efuse_desc_t* ESP_EFUSE_TEMP_CALIB[] = {
|
||||
&TEMP_CALIB[0], // Temperature calibration data
|
||||
NULL
|
||||
};
|
||||
|
||||
const esp_efuse_desc_t* ESP_EFUSE_OCODE[] = {
|
||||
&OCODE[0], // ADC OCode
|
||||
NULL
|
||||
};
|
||||
|
||||
const esp_efuse_desc_t* ESP_EFUSE_ADC1_INIT_CODE_ATTEN0[] = {
|
||||
&ADC1_INIT_CODE_ATTEN0[0], // ADC1 init code at atten0
|
||||
NULL
|
||||
};
|
||||
|
||||
const esp_efuse_desc_t* ESP_EFUSE_ADC1_INIT_CODE_ATTEN1[] = {
|
||||
&ADC1_INIT_CODE_ATTEN1[0], // ADC1 init code at atten1
|
||||
NULL
|
||||
};
|
||||
|
||||
const esp_efuse_desc_t* ESP_EFUSE_ADC1_INIT_CODE_ATTEN2[] = {
|
||||
&ADC1_INIT_CODE_ATTEN2[0], // ADC1 init code at atten2
|
||||
NULL
|
||||
};
|
||||
|
||||
const esp_efuse_desc_t* ESP_EFUSE_ADC1_INIT_CODE_ATTEN3[] = {
|
||||
&ADC1_INIT_CODE_ATTEN3[0], // ADC1 init code at atten3
|
||||
NULL
|
||||
};
|
||||
|
||||
const esp_efuse_desc_t* ESP_EFUSE_ADC1_CAL_VOL_ATTEN0[] = {
|
||||
&ADC1_CAL_VOL_ATTEN0[0], // ADC1 calibration voltage at atten0
|
||||
NULL
|
||||
};
|
||||
|
||||
const esp_efuse_desc_t* ESP_EFUSE_ADC1_CAL_VOL_ATTEN1[] = {
|
||||
&ADC1_CAL_VOL_ATTEN1[0], // ADC1 calibration voltage at atten1
|
||||
NULL
|
||||
};
|
||||
|
||||
const esp_efuse_desc_t* ESP_EFUSE_ADC1_CAL_VOL_ATTEN2[] = {
|
||||
&ADC1_CAL_VOL_ATTEN2[0], // ADC1 calibration voltage at atten2
|
||||
NULL
|
||||
};
|
||||
|
||||
const esp_efuse_desc_t* ESP_EFUSE_ADC1_CAL_VOL_ATTEN3[] = {
|
||||
&ADC1_CAL_VOL_ATTEN3[0], // ADC1 calibration voltage at atten3
|
||||
NULL
|
||||
};
|
||||
|
||||
|
@ -126,8 +126,21 @@
|
||||
SPI_PAD_CONFIG_D6, EFUSE_BLK1, 102, 6, SPI_PAD_configure D6
|
||||
SPI_PAD_CONFIG_D7, EFUSE_BLK1, 108, 6, SPI_PAD_configure D7
|
||||
|
||||
# SYS_DATA_PART1 #
|
||||
#######################
|
||||
BLOCK2_VERSION, EFUSE_BLK2, 128, 3, Version of Block2
|
||||
TEMP_CALIB, EFUSE_BLK2, 131, 9, Temperature calibration data
|
||||
OCODE, EFUSE_BLK2, 140, 8, ADC OCode
|
||||
ADC1_INIT_CODE_ATTEN0, EFUSE_BLK2, 148, 10, ADC1 init code at atten0
|
||||
ADC1_INIT_CODE_ATTEN1, EFUSE_BLK2, 158, 10, ADC1 init code at atten1
|
||||
ADC1_INIT_CODE_ATTEN2, EFUSE_BLK2, 168, 10, ADC1 init code at atten2
|
||||
ADC1_INIT_CODE_ATTEN3, EFUSE_BLK2, 178, 10, ADC1 init code at atten3
|
||||
ADC1_CAL_VOL_ATTEN0, EFUSE_BLK2, 188, 10, ADC1 calibration voltage at atten0
|
||||
ADC1_CAL_VOL_ATTEN1, EFUSE_BLK2, 198, 10, ADC1 calibration voltage at atten1
|
||||
ADC1_CAL_VOL_ATTEN2, EFUSE_BLK2, 208, 10, ADC1 calibration voltage at atten2
|
||||
ADC1_CAL_VOL_ATTEN3, EFUSE_BLK2, 218, 10, ADC1 calibration voltage at atten3
|
||||
|
||||
################
|
||||
SYS_DATA_PART1, EFUSE_BLK2, 0, 256, System configuration
|
||||
USER_DATA, EFUSE_BLK3, 0, 256, User data
|
||||
KEY0, EFUSE_BLK4, 0, 256, Key0 or user data
|
||||
KEY1, EFUSE_BLK5, 0, 256, Key1 or user data
|
||||
|
Can't render this file because it contains an unexpected character in line 7 and column 87.
|
@ -17,7 +17,7 @@ extern "C" {
|
||||
#endif
|
||||
|
||||
|
||||
// md5_digest_table 2c7ba2aa68a2748d3de9a5d1fed59b9f
|
||||
// md5_digest_table 96cd6235ddc0947b4a296add3f942acb
|
||||
// This file was generated from the file esp_efuse_table.csv. DO NOT CHANGE THIS FILE MANUALLY.
|
||||
// If you want to change some fields, you need to change esp_efuse_table.csv file
|
||||
// then run `efuse_common_table` or `efuse_custom_table` command it will generate this file.
|
||||
@ -115,7 +115,17 @@ extern const esp_efuse_desc_t* ESP_EFUSE_SPI_PAD_CONFIG_D4[];
|
||||
extern const esp_efuse_desc_t* ESP_EFUSE_SPI_PAD_CONFIG_D5[];
|
||||
extern const esp_efuse_desc_t* ESP_EFUSE_SPI_PAD_CONFIG_D6[];
|
||||
extern const esp_efuse_desc_t* ESP_EFUSE_SPI_PAD_CONFIG_D7[];
|
||||
extern const esp_efuse_desc_t* ESP_EFUSE_SYS_DATA_PART1[];
|
||||
extern const esp_efuse_desc_t* ESP_EFUSE_BLOCK2_VERSION[];
|
||||
extern const esp_efuse_desc_t* ESP_EFUSE_TEMP_CALIB[];
|
||||
extern const esp_efuse_desc_t* ESP_EFUSE_OCODE[];
|
||||
extern const esp_efuse_desc_t* ESP_EFUSE_ADC1_INIT_CODE_ATTEN0[];
|
||||
extern const esp_efuse_desc_t* ESP_EFUSE_ADC1_INIT_CODE_ATTEN1[];
|
||||
extern const esp_efuse_desc_t* ESP_EFUSE_ADC1_INIT_CODE_ATTEN2[];
|
||||
extern const esp_efuse_desc_t* ESP_EFUSE_ADC1_INIT_CODE_ATTEN3[];
|
||||
extern const esp_efuse_desc_t* ESP_EFUSE_ADC1_CAL_VOL_ATTEN0[];
|
||||
extern const esp_efuse_desc_t* ESP_EFUSE_ADC1_CAL_VOL_ATTEN1[];
|
||||
extern const esp_efuse_desc_t* ESP_EFUSE_ADC1_CAL_VOL_ATTEN2[];
|
||||
extern const esp_efuse_desc_t* ESP_EFUSE_ADC1_CAL_VOL_ATTEN3[];
|
||||
extern const esp_efuse_desc_t* ESP_EFUSE_USER_DATA[];
|
||||
extern const esp_efuse_desc_t* ESP_EFUSE_KEY0[];
|
||||
extern const esp_efuse_desc_t* ESP_EFUSE_KEY1[];
|
||||
|
53
components/efuse/include/esp32c3/esp_efuse_rtc_calib.h
Normal file
53
components/efuse/include/esp32c3/esp_efuse_rtc_calib.h
Normal file
@ -0,0 +1,53 @@
|
||||
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at",
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License
|
||||
|
||||
#include <esp_types.h>
|
||||
#include <esp_err.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @brief Get the RTC calibration efuse version
|
||||
*
|
||||
* @return Version of the stored efuse
|
||||
*/
|
||||
int esp_efuse_rtc_calib_get_ver(void);
|
||||
|
||||
/**
|
||||
* @brief Get the init code in the efuse, for the corresponding attenuation.
|
||||
*
|
||||
* @param version Version of the stored efuse
|
||||
* @param atten Attenuation of the init code
|
||||
* @return The init code stored in efuse
|
||||
*/
|
||||
uint16_t esp_efuse_rtc_calib_get_init_code(int version, int atten);
|
||||
|
||||
/**
|
||||
* @brief Get the calibration digits stored in the efuse, and the corresponding voltage.
|
||||
*
|
||||
* @param version Version of the stored efuse
|
||||
* @param atten Attenuation to use
|
||||
* @param out_digi Output buffer of the digits
|
||||
* @param out_vol_mv Output of the voltage, in mV
|
||||
* @return
|
||||
* - ESP_ERR_INVALID_ARG: If efuse version or attenuation is invalid
|
||||
* - ESP_OK: if success
|
||||
*/
|
||||
esp_err_t esp_efuse_rtc_calib_get_cal_voltage(int version, int atten, uint32_t* out_digi, uint32_t* out_vol_mv);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
84
components/efuse/src/esp32c3/esp_efuse_rtc_calib.c
Normal file
84
components/efuse/src/esp32c3/esp_efuse_rtc_calib.c
Normal file
@ -0,0 +1,84 @@
|
||||
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <esp_bit_defs.h>
|
||||
#include "esp_efuse.h"
|
||||
#include "esp_efuse_table.h"
|
||||
|
||||
int esp_efuse_rtc_calib_get_ver(void)
|
||||
{
|
||||
uint32_t result = 0;
|
||||
esp_efuse_read_field_blob(ESP_EFUSE_BLOCK2_VERSION, &result, 3);
|
||||
return result;
|
||||
}
|
||||
|
||||
uint16_t esp_efuse_rtc_calib_get_init_code(int version, int atten)
|
||||
{
|
||||
assert(version == 1);
|
||||
const esp_efuse_desc_t** init_code_efuse;
|
||||
assert(atten < 4);
|
||||
if (atten == 0) {
|
||||
init_code_efuse = ESP_EFUSE_ADC1_INIT_CODE_ATTEN0;
|
||||
} else if (atten == 1) {
|
||||
init_code_efuse = ESP_EFUSE_ADC1_INIT_CODE_ATTEN1;
|
||||
} else if (atten == 2) {
|
||||
init_code_efuse = ESP_EFUSE_ADC1_INIT_CODE_ATTEN2;
|
||||
} else {
|
||||
init_code_efuse = ESP_EFUSE_ADC1_INIT_CODE_ATTEN3;
|
||||
}
|
||||
|
||||
int init_code_size = esp_efuse_get_field_size(init_code_efuse);
|
||||
assert(init_code_size == 10);
|
||||
|
||||
uint32_t init_code = 0;
|
||||
esp_err_t err = esp_efuse_read_field_blob(init_code_efuse, &init_code, init_code_size);
|
||||
assert(err == ESP_OK);
|
||||
return init_code + 1000; // version 1 logic
|
||||
}
|
||||
|
||||
esp_err_t esp_efuse_rtc_calib_get_cal_voltage(int version, int atten, uint32_t* out_digi, uint32_t* out_vol_mv)
|
||||
{
|
||||
const esp_efuse_desc_t** cal_vol_efuse;
|
||||
uint32_t calib_vol_expected_mv;
|
||||
if (version != 1) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
if (atten >= 4) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
if (atten == 0) {
|
||||
cal_vol_efuse = ESP_EFUSE_ADC1_CAL_VOL_ATTEN0;
|
||||
calib_vol_expected_mv = 400;
|
||||
} else if (atten == 1) {
|
||||
cal_vol_efuse = ESP_EFUSE_ADC1_CAL_VOL_ATTEN1;
|
||||
calib_vol_expected_mv = 550;
|
||||
} else if (atten == 2) {
|
||||
cal_vol_efuse = ESP_EFUSE_ADC1_CAL_VOL_ATTEN2;
|
||||
calib_vol_expected_mv = 750;
|
||||
} else {
|
||||
cal_vol_efuse = ESP_EFUSE_ADC1_CAL_VOL_ATTEN3;
|
||||
calib_vol_expected_mv = 1370;
|
||||
}
|
||||
|
||||
int cal_vol_size = esp_efuse_get_field_size(cal_vol_efuse);
|
||||
assert(cal_vol_size == 10);
|
||||
|
||||
uint32_t cal_vol = 0;
|
||||
esp_err_t err = esp_efuse_read_field_blob(cal_vol_efuse, &cal_vol, cal_vol_size) & 0x3FF;
|
||||
assert(err == ESP_OK);
|
||||
|
||||
*out_digi = 2000 + ((cal_vol & BIT(9))? -(cal_vol & ~BIT9): cal_vol);
|
||||
*out_vol_mv = calib_vol_expected_mv;
|
||||
return ESP_OK;
|
||||
}
|
@ -68,7 +68,7 @@ esp_err_t esp_efuse_utility_process(const esp_efuse_desc_t* field[], void* ptr,
|
||||
if ((bits_counter + num_bits) > req_size) { // Limits the length of the field.
|
||||
num_bits = req_size - bits_counter;
|
||||
}
|
||||
ESP_EARLY_LOGD(TAG, "In EFUSE_BLK%d__DATA%d_REG is used %d bits starting with %d bit",
|
||||
ESP_LOGD(TAG, "In EFUSE_BLK%d__DATA%d_REG is used %d bits starting with %d bit",
|
||||
(int)field[i]->efuse_block, num_reg, num_bits, start_bit);
|
||||
err = func_proc(num_reg, field[i]->efuse_block, start_bit, num_bits, ptr, &bits_counter);
|
||||
++i_reg;
|
||||
|
@ -7,7 +7,6 @@ PROVIDE ( GPIO = 0x60004000 );
|
||||
PROVIDE ( SIGMADELTA = 0x60004f00 );
|
||||
PROVIDE ( RTCCNTL = 0x60008000 );
|
||||
PROVIDE ( RTCIO = 0x60008400 );
|
||||
PROVIDE ( SENS = 0x60008800 );
|
||||
PROVIDE ( HINF = 0x6000B000 );
|
||||
PROVIDE ( I2S1 = 0x6002d000 );
|
||||
PROVIDE ( I2C0 = 0x60013000 );
|
||||
|
@ -102,7 +102,10 @@ void IRAM_ATTR esp_restart_noos(void)
|
||||
SET_PERI_REG_MASK(SYSTEM_PERIP_RST_EN0_REG,
|
||||
SYSTEM_TIMERS_RST | SYSTEM_SPI01_RST | SYSTEM_UART_RST);
|
||||
REG_WRITE(SYSTEM_PERIP_RST_EN0_REG, 0);
|
||||
// Reset dma
|
||||
SET_PERI_REG_MASK(SYSTEM_PERIP_RST_EN1_REG, SYSTEM_DMA_RST);
|
||||
REG_WRITE(SYSTEM_PERIP_RST_EN1_REG, 0);
|
||||
|
||||
// Set CPU back to XTAL source, no PLL, same as hard reset
|
||||
#if !CONFIG_IDF_ENV_FPGA
|
||||
rtc_clk_cpu_freq_set_xtal();
|
||||
|
@ -101,6 +101,13 @@ void IRAM_ATTR esp_restart_noos(void)
|
||||
SYSTEM_TIMERS_RST | SYSTEM_SPI01_RST | SYSTEM_UART_RST);
|
||||
REG_WRITE(SYSTEM_PERIP_RST_EN0_REG, 0);
|
||||
|
||||
// Reset dma
|
||||
SET_PERI_REG_MASK(SYSTEM_PERIP_RST_EN1_REG, SYSTEM_DMA_RST);
|
||||
REG_WRITE(SYSTEM_PERIP_RST_EN1_REG, 0);
|
||||
|
||||
SET_PERI_REG_MASK(SYSTEM_EDMA_CTRL_REG, SYSTEM_EDMA_RESET);
|
||||
CLEAR_PERI_REG_MASK(SYSTEM_EDMA_CTRL_REG, SYSTEM_EDMA_RESET);
|
||||
|
||||
// Set CPU back to XTAL source, no PLL, same as hard reset
|
||||
#if !CONFIG_IDF_ENV_FPGA
|
||||
rtc_clk_cpu_freq_set_xtal();
|
||||
|
@ -10,4 +10,8 @@ elseif(${target} STREQUAL "esp32s2")
|
||||
INCLUDE_DIRS "include"
|
||||
REQUIRES driver efuse)
|
||||
|
||||
elseif(${target} STREQUAL "esp32c3")
|
||||
idf_component_register(SRCS "esp_adc_cal_esp32c3.c"
|
||||
INCLUDE_DIRS "include"
|
||||
REQUIRES driver efuse)
|
||||
endif()
|
||||
|
@ -3,4 +3,4 @@
|
||||
#
|
||||
|
||||
COMPONENT_ADD_INCLUDEDIRS := include
|
||||
COMPONENT_OBJEXCLUDE += esp_adc_cal_esp32s2.o
|
||||
COMPONENT_OBJEXCLUDE += esp_adc_cal_esp32s2.o esp_adc_cal_esp32c3.o
|
||||
|
170
components/esp_adc_cal/esp_adc_cal_esp32c3.c
Normal file
170
components/esp_adc_cal/esp_adc_cal_esp32c3.c
Normal file
@ -0,0 +1,170 @@
|
||||
// Copyright 2019-2020 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#include <string.h>
|
||||
#include "esp_types.h"
|
||||
#include "esp_err.h"
|
||||
#include "esp_log.h"
|
||||
#include "driver/adc.h"
|
||||
#include "hal/adc_ll.h"
|
||||
#include "esp32c3/esp_efuse_rtc_calib.h"
|
||||
#include "esp_adc_cal.h"
|
||||
|
||||
|
||||
#define ADC_CALIB_CHECK(cond, err_msg, ret) do {\
|
||||
if (!(cond)) { \
|
||||
ESP_LOGE(LOG_TAG, err_msg); \
|
||||
return (ret); \
|
||||
} \
|
||||
} while(0)
|
||||
|
||||
const static char LOG_TAG[] = "adc_calib";
|
||||
|
||||
|
||||
/* ------------------------ Characterization Constants ---------------------- */
|
||||
|
||||
// coeff_a and coeff_b are actually floats
|
||||
// they are scaled to put them into uint32_t so that the headers do not have to be changed
|
||||
static const int coeff_a_scaling = 65536;
|
||||
static const int coeff_b_scaling = 1024;
|
||||
/* -------------------- Characterization Helper Data Types ------------------ */
|
||||
typedef struct {
|
||||
uint32_t voltage;
|
||||
uint32_t digi;
|
||||
} adc_calib_data_ver1;
|
||||
|
||||
typedef struct {
|
||||
char version_num;
|
||||
adc_unit_t adc_num;
|
||||
adc_atten_t atten_level;
|
||||
union {
|
||||
adc_calib_data_ver1 ver1;
|
||||
} efuse_data;
|
||||
} adc_calib_parsed_info;
|
||||
|
||||
static esp_err_t prepare_calib_data_for(int version_num, adc_unit_t adc_num, adc_atten_t atten, adc_calib_parsed_info *parsed_data_storage)
|
||||
{
|
||||
assert(version_num == 1);
|
||||
esp_err_t ret;
|
||||
|
||||
parsed_data_storage->version_num = version_num;
|
||||
parsed_data_storage->adc_num = adc_num;
|
||||
parsed_data_storage->atten_level = atten;
|
||||
// V1 we don't have calibration data for ADC2, using the efuse data of ADC1
|
||||
uint32_t voltage, digi;
|
||||
ret = esp_efuse_rtc_calib_get_cal_voltage(version_num, atten, &digi, &voltage);
|
||||
if (ret != ESP_OK) {
|
||||
return ret;
|
||||
}
|
||||
parsed_data_storage->efuse_data.ver1.voltage = voltage;
|
||||
parsed_data_storage->efuse_data.ver1.digi = digi;
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* ----------------------- Characterization Functions ----------------------- */
|
||||
/*
|
||||
* Estimate the (assumed) linear relationship btwn the measured raw value and the voltage
|
||||
* with the previously done measurement when the chip was manufactured.
|
||||
*/
|
||||
static void calculate_characterization_coefficients(const adc_calib_parsed_info *parsed_data, esp_adc_cal_characteristics_t *chars)
|
||||
{
|
||||
ESP_LOGD(LOG_TAG, "Calib V1, Cal Voltage = %d, Digi out = %d\n", parsed_data->efuse_data.ver1.voltage, parsed_data->efuse_data.ver1.digi);
|
||||
|
||||
chars->coeff_a = coeff_a_scaling * parsed_data->efuse_data.ver1.voltage / parsed_data->efuse_data.ver1.digi;
|
||||
chars->coeff_b = 0;
|
||||
}
|
||||
|
||||
/* ------------------------- Public API ------------------------------------- */
|
||||
esp_err_t esp_adc_cal_check_efuse(esp_adc_cal_value_t source)
|
||||
{
|
||||
if (source != ESP_ADC_CAL_VAL_EFUSE_TP) {
|
||||
return ESP_ERR_NOT_SUPPORTED;
|
||||
}
|
||||
uint8_t adc_encoding_version = esp_efuse_rtc_calib_get_ver();
|
||||
if (adc_encoding_version != 1) {
|
||||
// current version only accepts encoding ver 1.
|
||||
return ESP_ERR_INVALID_VERSION;
|
||||
}
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_adc_cal_value_t esp_adc_cal_characterize(adc_unit_t adc_num,
|
||||
adc_atten_t atten,
|
||||
adc_bits_width_t bit_width,
|
||||
uint32_t default_vref,
|
||||
esp_adc_cal_characteristics_t *chars)
|
||||
{
|
||||
esp_err_t ret;
|
||||
adc_calib_parsed_info efuse_parsed_data = {0};
|
||||
// Check parameters
|
||||
ADC_CALIB_CHECK(adc_num == ADC_UNIT_1 || adc_num == ADC_UNIT_2, "Invalid unit num", ESP_ADC_CAL_VAL_NOT_SUPPORTED);
|
||||
ADC_CALIB_CHECK(chars != NULL, "Invalid characteristic", ESP_ADC_CAL_VAL_NOT_SUPPORTED);
|
||||
ADC_CALIB_CHECK(bit_width == ADC_WIDTH_BIT_12, "Invalid bit_width", ESP_ADC_CAL_VAL_NOT_SUPPORTED);
|
||||
ADC_CALIB_CHECK(atten < 4, "Invalid attenuation", ESP_ADC_CAL_VAL_NOT_SUPPORTED);
|
||||
|
||||
int version_num = esp_efuse_rtc_calib_get_ver();
|
||||
ADC_CALIB_CHECK(version_num == 1, "No calibration efuse burnt", ESP_ADC_CAL_VAL_NOT_SUPPORTED);
|
||||
|
||||
memset(chars, 0, sizeof(esp_adc_cal_characteristics_t));
|
||||
|
||||
// make sure adc is calibrated.
|
||||
ret = prepare_calib_data_for(version_num, adc_num, atten, &efuse_parsed_data);
|
||||
if (ret != ESP_OK) {
|
||||
abort();
|
||||
}
|
||||
|
||||
calculate_characterization_coefficients(&efuse_parsed_data, chars);
|
||||
ESP_LOGD(LOG_TAG, "adc%d (atten leven %d) calibration done: A:%d B:%d\n", adc_num, atten, chars->coeff_a, chars->coeff_b);
|
||||
|
||||
// Initialize remaining fields
|
||||
chars->adc_num = adc_num;
|
||||
chars->atten = atten;
|
||||
chars->bit_width = bit_width;
|
||||
|
||||
// in esp32c3 we only use the two point method to calibrate the adc.
|
||||
return ESP_ADC_CAL_VAL_EFUSE_TP;
|
||||
}
|
||||
|
||||
uint32_t esp_adc_cal_raw_to_voltage(uint32_t adc_reading, const esp_adc_cal_characteristics_t *chars)
|
||||
{
|
||||
ADC_CALIB_CHECK(chars != NULL, "No characteristic input.", ESP_ERR_INVALID_ARG);
|
||||
|
||||
return adc_reading * chars->coeff_a / coeff_a_scaling + chars->coeff_b / coeff_b_scaling;
|
||||
}
|
||||
|
||||
esp_err_t esp_adc_cal_get_voltage(adc_channel_t channel,
|
||||
const esp_adc_cal_characteristics_t *chars,
|
||||
uint32_t *voltage)
|
||||
{
|
||||
// Check parameters
|
||||
ADC_CALIB_CHECK(chars != NULL, "No characteristic input.", ESP_ERR_INVALID_ARG);
|
||||
ADC_CALIB_CHECK(voltage != NULL, "No output buffer.", ESP_ERR_INVALID_ARG);
|
||||
|
||||
int adc_reading;
|
||||
if (chars->adc_num == ADC_UNIT_1) {
|
||||
//Check if channel is valid on ADC1
|
||||
ADC_CALIB_CHECK((adc1_channel_t)channel < ADC1_CHANNEL_MAX, "Invalid channel", ESP_ERR_INVALID_ARG);
|
||||
adc_reading = adc1_get_raw(channel);
|
||||
} else {
|
||||
//Check if channel is valid on ADC2
|
||||
ADC_CALIB_CHECK((adc2_channel_t)channel < ADC2_CHANNEL_MAX, "Invalid channel", ESP_ERR_INVALID_ARG);
|
||||
if (adc2_get_raw(channel, chars->bit_width, &adc_reading) != ESP_OK) {
|
||||
return ESP_ERR_TIMEOUT; //Timed out waiting for ADC2
|
||||
}
|
||||
}
|
||||
*voltage = esp_adc_cal_raw_to_voltage((uint32_t)adc_reading, chars);
|
||||
return ESP_OK;
|
||||
}
|
@ -30,7 +30,8 @@ typedef enum {
|
||||
ESP_ADC_CAL_VAL_EFUSE_VREF = 0, /**< Characterization based on reference voltage stored in eFuse*/
|
||||
ESP_ADC_CAL_VAL_EFUSE_TP = 1, /**< Characterization based on Two Point values stored in eFuse*/
|
||||
ESP_ADC_CAL_VAL_DEFAULT_VREF = 2, /**< Characterization based on default reference voltage*/
|
||||
ESP_ADC_CAL_VAL_MAX
|
||||
ESP_ADC_CAL_VAL_MAX,
|
||||
ESP_ADC_CAL_VAL_NOT_SUPPORTED = ESP_ADC_CAL_VAL_MAX,
|
||||
} esp_adc_cal_value_t;
|
||||
|
||||
/**
|
||||
|
@ -30,6 +30,18 @@
|
||||
#define I2C_ULP_IR_RESETB_MSB 0
|
||||
#define I2C_ULP_IR_RESETB_LSB 0
|
||||
|
||||
#define I2C_ULP_IR_FORCE_XPD_CK 0
|
||||
#define I2C_ULP_IR_FORCE_XPD_CK_MSB 2
|
||||
#define I2C_ULP_IR_FORCE_XPD_CK_LSB 2
|
||||
|
||||
#define I2C_ULP_IR_FORCE_XPD_IPH 0
|
||||
#define I2C_ULP_IR_FORCE_XPD_IPH_MSB 4
|
||||
#define I2C_ULP_IR_FORCE_XPD_IPH_LSB 4
|
||||
|
||||
#define I2C_ULP_IR_DISABLE_WATCHDOG_CK 0
|
||||
#define I2C_ULP_IR_DISABLE_WATCHDOG_CK_MSB 6
|
||||
#define I2C_ULP_IR_DISABLE_WATCHDOG_CK_LSB 6
|
||||
|
||||
#define I2C_ULP_O_DONE_FLAG 3
|
||||
#define I2C_ULP_O_DONE_FLAG_MSB 0
|
||||
#define I2C_ULP_O_DONE_FLAG_LSB 0
|
||||
@ -38,14 +50,10 @@
|
||||
#define I2C_ULP_BG_O_DONE_FLAG_MSB 3
|
||||
#define I2C_ULP_BG_O_DONE_FLAG_LSB 3
|
||||
|
||||
#define I2C_ULP_IR_FORCE_XPD_IPH 0
|
||||
#define I2C_ULP_IR_FORCE_XPD_IPH_MSB 4
|
||||
#define I2C_ULP_IR_FORCE_XPD_IPH_LSB 4
|
||||
#define I2C_ULP_IR_FORCE_CODE 5
|
||||
#define I2C_ULP_IR_FORCE_CODE_MSB 6
|
||||
#define I2C_ULP_IR_FORCE_CODE_LSB 6
|
||||
|
||||
#define I2C_ULP_IR_FORCE_XPD_CK 0
|
||||
#define I2C_ULP_IR_FORCE_XPD_CK_MSB 2
|
||||
#define I2C_ULP_IR_FORCE_XPD_CK_LSB 2
|
||||
|
||||
#define I2C_ULP_IR_DISABLE_WATCHDOG_CK 0
|
||||
#define I2C_ULP_IR_DISABLE_WATCHDOG_CK_MSB 6
|
||||
#define I2C_ULP_IR_DISABLE_WATCHDOG_CK_LSB 6
|
||||
#define I2C_ULP_EXT_CODE 6
|
||||
#define I2C_ULP_EXT_CODE_MSB 7
|
||||
#define I2C_ULP_EXT_CODE_LSB 0
|
||||
|
@ -43,10 +43,16 @@ extern "C" {
|
||||
#define ANA_CONFIG_REG 0x6000E044
|
||||
#define ANA_CONFIG_S (8)
|
||||
#define ANA_CONFIG_M (0x3FF)
|
||||
/* Clear to enable APLL */
|
||||
#define I2C_APLL_M (BIT(14))
|
||||
/* Clear to enable BBPLL */
|
||||
#define I2C_BBPLL_M (BIT(17))
|
||||
|
||||
#define ANA_I2C_SAR_FORCE_PD BIT(18)
|
||||
#define ANA_I2C_BBPLL_M BIT(17) /* Clear to enable BBPLL */
|
||||
#define ANA_I2C_APLL_M BIT(14) /* Clear to enable APLL */
|
||||
|
||||
|
||||
#define ANA_CONFIG2_REG 0x6000E048
|
||||
#define ANA_CONFIG2_M BIT(18)
|
||||
|
||||
#define ANA_I2C_SAR_FORCE_PU BIT(16)
|
||||
|
||||
/* ROM functions which read/write internal control bus */
|
||||
uint8_t rom_i2c_readReg(uint8_t block, uint8_t host_id, uint8_t reg_add);
|
||||
|
@ -24,7 +24,6 @@
|
||||
#include "esp32c3/rom/gpio.h"
|
||||
#include "soc/rtc.h"
|
||||
#include "soc/rtc_cntl_reg.h"
|
||||
#include "soc/sens_reg.h"
|
||||
#include "soc/efuse_reg.h"
|
||||
#include "soc/syscon_reg.h"
|
||||
#include "soc/system_reg.h"
|
||||
|
@ -21,7 +21,6 @@
|
||||
#include "esp32c3/rom/uart.h"
|
||||
#include "soc/rtc.h"
|
||||
#include "soc/rtc_periph.h"
|
||||
#include "soc/sens_periph.h"
|
||||
#include "soc/efuse_periph.h"
|
||||
#include "soc/apb_ctrl_reg.h"
|
||||
#include "hal/cpu_hal.h"
|
||||
@ -56,7 +55,7 @@ void rtc_clk_init(rtc_clk_config_t cfg)
|
||||
|
||||
/* Enable the internal bus used to configure PLLs */
|
||||
SET_PERI_REG_BITS(ANA_CONFIG_REG, ANA_CONFIG_M, ANA_CONFIG_M, ANA_CONFIG_S);
|
||||
CLEAR_PERI_REG_MASK(ANA_CONFIG_REG, I2C_APLL_M | I2C_BBPLL_M);
|
||||
CLEAR_PERI_REG_MASK(ANA_CONFIG_REG, ANA_I2C_APLL_M | ANA_I2C_BBPLL_M);
|
||||
|
||||
rtc_xtal_freq_t xtal_freq = cfg.xtal_freq;
|
||||
esp_rom_uart_tx_wait_idle(0);
|
||||
|
@ -24,9 +24,14 @@
|
||||
#include "soc/system_reg.h"
|
||||
#include "regi2c_ctrl.h"
|
||||
#include "soc_log.h"
|
||||
#include "esp_efuse.h"
|
||||
#include "esp_efuse_table.h"
|
||||
|
||||
static const char *TAG = "rtc_init";
|
||||
|
||||
static void set_ocode_by_efuse(int calib_version);
|
||||
static void calibrate_ocode(void);
|
||||
|
||||
void rtc_init(rtc_config_t cfg)
|
||||
{
|
||||
REGI2C_WRITE_MASK(I2C_DIG_REG, I2C_DIG_REG_XPD_DIG_REG, 0);
|
||||
@ -135,54 +140,13 @@ void rtc_init(rtc_config_t cfg)
|
||||
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_DG_PAD_FORCE_NOISO);
|
||||
}
|
||||
if (cfg.cali_ocode) {
|
||||
/*
|
||||
Bandgap output voltage is not precise when calibrate o-code by hardware sometimes, so need software o-code calibration(must close PLL).
|
||||
Method:
|
||||
1. read current cpu config, save in old_config;
|
||||
2. switch cpu to xtal because PLL will be closed when o-code calibration;
|
||||
3. begin o-code calibration;
|
||||
4. wait o-code calibration done flag(odone_flag & bg_odone_flag) or timeout;
|
||||
5. set cpu to old-config.
|
||||
*/
|
||||
rtc_slow_freq_t slow_clk_freq = rtc_clk_slow_freq_get();
|
||||
rtc_slow_freq_t rtc_slow_freq_x32k = RTC_SLOW_FREQ_32K_XTAL;
|
||||
rtc_slow_freq_t rtc_slow_freq_8MD256 = RTC_SLOW_FREQ_8MD256;
|
||||
rtc_cal_sel_t cal_clk = RTC_CAL_RTC_MUX;
|
||||
if (slow_clk_freq == (rtc_slow_freq_x32k)) {
|
||||
cal_clk = RTC_CAL_32K_XTAL;
|
||||
} else if (slow_clk_freq == rtc_slow_freq_8MD256) {
|
||||
cal_clk = RTC_CAL_8MD256;
|
||||
uint32_t rtc_calib_version = 0;
|
||||
esp_efuse_read_field_blob(ESP_EFUSE_BLOCK2_VERSION, &rtc_calib_version, 3);
|
||||
if (rtc_calib_version == 1) {
|
||||
set_ocode_by_efuse(rtc_calib_version);
|
||||
} else {
|
||||
calibrate_ocode();
|
||||
}
|
||||
|
||||
uint64_t max_delay_time_us = 10000;
|
||||
uint32_t slow_clk_period = rtc_clk_cal(cal_clk, 100);
|
||||
uint64_t max_delay_cycle = rtc_time_us_to_slowclk(max_delay_time_us, slow_clk_period);
|
||||
uint64_t cycle0 = rtc_time_get();
|
||||
uint64_t timeout_cycle = cycle0 + max_delay_cycle;
|
||||
uint64_t cycle1 = 0;
|
||||
|
||||
rtc_cpu_freq_config_t old_config;
|
||||
rtc_clk_cpu_freq_get_config(&old_config);
|
||||
rtc_clk_cpu_freq_set_xtal();
|
||||
|
||||
|
||||
REGI2C_WRITE_MASK(I2C_ULP, I2C_ULP_IR_RESETB, 0);
|
||||
REGI2C_WRITE_MASK(I2C_ULP, I2C_ULP_IR_RESETB, 1);
|
||||
bool odone_flag = 0;
|
||||
bool bg_odone_flag = 0;
|
||||
while (1) {
|
||||
odone_flag = REGI2C_READ_MASK(I2C_ULP, I2C_ULP_O_DONE_FLAG);
|
||||
bg_odone_flag = REGI2C_READ_MASK(I2C_ULP, I2C_ULP_BG_O_DONE_FLAG);
|
||||
cycle1 = rtc_time_get();
|
||||
if (odone_flag && bg_odone_flag) {
|
||||
break;
|
||||
}
|
||||
if (cycle1 >= timeout_cycle) {
|
||||
SOC_LOGW(TAG, "o_code calibration fail\n");
|
||||
break;
|
||||
}
|
||||
}
|
||||
rtc_clk_cpu_freq_set_config(&old_config);
|
||||
}
|
||||
}
|
||||
|
||||
@ -223,3 +187,65 @@ void rtc_vddsdio_set_config(rtc_vddsdio_config_t config)
|
||||
val |= RTC_CNTL_SDIO_PD_EN;
|
||||
REG_WRITE(RTC_CNTL_SDIO_CONF_REG, val);
|
||||
}
|
||||
|
||||
static void set_ocode_by_efuse(int calib_version)
|
||||
{
|
||||
assert(calib_version == 1);
|
||||
// use efuse ocode.
|
||||
uint32_t ocode;
|
||||
esp_err_t err = esp_efuse_read_field_blob(ESP_EFUSE_OCODE, &ocode, 8);
|
||||
assert(err == ESP_OK);
|
||||
REGI2C_WRITE_MASK(I2C_ULP, I2C_ULP_EXT_CODE, ocode);
|
||||
REGI2C_WRITE_MASK(I2C_ULP, I2C_ULP_IR_FORCE_CODE, 1);
|
||||
}
|
||||
|
||||
static void calibrate_ocode(void)
|
||||
{
|
||||
/*
|
||||
Bandgap output voltage is not precise when calibrate o-code by hardware sometimes, so need software o-code calibration (must turn off PLL).
|
||||
Method:
|
||||
1. read current cpu config, save in old_config;
|
||||
2. switch cpu to xtal because PLL will be closed when o-code calibration;
|
||||
3. begin o-code calibration;
|
||||
4. wait o-code calibration done flag(odone_flag & bg_odone_flag) or timeout;
|
||||
5. set cpu to old-config.
|
||||
*/
|
||||
rtc_slow_freq_t slow_clk_freq = rtc_clk_slow_freq_get();
|
||||
rtc_slow_freq_t rtc_slow_freq_x32k = RTC_SLOW_FREQ_32K_XTAL;
|
||||
rtc_slow_freq_t rtc_slow_freq_8MD256 = RTC_SLOW_FREQ_8MD256;
|
||||
rtc_cal_sel_t cal_clk = RTC_CAL_RTC_MUX;
|
||||
if (slow_clk_freq == (rtc_slow_freq_x32k)) {
|
||||
cal_clk = RTC_CAL_32K_XTAL;
|
||||
} else if (slow_clk_freq == rtc_slow_freq_8MD256) {
|
||||
cal_clk = RTC_CAL_8MD256;
|
||||
}
|
||||
|
||||
uint64_t max_delay_time_us = 10000;
|
||||
uint32_t slow_clk_period = rtc_clk_cal(cal_clk, 100);
|
||||
uint64_t max_delay_cycle = rtc_time_us_to_slowclk(max_delay_time_us, slow_clk_period);
|
||||
uint64_t cycle0 = rtc_time_get();
|
||||
uint64_t timeout_cycle = cycle0 + max_delay_cycle;
|
||||
uint64_t cycle1 = 0;
|
||||
|
||||
rtc_cpu_freq_config_t old_config;
|
||||
rtc_clk_cpu_freq_get_config(&old_config);
|
||||
rtc_clk_cpu_freq_set_xtal();
|
||||
|
||||
REGI2C_WRITE_MASK(I2C_ULP, I2C_ULP_IR_RESETB, 0);
|
||||
REGI2C_WRITE_MASK(I2C_ULP, I2C_ULP_IR_RESETB, 1);
|
||||
bool odone_flag = 0;
|
||||
bool bg_odone_flag = 0;
|
||||
while (1) {
|
||||
odone_flag = REGI2C_READ_MASK(I2C_ULP, I2C_ULP_O_DONE_FLAG);
|
||||
bg_odone_flag = REGI2C_READ_MASK(I2C_ULP, I2C_ULP_BG_O_DONE_FLAG);
|
||||
cycle1 = rtc_time_get();
|
||||
if (odone_flag && bg_odone_flag) {
|
||||
break;
|
||||
}
|
||||
if (cycle1 >= timeout_cycle) {
|
||||
SOC_LOGW(TAG, "o_code calibration fail\n");
|
||||
break;
|
||||
}
|
||||
}
|
||||
rtc_clk_cpu_freq_set_config(&old_config);
|
||||
}
|
||||
|
@ -38,9 +38,10 @@
|
||||
#define I2C_ULP_BG_O_DONE_FLAG_MSB 3
|
||||
#define I2C_ULP_BG_O_DONE_FLAG_LSB 3
|
||||
|
||||
#define I2C_ULP_OCODE_ADDR 6
|
||||
#define I2C_ULP_OCODE_ADDR_MSB 7
|
||||
#define I2C_ULP_OCODE_ADDR_LSB 0
|
||||
#define I2C_ULP_IR_FORCE_CODE_ADDR 5
|
||||
#define I2C_ULP_IR_FORCE_CODE_ADDR_MSB 6
|
||||
#define I2C_ULP_IR_FORCE_CODE_ADDR_LSB 6
|
||||
#define I2C_ULP_IR_FORCE_CODE 5
|
||||
#define I2C_ULP_IR_FORCE_CODE_MSB 6
|
||||
#define I2C_ULP_IR_FORCE_CODE_LSB 6
|
||||
|
||||
#define I2C_ULP_EXT_CODE 6
|
||||
#define I2C_ULP_EXT_CODE_MSB 7
|
||||
#define I2C_ULP_EXT_CODE_LSB 0
|
||||
|
@ -28,6 +28,9 @@
|
||||
#include "esp_efuse_table.h"
|
||||
static const char *TAG = "rtc_init";
|
||||
|
||||
static void set_ocode_by_efuse(int calib_version);
|
||||
static void calibrate_ocode(void);
|
||||
|
||||
void rtc_init(rtc_config_t cfg)
|
||||
{
|
||||
CLEAR_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_PVTMON_PU);
|
||||
@ -152,68 +155,9 @@ void rtc_init(rtc_config_t cfg)
|
||||
uint32_t rtc_calib_version = 0;
|
||||
esp_efuse_read_field_blob(ESP_EFUSE_BLOCK2_VERSION, &rtc_calib_version, 32);
|
||||
if (rtc_calib_version == 2) {
|
||||
// use efuse ocode.
|
||||
uint32_t ocode1 = 0;
|
||||
uint32_t ocode2 = 0;
|
||||
uint32_t ocode;
|
||||
esp_efuse_read_block(2, &ocode1, 16*8, 4);
|
||||
esp_efuse_read_block(2, &ocode2, 18*8, 3);
|
||||
ocode = (ocode2 << 4) + ocode1;
|
||||
if (ocode >> 6) {
|
||||
ocode = 93 - (ocode ^ (1 << 6));
|
||||
} else {
|
||||
ocode = 93 + ocode;
|
||||
}
|
||||
REGI2C_WRITE_MASK(I2C_ULP, I2C_ULP_OCODE_ADDR, ocode);
|
||||
REGI2C_WRITE_MASK(I2C_ULP, I2C_ULP_IR_FORCE_CODE_ADDR, 1);
|
||||
set_ocode_by_efuse(rtc_calib_version);
|
||||
} else {
|
||||
/*
|
||||
Bangap output voltage is not precise when calibrate o-code by hardware sometimes, so need software o-code calibration(must close PLL).
|
||||
Method:
|
||||
1. read current cpu config, save in old_config;
|
||||
2. switch cpu to xtal because PLL will be closed when o-code calibration;
|
||||
3. begin o-code calibration;
|
||||
4. wait o-code calibration done flag(odone_flag & bg_odone_flag) or timeout;
|
||||
5. set cpu to old-config.
|
||||
*/
|
||||
rtc_slow_freq_t slow_clk_freq = rtc_clk_slow_freq_get();
|
||||
rtc_slow_freq_t rtc_slow_freq_x32k = RTC_SLOW_FREQ_32K_XTAL;
|
||||
rtc_slow_freq_t rtc_slow_freq_8MD256 = RTC_SLOW_FREQ_8MD256;
|
||||
rtc_cal_sel_t cal_clk = RTC_CAL_RTC_MUX;
|
||||
if (slow_clk_freq == (rtc_slow_freq_x32k)) {
|
||||
cal_clk = RTC_CAL_32K_XTAL;
|
||||
} else if (slow_clk_freq == rtc_slow_freq_8MD256) {
|
||||
cal_clk = RTC_CAL_8MD256;
|
||||
}
|
||||
|
||||
uint64_t max_delay_time_us = 10000;
|
||||
uint32_t slow_clk_period = rtc_clk_cal(cal_clk, 100);
|
||||
uint64_t max_delay_cycle = rtc_time_us_to_slowclk(max_delay_time_us, slow_clk_period);
|
||||
uint64_t cycle0 = rtc_time_get();
|
||||
uint64_t timeout_cycle = cycle0 + max_delay_cycle;
|
||||
uint64_t cycle1 = 0;
|
||||
|
||||
rtc_cpu_freq_config_t old_config;
|
||||
rtc_clk_cpu_freq_get_config(&old_config);
|
||||
rtc_clk_cpu_freq_set_xtal();
|
||||
|
||||
|
||||
REGI2C_WRITE_MASK(I2C_ULP, I2C_ULP_IR_RESETB, 0);
|
||||
REGI2C_WRITE_MASK(I2C_ULP, I2C_ULP_IR_RESETB, 1);
|
||||
bool odone_flag = 0;
|
||||
bool bg_odone_flag = 0;
|
||||
while(1) {
|
||||
odone_flag = REGI2C_READ_MASK(I2C_ULP, I2C_ULP_O_DONE_FLAG);
|
||||
bg_odone_flag = REGI2C_READ_MASK(I2C_ULP, I2C_ULP_BG_O_DONE_FLAG);
|
||||
cycle1 = rtc_time_get();
|
||||
if (odone_flag && bg_odone_flag)
|
||||
break;
|
||||
if (cycle1 >= timeout_cycle) {
|
||||
SOC_LOGW(TAG, "o_code calibration fail");
|
||||
break;
|
||||
}
|
||||
}
|
||||
rtc_clk_cpu_freq_set_config(&old_config);
|
||||
calibrate_ocode();
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -269,3 +213,72 @@ void rtc_vddsdio_set_config(rtc_vddsdio_config_t config)
|
||||
val |= RTC_CNTL_SDIO_PD_EN;
|
||||
REG_WRITE(RTC_CNTL_SDIO_CONF_REG, val);
|
||||
}
|
||||
|
||||
static void set_ocode_by_efuse(int calib_version)
|
||||
{
|
||||
assert(calib_version == 2);
|
||||
// use efuse ocode.
|
||||
uint32_t ocode1 = 0;
|
||||
uint32_t ocode2 = 0;
|
||||
uint32_t ocode;
|
||||
esp_efuse_read_block(2, &ocode1, 16*8, 4);
|
||||
esp_efuse_read_block(2, &ocode2, 18*8, 3);
|
||||
ocode = (ocode2 << 4) + ocode1;
|
||||
if (ocode >> 6) {
|
||||
ocode = 93 - (ocode ^ (1 << 6));
|
||||
} else {
|
||||
ocode = 93 + ocode;
|
||||
}
|
||||
REGI2C_WRITE_MASK(I2C_ULP, I2C_ULP_EXT_CODE, ocode);
|
||||
REGI2C_WRITE_MASK(I2C_ULP, I2C_ULP_IR_FORCE_CODE, 1);
|
||||
}
|
||||
|
||||
static void calibrate_ocode(void)
|
||||
{
|
||||
/*
|
||||
Bandgap output voltage is not precise when calibrate o-code by hardware sometimes, so need software o-code calibration (must turn off PLL).
|
||||
Method:
|
||||
1. read current cpu config, save in old_config;
|
||||
2. switch cpu to xtal because PLL will be closed when o-code calibration;
|
||||
3. begin o-code calibration;
|
||||
4. wait o-code calibration done flag(odone_flag & bg_odone_flag) or timeout;
|
||||
5. set cpu to old-config.
|
||||
*/
|
||||
rtc_slow_freq_t slow_clk_freq = rtc_clk_slow_freq_get();
|
||||
rtc_slow_freq_t rtc_slow_freq_x32k = RTC_SLOW_FREQ_32K_XTAL;
|
||||
rtc_slow_freq_t rtc_slow_freq_8MD256 = RTC_SLOW_FREQ_8MD256;
|
||||
rtc_cal_sel_t cal_clk = RTC_CAL_RTC_MUX;
|
||||
if (slow_clk_freq == (rtc_slow_freq_x32k)) {
|
||||
cal_clk = RTC_CAL_32K_XTAL;
|
||||
} else if (slow_clk_freq == rtc_slow_freq_8MD256) {
|
||||
cal_clk = RTC_CAL_8MD256;
|
||||
}
|
||||
|
||||
uint64_t max_delay_time_us = 10000;
|
||||
uint32_t slow_clk_period = rtc_clk_cal(cal_clk, 100);
|
||||
uint64_t max_delay_cycle = rtc_time_us_to_slowclk(max_delay_time_us, slow_clk_period);
|
||||
uint64_t cycle0 = rtc_time_get();
|
||||
uint64_t timeout_cycle = cycle0 + max_delay_cycle;
|
||||
uint64_t cycle1 = 0;
|
||||
|
||||
rtc_cpu_freq_config_t old_config;
|
||||
rtc_clk_cpu_freq_get_config(&old_config);
|
||||
rtc_clk_cpu_freq_set_xtal();
|
||||
|
||||
REGI2C_WRITE_MASK(I2C_ULP, I2C_ULP_IR_RESETB, 0);
|
||||
REGI2C_WRITE_MASK(I2C_ULP, I2C_ULP_IR_RESETB, 1);
|
||||
bool odone_flag = 0;
|
||||
bool bg_odone_flag = 0;
|
||||
while(1) {
|
||||
odone_flag = REGI2C_READ_MASK(I2C_ULP, I2C_ULP_O_DONE_FLAG);
|
||||
bg_odone_flag = REGI2C_READ_MASK(I2C_ULP, I2C_ULP_BG_O_DONE_FLAG);
|
||||
cycle1 = rtc_time_get();
|
||||
if (odone_flag && bg_odone_flag)
|
||||
break;
|
||||
if (cycle1 >= timeout_cycle) {
|
||||
SOC_LOGW(TAG, "o_code calibration fail");
|
||||
break;
|
||||
}
|
||||
}
|
||||
rtc_clk_cpu_freq_set_config(&old_config);
|
||||
}
|
||||
|
@ -1,9 +1,12 @@
|
||||
#include <stdio.h>
|
||||
#include "unity.h"
|
||||
|
||||
#include "soc/soc_caps.h"
|
||||
#include "soc/rtc.h"
|
||||
#include "soc/rtc_periph.h"
|
||||
#if SOC_ADC_SUPPORT_RTC_CTRL
|
||||
#include "soc/sens_periph.h"
|
||||
#endif
|
||||
#include "soc/gpio_periph.h"
|
||||
#include "hal/gpio_ll.h"
|
||||
#include "driver/rtc_io.h"
|
||||
|
@ -75,6 +75,11 @@ static const char *TAG = "clk";
|
||||
{
|
||||
#if !CONFIG_IDF_ENV_FPGA
|
||||
rtc_config_t cfg = RTC_CONFIG_DEFAULT();
|
||||
RESET_REASON rst_reas;
|
||||
rst_reas = rtc_get_reset_reason(0);
|
||||
if (rst_reas == POWERON_RESET) {
|
||||
cfg.cali_ocode = 1;
|
||||
}
|
||||
rtc_init(cfg);
|
||||
|
||||
assert(rtc_clk_xtal_freq_get() == RTC_XTAL_FREQ_40M);
|
||||
|
@ -30,11 +30,11 @@ if(NOT BOOTLOADER_BUILD)
|
||||
"sha_hal.c"
|
||||
"aes_hal.c"
|
||||
"twai_hal.c"
|
||||
"twai_hal_iram.c")
|
||||
"twai_hal_iram.c"
|
||||
"adc_hal.c")
|
||||
|
||||
if(${target} STREQUAL "esp32")
|
||||
list(APPEND srcs
|
||||
"adc_hal.c"
|
||||
"dac_hal.c"
|
||||
"mcpwm_hal.c"
|
||||
"pcnt_hal.c"
|
||||
@ -52,7 +52,6 @@ if(NOT BOOTLOADER_BUILD)
|
||||
|
||||
if(${target} STREQUAL "esp32s2")
|
||||
list(APPEND srcs
|
||||
"adc_hal.c"
|
||||
"dac_hal.c"
|
||||
"pcnt_hal.c"
|
||||
"spi_flash_hal_gpspi.c"
|
||||
@ -70,7 +69,6 @@ if(NOT BOOTLOADER_BUILD)
|
||||
|
||||
if(${target} STREQUAL "esp32s3")
|
||||
list(APPEND srcs
|
||||
"adc_hal.c"
|
||||
"dac_hal.c"
|
||||
"gdma_hal.c"
|
||||
"pcnt_hal.c"
|
||||
|
@ -15,7 +15,9 @@
|
||||
#include "hal/adc_hal.h"
|
||||
#include "hal/adc_hal_conf.h"
|
||||
|
||||
|
||||
#if CONFIG_IDF_TARGET_ESP32C3
|
||||
#include "soc/gdma_channel.h"
|
||||
#include "soc/soc.h"
|
||||
#include "esp_rom_sys.h"
|
||||
#endif
|
||||
@ -37,6 +39,7 @@ void adc_hal_deinit(void)
|
||||
adc_ll_set_power_manage(ADC_POWER_SW_OFF);
|
||||
}
|
||||
|
||||
#ifndef CONFIG_IDF_TARGET_ESP32C3
|
||||
int adc_hal_convert(adc_ll_num_t adc_n, int channel, int *value)
|
||||
{
|
||||
adc_ll_rtc_enable_channel(adc_n, channel);
|
||||
@ -45,6 +48,7 @@ int adc_hal_convert(adc_ll_num_t adc_n, int channel, int *value)
|
||||
*value = adc_ll_rtc_get_convert_value(adc_n);
|
||||
return (int)adc_ll_rtc_analysis_raw_data(adc_n, (uint16_t)(*value));
|
||||
}
|
||||
#endif
|
||||
|
||||
#if CONFIG_IDF_TARGET_ESP32C3
|
||||
//This feature is currently supported on ESP32C3, will be supported on other chips soon
|
||||
@ -108,6 +112,8 @@ void adc_hal_digi_start(adc_dma_hal_context_t *adc_dma_ctx, adc_dma_hal_config_t
|
||||
adc_ll_digi_dma_enable();
|
||||
//enable sar adc timer
|
||||
adc_ll_digi_trigger_enable();
|
||||
//reset the adc state
|
||||
adc_ll_digi_reset();
|
||||
}
|
||||
|
||||
void adc_hal_digi_stop(adc_dma_hal_context_t *adc_dma_ctx, adc_dma_hal_config_t *dma_config)
|
||||
@ -139,7 +145,7 @@ void adc_hal_onetime_start(adc_digi_config_t *adc_digi_config)
|
||||
* This limitation will be removed in hardware future versions.
|
||||
*
|
||||
*/
|
||||
uint32_t digi_clk = APB_CLK_FREQ / (adc_digi_config->dig_clk.div_num + adc_digi_config->dig_clk.div_a / adc_digi_config->dig_clk.div_b + 1);
|
||||
uint32_t digi_clk = APB_CLK_FREQ / (ADC_LL_CLKM_DIV_NUM_DEFAULT + ADC_LL_CLKM_DIV_A_DEFAULT / ADC_LL_CLKM_DIV_B_DEFAULT + 1);
|
||||
//Convert frequency to time (us). Since decimals are removed by this division operation. Add 1 here in case of the fact that delay is not enough.
|
||||
uint32_t delay = (1000 * 1000) / digi_clk + 1;
|
||||
//3 ADC digital controller clock cycle
|
||||
@ -183,14 +189,17 @@ void adc_hal_set_onetime_atten(adc_atten_t atten)
|
||||
adc_ll_onetime_set_atten(atten);
|
||||
}
|
||||
|
||||
uint32_t adc_hal_adc1_read(void)
|
||||
esp_err_t adc_hal_single_read(adc_ll_num_t unit, int *out_raw)
|
||||
{
|
||||
return adc_ll_adc1_read();
|
||||
}
|
||||
|
||||
uint32_t adc_hal_adc2_read(void)
|
||||
{
|
||||
return adc_ll_adc2_read();
|
||||
if (unit == ADC_NUM_1) {
|
||||
*out_raw = adc_ll_adc1_read();
|
||||
} else if (unit == ADC_NUM_2) {
|
||||
*out_raw = adc_ll_adc2_read();
|
||||
if (adc_ll_analysis_raw_data(unit, *out_raw)) {
|
||||
return ESP_ERR_INVALID_STATE;
|
||||
}
|
||||
}
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
//--------------------INTR-------------------------------
|
||||
|
@ -14,8 +14,20 @@
|
||||
|
||||
// The HAL layer for ADC (ESP32-C3 specific part)
|
||||
|
||||
#include <string.h>
|
||||
#include "soc/soc_caps.h"
|
||||
#include "hal/adc_hal.h"
|
||||
#include "hal/adc_types.h"
|
||||
#include "soc/soc.h"
|
||||
|
||||
//Currently we don't have context for the ADC HAL. So HAL variables are temporarily put here. But
|
||||
//please don't follow this code. Create a context for your own HAL!
|
||||
|
||||
static bool s_filter_enabled[SOC_ADC_DIGI_FILTER_NUM] = {};
|
||||
static adc_digi_filter_t s_filter[SOC_ADC_DIGI_FILTER_NUM] = {};
|
||||
|
||||
static bool s_monitor_enabled[SOC_ADC_DIGI_MONITOR_NUM] = {};
|
||||
static adc_digi_monitor_t s_monitor_config[SOC_ADC_DIGI_MONITOR_NUM] = {};
|
||||
|
||||
/*---------------------------------------------------------------
|
||||
Digital controller setting
|
||||
@ -33,14 +45,6 @@ void adc_hal_digi_deinit(void)
|
||||
adc_hal_deinit();
|
||||
}
|
||||
|
||||
uint32_t adc_hal_calibration(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd, bool force_cal);
|
||||
|
||||
static inline void adc_set_init_code(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten)
|
||||
{
|
||||
uint32_t cal_val = adc_hal_calibration(adc_n, channel, atten, true, false);
|
||||
adc_hal_set_calibration_param(adc_n, cal_val);
|
||||
}
|
||||
|
||||
void adc_hal_digi_controller_config(const adc_digi_config_t *cfg)
|
||||
{
|
||||
//only one pattern table is supported on C3, but LL still needs one argument.
|
||||
@ -51,9 +55,8 @@ void adc_hal_digi_controller_config(const adc_digi_config_t *cfg)
|
||||
if (cfg->adc_pattern_len) {
|
||||
adc_ll_digi_clear_pattern_table(pattern_both);
|
||||
adc_ll_digi_set_pattern_table_len(pattern_both, cfg->adc_pattern_len);
|
||||
for (int i = 0; i < cfg->adc_pattern_len; i++) {
|
||||
for (uint32_t i = 0; i < cfg->adc_pattern_len; i++) {
|
||||
adc_ll_digi_set_pattern_table(pattern_both, i, cfg->adc_pattern[i]);
|
||||
adc_set_init_code(pattern_both, cfg->adc_pattern[i].channel, cfg->adc_pattern[i].atten);
|
||||
}
|
||||
}
|
||||
|
||||
@ -65,24 +68,17 @@ void adc_hal_digi_controller_config(const adc_digi_config_t *cfg)
|
||||
adc_ll_digi_convert_limit_disable();
|
||||
}
|
||||
|
||||
adc_ll_digi_set_trigger_interval(cfg->interval);
|
||||
adc_hal_digi_clk_config(&cfg->dig_clk);
|
||||
//clock
|
||||
uint32_t interval = APB_CLK_FREQ / (ADC_LL_CLKM_DIV_NUM_DEFAULT + ADC_LL_CLKM_DIV_A_DEFAULT / ADC_LL_CLKM_DIV_B_DEFAULT + 1) / 2 / cfg->sample_freq_hz;
|
||||
adc_ll_digi_set_trigger_interval(interval);
|
||||
adc_hal_digi_clk_config();
|
||||
}
|
||||
|
||||
/**
|
||||
* Set ADC digital controller clock division factor. The clock divided from `APLL` or `APB` clock.
|
||||
* Enable clock and select clock source for ADC digital controller.
|
||||
* Expression: controller_clk = APLL/APB * (div_num + div_b / div_a).
|
||||
*
|
||||
* @note ADC and DAC digital controller share the same frequency divider.
|
||||
* Please set a reasonable frequency division factor to meet the sampling frequency of the ADC and the output frequency of the DAC.
|
||||
*
|
||||
* @param clk Refer to ``adc_digi_clk_t``.
|
||||
*/
|
||||
void adc_hal_digi_clk_config(const adc_digi_clk_t *clk)
|
||||
void adc_hal_digi_clk_config(void)
|
||||
{
|
||||
adc_ll_digi_controller_clk_div(clk->div_num, clk->div_b, clk->div_a);
|
||||
adc_ll_digi_controller_clk_enable(clk->use_apll);
|
||||
//Here we set the clock divider factor to make the digital clock to 5M Hz
|
||||
adc_ll_digi_controller_clk_div(ADC_LL_CLKM_DIV_NUM_DEFAULT, ADC_LL_CLKM_DIV_B_DEFAULT, ADC_LL_CLKM_DIV_A_DEFAULT);
|
||||
adc_ll_digi_controller_clk_enable(0);
|
||||
}
|
||||
|
||||
/**
|
||||
@ -103,17 +99,65 @@ void adc_hal_digi_disable(void)
|
||||
adc_ll_digi_dma_disable();
|
||||
}
|
||||
|
||||
/**
|
||||
* Config monitor of adc digital controller.
|
||||
*
|
||||
* @note The monitor will monitor all the enabled channel data of the each ADC unit at the same time.
|
||||
* @param adc_n ADC unit.
|
||||
* @param config Refer to `adc_digi_monitor_t`.
|
||||
*/
|
||||
void adc_hal_digi_monitor_config(adc_ll_num_t adc_n, adc_digi_monitor_t *config)
|
||||
static void filter_update(adc_digi_filter_idx_t idx)
|
||||
{
|
||||
adc_ll_digi_monitor_set_mode(adc_n, config->mode);
|
||||
adc_ll_digi_monitor_set_thres(adc_n, config->threshold);
|
||||
//ESP32-C3 has no enable bit, the filter will be enabled when the filter channel is configured
|
||||
if (s_filter_enabled[idx]) {
|
||||
adc_ll_digi_filter_set_factor(idx, &s_filter[idx]);
|
||||
} else {
|
||||
adc_ll_digi_filter_disable(idx);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Set adc digital controller filter factor.
|
||||
*
|
||||
* @param idx ADC filter unit.
|
||||
* @param filter Filter config. Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64).
|
||||
*/
|
||||
void adc_hal_digi_filter_set_factor(adc_digi_filter_idx_t idx, adc_digi_filter_t *filter)
|
||||
{
|
||||
s_filter[idx] = *filter;
|
||||
filter_update(idx);
|
||||
}
|
||||
|
||||
/**
|
||||
* Get adc digital controller filter factor.
|
||||
*
|
||||
* @param adc_n ADC unit.
|
||||
* @param factor Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64).
|
||||
*/
|
||||
void adc_hal_digi_filter_get_factor(adc_digi_filter_idx_t idx, adc_digi_filter_t *filter)
|
||||
{
|
||||
*filter = s_filter[idx];
|
||||
}
|
||||
|
||||
void adc_hal_digi_filter_enable(adc_digi_filter_idx_t filter_idx, bool enable)
|
||||
{
|
||||
s_filter_enabled[filter_idx] = enable;
|
||||
filter_update(filter_idx);
|
||||
}
|
||||
|
||||
static void update_monitor(adc_digi_monitor_idx_t idx)
|
||||
{
|
||||
//ESP32-C3 has no enable bit, the monitor will be enabled when the monitor channel is configured
|
||||
if (s_monitor_enabled[idx]) {
|
||||
adc_ll_digi_monitor_set_mode(idx, &s_monitor_config[idx]);
|
||||
} else {
|
||||
adc_ll_digi_monitor_disable(idx);
|
||||
}
|
||||
}
|
||||
|
||||
void adc_hal_digi_monitor_config(adc_digi_monitor_idx_t idx, adc_digi_monitor_t *config)
|
||||
{
|
||||
s_monitor_config[idx] = *config;
|
||||
update_monitor(idx);
|
||||
}
|
||||
|
||||
void adc_hal_digi_monitor_enable(adc_digi_monitor_idx_t mon_idx, bool enable)
|
||||
{
|
||||
s_monitor_enabled[mon_idx] = enable;
|
||||
update_monitor(mon_idx);
|
||||
}
|
||||
|
||||
/*---------------------------------------------------------------
|
||||
@ -136,98 +180,3 @@ void adc_hal_arbiter_config(adc_arbiter_t *config)
|
||||
adc_ll_set_arbiter_work_mode(config->mode);
|
||||
adc_ll_set_arbiter_priority(config->rtc_pri, config->dig_pri, config->pwdet_pri);
|
||||
}
|
||||
|
||||
/*---------------------------------------------------------------
|
||||
ADC calibration setting
|
||||
---------------------------------------------------------------*/
|
||||
|
||||
#define ADC_HAL_CAL_OFFSET_RANGE (4096)
|
||||
#define ADC_HAL_CAL_TIMES (10)
|
||||
|
||||
static uint16_t s_adc_cali_param[ADC_NUM_MAX][ADC_ATTEN_MAX] = { {0}, {0} };
|
||||
|
||||
static uint32_t adc_hal_read_self_cal(adc_ll_num_t adc_n, int channel)
|
||||
{
|
||||
adc_ll_rtc_start_convert(adc_n, channel);
|
||||
while (adc_ll_rtc_convert_is_done(adc_n) != true);
|
||||
return (uint32_t)adc_ll_rtc_get_convert_value(adc_n);
|
||||
}
|
||||
|
||||
uint32_t adc_hal_calibration(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd, bool force_cal)
|
||||
{
|
||||
if (!force_cal) {
|
||||
if (s_adc_cali_param[adc_n][atten]) {
|
||||
return (uint32_t)s_adc_cali_param[adc_n][atten];
|
||||
}
|
||||
}
|
||||
|
||||
uint32_t code_list[ADC_HAL_CAL_TIMES] = {0};
|
||||
uint32_t code_sum = 0;
|
||||
uint32_t code_h = 0;
|
||||
uint32_t code_l = 0;
|
||||
uint32_t chk_code = 0;
|
||||
uint32_t dout = 0;
|
||||
|
||||
adc_hal_set_power_manage(ADC_POWER_SW_ON);
|
||||
if (adc_n == ADC_NUM_2) {
|
||||
adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
|
||||
adc_hal_arbiter_config(&config);
|
||||
}
|
||||
adc_hal_set_controller(adc_n, ADC_CTRL_RTC); //Set controller
|
||||
|
||||
// adc_hal_arbiter_config(adc_arbiter_t *config)
|
||||
adc_ll_calibration_prepare(adc_n, channel, internal_gnd);
|
||||
|
||||
/* Enable/disable internal connect GND (for calibration). */
|
||||
if (internal_gnd) {
|
||||
adc_ll_rtc_disable_channel(adc_n, channel);
|
||||
adc_ll_set_atten(adc_n, 0, atten); // Note: when disable all channel, HW auto select channel0 atten param.
|
||||
} else {
|
||||
adc_ll_rtc_enable_channel(adc_n, channel);
|
||||
adc_ll_set_atten(adc_n, channel, atten);
|
||||
}
|
||||
|
||||
for (uint8_t rpt = 0 ; rpt < ADC_HAL_CAL_TIMES ; rpt ++) {
|
||||
code_h = ADC_HAL_CAL_OFFSET_RANGE;
|
||||
code_l = 0;
|
||||
chk_code = (code_h + code_l) / 2;
|
||||
adc_ll_set_calibration_param(adc_n, chk_code);
|
||||
dout = adc_hal_read_self_cal(adc_n, channel);
|
||||
while (code_h - code_l > 1) {
|
||||
if (dout == 0) {
|
||||
code_h = chk_code;
|
||||
} else {
|
||||
code_l = chk_code;
|
||||
}
|
||||
chk_code = (code_h + code_l) / 2;
|
||||
adc_ll_set_calibration_param(adc_n, chk_code);
|
||||
dout = adc_hal_read_self_cal(adc_n, channel);
|
||||
if ((code_h - code_l == 1)) {
|
||||
chk_code += 1;
|
||||
adc_ll_set_calibration_param(adc_n, chk_code);
|
||||
dout = adc_hal_read_self_cal(adc_n, channel);
|
||||
}
|
||||
}
|
||||
code_list[rpt] = chk_code;
|
||||
code_sum += chk_code;
|
||||
}
|
||||
code_l = code_list[0];
|
||||
code_h = code_list[0];
|
||||
for (uint8_t i = 0 ; i < ADC_HAL_CAL_TIMES ; i++) {
|
||||
if (code_l > code_list[i]) {
|
||||
code_l = code_list[i];
|
||||
}
|
||||
if (code_h < code_list[i]) {
|
||||
code_h = code_list[i];
|
||||
}
|
||||
}
|
||||
chk_code = code_h + code_l;
|
||||
dout = ((code_sum - chk_code) % (ADC_HAL_CAL_TIMES - 2) < 4)
|
||||
? (code_sum - chk_code) / (ADC_HAL_CAL_TIMES - 2)
|
||||
: (code_sum - chk_code) / (ADC_HAL_CAL_TIMES - 2) + 1;
|
||||
|
||||
adc_ll_set_calibration_param(adc_n, dout);
|
||||
adc_ll_calibration_finish(adc_n);
|
||||
s_adc_cali_param[adc_n][atten] = (uint16_t)dout;
|
||||
return dout;
|
||||
}
|
||||
|
@ -75,70 +75,62 @@ void adc_hal_digi_disable(void);
|
||||
/**
|
||||
* Set ADC digital controller clock division factor. The clock divided from `APLL` or `APB` clock.
|
||||
* Enable clock and select clock source for ADC digital controller.
|
||||
* Expression: controller_clk = APLL/APB * (div_num + div_b / div_a).
|
||||
* Expression: controller_clk = APLL/APB * (div_num + div_a / div_b + 1).
|
||||
*
|
||||
* @param clk Refer to `adc_digi_clk_t`.
|
||||
*/
|
||||
void adc_hal_digi_clk_config(const adc_digi_clk_t *clk);
|
||||
void adc_hal_digi_clk_config(void);
|
||||
|
||||
/**
|
||||
* Reset adc digital controller filter.
|
||||
*
|
||||
* @param adc_n ADC unit.
|
||||
* @param filter_idx ADC filter unit.
|
||||
*/
|
||||
#define adc_hal_digi_filter_reset(adc_n) adc_ll_digi_filter_reset(adc_n)
|
||||
#define adc_hal_digi_filter_reset(filter_idx) adc_ll_digi_filter_reset(filter_idx)
|
||||
|
||||
/**
|
||||
* Set adc digital controller filter factor.
|
||||
*
|
||||
* @param adc_n ADC unit.
|
||||
* @param factor Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64).
|
||||
* @param filter_idx ADC filter unit.
|
||||
* @param filter Filter config. Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64).
|
||||
*/
|
||||
#define adc_hal_digi_filter_set_factor(adc_n, factor) adc_ll_digi_filter_set_factor(adc_n, factor)
|
||||
void adc_hal_digi_filter_set_factor(adc_digi_filter_idx_t filter_idx, adc_digi_filter_t *filter);
|
||||
|
||||
/**
|
||||
* Get adc digital controller filter factor.
|
||||
*
|
||||
* @param adc_n ADC unit.
|
||||
* @param filter_idx ADC filter unit.
|
||||
* @param factor Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64).
|
||||
*/
|
||||
#define adc_hal_digi_filter_get_factor(adc_n, factor) adc_ll_digi_filter_get_factor(adc_n, factor)
|
||||
void adc_hal_digi_filter_get_factor(adc_digi_filter_idx_t filter_idx, adc_digi_filter_t *filter);
|
||||
|
||||
/**
|
||||
* Enable/disable adc digital controller filter.
|
||||
* Filtering the ADC data to obtain smooth data at higher sampling rates.
|
||||
*
|
||||
* @note The filter will filter all the enabled channel data of the each ADC unit at the same time.
|
||||
* @param adc_n ADC unit.
|
||||
* @param filter_idx ADC filter unit.
|
||||
* @param enable True to enable the filter, otherwise disable.
|
||||
*/
|
||||
#define adc_hal_digi_filter_enable(adc_n, enable) adc_ll_digi_filter_enable(adc_n, enable)
|
||||
|
||||
/**
|
||||
* Get the filtered data of adc digital controller filter.
|
||||
* The data after each measurement and filtering is updated to the DMA by the digital controller. But it can also be obtained manually through this API.
|
||||
*
|
||||
* @note The filter will filter all the enabled channel data of the each ADC unit at the same time.
|
||||
* @param adc_n ADC unit.
|
||||
* @return Filtered data.
|
||||
*/
|
||||
#define adc_hal_digi_filter_read_data(adc_n) adc_ll_digi_filter_read_data(adc_n)
|
||||
void adc_hal_digi_filter_enable(adc_digi_filter_idx_t filter_idx, bool enable);
|
||||
|
||||
/**
|
||||
* Config monitor of adc digital controller.
|
||||
*
|
||||
* @note The monitor will monitor all the enabled channel data of the each ADC unit at the same time.
|
||||
* @param adc_n ADC unit.
|
||||
* @note If the channel info is not supported, the monitor function will not be enabled.
|
||||
* @param mon_idx ADC monitor index.
|
||||
* @param config Refer to `adc_digi_monitor_t`.
|
||||
*/
|
||||
void adc_hal_digi_monitor_config(adc_ll_num_t adc_n, adc_digi_monitor_t *config);
|
||||
void adc_hal_digi_monitor_config(adc_digi_monitor_idx_t mon_idx, adc_digi_monitor_t *config);
|
||||
|
||||
/**
|
||||
* Enable/disable monitor of adc digital controller.
|
||||
*
|
||||
* @note The monitor will monitor all the enabled channel data of the each ADC unit at the same time.
|
||||
* @param adc_n ADC unit.
|
||||
* @param mon_idx ADC monitor index.
|
||||
* @param enable True to enable the monitor, otherwise disable.
|
||||
*/
|
||||
#define adc_hal_digi_monitor_enable(adc_n, enable) adc_ll_digi_monitor_enable(adc_n, enable)
|
||||
void adc_hal_digi_monitor_enable(adc_digi_monitor_idx_t mon_idx, bool enable);
|
||||
|
||||
/**
|
||||
* Enable interrupt of adc digital controller by bitmask.
|
||||
@ -197,14 +189,6 @@ void adc_hal_digi_monitor_config(adc_ll_num_t adc_n, adc_digi_monitor_t *config)
|
||||
*/
|
||||
#define adc_hal_digi_reset() adc_ll_digi_reset()
|
||||
|
||||
/*---------------------------------------------------------------
|
||||
RTC controller setting
|
||||
---------------------------------------------------------------*/
|
||||
/**
|
||||
* Reset RTC controller FSM.
|
||||
*/
|
||||
#define adc_hal_rtc_reset() adc_ll_rtc_reset()
|
||||
|
||||
/*---------------------------------------------------------------
|
||||
Common setting
|
||||
---------------------------------------------------------------*/
|
||||
@ -226,21 +210,6 @@ void adc_hal_arbiter_config(adc_arbiter_t *config);
|
||||
ADC calibration setting
|
||||
---------------------------------------------------------------*/
|
||||
|
||||
/**
|
||||
* Calibrate the ADC using internal connections.
|
||||
*
|
||||
* @note Different ADC units and different attenuation options use different calibration data (initial data).
|
||||
*
|
||||
* @param adc_n ADC index number.
|
||||
* @param channel adc channel number.
|
||||
* @param atten The attenuation for the channel
|
||||
* @param internal_gnd true: Disconnect from the IO port and use the internal GND as the calibration voltage.
|
||||
* false: Use IO external voltage as calibration voltage.
|
||||
*
|
||||
* @return
|
||||
* - The calibration result (initial data) to ADC, use `adc_hal_set_calibration_param` to set.
|
||||
*/
|
||||
uint32_t adc_hal_self_calibration(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd);
|
||||
|
||||
/**
|
||||
* Set the calibration result (initial data) to ADC.
|
||||
|
@ -15,20 +15,25 @@
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <stdlib.h>
|
||||
#include "regi2c_ctrl.h"
|
||||
#include "esp_attr.h"
|
||||
|
||||
#include "soc/adc_periph.h"
|
||||
#include "hal/adc_types.h"
|
||||
#include "soc/apb_saradc_struct.h"
|
||||
#include "soc/apb_saradc_reg.h"
|
||||
#include "soc/rtc_cntl_struct.h"
|
||||
#include "soc/rtc_cntl_reg.h"
|
||||
#include "regi2c_ctrl.h"
|
||||
#include "esp_attr.h"
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define ADC_LL_ADC2_CHANNEL_MAX 1
|
||||
#define ADC_LL_CLKM_DIV_NUM_DEFAULT 15
|
||||
#define ADC_LL_CLKM_DIV_B_DEFAULT 1
|
||||
#define ADC_LL_CLKM_DIV_A_DEFAULT 0
|
||||
|
||||
typedef enum {
|
||||
ADC_NUM_1 = 0, /*!< SAR ADC 1 */
|
||||
ADC_NUM_2 = 1, /*!< SAR ADC 2 */
|
||||
@ -55,32 +60,6 @@ typedef enum {
|
||||
} adc_ll_intr_t;
|
||||
FLAG_ATTR(adc_ll_intr_t)
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#pragma pack(push, 1)
|
||||
#endif /* _MSC_VER */
|
||||
|
||||
/**
|
||||
* @brief Analyze whether the obtained raw data is correct.
|
||||
* ADC2 use arbiter by default. The arbitration result can be judged by the flag bit in the original data.
|
||||
*
|
||||
*/
|
||||
typedef struct {
|
||||
union {
|
||||
struct {
|
||||
uint16_t data: 13; /*!<ADC real output data info. Resolution: 13 bit. */
|
||||
uint16_t reserved: 1; /*!<reserved */
|
||||
uint16_t flag: 2; /*!<ADC data flag info.
|
||||
If (flag == 0), The data is valid.
|
||||
If (flag > 0), The data is invalid. */
|
||||
};
|
||||
uint16_t val;
|
||||
};
|
||||
} adc_ll_rtc_output_data_t;
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#pragma pack(pop)
|
||||
#endif /* _MSC_VER */
|
||||
|
||||
/**
|
||||
* @brief ADC controller type selection.
|
||||
*
|
||||
@ -95,7 +74,7 @@ typedef enum {
|
||||
ADC2_CTRL_FORCE_PWDET = 3, /*!<For ADC2. Arbiter in shield mode. Force select Wi-Fi controller work. */
|
||||
ADC2_CTRL_FORCE_RTC = 4, /*!<For ADC2. Arbiter in shield mode. Force select RTC controller work. */
|
||||
ADC2_CTRL_FORCE_DIG = 6, /*!<For ADC2. Arbiter in shield mode. Force select digital controller work. */
|
||||
} adc_ll_controller_t;
|
||||
} adc_controller_t;
|
||||
|
||||
/*---------------------------------------------------------------
|
||||
Digital controller setting
|
||||
@ -127,7 +106,9 @@ static inline void adc_ll_digi_set_fsm_time(uint32_t rst_wait, uint32_t start_wa
|
||||
*/
|
||||
static inline void adc_ll_set_sample_cycle(uint32_t sample_cycle)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2094
|
||||
/* Should be called before writing I2C registers. */
|
||||
SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_PU);
|
||||
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_SAMPLE_CYCLE_ADDR, sample_cycle);
|
||||
}
|
||||
|
||||
/**
|
||||
@ -142,16 +123,6 @@ static inline void adc_ll_digi_set_clk_div(uint32_t div)
|
||||
APB_SARADC.ctrl.sar_clk_div = div;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set adc output data format for digital controller.
|
||||
*
|
||||
* @param format Output data format.
|
||||
*/
|
||||
static inline void adc_ll_digi_set_output_format(adc_digi_output_format_t format)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2094
|
||||
}
|
||||
|
||||
/**
|
||||
* Set adc max conversion number for digital controller.
|
||||
* If the number of ADC conversion is equal to the maximum, the conversion is stopped.
|
||||
@ -181,53 +152,40 @@ static inline void adc_ll_digi_convert_limit_disable(void)
|
||||
APB_SARADC.ctrl2.meas_num_limit = 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set adc conversion mode for digital controller.
|
||||
*
|
||||
* @note ADC digital controller on C3 only has one pattern table list, and do conversions one by one
|
||||
*
|
||||
* @param mode Conversion mode select.
|
||||
*/
|
||||
static inline void adc_ll_digi_set_convert_mode(adc_digi_convert_mode_t mode)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2528
|
||||
}
|
||||
|
||||
/**
|
||||
* Set pattern table length for digital controller.
|
||||
* The pattern table that defines the conversion rules for each SAR ADC. Each table has 8 items, in which channel selection,
|
||||
* and attenuation are stored. When the conversion is started, the controller reads conversion rules from the
|
||||
* pattern table one by one. For each controller the scan sequence has at most 8 different rules before repeating itself.
|
||||
*
|
||||
* @param adc_n ADC unit.
|
||||
* @param patt_len Items range: 1 ~ 8.
|
||||
*/
|
||||
static inline void adc_ll_digi_set_pattern_table_len(adc_ll_num_t adc_n, uint32_t patt_len)
|
||||
{
|
||||
/*
|
||||
* channel 可以配置为0~6, 其中 0~4 代表 ADC1 , 5 代表 ADC2 , 6 代表有 EN_TEST 的测试选项,可以采样内部的一些电压信号
|
||||
*/
|
||||
APB_SARADC.ctrl.sar_patt_len = patt_len - 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set pattern table for digital controller.
|
||||
* The pattern table that defines the conversion rules for each SAR ADC. Each table has 8 items, in which channel selection,
|
||||
* resolution and attenuation are stored. When the conversion is started, the controller reads conversion rules from the
|
||||
* pattern table one by one. For each controller the scan sequence has at most 8 different rules before repeating itself.
|
||||
*
|
||||
* @param adc_n ADC unit.
|
||||
* @param pattern_index Items index. Range: 0 ~ 15.
|
||||
* @param pattern_index Items index. Range: 0 ~ 7.
|
||||
* @param pattern Stored conversion rules.
|
||||
*/
|
||||
static inline void adc_ll_digi_set_pattern_table(adc_ll_num_t adc_n, uint32_t pattern_index, adc_digi_pattern_table_t pattern)
|
||||
{
|
||||
/*
|
||||
* channel 可以配置为0~6, 其中 0~4 代表 ADC1 , 5 代表 ADC2 , 6 代表有 EN_TEST 的测试选项,可以采样内部的一些电压信号
|
||||
*/
|
||||
uint32_t tab;
|
||||
uint8_t index = pattern_index / 4;
|
||||
uint8_t offset = (pattern_index % 4) * 6;
|
||||
|
||||
tab = APB_SARADC.sar_patt_tab[index].sar_patt_tab1; // Read old register value
|
||||
tab &= (~(0xFC0000 >> offset)); // clear old data
|
||||
tab |= ((uint32_t)pattern.val << 18) >> offset; // Fill in the new data
|
||||
tab &= (~(0xFC0000 >> offset)); // Clear old data
|
||||
tab |= ((uint32_t)(pattern.val & 0x3F) << 18) >> offset; // Fill in the new data
|
||||
APB_SARADC.sar_patt_tab[index].sar_patt_tab1 = tab; // Write back
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
@ -237,9 +195,6 @@ static inline void adc_ll_digi_set_pattern_table(adc_ll_num_t adc_n, uint32_t pa
|
||||
*/
|
||||
static inline void adc_ll_digi_clear_pattern_table(adc_ll_num_t adc_n)
|
||||
{
|
||||
/*
|
||||
* channel 可以配置为0~6, 其中 0~4 代表 ADC1 , 5 代表 ADC2 , 6 代表有 EN_TEST 的测试选项,可以采样内部的一些电压信号
|
||||
*/
|
||||
APB_SARADC.ctrl.sar_patt_p_clear = 1;
|
||||
APB_SARADC.ctrl.sar_patt_p_clear = 0;
|
||||
}
|
||||
@ -271,10 +226,11 @@ static inline void adc_ll_digi_output_invert(adc_ll_num_t adc_n, bool inv_en)
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the number of interval clock cycles for the digital controller to trigger the measurement.
|
||||
* Set the interval clock cycle for the digital controller to trigger the measurement.
|
||||
* Expression: `trigger_meas_freq` = `controller_clk` / 2 / interval.
|
||||
*
|
||||
* @note The trigger interval should not be less than the sampling time of the SAR ADC.
|
||||
* @param cycle The number of clock cycles for the trigger interval. The unit is the divided clock. Range: 40 ~ 4095.
|
||||
* @note The trigger interval should not be smaller than the sampling time of the SAR ADC.
|
||||
* @param cycle The clock cycle (trigger interval) of the measurement. Range: 30 ~ 4095.
|
||||
*/
|
||||
static inline void adc_ll_digi_set_trigger_interval(uint32_t cycle)
|
||||
{
|
||||
@ -303,7 +259,7 @@ static inline void adc_ll_digi_trigger_disable(void)
|
||||
*
|
||||
* @param div_num Division factor. Range: 1 ~ 255.
|
||||
* @param div_b Division factor. Range: 1 ~ 63.
|
||||
* @param div_a Division factor. Range: 1 ~ 63.
|
||||
* @param div_a Division factor. Range: 0 ~ 63.
|
||||
*/
|
||||
static inline void adc_ll_digi_controller_clk_div(uint32_t div_num, uint32_t div_b, uint32_t div_a)
|
||||
{
|
||||
@ -349,18 +305,18 @@ static inline void adc_ll_digi_filter_reset(adc_ll_num_t adc_n)
|
||||
/**
|
||||
* Set adc digital controller filter factor.
|
||||
*
|
||||
* @param adc_n ADC unit.
|
||||
* @param factor Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64).
|
||||
* @note If the channel info is not supported, the filter function will not be enabled.
|
||||
* @param idx ADC filter unit.
|
||||
* @param filter Filter config. Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64).
|
||||
*/
|
||||
static inline void adc_ll_digi_filter_set_factor(adc_ll_num_t adc_n, adc_digi_filter_mode_t factor)
|
||||
static inline void adc_ll_digi_filter_set_factor(adc_digi_filter_idx_t idx, adc_digi_filter_t *filter)
|
||||
{
|
||||
adc_channel_t channel = 0;
|
||||
if (!APB_SARADC.filter_ctrl0.filter_channel0) {
|
||||
APB_SARADC.filter_ctrl0.filter_channel0 = (adc_n<<4) | channel;
|
||||
APB_SARADC.filter_ctrl1.filter_factor0 = factor;
|
||||
} else if (!APB_SARADC.filter_ctrl0.filter_channel1) {
|
||||
APB_SARADC.filter_ctrl0.filter_channel1 = (adc_n<<4) | channel;
|
||||
APB_SARADC.filter_ctrl1.filter_factor1 = factor;
|
||||
if (idx == ADC_DIGI_FILTER_IDX0) {
|
||||
APB_SARADC.filter_ctrl0.filter_channel0 = (filter->adc_unit << 3) | (filter->channel & 0x7);
|
||||
APB_SARADC.filter_ctrl1.filter_factor0 = filter->mode;
|
||||
} else if (idx == ADC_DIGI_FILTER_IDX1) {
|
||||
APB_SARADC.filter_ctrl0.filter_channel1 = (filter->adc_unit << 3) | (filter->channel & 0x7);
|
||||
APB_SARADC.filter_ctrl1.filter_factor1 = filter->mode;
|
||||
}
|
||||
}
|
||||
|
||||
@ -370,70 +326,71 @@ static inline void adc_ll_digi_filter_set_factor(adc_ll_num_t adc_n, adc_digi_fi
|
||||
* @param adc_n ADC unit.
|
||||
* @param factor Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64).
|
||||
*/
|
||||
static inline void adc_ll_digi_filter_get_factor(adc_ll_num_t adc_n, adc_digi_filter_mode_t *factor)
|
||||
static inline void adc_ll_digi_filter_get_factor(adc_digi_filter_idx_t idx, adc_digi_filter_t *filter)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2528
|
||||
if (idx == ADC_DIGI_FILTER_IDX0) {
|
||||
filter->adc_unit = (APB_SARADC.filter_ctrl0.filter_channel0 >> 3) & 0x1;
|
||||
filter->channel = APB_SARADC.filter_ctrl0.filter_channel0 & 0x7;
|
||||
filter->mode = APB_SARADC.filter_ctrl1.filter_factor0;
|
||||
} else if (idx == ADC_DIGI_FILTER_IDX1) {
|
||||
filter->adc_unit = (APB_SARADC.filter_ctrl0.filter_channel1 >> 3) & 0x1;
|
||||
filter->channel = APB_SARADC.filter_ctrl0.filter_channel1 & 0x7;
|
||||
filter->mode = APB_SARADC.filter_ctrl1.filter_factor1;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Enable/disable adc digital controller filter.
|
||||
* Disable adc digital controller filter.
|
||||
* Filtering the ADC data to obtain smooth data at higher sampling rates.
|
||||
*
|
||||
* @note The filter will filter all the enabled channel data of the each ADC unit at the same time.
|
||||
* @note If the channel info is not supported, the filter function will not be enabled.
|
||||
* @param adc_n ADC unit.
|
||||
*/
|
||||
static inline void adc_ll_digi_filter_enable(adc_ll_num_t adc_n, bool enable)
|
||||
static inline void adc_ll_digi_filter_disable(adc_digi_filter_idx_t idx)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2094
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the filtered data of adc digital controller filter.
|
||||
* The data after each measurement and filtering is updated to the DMA by the digital controller. But it can also be obtained manually through this API.
|
||||
*
|
||||
* @note The filter will filter all the enabled channel data of the each ADC unit at the same time.
|
||||
* @param adc_n ADC unit.
|
||||
* @return Filtered data.
|
||||
*/
|
||||
static inline uint32_t adc_ll_digi_filter_read_data(adc_ll_num_t adc_n)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2094
|
||||
if (idx == ADC_DIGI_FILTER_IDX0) {
|
||||
APB_SARADC.filter_ctrl0.filter_channel0 = 0xF;
|
||||
APB_SARADC.filter_ctrl1.filter_factor0 = 0;
|
||||
} else if (idx == ADC_DIGI_FILTER_IDX1) {
|
||||
APB_SARADC.filter_ctrl0.filter_channel1 = 0xF;
|
||||
APB_SARADC.filter_ctrl1.filter_factor1 = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Set monitor mode of adc digital controller.
|
||||
*
|
||||
* @note The monitor will monitor all the enabled channel data of the each ADC unit at the same time.
|
||||
* @note If the channel info is not supported, the monitor function will not be enabled.
|
||||
* @param adc_n ADC unit.
|
||||
* @param is_larger true: If ADC_OUT > threshold, Generates monitor interrupt.
|
||||
* false: If ADC_OUT < threshold, Generates monitor interrupt.
|
||||
*/
|
||||
static inline void adc_ll_digi_monitor_set_mode(adc_ll_num_t adc_n, bool is_larger)
|
||||
static inline void adc_ll_digi_monitor_set_mode(adc_digi_monitor_idx_t idx, adc_digi_monitor_t *cfg)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2094
|
||||
}
|
||||
|
||||
/**
|
||||
* Set monitor threshold of adc digital controller.
|
||||
*
|
||||
* @note The monitor will monitor all the enabled channel data of the each ADC unit at the same time.
|
||||
* @param adc_n ADC unit.
|
||||
* @param threshold Monitor threshold.
|
||||
*/
|
||||
static inline void adc_ll_digi_monitor_set_thres(adc_ll_num_t adc_n, uint32_t threshold)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2094
|
||||
if (idx == ADC_DIGI_MONITOR_IDX0) {
|
||||
APB_SARADC.thres0_ctrl.thres0_channel = (cfg->adc_unit << 3) | (cfg->channel & 0x7);
|
||||
APB_SARADC.thres0_ctrl.thres0_high = cfg->h_threshold;
|
||||
APB_SARADC.thres0_ctrl.thres0_low = cfg->l_threshold;
|
||||
} else { // ADC_DIGI_MONITOR_IDX1
|
||||
APB_SARADC.thres1_ctrl.thres1_channel = (cfg->adc_unit << 3) | (cfg->channel & 0x7);
|
||||
APB_SARADC.thres1_ctrl.thres1_high = cfg->h_threshold;
|
||||
APB_SARADC.thres1_ctrl.thres1_low = cfg->l_threshold;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Enable/disable monitor of adc digital controller.
|
||||
*
|
||||
* @note The monitor will monitor all the enabled channel data of the each ADC unit at the same time.
|
||||
* @note If the channel info is not supported, the monitor function will not be enabled.
|
||||
* @param adc_n ADC unit.
|
||||
*/
|
||||
static inline void adc_ll_digi_monitor_enable(adc_ll_num_t adc_n, bool enable)
|
||||
static inline void adc_ll_digi_monitor_disable(adc_digi_monitor_idx_t idx)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2094
|
||||
if (idx == ADC_DIGI_MONITOR_IDX0) {
|
||||
APB_SARADC.thres0_ctrl.thres0_channel = 0xF;
|
||||
} else { // ADC_DIGI_MONITOR_IDX1
|
||||
APB_SARADC.thres1_ctrl.thres1_channel = 0xF;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
@ -444,7 +401,27 @@ static inline void adc_ll_digi_monitor_enable(adc_ll_num_t adc_n, bool enable)
|
||||
*/
|
||||
static inline void adc_ll_digi_intr_enable(adc_ll_num_t adc_n, adc_digi_intr_t intr)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2094
|
||||
if (adc_n == ADC_NUM_1) {
|
||||
if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) {
|
||||
APB_SARADC.int_ena.adc1_done = 1;
|
||||
}
|
||||
} else { // adc_n == ADC_NUM_2
|
||||
if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) {
|
||||
APB_SARADC.int_ena.adc2_done = 1;
|
||||
}
|
||||
}
|
||||
if (intr & ADC_DIGI_INTR_MASK_MONITOR0_HIGH) {
|
||||
APB_SARADC.int_ena.thres0_high = 1;
|
||||
}
|
||||
if (intr & ADC_DIGI_INTR_MASK_MONITOR0_LOW) {
|
||||
APB_SARADC.int_ena.thres0_low = 1;
|
||||
}
|
||||
if (intr & ADC_DIGI_INTR_MASK_MONITOR1_HIGH) {
|
||||
APB_SARADC.int_ena.thres1_high = 1;
|
||||
}
|
||||
if (intr & ADC_DIGI_INTR_MASK_MONITOR1_LOW) {
|
||||
APB_SARADC.int_ena.thres1_low = 1;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
@ -455,7 +432,27 @@ static inline void adc_ll_digi_intr_enable(adc_ll_num_t adc_n, adc_digi_intr_t i
|
||||
*/
|
||||
static inline void adc_ll_digi_intr_disable(adc_ll_num_t adc_n, adc_digi_intr_t intr)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2094
|
||||
if (adc_n == ADC_NUM_1) {
|
||||
if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) {
|
||||
APB_SARADC.int_ena.adc1_done = 0;
|
||||
}
|
||||
} else { // adc_n == ADC_NUM_2
|
||||
if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) {
|
||||
APB_SARADC.int_ena.adc2_done = 0;
|
||||
}
|
||||
}
|
||||
if (intr & ADC_DIGI_INTR_MASK_MONITOR0_HIGH) {
|
||||
APB_SARADC.int_ena.thres0_high = 0;
|
||||
}
|
||||
if (intr & ADC_DIGI_INTR_MASK_MONITOR0_LOW) {
|
||||
APB_SARADC.int_ena.thres0_low = 0;
|
||||
}
|
||||
if (intr & ADC_DIGI_INTR_MASK_MONITOR1_HIGH) {
|
||||
APB_SARADC.int_ena.thres1_high = 0;
|
||||
}
|
||||
if (intr & ADC_DIGI_INTR_MASK_MONITOR1_LOW) {
|
||||
APB_SARADC.int_ena.thres1_low = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
@ -466,7 +463,27 @@ static inline void adc_ll_digi_intr_disable(adc_ll_num_t adc_n, adc_digi_intr_t
|
||||
*/
|
||||
static inline void adc_ll_digi_intr_clear(adc_ll_num_t adc_n, adc_digi_intr_t intr)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2094
|
||||
if (adc_n == ADC_NUM_1) {
|
||||
if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) {
|
||||
APB_SARADC.int_clr.adc1_done = 1;
|
||||
}
|
||||
} else { // adc_n == ADC_NUM_2
|
||||
if (intr & ADC_DIGI_INTR_MASK_MEAS_DONE) {
|
||||
APB_SARADC.int_clr.adc2_done = 1;
|
||||
}
|
||||
}
|
||||
if (intr & ADC_DIGI_INTR_MASK_MONITOR0_HIGH) {
|
||||
APB_SARADC.int_clr.thres0_high = 1;
|
||||
}
|
||||
if (intr & ADC_DIGI_INTR_MASK_MONITOR0_LOW) {
|
||||
APB_SARADC.int_clr.thres0_low = 1;
|
||||
}
|
||||
if (intr & ADC_DIGI_INTR_MASK_MONITOR1_HIGH) {
|
||||
APB_SARADC.int_clr.thres1_high = 1;
|
||||
}
|
||||
if (intr & ADC_DIGI_INTR_MASK_MONITOR1_LOW) {
|
||||
APB_SARADC.int_clr.thres1_low = 1;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
@ -478,7 +495,32 @@ static inline void adc_ll_digi_intr_clear(adc_ll_num_t adc_n, adc_digi_intr_t in
|
||||
*/
|
||||
static inline uint32_t adc_ll_digi_get_intr_status(adc_ll_num_t adc_n)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2094
|
||||
uint32_t int_st = APB_SARADC.int_st.val;
|
||||
uint32_t ret_msk = 0;
|
||||
|
||||
if (adc_n == ADC_NUM_1) {
|
||||
if (int_st & APB_SARADC_ADC1_DONE_INT_ST_M) {
|
||||
ret_msk |= ADC_DIGI_INTR_MASK_MEAS_DONE;
|
||||
}
|
||||
} else { // adc_n == ADC_NUM_2
|
||||
if (int_st & APB_SARADC_ADC2_DONE_INT_ST_M) {
|
||||
ret_msk |= ADC_DIGI_INTR_MASK_MEAS_DONE;
|
||||
}
|
||||
}
|
||||
if (int_st & APB_SARADC_THRES0_HIGH_INT_ST) {
|
||||
ret_msk |= ADC_DIGI_INTR_MASK_MONITOR0_HIGH;
|
||||
}
|
||||
if (int_st & APB_SARADC_THRES0_LOW_INT_ST_M) {
|
||||
ret_msk |= ADC_DIGI_INTR_MASK_MONITOR0_LOW;
|
||||
}
|
||||
if (int_st & APB_SARADC_THRES1_HIGH_INT_ST_M) {
|
||||
ret_msk |= ADC_DIGI_INTR_MASK_MONITOR1_HIGH;
|
||||
}
|
||||
if (int_st & APB_SARADC_THRES1_LOW_INT_ST_M) {
|
||||
ret_msk |= ADC_DIGI_INTR_MASK_MONITOR1_LOW;
|
||||
}
|
||||
|
||||
return ret_msk;
|
||||
}
|
||||
|
||||
/**
|
||||
@ -528,7 +570,8 @@ static inline void adc_ll_digi_reset(void)
|
||||
*/
|
||||
static inline void adc_ll_pwdet_set_cct(uint32_t cct)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2094
|
||||
/* Capacitor tuning of the PA power monitor. cct set to the same value with PHY. */
|
||||
RTCCNTL.sensor_ctrl.sar2_pwdet_cct = cct;
|
||||
}
|
||||
|
||||
/**
|
||||
@ -539,153 +582,32 @@ static inline void adc_ll_pwdet_set_cct(uint32_t cct)
|
||||
*/
|
||||
static inline uint32_t adc_ll_pwdet_get_cct(void)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2094
|
||||
}
|
||||
|
||||
/*---------------------------------------------------------------
|
||||
RTC controller setting
|
||||
---------------------------------------------------------------*/
|
||||
/**
|
||||
* Set adc output data format for RTC controller.
|
||||
*
|
||||
* @note ESP32S2 RTC controller only support 13bit.
|
||||
* @prarm adc_n ADC unit.
|
||||
* @prarm bits Output data bits width option.
|
||||
*/
|
||||
static inline void adc_ll_rtc_set_output_format(adc_ll_num_t adc_n, adc_bits_width_t bits)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
/**
|
||||
* Enable adc channel to start convert.
|
||||
*
|
||||
* @note Only one channel can be selected for once measurement.
|
||||
*
|
||||
* @param adc_n ADC unit.
|
||||
* @param channel ADC channel number for each ADCn.
|
||||
*/
|
||||
static inline void adc_ll_rtc_enable_channel(adc_ll_num_t adc_n, int channel)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2094
|
||||
}
|
||||
|
||||
/**
|
||||
* Disable adc channel to start convert.
|
||||
*
|
||||
* @note Only one channel can be selected in once measurement.
|
||||
*
|
||||
* @param adc_n ADC unit.
|
||||
* @param channel ADC channel number for each ADCn.
|
||||
*/
|
||||
static inline void adc_ll_rtc_disable_channel(adc_ll_num_t adc_n, int channel)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2094
|
||||
}
|
||||
|
||||
/**
|
||||
* Start conversion once by software for RTC controller.
|
||||
*
|
||||
* @note It may be block to wait conversion idle for ADC1.
|
||||
*
|
||||
* @param adc_n ADC unit.
|
||||
* @param channel ADC channel number for each ADCn.
|
||||
*/
|
||||
static inline void adc_ll_rtc_start_convert(adc_ll_num_t adc_n, int channel)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2094
|
||||
}
|
||||
|
||||
/**
|
||||
* Check the conversion done flag for each ADCn for RTC controller.
|
||||
*
|
||||
* @param adc_n ADC unit.
|
||||
* @return
|
||||
* -true : The conversion process is finish.
|
||||
* -false : The conversion process is not finish.
|
||||
*/
|
||||
static inline bool adc_ll_rtc_convert_is_done(adc_ll_num_t adc_n)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2094
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the converted value for each ADCn for RTC controller.
|
||||
*
|
||||
* @param adc_n ADC unit.
|
||||
* @return
|
||||
* - Converted value.
|
||||
*/
|
||||
static inline int adc_ll_rtc_get_convert_value(adc_ll_num_t adc_n)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2094
|
||||
}
|
||||
|
||||
/**
|
||||
* ADC module RTC output data invert or not.
|
||||
*
|
||||
* @param adc_n ADC unit.
|
||||
* @param inv_en data invert or not.
|
||||
*/
|
||||
static inline void adc_ll_rtc_output_invert(adc_ll_num_t adc_n, bool inv_en)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2094
|
||||
}
|
||||
|
||||
/**
|
||||
* Enable ADCn conversion complete interrupt for RTC controller.
|
||||
*
|
||||
* @param adc_n ADC unit.
|
||||
*/
|
||||
static inline void adc_ll_rtc_intr_enable(adc_ll_num_t adc_n)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2094
|
||||
}
|
||||
|
||||
/**
|
||||
* Disable ADCn conversion complete interrupt for RTC controller.
|
||||
*
|
||||
* @param adc_n ADC unit.
|
||||
*/
|
||||
static inline void adc_ll_rtc_intr_disable(adc_ll_num_t adc_n)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2094
|
||||
}
|
||||
|
||||
/**
|
||||
* Reset RTC controller FSM.
|
||||
*/
|
||||
static inline void adc_ll_rtc_reset(void)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2094
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the number of cycles required for the conversion to complete and wait for the arbiter to stabilize.
|
||||
*
|
||||
* @note Only ADC2 have arbiter function.
|
||||
* @param cycle range: [0,4].
|
||||
*/
|
||||
static inline void adc_ll_rtc_set_arbiter_stable_cycle(uint32_t cycle)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2094
|
||||
/* Capacitor tuning of the PA power monitor. cct set to the same value with PHY. */
|
||||
return RTCCNTL.sensor_ctrl.sar2_pwdet_cct;
|
||||
}
|
||||
|
||||
/**
|
||||
* Analyze whether the obtained raw data is correct.
|
||||
* ADC2 can use arbiter. The arbitration result can be judged by the flag bit in the original data.
|
||||
* ADC2 can use arbiter. The arbitration result is stored in the channel information of the returned data.
|
||||
*
|
||||
* @param adc_n ADC unit.
|
||||
* @param raw_data ADC raw data input (convert value).
|
||||
* @return
|
||||
* - 0: The data is correct to use.
|
||||
* - 1: The data is invalid. The current controller is not enabled by the arbiter.
|
||||
* - 2: The data is invalid. The current controller process was interrupted by a higher priority controller.
|
||||
* - -1: The data is error.
|
||||
* - 0: The data is correct to use.
|
||||
* - -1: The data is invalid.
|
||||
*/
|
||||
static inline adc_ll_rtc_raw_data_t adc_ll_rtc_analysis_raw_data(adc_ll_num_t adc_n, uint16_t raw_data)
|
||||
static inline adc_ll_rtc_raw_data_t adc_ll_analysis_raw_data(adc_ll_num_t adc_n, int raw_data)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2094
|
||||
if (adc_n == ADC_NUM_1) {
|
||||
return ADC_RTC_DATA_OK;
|
||||
}
|
||||
|
||||
//The raw data API returns value without channel information. Read value directly from the register
|
||||
if (((APB_SARADC.apb_saradc2_data_status.adc2_data >> 13) & 0xF) > 9) {
|
||||
return ADC_RTC_DATA_FAIL;
|
||||
}
|
||||
|
||||
return ADC_RTC_DATA_OK;
|
||||
}
|
||||
|
||||
/*---------------------------------------------------------------
|
||||
@ -702,13 +624,13 @@ static inline void adc_ll_set_power_manage(adc_ll_power_t manage)
|
||||
// Bit0 0:SW mode power down 1: SW mode power on */
|
||||
if (manage == ADC_POWER_SW_ON) {
|
||||
APB_SARADC.ctrl.sar_clk_gated = 1;
|
||||
APB_SARADC.ctrl.xpd_sar_force = SENS_FORCE_XPD_SAR_PU;
|
||||
APB_SARADC.ctrl.xpd_sar_force = 3;
|
||||
} else if (manage == ADC_POWER_BY_FSM) {
|
||||
APB_SARADC.ctrl.sar_clk_gated = 1;
|
||||
APB_SARADC.ctrl.xpd_sar_force = SENS_FORCE_XPD_SAR_FSM;
|
||||
APB_SARADC.ctrl.xpd_sar_force = 0;
|
||||
} else if (manage == ADC_POWER_SW_OFF) {
|
||||
APB_SARADC.ctrl.xpd_sar_force = SENS_FORCE_XPD_SAR_PD;
|
||||
APB_SARADC.ctrl.sar_clk_gated = 1;
|
||||
APB_SARADC.ctrl.xpd_sar_force = 2;
|
||||
APB_SARADC.ctrl.sar_clk_gated = 0;
|
||||
}
|
||||
}
|
||||
|
||||
@ -720,67 +642,17 @@ static inline void adc_ll_set_power_manage(adc_ll_power_t manage)
|
||||
*/
|
||||
static inline adc_ll_power_t adc_ll_get_power_manage(void)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2094
|
||||
}
|
||||
|
||||
/**
|
||||
* ADC SAR clock division factor setting. ADC SAR clock devided from `RTC_FAST_CLK`.
|
||||
*
|
||||
* @param div Division factor.
|
||||
*/
|
||||
static inline void adc_ll_set_sar_clk_div(adc_ll_num_t adc_n, uint32_t div)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2094
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the attenuation of a particular channel on ADCn.
|
||||
*
|
||||
* @note For any given channel, this function must be called before the first time conversion.
|
||||
*
|
||||
* The default ADC full-scale voltage is 1.1V. To read higher voltages (up to the pin maximum voltage,
|
||||
* usually 3.3V) requires setting >0dB signal attenuation for that ADC channel.
|
||||
*
|
||||
* When VDD_A is 3.3V:
|
||||
*
|
||||
* - 0dB attenuaton (ADC_ATTEN_DB_0) gives full-scale voltage 1.1V
|
||||
* - 2.5dB attenuation (ADC_ATTEN_DB_2_5) gives full-scale voltage 1.5V
|
||||
* - 6dB attenuation (ADC_ATTEN_DB_6) gives full-scale voltage 2.2V
|
||||
* - 11dB attenuation (ADC_ATTEN_DB_11) gives full-scale voltage 3.9V (see note below)
|
||||
*
|
||||
* @note The full-scale voltage is the voltage corresponding to a maximum reading (depending on ADC1 configured
|
||||
* bit width, this value is: 4095 for 12-bits, 2047 for 11-bits, 1023 for 10-bits, 511 for 9 bits.)
|
||||
*
|
||||
* @note At 11dB attenuation the maximum voltage is limited by VDD_A, not the full scale voltage.
|
||||
*
|
||||
* Due to ADC characteristics, most accurate results are obtained within the following approximate voltage ranges:
|
||||
*
|
||||
* - 0dB attenuaton (ADC_ATTEN_DB_0) between 100 and 950mV
|
||||
* - 2.5dB attenuation (ADC_ATTEN_DB_2_5) between 100 and 1250mV
|
||||
* - 6dB attenuation (ADC_ATTEN_DB_6) between 150 to 1750mV
|
||||
* - 11dB attenuation (ADC_ATTEN_DB_11) between 150 to 2450mV
|
||||
*
|
||||
* For maximum accuracy, use the ADC calibration APIs and measure voltages within these recommended ranges.
|
||||
*
|
||||
* @param adc_n ADC unit.
|
||||
* @param channel ADCn channel number.
|
||||
* @param atten The attenuation option.
|
||||
*/
|
||||
static inline void adc_ll_set_atten(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2094
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the attenuation of a particular channel on ADCn.
|
||||
*
|
||||
* @param adc_n ADC unit.
|
||||
* @param channel ADCn channel number.
|
||||
* @return atten The attenuation option.
|
||||
*/
|
||||
static inline adc_atten_t adc_ll_get_atten(adc_ll_num_t adc_n, adc_channel_t channel)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2094
|
||||
/* Bit1 0:Fsm 1: SW mode
|
||||
Bit0 0:SW mode power down 1: SW mode power on */
|
||||
adc_ll_power_t manage;
|
||||
if (APB_SARADC.ctrl.xpd_sar_force == 3) {
|
||||
manage = ADC_POWER_SW_ON;
|
||||
} else if (APB_SARADC.ctrl.xpd_sar_force == 2) {
|
||||
manage = ADC_POWER_SW_OFF;
|
||||
} else {
|
||||
manage = ADC_POWER_BY_FSM;
|
||||
}
|
||||
return manage;
|
||||
}
|
||||
|
||||
/**
|
||||
@ -793,9 +665,9 @@ static inline adc_atten_t adc_ll_get_atten(adc_ll_num_t adc_n, adc_channel_t cha
|
||||
* @param adc_n ADC unit.
|
||||
* @param ctrl ADC controller.
|
||||
*/
|
||||
static inline void adc_ll_set_controller(adc_ll_num_t adc_n, adc_ll_controller_t ctrl)
|
||||
static inline void adc_ll_set_controller(adc_ll_num_t adc_n, adc_controller_t ctrl)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2094
|
||||
//NOTE: ULP is removed on C3, please remove ULP related (if there still are any) code and this comment
|
||||
}
|
||||
|
||||
/**
|
||||
@ -810,7 +682,6 @@ static inline void adc_ll_set_controller(adc_ll_num_t adc_n, adc_ll_controller_t
|
||||
*/
|
||||
static inline void adc_ll_set_arbiter_work_mode(adc_arbiter_mode_t mode)
|
||||
{
|
||||
SENS.sar_meas2_mux.sar2_rtc_force = 0; // Enable arbiter in wakeup mode
|
||||
if (mode == ADC_ARB_MODE_FIX) {
|
||||
APB_SARADC.apb_adc_arb_ctrl.adc_arb_grant_force = 0;
|
||||
APB_SARADC.apb_adc_arb_ctrl.adc_arb_fix_priority = 1;
|
||||
@ -866,37 +737,7 @@ static inline void adc_ll_set_arbiter_priority(uint8_t pri_rtc, uint8_t pri_dig,
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Force switch ADC2 to RTC controller in sleep mode. Shield arbiter.
|
||||
* In sleep mode, the arbiter is in power-down mode.
|
||||
* Need to switch the controller to RTC to shield the control of the arbiter.
|
||||
* After waking up, it needs to switch to arbiter control.
|
||||
*
|
||||
* @note The hardware will do this automatically. In normal use, there is no need to call this interface to manually switch the controller.
|
||||
* @note Only support ADC2.
|
||||
*/
|
||||
static inline void adc_ll_enable_sleep_controller(void)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2094
|
||||
}
|
||||
|
||||
/**
|
||||
* Force switch ADC2 to arbiter in wakeup mode.
|
||||
* In sleep mode, the arbiter is in power-down mode.
|
||||
* Need to switch the controller to RTC to shield the control of the arbiter.
|
||||
* After waking up, it needs to switch to arbiter control.
|
||||
*
|
||||
* @note The hardware will do this automatically. In normal use, there is no need to call this interface to manually switch the controller.
|
||||
* @note Only support ADC2.
|
||||
*/
|
||||
static inline void adc_ll_disable_sleep_controller(void)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2094
|
||||
}
|
||||
|
||||
/* ADC calibration code. */
|
||||
#define ADC_HAL_CAL_OFFSET_RANGE (4096)
|
||||
#define ADC_HAL_CAL_TIMES (10)
|
||||
|
||||
/**
|
||||
* Configure the registers for ADC calibration. You need to call the ``adc_ll_calibration_finish`` interface to resume after calibration.
|
||||
@ -910,7 +751,25 @@ static inline void adc_ll_disable_sleep_controller(void)
|
||||
*/
|
||||
static inline void adc_ll_calibration_prepare(adc_ll_num_t adc_n, adc_channel_t channel, bool internal_gnd)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2526
|
||||
/* Should be called before writing I2C registers. */
|
||||
SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_PU);
|
||||
|
||||
/* Enable/disable internal connect GND (for calibration). */
|
||||
if (adc_n == ADC_NUM_1) {
|
||||
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_DREF_ADDR, 4);
|
||||
if (internal_gnd) {
|
||||
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 1);
|
||||
} else {
|
||||
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 0);
|
||||
}
|
||||
} else {
|
||||
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_DREF_ADDR, 4);
|
||||
if (internal_gnd) {
|
||||
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_ENCAL_GND_ADDR, 1);
|
||||
} else {
|
||||
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_ENCAL_GND_ADDR, 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
@ -920,7 +779,11 @@ static inline void adc_ll_calibration_prepare(adc_ll_num_t adc_n, adc_channel_t
|
||||
*/
|
||||
static inline void adc_ll_calibration_finish(adc_ll_num_t adc_n)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2526
|
||||
if (adc_n == ADC_NUM_1) {
|
||||
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 0);
|
||||
} else {
|
||||
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_ENCAL_GND_ADDR, 0);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
@ -932,7 +795,70 @@ static inline void adc_ll_calibration_finish(adc_ll_num_t adc_n)
|
||||
*/
|
||||
static inline void adc_ll_set_calibration_param(adc_ll_num_t adc_n, uint32_t param)
|
||||
{
|
||||
abort(); // TODO ESP32-C3 IDF-2526
|
||||
uint8_t msb = param >> 8;
|
||||
uint8_t lsb = param & 0xFF;
|
||||
if (adc_n == ADC_NUM_1) {
|
||||
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_HIGH_ADDR, msb);
|
||||
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_LOW_ADDR, lsb);
|
||||
} else {
|
||||
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_INITIAL_CODE_HIGH_ADDR, msb);
|
||||
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_INITIAL_CODE_LOW_ADDR, lsb);
|
||||
}
|
||||
}
|
||||
/* Temp code end. */
|
||||
|
||||
/**
|
||||
* Output ADCn inter reference voltage to ADC2 channels.
|
||||
*
|
||||
* This function routes the internal reference voltage of ADCn to one of
|
||||
* ADC1's channels. This reference voltage can then be manually measured
|
||||
* for calibration purposes.
|
||||
*
|
||||
* @param[in] adc ADC unit select
|
||||
* @param[in] channel ADC1 channel number
|
||||
* @param[in] en Enable/disable the reference voltage output
|
||||
*/
|
||||
static inline void adc_ll_vref_output(adc_ll_num_t adc, adc_channel_t channel, bool en)
|
||||
{
|
||||
if (en) {
|
||||
REG_SET_FIELD(RTC_CNTL_SENSOR_CTRL_REG, RTC_CNTL_FORCE_XPD_SAR, 3);
|
||||
SET_PERI_REG_MASK(RTC_CNTL_REG, RTC_CNTL_REGULATOR_FORCE_PU);
|
||||
|
||||
REG_SET_FIELD(APB_SARADC_APB_ADC_CLKM_CONF_REG, APB_SARADC_CLK_SEL, 2);
|
||||
SET_PERI_REG_MASK(APB_SARADC_APB_ADC_CLKM_CONF_REG, APB_SARADC_CLK_EN);
|
||||
SET_PERI_REG_MASK(APB_SARADC_APB_ADC_ARB_CTRL_REG, APB_SARADC_ADC_ARB_GRANT_FORCE);
|
||||
SET_PERI_REG_MASK(APB_SARADC_APB_ADC_ARB_CTRL_REG, APB_SARADC_ADC_ARB_APB_FORCE);
|
||||
APB_SARADC.sar_patt_tab[0].sar_patt_tab1 = 0xFFFFFF;
|
||||
APB_SARADC.sar_patt_tab[1].sar_patt_tab1 = 0xFFFFFF;
|
||||
APB_SARADC.onetime_sample.adc1_onetime_sample = 1;
|
||||
APB_SARADC.onetime_sample.onetime_channel = channel;
|
||||
SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_PU);
|
||||
if (adc == ADC_NUM_1) {
|
||||
/* Config test mux to route v_ref to ADC1 Channels */
|
||||
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC1_ENCAL_REF_ADDR, 1);
|
||||
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_DTEST_RTC_ADDR, 1);
|
||||
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_TSENS_ADDR, 0);
|
||||
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_RTC_ADDR, 1);
|
||||
} else {
|
||||
/* Config test mux to route v_ref to ADC2 Channels */
|
||||
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC2_ENCAL_REF_ADDR, 1);
|
||||
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_DTEST_RTC_ADDR, 0);
|
||||
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_TSENS_ADDR, 0);
|
||||
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_RTC_ADDR, 0);
|
||||
}
|
||||
} else {
|
||||
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC2_ENCAL_REF_ADDR, 0);
|
||||
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC1_ENCAL_REF_ADDR, 0);
|
||||
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_DTEST_RTC_ADDR, 0);
|
||||
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_RTC_ADDR, 0);
|
||||
APB_SARADC.onetime_sample.adc1_onetime_sample = 0;
|
||||
APB_SARADC.onetime_sample.onetime_channel = 0xf;
|
||||
REG_SET_FIELD(RTC_CNTL_SENSOR_CTRL_REG, RTC_CNTL_FORCE_XPD_SAR, 0);
|
||||
REG_SET_FIELD(APB_SARADC_APB_ADC_CLKM_CONF_REG, APB_SARADC_CLK_SEL, 0);
|
||||
CLEAR_PERI_REG_MASK(APB_SARADC_APB_ADC_CLKM_CONF_REG, APB_SARADC_CLK_EN);
|
||||
CLEAR_PERI_REG_MASK(APB_SARADC_APB_ADC_ARB_CTRL_REG, APB_SARADC_ADC_ARB_GRANT_FORCE);
|
||||
CLEAR_PERI_REG_MASK(APB_SARADC_APB_ADC_ARB_CTRL_REG, APB_SARADC_ADC_ARB_APB_FORCE);
|
||||
}
|
||||
}
|
||||
|
||||
/*---------------------------------------------------------------
|
||||
@ -998,7 +924,8 @@ static inline void adc_ll_adc1_onetime_sample_dis(void)
|
||||
|
||||
static inline uint32_t adc_ll_adc1_read(void)
|
||||
{
|
||||
return APB_SARADC.apb_saradc1_data_status.adc1_data;
|
||||
//On ESP32C3, valid data width is 12-bit
|
||||
return (APB_SARADC.apb_saradc1_data_status.adc1_data & 0xfff);
|
||||
}
|
||||
|
||||
//--------------------------------adc2------------------------------//
|
||||
@ -1014,8 +941,10 @@ static inline void adc_ll_adc2_onetime_sample_dis(void)
|
||||
|
||||
static inline uint32_t adc_ll_adc2_read(void)
|
||||
{
|
||||
return APB_SARADC.apb_saradc2_data_status.adc2_data;
|
||||
//On ESP32C3, valid data width is 12-bit
|
||||
return (APB_SARADC.apb_saradc2_data_status.adc2_data & 0xfff);
|
||||
}
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
@ -268,11 +268,11 @@ static inline void adc_ll_digi_output_invert(adc_ll_num_t adc_n, bool inv_en)
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the number of interval clock cycles for the digital controller to trigger the measurement.
|
||||
* Expression: `trigger_meas_freq` = `controller_clk` / 2 / interval. Refer to ``adc_digi_clk_t``.
|
||||
* Set the interval clock cycle for the digital controller to trigger the measurement.
|
||||
* Expression: `trigger_meas_freq` = `controller_clk` / 2 / interval.
|
||||
*
|
||||
* @note The trigger interval should not be less than the sampling time of the SAR ADC.
|
||||
* @param cycle The number of clock cycles for the trigger interval. The unit is the divided clock. Range: 40 ~ 4095.
|
||||
* @note The trigger interval should be larger than the sampling time of the SAR ADC.
|
||||
* @param cycle The clock cycle (trigger interval) of the measurement. Range: 40 ~ 4095.
|
||||
*/
|
||||
static inline void adc_ll_digi_set_trigger_interval(uint32_t cycle)
|
||||
{
|
||||
|
@ -134,6 +134,7 @@ void adc_hal_deinit(void);
|
||||
*/
|
||||
#define adc_hal_pwdet_get_cct() adc_ll_pwdet_get_cct()
|
||||
|
||||
#ifndef CONFIG_IDF_TARGET_ESP32C3
|
||||
/*---------------------------------------------------------------
|
||||
RTC controller setting
|
||||
---------------------------------------------------------------*/
|
||||
@ -167,6 +168,7 @@ int adc_hal_convert(adc_ll_num_t adc_n, int channel, int *value);
|
||||
* @prarm adc_n ADC unit.
|
||||
*/
|
||||
#define adc_hal_rtc_output_invert(adc_n, inv_en) adc_ll_rtc_output_invert(adc_n, inv_en)
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Enable/disable the output of ADCn's internal reference voltage to one of ADC2's channels.
|
||||
@ -213,6 +215,7 @@ void adc_hal_digi_controller_config(const adc_digi_config_t *cfg);
|
||||
#include "hal/dma_types.h"
|
||||
#include "hal/adc_ll.h"
|
||||
#include "hal/dma_types.h"
|
||||
#include "esp_err.h"
|
||||
|
||||
typedef struct adc_dma_hal_context_t {
|
||||
gdma_dev_t *dev; //address of the general DMA
|
||||
@ -259,9 +262,7 @@ void adc_hal_onetime_channel(adc_ll_num_t unit, adc_channel_t channel);
|
||||
|
||||
void adc_hal_set_onetime_atten(adc_atten_t atten);
|
||||
|
||||
uint32_t adc_hal_adc1_read(void);
|
||||
|
||||
uint32_t adc_hal_adc2_read(void);
|
||||
esp_err_t adc_hal_single_read(adc_ll_num_t unit, int *out_raw);
|
||||
|
||||
void adc_hal_intr_enable(adc_event_t event);
|
||||
|
||||
|
@ -17,6 +17,7 @@
|
||||
#include <stdint.h>
|
||||
#include "sdkconfig.h"
|
||||
#include "soc/soc_caps.h"
|
||||
#include "esp_attr.h"
|
||||
|
||||
/**
|
||||
* @brief ADC unit enumeration.
|
||||
@ -88,7 +89,9 @@ typedef enum {
|
||||
ADC_WIDTH_BIT_10 = 1, /*!< ADC capture width is 10Bit. */
|
||||
ADC_WIDTH_BIT_11 = 2, /*!< ADC capture width is 11Bit. */
|
||||
ADC_WIDTH_BIT_12 = 3, /*!< ADC capture width is 12Bit. */
|
||||
#elif CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32C3 || CONFIG_IDF_TARGET_ESP32S3
|
||||
#elif SOC_ADC_MAX_BITWIDTH == 12
|
||||
ADC_WIDTH_BIT_12 = 3, /*!< ADC capture width is 12Bit. */
|
||||
#elif SOC_ADC_MAX_BITWIDTH == 13
|
||||
ADC_WIDTH_BIT_13 = 4, /*!< ADC capture width is 13Bit. */
|
||||
#endif
|
||||
ADC_WIDTH_MAX,
|
||||
@ -139,7 +142,7 @@ typedef struct {
|
||||
uint8_t reserved: 2; /*!< reserved0 */
|
||||
#endif
|
||||
};
|
||||
uint8_t val; /*!<Raw data value */
|
||||
uint8_t val;
|
||||
};
|
||||
} adc_digi_pattern_table_t;
|
||||
|
||||
@ -189,12 +192,13 @@ typedef struct {
|
||||
typedef struct {
|
||||
union {
|
||||
struct {
|
||||
uint32_t data: 13; /*!<ADC real output data info. Resolution: 13 bit. */
|
||||
uint32_t channel: 3; /*!<ADC channel index info.
|
||||
If (channel < ADC_CHANNEL_MAX), The data is valid.
|
||||
If (channel > ADC_CHANNEL_MAX), The data is invalid. */
|
||||
uint32_t unit: 1; /*!<ADC unit index info. 0: ADC1; 1: ADC2. */
|
||||
uint32_t reserved: 15;
|
||||
uint32_t data: 12; /*!<ADC real output data info. Resolution: 12 bit. */
|
||||
uint32_t reserved12: 1;
|
||||
uint32_t channel: 3; /*!<ADC channel index info.
|
||||
If (channel < ADC_CHANNEL_MAX), The data is valid.
|
||||
If (channel > ADC_CHANNEL_MAX), The data is invalid. */
|
||||
uint32_t unit: 1; /*!<ADC unit index info. 0: ADC1; 1: ADC2. */
|
||||
uint32_t reserved17_31: 15;
|
||||
} type2;
|
||||
uint32_t val;
|
||||
};
|
||||
@ -271,7 +275,7 @@ typedef struct {
|
||||
pattern table one by one. For each controller the scan sequence has at most 16 different rules before repeating itself. */
|
||||
adc_digi_pattern_table_t *adc_pattern; /*!<Pointer to pattern table for digital controller. The table size defined by `adc_pattern_len`. */
|
||||
#endif
|
||||
#if !CONFIG_IDF_TARGET_ESP32
|
||||
#if CONFIG_IDF_TARGET_ESP32S2
|
||||
uint32_t interval; /*!<The number of interval clock cycles for the digital controller to trigger the measurement.
|
||||
The unit is the divided clock. Range: 40 ~ 4095.
|
||||
Expression: `trigger_meas_freq` = `controller_clk` / 2 / interval. Refer to ``adc_digi_clk_t``.
|
||||
@ -281,6 +285,12 @@ typedef struct {
|
||||
uint32_t dma_eof_num; /*!<DMA eof num of adc digital controller.
|
||||
If the number of measurements reaches `dma_eof_num`, then `dma_in_suc_eof` signal is generated in DMA.
|
||||
Note: The converted data in the DMA in link buffer will be multiple of two bytes. */
|
||||
#elif CONFIG_IDF_TARGET_ESP32C3
|
||||
uint32_t sample_freq_hz; /*!< The expected ADC sampling frequency in Hz. Range: 611Hz ~ 83333Hz
|
||||
Fs = Fd / interval / 2
|
||||
Fs: sampling frequency;
|
||||
Fd: digital controller frequency, no larger than 5M for better performance
|
||||
interval: interval between 2 measurement trigger signal, the smallest interval should not be smaller than the ADC measurement period, the largest interval should not be larger than 4095 */
|
||||
#endif
|
||||
} adc_digi_config_t;
|
||||
|
||||
@ -326,10 +336,19 @@ typedef struct {
|
||||
* @brief ADC digital controller (DMA mode) interrupt type options.
|
||||
*/
|
||||
typedef enum {
|
||||
#if CONFIG_IDF_TARGET_ESP32C3
|
||||
ADC_DIGI_INTR_MASK_MONITOR0_HIGH = BIT(0),
|
||||
ADC_DIGI_INTR_MASK_MONITOR0_LOW = BIT(1),
|
||||
ADC_DIGI_INTR_MASK_MONITOR1_HIGH = BIT(2),
|
||||
ADC_DIGI_INTR_MASK_MONITOR1_LOW = BIT(3),
|
||||
ADC_DIGI_INTR_MASK_MEAS_DONE = BIT(4),
|
||||
#else
|
||||
ADC_DIGI_INTR_MASK_MONITOR = 0x1,
|
||||
ADC_DIGI_INTR_MASK_MEAS_DONE = 0x2,
|
||||
ADC_DIGI_INTR_MASK_ALL = 0x3,
|
||||
#endif
|
||||
} adc_digi_intr_t;
|
||||
FLAG_ATTR(adc_digi_intr_t)
|
||||
|
||||
/**
|
||||
* @brief ADC digital controller (DMA mode) filter index options.
|
||||
@ -349,6 +368,9 @@ typedef enum {
|
||||
* Expression: filter_data = (k-1)/k * last_data + new_data / k.
|
||||
*/
|
||||
typedef enum {
|
||||
#if CONFIG_IDF_TARGET_ESP32C3
|
||||
ADC_DIGI_FILTER_DIS = -1, /*!< Disable filter */
|
||||
#endif
|
||||
ADC_DIGI_FILTER_IIR_2 = 0, /*!<The filter mode is first-order IIR filter. The coefficient is 2. */
|
||||
ADC_DIGI_FILTER_IIR_4, /*!<The filter mode is first-order IIR filter. The coefficient is 4. */
|
||||
ADC_DIGI_FILTER_IIR_8, /*!<The filter mode is first-order IIR filter. The coefficient is 8. */
|
||||
@ -390,8 +412,14 @@ typedef enum {
|
||||
* MONITOR_LOW: If ADC_OUT < threshold, Generates monitor interrupt.
|
||||
*/
|
||||
typedef enum {
|
||||
#if CONFIG_IDF_TARGET_ESP32C3
|
||||
ADC_DIGI_MONITOR_DIS = 0, /*!<Disable monitor. */
|
||||
ADC_DIGI_MONITOR_EN, /*!<If ADC_OUT < threshold, Generates monitor interrupt. */
|
||||
/*!<If ADC_OUT > threshold, Generates monitor interrupt. */
|
||||
#else
|
||||
ADC_DIGI_MONITOR_HIGH = 0, /*!<If ADC_OUT > threshold, Generates monitor interrupt. */
|
||||
ADC_DIGI_MONITOR_LOW, /*!<If ADC_OUT < threshold, Generates monitor interrupt. */
|
||||
#endif
|
||||
ADC_DIGI_MONITOR_MAX
|
||||
} adc_digi_monitor_mode_t;
|
||||
|
||||
@ -407,7 +435,12 @@ typedef struct {
|
||||
adc_channel_t channel; /*!<Set adc channel number for monitor.
|
||||
For ESP32-S2, it's always `ADC_CHANNEL_MAX` */
|
||||
adc_digi_monitor_mode_t mode; /*!<Set adc monitor mode. See ``adc_digi_monitor_mode_t``. */
|
||||
#if CONFIG_IDF_TARGET_ESP32C3
|
||||
uint32_t h_threshold; /*!<Set monitor threshold of adc digital controller. */
|
||||
uint32_t l_threshold; /*!<Set monitor threshold of adc digital controller. */
|
||||
#else
|
||||
uint32_t threshold; /*!<Set monitor threshold of adc digital controller. */
|
||||
#endif
|
||||
} adc_digi_monitor_t;
|
||||
|
||||
#endif // CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
|
||||
|
@ -79,6 +79,7 @@
|
||||
#define SOC_ADC_PATT_LEN_MAX (16)
|
||||
#define SOC_ADC_CHANNEL_NUM(PERIPH_NUM) ((PERIPH_NUM==0)? 8: 10)
|
||||
#define SOC_ADC_MAX_CHANNEL_NUM (10)
|
||||
#define SOC_ADC_MAX_BITWIDTH (12)
|
||||
|
||||
/**
|
||||
* Check if adc support digital controller (DMA) mode.
|
||||
@ -87,6 +88,7 @@
|
||||
* - 0 : not support;
|
||||
*/
|
||||
#define SOC_ADC_SUPPORT_DMA_MODE(PERIPH_NUM) ((PERIPH_NUM==0)? 1: 0)
|
||||
#define SOC_ADC_SUPPORT_RTC_CTRL 1
|
||||
|
||||
/*-------------------------- BROWNOUT CAPS -----------------------------------*/
|
||||
#if SOC_CAPS_ECO_VER >= 1
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,504 +0,0 @@
|
||||
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#ifndef _SOC_SENS_STRUCT_H_
|
||||
#define _SOC_SENS_STRUCT_H_
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
typedef volatile struct {
|
||||
union {
|
||||
struct {
|
||||
uint32_t sar1_clk_div: 8; /*clock divider*/
|
||||
uint32_t reserved8: 10;
|
||||
uint32_t sar1_clk_gated: 1;
|
||||
uint32_t sar1_sample_num: 8;
|
||||
uint32_t reserved27: 1;
|
||||
uint32_t sar1_data_inv: 1; /*Invert SAR ADC1 data*/
|
||||
uint32_t sar1_int_en: 1; /*enable saradc1 to send out interrupt*/
|
||||
uint32_t reserved30: 2;
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_reader1_ctrl;
|
||||
uint32_t sar_reader1_status; /**/
|
||||
union {
|
||||
struct {
|
||||
uint32_t reserved0: 24;
|
||||
uint32_t force_xpd_amp: 2;
|
||||
uint32_t amp_rst_fb_force: 2;
|
||||
uint32_t amp_short_ref_force: 2;
|
||||
uint32_t amp_short_ref_gnd_force: 2;
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_meas1_ctrl1;
|
||||
union {
|
||||
struct {
|
||||
uint32_t meas1_data_sar: 16; /*SAR ADC1 data*/
|
||||
uint32_t meas1_done_sar: 1; /*SAR ADC1 conversion done indication*/
|
||||
uint32_t meas1_start_sar: 1; /*SAR ADC1 controller (in RTC) starts conversion*/
|
||||
uint32_t meas1_start_force: 1; /*1: SAR ADC1 controller (in RTC) is started by SW*/
|
||||
uint32_t sar1_en_pad: 12; /*SAR ADC1 pad enable bitmap*/
|
||||
uint32_t sar1_en_pad_force: 1; /*1: SAR ADC1 pad enable bitmap is controlled by SW*/
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_meas1_ctrl2;
|
||||
union {
|
||||
struct {
|
||||
uint32_t reserved0: 31;
|
||||
uint32_t sar1_dig_force: 1; /*1: SAR ADC1 controlled by DIG ADC1 CTRL*/
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_meas1_mux;
|
||||
uint32_t sar_atten1; /*2-bit attenuation for each pad*/
|
||||
union {
|
||||
struct {
|
||||
uint32_t sar_amp_wait1:16;
|
||||
uint32_t sar_amp_wait2:16;
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_amp_ctrl1;
|
||||
union {
|
||||
struct {
|
||||
uint32_t sar1_dac_xpd_fsm_idle: 1;
|
||||
uint32_t xpd_sar_amp_fsm_idle: 1;
|
||||
uint32_t amp_rst_fb_fsm_idle: 1;
|
||||
uint32_t amp_short_ref_fsm_idle: 1;
|
||||
uint32_t amp_short_ref_gnd_fsm_idle: 1;
|
||||
uint32_t xpd_sar_fsm_idle: 1;
|
||||
uint32_t sar_rstb_fsm_idle: 1;
|
||||
uint32_t reserved7: 9;
|
||||
uint32_t sar_amp_wait3: 16;
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_amp_ctrl2;
|
||||
union {
|
||||
struct {
|
||||
uint32_t sar1_dac_xpd_fsm: 4;
|
||||
uint32_t xpd_sar_amp_fsm: 4;
|
||||
uint32_t amp_rst_fb_fsm: 4;
|
||||
uint32_t amp_short_ref_fsm: 4;
|
||||
uint32_t amp_short_ref_gnd_fsm: 4;
|
||||
uint32_t xpd_sar_fsm: 4;
|
||||
uint32_t sar_rstb_fsm: 4;
|
||||
uint32_t reserved28: 4;
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_amp_ctrl3;
|
||||
union {
|
||||
struct {
|
||||
uint32_t sar2_clk_div: 8; /*clock divider*/
|
||||
uint32_t reserved8: 8;
|
||||
uint32_t sar2_wait_arb_cycle: 2; /*wait arbit stable after sar_done*/
|
||||
uint32_t sar2_clk_gated: 1;
|
||||
uint32_t sar2_sample_num: 8;
|
||||
uint32_t reserved27: 2;
|
||||
uint32_t sar2_data_inv: 1; /*Invert SAR ADC2 data*/
|
||||
uint32_t sar2_int_en: 1; /*enable saradc2 to send out interrupt*/
|
||||
uint32_t reserved31: 1;
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_reader2_ctrl;
|
||||
uint32_t sar_reader2_status; /**/
|
||||
union {
|
||||
struct {
|
||||
uint32_t sar2_cntl_state: 3; /*saradc2_cntl_fsm*/
|
||||
uint32_t sar2_pwdet_cal_en: 1; /*rtc control pwdet enable*/
|
||||
uint32_t sar2_pkdet_cal_en: 1; /*rtc control pkdet enable*/
|
||||
uint32_t sar2_en_test: 1; /*SAR2_EN_TEST*/
|
||||
uint32_t sar2_rstb_force: 2;
|
||||
uint32_t sar2_standby_wait: 8;
|
||||
uint32_t sar2_rstb_wait: 8;
|
||||
uint32_t sar2_xpd_wait: 8;
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_meas2_ctrl1;
|
||||
union {
|
||||
struct {
|
||||
uint32_t meas2_data_sar: 16; /*SAR ADC2 data*/
|
||||
uint32_t meas2_done_sar: 1; /*SAR ADC2 conversion done indication*/
|
||||
uint32_t meas2_start_sar: 1; /*SAR ADC2 controller (in RTC) starts conversion*/
|
||||
uint32_t meas2_start_force: 1; /*1: SAR ADC2 controller (in RTC) is started by SW*/
|
||||
uint32_t sar2_en_pad: 12; /*SAR ADC2 pad enable bitmap*/
|
||||
uint32_t sar2_en_pad_force: 1; /*1: SAR ADC2 pad enable bitmap is controlled by SW*/
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_meas2_ctrl2;
|
||||
union {
|
||||
struct {
|
||||
uint32_t reserved0: 28;
|
||||
uint32_t sar2_pwdet_cct: 3; /*SAR2_PWDET_CCT*/
|
||||
uint32_t sar2_rtc_force: 1; /*in sleep force to use rtc to control ADC*/
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_meas2_mux;
|
||||
uint32_t sar_atten2; /*2-bit attenuation for each pad*/
|
||||
union {
|
||||
struct {
|
||||
uint32_t reserved0: 29;
|
||||
uint32_t force_xpd_sar: 2;
|
||||
uint32_t sarclk_en: 1;
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_power_xpd_sar;
|
||||
union {
|
||||
struct {
|
||||
uint32_t i2c_slave_addr1: 11;
|
||||
uint32_t i2c_slave_addr0: 11;
|
||||
uint32_t meas_status: 8;
|
||||
uint32_t reserved30: 2;
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_slave_addr1;
|
||||
union {
|
||||
struct {
|
||||
uint32_t i2c_slave_addr3:11;
|
||||
uint32_t i2c_slave_addr2:11;
|
||||
uint32_t reserved22: 10;
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_slave_addr2;
|
||||
union {
|
||||
struct {
|
||||
uint32_t i2c_slave_addr5:11;
|
||||
uint32_t i2c_slave_addr4:11;
|
||||
uint32_t reserved22: 10;
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_slave_addr3;
|
||||
union {
|
||||
struct {
|
||||
uint32_t i2c_slave_addr7:11;
|
||||
uint32_t i2c_slave_addr6:11;
|
||||
uint32_t reserved22: 10;
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_slave_addr4;
|
||||
union {
|
||||
struct {
|
||||
uint32_t tsens_out: 8; /*temperature sensor data out*/
|
||||
uint32_t tsens_ready: 1; /*indicate temperature sensor out ready*/
|
||||
uint32_t reserved9: 3;
|
||||
uint32_t tsens_int_en: 1; /*enable temperature sensor to send out interrupt*/
|
||||
uint32_t tsens_in_inv: 1; /*invert temperature sensor data*/
|
||||
uint32_t tsens_clk_div: 8; /*temperature sensor clock divider*/
|
||||
uint32_t tsens_power_up: 1; /*temperature sensor power up*/
|
||||
uint32_t tsens_power_up_force: 1; /*1: dump out & power up controlled by SW*/
|
||||
uint32_t tsens_dump_out: 1; /*temperature sensor dump out*/
|
||||
uint32_t reserved25: 7;
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_tctrl;
|
||||
union {
|
||||
struct {
|
||||
uint32_t tsens_xpd_wait: 12;
|
||||
uint32_t tsens_xpd_force: 2;
|
||||
uint32_t tsens_clk_inv: 1;
|
||||
uint32_t reserved15: 17;
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_tctrl2;
|
||||
union {
|
||||
struct {
|
||||
uint32_t sar_i2c_ctrl: 28; /*I2C control data*/
|
||||
uint32_t sar_i2c_start: 1; /*start I2C*/
|
||||
uint32_t sar_i2c_start_force: 1; /*1: I2C started by SW*/
|
||||
uint32_t reserved30: 2;
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_i2c_ctrl;
|
||||
union {
|
||||
struct {
|
||||
uint32_t touch_outen: 15; /*touch controller output enable*/
|
||||
uint32_t touch_status_clr: 1; /*clear all touch active status*/
|
||||
uint32_t touch_data_sel: 2; /*3: smooth data 2: baseline 1 0: raw_data*/
|
||||
uint32_t touch_denoise_end: 1; /*touch_denoise_done*/
|
||||
uint32_t touch_unit_end: 1; /*touch_unit_done*/
|
||||
uint32_t touch_approach_pad2: 4; /*indicate which pad is approach pad2*/
|
||||
uint32_t touch_approach_pad1: 4; /*indicate which pad is approach pad1*/
|
||||
uint32_t touch_approach_pad0: 4; /*indicate which pad is approach pad0*/
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_touch_conf;
|
||||
union {
|
||||
struct {
|
||||
uint32_t thresh: 22; /*Finger threshold for touch pad 1*/
|
||||
uint32_t reserved22: 10;
|
||||
};
|
||||
uint32_t val;
|
||||
} touch_thresh[14];
|
||||
uint32_t reserved_98;
|
||||
uint32_t reserved_9c;
|
||||
uint32_t reserved_a0;
|
||||
uint32_t reserved_a4;
|
||||
uint32_t reserved_a8;
|
||||
uint32_t reserved_ac;
|
||||
uint32_t reserved_b0;
|
||||
uint32_t reserved_b4;
|
||||
uint32_t reserved_b8;
|
||||
uint32_t reserved_bc;
|
||||
uint32_t reserved_c0;
|
||||
uint32_t reserved_c4;
|
||||
uint32_t reserved_c8;
|
||||
uint32_t reserved_cc;
|
||||
uint32_t reserved_d0;
|
||||
union {
|
||||
struct {
|
||||
uint32_t touch_pad_active: 15; /*touch active status*/
|
||||
uint32_t touch_channel_clr:15; /*Clear touch channel*/
|
||||
uint32_t reserved30: 1;
|
||||
uint32_t touch_meas_done: 1;
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_touch_chn_st;
|
||||
union {
|
||||
struct {
|
||||
uint32_t touch_denoise_data:22; /*the counter for touch pad 0*/
|
||||
uint32_t touch_scan_curr: 4;
|
||||
uint32_t reserved26: 6;
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_touch_status0;
|
||||
union {
|
||||
struct {
|
||||
uint32_t touch_pad1_data: 22;
|
||||
uint32_t reserved22: 7;
|
||||
uint32_t touch_pad_debounce: 3;
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_touch_status[14];
|
||||
union {
|
||||
struct {
|
||||
uint32_t touch_slp_data: 22;
|
||||
uint32_t reserved22: 7;
|
||||
uint32_t touch_slp_debounce: 3;
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_touch_status15;
|
||||
union {
|
||||
struct {
|
||||
uint32_t touch_approach_pad2_cnt: 8;
|
||||
uint32_t touch_approach_pad1_cnt: 8;
|
||||
uint32_t touch_approach_pad0_cnt: 8;
|
||||
uint32_t touch_slp_approach_cnt: 8;
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_touch_status16;
|
||||
union {
|
||||
struct {
|
||||
uint32_t sw_fstep: 16; /*frequency step for CW generator*/
|
||||
uint32_t sw_tone_en: 1; /*1: enable CW generator*/
|
||||
uint32_t debug_bit_sel: 5;
|
||||
uint32_t dac_dig_force: 1; /*1: DAC1 & DAC2 use DMA*/
|
||||
uint32_t dac_clk_force_low: 1; /*1: force PDAC_CLK to low*/
|
||||
uint32_t dac_clk_force_high: 1; /*1: force PDAC_CLK to high*/
|
||||
uint32_t dac_clk_inv: 1; /*1: invert PDAC_CLK*/
|
||||
uint32_t reserved26: 6;
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_dac_ctrl1;
|
||||
union {
|
||||
struct {
|
||||
uint32_t dac_dc1: 8; /*DC offset for DAC1 CW generator*/
|
||||
uint32_t dac_dc2: 8; /*DC offset for DAC2 CW generator*/
|
||||
uint32_t dac_scale1: 2; /*00: no scale*/
|
||||
uint32_t dac_scale2: 2; /*00: no scale*/
|
||||
uint32_t dac_inv1: 2; /*00: do not invert any bits*/
|
||||
uint32_t dac_inv2: 2; /*00: do not invert any bits*/
|
||||
uint32_t dac_cw_en1: 1; /*1: to select CW generator as source to PDAC1_DAC[7:0]*/
|
||||
uint32_t dac_cw_en2: 1; /*1: to select CW generator as source to PDAC2_DAC[7:0]*/
|
||||
uint32_t reserved26: 6;
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_dac_ctrl2;
|
||||
union {
|
||||
struct {
|
||||
uint32_t reserved0: 25;
|
||||
uint32_t dbg_trigger: 1; /*trigger cocpu debug registers*/
|
||||
uint32_t clk_en_st: 1; /*check cocpu whether clk on*/
|
||||
uint32_t reset_n: 1; /*check cocpu whether in reset state*/
|
||||
uint32_t eoi: 1; /*check cocpu whether in interrupt state*/
|
||||
uint32_t trap: 1; /*check cocpu whether in trap state*/
|
||||
uint32_t ebreak: 1; /*check cocpu whether in ebreak*/
|
||||
uint32_t reserved31: 1;
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_cocpu_state;
|
||||
union {
|
||||
struct {
|
||||
uint32_t touch_done: 1; /*int from touch done*/
|
||||
uint32_t touch_inactive: 1; /*int from touch inactive*/
|
||||
uint32_t touch_active: 1; /*int from touch active*/
|
||||
uint32_t saradc1: 1; /*int from saradc1*/
|
||||
uint32_t saradc2: 1; /*int from saradc2*/
|
||||
uint32_t tsens: 1; /*int from tsens*/
|
||||
uint32_t start: 1; /*int from start*/
|
||||
uint32_t sw: 1; /*int from software*/
|
||||
uint32_t swd: 1; /*int from super watch dog*/
|
||||
uint32_t touch_timeout: 1;
|
||||
uint32_t touch_approach_loop_done: 1;
|
||||
uint32_t touch_scan_done: 1;
|
||||
uint32_t reserved12: 20;
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_cocpu_int_raw;
|
||||
union {
|
||||
struct {
|
||||
uint32_t touch_done: 1;
|
||||
uint32_t touch_inactive: 1;
|
||||
uint32_t touch_active: 1;
|
||||
uint32_t saradc1: 1;
|
||||
uint32_t saradc2: 1;
|
||||
uint32_t tsens: 1;
|
||||
uint32_t start: 1;
|
||||
uint32_t sw: 1; /*cocpu int enable*/
|
||||
uint32_t swd: 1;
|
||||
uint32_t touch_timeout: 1;
|
||||
uint32_t touch_approach_loop_done: 1;
|
||||
uint32_t touch_scan_done: 1;
|
||||
uint32_t reserved12: 20;
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_cocpu_int_ena;
|
||||
union {
|
||||
struct {
|
||||
uint32_t touch_done: 1;
|
||||
uint32_t touch_inactive: 1;
|
||||
uint32_t touch_active: 1;
|
||||
uint32_t saradc1: 1;
|
||||
uint32_t saradc2: 1;
|
||||
uint32_t tsens: 1;
|
||||
uint32_t start: 1;
|
||||
uint32_t sw: 1; /*cocpu int status*/
|
||||
uint32_t swd: 1;
|
||||
uint32_t touch_timeout: 1;
|
||||
uint32_t touch_approach_loop_done: 1;
|
||||
uint32_t touch_scan_done: 1;
|
||||
uint32_t reserved12: 20;
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_cocpu_int_st;
|
||||
union {
|
||||
struct {
|
||||
uint32_t touch_done: 1;
|
||||
uint32_t touch_inactive: 1;
|
||||
uint32_t touch_active: 1;
|
||||
uint32_t saradc1: 1;
|
||||
uint32_t saradc2: 1;
|
||||
uint32_t tsens: 1;
|
||||
uint32_t start: 1;
|
||||
uint32_t sw: 1; /*cocpu int clear*/
|
||||
uint32_t swd: 1;
|
||||
uint32_t touch_timeout: 1;
|
||||
uint32_t touch_approach_loop_done: 1;
|
||||
uint32_t touch_scan_done: 1;
|
||||
uint32_t reserved12: 20;
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_cocpu_int_clr;
|
||||
union {
|
||||
struct {
|
||||
uint32_t pc: 13; /*cocpu Program counter*/
|
||||
uint32_t mem_vld: 1; /*cocpu mem valid output*/
|
||||
uint32_t mem_rdy: 1; /*cocpu mem ready input*/
|
||||
uint32_t mem_wen: 4; /*cocpu mem write enable output*/
|
||||
uint32_t mem_addr: 13; /*cocpu mem address output*/
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_cocpu_debug;
|
||||
union {
|
||||
struct {
|
||||
uint32_t reserved0: 28;
|
||||
uint32_t xpd_hall: 1; /*Power on hall sensor and connect to VP and VN*/
|
||||
uint32_t xpd_hall_force: 1; /*1: XPD HALL is controlled by SW. 0: XPD HALL is controlled by FSM in ULP-coprocessor*/
|
||||
uint32_t hall_phase: 1; /*Reverse phase of hall sensor*/
|
||||
uint32_t hall_phase_force: 1; /*1: HALL PHASE is controlled by SW 0: HALL PHASE is controlled by FSM in ULP-coprocessor*/
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_hall_ctrl;
|
||||
uint32_t sar_nouse; /**/
|
||||
union {
|
||||
struct {
|
||||
uint32_t reserved0: 26;
|
||||
uint32_t dac_clk_en: 1;
|
||||
uint32_t rtc_i2c_clk_en: 1;
|
||||
uint32_t reserved28: 1;
|
||||
uint32_t tsens_clk_en: 1;
|
||||
uint32_t saradc_clk_en: 1;
|
||||
uint32_t iomux_clk_en: 1;
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_peri_clk_gate_conf;
|
||||
union {
|
||||
struct {
|
||||
uint32_t reserved0: 25;
|
||||
uint32_t reset: 1;
|
||||
uint32_t dac_reset: 1;
|
||||
uint32_t rtc_i2c_reset: 1;
|
||||
uint32_t reserved28: 1;
|
||||
uint32_t tsens_reset: 1;
|
||||
uint32_t saradc_reset: 1;
|
||||
uint32_t reserved31: 1;
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_peri_reset_conf;
|
||||
union {
|
||||
struct {
|
||||
uint32_t touch_done_w1ts: 1;
|
||||
uint32_t touch_inactive_w1ts: 1;
|
||||
uint32_t touch_active_w1ts: 1;
|
||||
uint32_t saradc1_w1ts: 1;
|
||||
uint32_t saradc2_w1ts: 1;
|
||||
uint32_t tsens_w1ts: 1;
|
||||
uint32_t start_w1ts: 1;
|
||||
uint32_t sw_w1ts: 1;
|
||||
uint32_t swd_w1ts: 1;
|
||||
uint32_t touch_timeout_w1ts: 1;
|
||||
uint32_t touch_approach_loop_done_w1ts: 1;
|
||||
uint32_t touch_scan_done_w1ts: 1;
|
||||
uint32_t reserved12: 20;
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_cocpu_int_ena_w1ts;
|
||||
union {
|
||||
struct {
|
||||
uint32_t touch_done_w1tc: 1;
|
||||
uint32_t touch_inactive_w1tc: 1;
|
||||
uint32_t touch_active_w1tc: 1;
|
||||
uint32_t saradc1_w1tc: 1;
|
||||
uint32_t saradc2_w1tc: 1;
|
||||
uint32_t tsens_w1tc: 1;
|
||||
uint32_t start_w1tc: 1;
|
||||
uint32_t sw_w1tc: 1;
|
||||
uint32_t swd_w1tc: 1;
|
||||
uint32_t touch_timeout_w1tc: 1;
|
||||
uint32_t touch_approach_loop_done_w1tc: 1;
|
||||
uint32_t touch_scan_done_w1tc: 1;
|
||||
uint32_t reserved12: 20;
|
||||
};
|
||||
uint32_t val;
|
||||
} sar_cocpu_int_ena_w1tc;
|
||||
union {
|
||||
struct {
|
||||
uint32_t sar_date: 28;
|
||||
uint32_t reserved28: 4;
|
||||
};
|
||||
uint32_t val;
|
||||
} sardate;
|
||||
} sens_dev_t;
|
||||
extern sens_dev_t SENS;
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* _SOC_SENS_STRUCT_H_ */
|
@ -102,19 +102,17 @@
|
||||
#define SOC_AES_SUPPORT_AES_256 (1)
|
||||
|
||||
/*-------------------------- ADC CAPS -------------------------------*/
|
||||
#define SOC_ADC_PERIPH_NUM (2)
|
||||
#define SOC_ADC_PATT_LEN_MAX (16)
|
||||
|
||||
#define SOC_ADC_CHANNEL_NUM(PERIPH_NUM) ((PERIPH_NUM==0)? 5 : 1)
|
||||
#define SOC_ADC_MAX_CHANNEL_NUM (10)
|
||||
|
||||
/**
|
||||
* Check if adc support digital controller (DMA) mode.
|
||||
* @value
|
||||
* - 1 : support;
|
||||
* - 0 : not support;
|
||||
*/
|
||||
#define SOC_ADC_SUPPORT_DMA_MODE(PERIPH_NUM) 1
|
||||
#define SOC_ADC_PERIPH_NUM (2)
|
||||
#define SOC_ADC_PATT_LEN_MAX (16)
|
||||
#define SOC_ADC_CHANNEL_NUM(PERIPH_NUM) ((PERIPH_NUM==0)? 5 : 1)
|
||||
#define SOC_ADC_MAX_CHANNEL_NUM (10)
|
||||
#define SOC_ADC_MAX_BITWIDTH (12)
|
||||
#define SOC_ADC_DIGI_FILTER_NUM (2)
|
||||
#define SOC_ADC_DIGI_MONITOR_NUM (2)
|
||||
#define SOC_ADC_SUPPORT_DMA_MODE(PERIPH_NUM) 1
|
||||
//F_sample = F_digi_con / 2 / interval. F_digi_con = 5M for now. 30 <= interva <= 4095
|
||||
#define SOC_ADC_SAMPLE_FREQ_THRES_HIGH 83333
|
||||
#define SOC_ADC_SAMPLE_FREQ_THRES_LOW 611
|
||||
|
||||
/*-------------------------- APB BACKUP DMA CAPS -------------------------------*/
|
||||
#define SOC_APB_BACKUP_DMA (1)
|
||||
|
@ -55,9 +55,9 @@
|
||||
/*-------------------------- ADC CAPS ----------------------------------------*/
|
||||
#define SOC_ADC_PERIPH_NUM (2)
|
||||
#define SOC_ADC_PATT_LEN_MAX (16)
|
||||
|
||||
#define SOC_ADC_CHANNEL_NUM(PERIPH_NUM) (10)
|
||||
#define SOC_ADC_MAX_CHANNEL_NUM (10)
|
||||
#define SOC_ADC_MAX_BITWIDTH (13)
|
||||
|
||||
/**
|
||||
* Check if adc support digital controller (DMA) mode.
|
||||
@ -66,6 +66,7 @@
|
||||
* - 0 : not support;
|
||||
*/
|
||||
#define SOC_ADC_SUPPORT_DMA_MODE(PERIPH_NUM) ((PERIPH_NUM==0)? 1: 1)
|
||||
#define SOC_ADC_SUPPORT_RTC_CTRL 1
|
||||
|
||||
/*-------------------------- BROWNOUT CAPS -----------------------------------*/
|
||||
#define SOC_BROWNOUT_RESET_SUPPORTED 1
|
||||
|
@ -15,9 +15,10 @@
|
||||
|
||||
#define SOC_ADC_PERIPH_NUM (2)
|
||||
#define SOC_ADC_PATT_LEN_MAX (16)
|
||||
|
||||
#define SOC_ADC_CHANNEL_NUM(PERIPH_NUM) (10)
|
||||
#define SOC_ADC_MAX_CHANNEL_NUM (10)
|
||||
#define SOC_ADC_MAX_BITWIDTH (13)
|
||||
|
||||
|
||||
/**
|
||||
* Check if adc support digital controller (DMA) mode.
|
||||
@ -26,3 +27,4 @@
|
||||
* - 0 : not support;
|
||||
*/
|
||||
#define SOC_ADC_SUPPORT_DMA_MODE(PERIPH_NUM) ((PERIPH_NUM==0)? 1: 1)
|
||||
#define SOC_ADC_SUPPORT_RTC_CTRL 1
|
||||
|
@ -17,8 +17,12 @@
|
||||
#include "soc/soc.h"
|
||||
#include "soc/soc_caps.h"
|
||||
#include "soc/syscon_struct.h"
|
||||
|
||||
#if SOC_ADC_SUPPORT_RTC_CTRL
|
||||
#include "soc/sens_reg.h"
|
||||
#include "soc/sens_struct.h"
|
||||
#endif
|
||||
|
||||
#if SOC_RTCIO_INPUT_OUTPUT_SUPPORTED
|
||||
#include "soc/rtc_io_struct.h"
|
||||
#endif
|
||||
|
@ -19,16 +19,17 @@
|
||||
#include "soc/soc_caps.h"
|
||||
|
||||
#if SOC_RTCIO_INPUT_OUTPUT_SUPPORTED
|
||||
|
||||
#include "soc/rtc_io_channel.h"
|
||||
#include "soc/rtc_io_reg.h"
|
||||
#include "soc/rtc_io_struct.h"
|
||||
|
||||
#endif
|
||||
|
||||
#include "soc/rtc_cntl_reg.h"
|
||||
#include "soc/rtc_cntl_struct.h"
|
||||
|
||||
#if SOC_ADC_SUPPORT_RTC_CTRL
|
||||
#include "soc/sens_struct.h"
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
|
@ -76,7 +76,7 @@ Reading voltage on ADC1 channel 0 ({IDF_TARGET_ADC1_CH0})::
|
||||
int val = adc1_get_raw(ADC1_CHANNEL_0);
|
||||
|
||||
The input voltage in the above example is from 0 to 1.1 V (0 dB attenuation). The input range can be extended by setting a higher attenuation, see :cpp:type:`adc_atten_t`.
|
||||
An example of using the ADC driver including calibration (discussed below) is available at esp-idf: :example:`peripherals/adc`
|
||||
An example of using the ADC driver including calibration (discussed below) is available at esp-idf: :example:`peripherals/adc/adc`
|
||||
|
||||
Reading voltage on ADC2 channel 7 ({IDF_TARGET_ADC2_CH7})::
|
||||
|
||||
@ -95,7 +95,7 @@ Reading voltage on ADC2 channel 7 ({IDF_TARGET_ADC2_CH7})::
|
||||
}
|
||||
|
||||
The reading may fail due to collision with Wi-Fi, should check it.
|
||||
An example using the ADC2 driver to read the output of DAC is available in esp-idf: :example:`peripherals/adc2`
|
||||
An example using the ADC2 driver to read the output of DAC is available in esp-idf: :example:`peripherals/adc/adc2`
|
||||
|
||||
.. only:: esp32
|
||||
|
||||
|
6
examples/peripherals/adc/adc_dma/CMakeLists.txt
Normal file
6
examples/peripherals/adc/adc_dma/CMakeLists.txt
Normal file
@ -0,0 +1,6 @@
|
||||
# The following lines of boilerplate have to be in your project's CMakeLists
|
||||
# in this exact order for cmake to work correctly
|
||||
cmake_minimum_required(VERSION 3.5)
|
||||
|
||||
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
|
||||
project(adc)
|
63
examples/peripherals/adc/adc_dma/README.md
Normal file
63
examples/peripherals/adc/adc_dma/README.md
Normal file
@ -0,0 +1,63 @@
|
||||
| Supported Targets | ESP32-C3 |
|
||||
| ----------------- | -------- |
|
||||
|
||||
# ADC DMA Example
|
||||
|
||||
(See the README.md file in the upper level 'examples' directory for more information about examples.)
|
||||
|
||||
This example shows how to use DMA-Read-APIs and Single-Read-APIs to read voltage from GPIO pins via ADC controller.
|
||||
|
||||
## How to use example
|
||||
|
||||
### Hardware Required
|
||||
|
||||
* A development board with ESP32C3 SoC
|
||||
* A USB cable for power supply and programming
|
||||
|
||||
For `single_read` (Single-Read-APIs example), we use `ADC1_CHANNEL_2`, `ADC1_CHANNEL_3`, `ADC1_CHANNEL_4`, `ADC2_CHANNEL_0`. Hence we need to connect voltage sources (0 ~ 3.3V) to GPIO2, GPIO3, GPIO4, GPIO5 respectively.
|
||||
|
||||
For `continuous_read` (DMA-Read-APIs example), we use `ADC1_CHANNEL_0`, `ADC1_CHANNEL_1` and `ADC2_CHANNEL_0`. Therefore, GPIO0, GPIO1 and GPIO5 should be connected to voltage sources (0 ~ 3.3V).
|
||||
|
||||
If other ADC units/channels are selected in your application, you need to change the GPIO pin (please refer to the `ESP32C3 Technical Reference Manual`).
|
||||
|
||||
### Configure the project
|
||||
|
||||
```
|
||||
idf.py menuconfig
|
||||
```
|
||||
|
||||
### Build and Flash
|
||||
|
||||
Build the project and flash it to the board, then run monitor tool to view serial output:
|
||||
|
||||
```
|
||||
idf.py -p PORT flash monitor
|
||||
```
|
||||
|
||||
(To exit the serial monitor, type ``Ctrl-]``.)
|
||||
|
||||
See the Getting Started Guide for full steps to configure and use ESP-IDF to build projects.
|
||||
|
||||
## Example Output
|
||||
|
||||
Running this example, you will see the following log output on the serial monitor:
|
||||
```
|
||||
I (322) ADC1_CH2: 7c8
|
||||
I (322) ADC1_CH3: 278
|
||||
I (322) ADC1_CH4: d4b
|
||||
I (322) ADC2_CH0: 48
|
||||
```
|
||||
```
|
||||
ADC1_CH0: 61b
|
||||
ADC1_CH1: 39b
|
||||
ADC2_CH0: 4b
|
||||
```
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
* program upload failure
|
||||
|
||||
* Hardware connection is not correct: run `idf.py -p PORT monitor`, and reboot your board to see if there are any output logs.
|
||||
* The baud rate for downloading is too high: lower your baud rate in the `menuconfig` menu, and try again.
|
||||
|
||||
For any technical queries, please open an [issue](https://github.com/espressif/esp-idf/issues) on GitHub. We will get back to you soon.
|
2
examples/peripherals/adc/adc_dma/main/CMakeLists.txt
Normal file
2
examples/peripherals/adc/adc_dma/main/CMakeLists.txt
Normal file
@ -0,0 +1,2 @@
|
||||
idf_component_register(SRCS "adc_dma_example_main.c"
|
||||
INCLUDE_DIRS ".")
|
126
examples/peripherals/adc/adc_dma/main/adc_dma_example_main.c
Normal file
126
examples/peripherals/adc/adc_dma/main/adc_dma_example_main.c
Normal file
@ -0,0 +1,126 @@
|
||||
#include <string.h>
|
||||
#include <stdio.h>
|
||||
#include "freertos/FreeRTOS.h"
|
||||
#include "freertos/task.h"
|
||||
#include "freertos/semphr.h"
|
||||
#include "esp_log.h"
|
||||
#include "driver/adc.h"
|
||||
|
||||
#define TIMES 256
|
||||
#define DMA_CHANNEL 0
|
||||
|
||||
static void continuous_adc_init(uint16_t adc1_chan_mask, uint16_t adc2_chan_mask, adc_channel_t *channel, uint8_t channel_num)
|
||||
{
|
||||
esp_err_t ret = ESP_OK;
|
||||
assert(ret == ESP_OK);
|
||||
|
||||
adc_digi_init_config_t adc_dma_config = {
|
||||
.max_store_buf_size = 1024,
|
||||
.conv_num_each_intr = 256,
|
||||
.dma_chan = SOC_GDMA_ADC_DMA_CHANNEL,
|
||||
.adc1_chan_mask = adc1_chan_mask,
|
||||
.adc2_chan_mask = adc2_chan_mask,
|
||||
};
|
||||
ret = adc_digi_initialize(&adc_dma_config);
|
||||
assert(ret == ESP_OK);
|
||||
|
||||
adc_digi_pattern_table_t adc_pattern[10] = {0};
|
||||
|
||||
//Do not set the sampling frequency out of the range between `SOC_ADC_SAMPLE_FREQ_THRES_LOW` and `SOC_ADC_SAMPLE_FREQ_THRES_HIGH`
|
||||
adc_digi_config_t dig_cfg = {
|
||||
.conv_limit_en = 0,
|
||||
.conv_limit_num = 250,
|
||||
.sample_freq_hz = 620,
|
||||
};
|
||||
|
||||
dig_cfg.adc_pattern_len = channel_num;
|
||||
for (int i = 0; i < channel_num; i++) {
|
||||
uint8_t unit = ((channel[i] >> 3) & 0x1);
|
||||
uint8_t ch = channel[i] & 0x7;
|
||||
adc_pattern[i].atten = ADC_ATTEN_DB_0;
|
||||
adc_pattern[i].channel = ch;
|
||||
adc_pattern[i].unit = unit;
|
||||
}
|
||||
dig_cfg.adc_pattern = adc_pattern;
|
||||
ret = adc_digi_controller_config(&dig_cfg);
|
||||
assert(ret == ESP_OK);
|
||||
}
|
||||
|
||||
static bool check_valid_data(const adc_digi_output_data_t *data)
|
||||
{
|
||||
const unsigned int unit = data->type2.unit;
|
||||
if (unit > 2) return false;
|
||||
if (data->type2.channel >= SOC_ADC_CHANNEL_NUM(unit)) return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static void continuous_read(void *arg)
|
||||
{
|
||||
esp_err_t ret;
|
||||
uint32_t ret_num = 0;
|
||||
uint8_t result[TIMES] = {0};
|
||||
memset(result, 0xcc, TIMES);
|
||||
|
||||
uint16_t adc1_chan_mask = BIT(0) | BIT(1);
|
||||
uint16_t adc2_chan_mask = BIT(0);
|
||||
adc_channel_t channel[3] = {ADC1_CHANNEL_0, ADC1_CHANNEL_1, (ADC2_CHANNEL_0 | 1 << 3)};
|
||||
|
||||
continuous_adc_init(adc1_chan_mask, adc2_chan_mask, channel, sizeof(channel) / sizeof(adc_channel_t));
|
||||
adc_digi_start();
|
||||
|
||||
int n = 20;
|
||||
while(n--) {
|
||||
ret = adc_digi_read_bytes(result, TIMES, &ret_num, ADC_MAX_DELAY);
|
||||
for (int i = 0; i < ret_num; i+=4) {
|
||||
adc_digi_output_data_t *p = (void*)&result[i];
|
||||
if (check_valid_data(p)) {
|
||||
printf("ADC%d_CH%d: %x\n", p->type2.unit+1, p->type2.channel, p->type2.data);
|
||||
} else {
|
||||
printf("Invalid data [%d_%d_%x]\n", p->type2.unit+1, p->type2.channel, p->type2.data);
|
||||
}
|
||||
}
|
||||
// If you see task WDT in this task, it means the conversion is too fast for the task to handle
|
||||
}
|
||||
|
||||
adc_digi_stop();
|
||||
ret = adc_digi_deinitialize();
|
||||
assert(ret == ESP_OK);
|
||||
}
|
||||
|
||||
static void single_read(void *arg)
|
||||
{
|
||||
esp_err_t ret;
|
||||
int adc1_reading[3] = {0xcc};
|
||||
int adc2_reading[1] = {0xcc};
|
||||
|
||||
const char TAG_CH[][10] = {"ADC1_CH2", "ADC1_CH3","ADC1_CH4", "ADC2_CH0"};
|
||||
|
||||
adc1_config_width(ADC_WIDTH_BIT_DEFAULT);
|
||||
adc1_config_channel_atten(ADC1_CHANNEL_2, ADC_ATTEN_DB_0);
|
||||
adc1_config_channel_atten(ADC1_CHANNEL_3, ADC_ATTEN_DB_6);
|
||||
adc1_config_channel_atten(ADC1_CHANNEL_4, ADC_ATTEN_DB_0);
|
||||
adc2_config_channel_atten(ADC2_CHANNEL_0, ADC_ATTEN_DB_0);
|
||||
|
||||
int n = 20;
|
||||
while (n--) {
|
||||
|
||||
adc1_reading[0] = adc1_get_raw(ADC1_CHANNEL_2);
|
||||
adc1_reading[1] = adc1_get_raw(ADC1_CHANNEL_3);
|
||||
adc1_reading[2] = adc1_get_raw(ADC1_CHANNEL_4);
|
||||
|
||||
for (int i = 0; i < 3; i++) {
|
||||
ESP_LOGI(TAG_CH[i], "%x", adc1_reading[i]);
|
||||
}
|
||||
|
||||
ret = adc2_get_raw(ADC2_CHANNEL_0, ADC_WIDTH_BIT_12, &adc2_reading[0]);
|
||||
assert(ret == ESP_OK);
|
||||
ESP_LOGI(TAG_CH[3], "%x", adc2_reading[0]);
|
||||
}
|
||||
}
|
||||
|
||||
void app_main(void)
|
||||
{
|
||||
single_read(NULL);
|
||||
continuous_read(NULL);
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user